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We present the second-order gravitational dynamics for a spacetime inhabited by matter fields which
feature vacuum birefringence. The derivation follows a perturbative variant of the covariant constructive
gravity program, ensuring diffeomorphism invariance of gravity and causal compatibility of matter theory
and gravity. A subsequent spatiotemporal split of this theory reveals the presence of unphysical artifacts,
which are cured by imposing constraints on the gravitational constants, reducing their number from ten to
seven. Within this sector, we derive the gravitational radiation emitted by a binary system in circular
motion. The system emits massless waves, which correspond to the radiation predicted by Einstein gravity,
but also massive waves, which are generated only above a certain angular frequency threshold and are
unknown to Einstein gravity. A gravitational-wave detector modeled as a sphere of freely falling test
masses shows quantitatively and qualitatively new behavior under the influence of this radiation. The result
is a prediction of gravitational self-coupling from first principles, demonstrating the predictive power of
covariant constructive gravity for modified gravity research, especially in the era of gravitational-wave

astronomy.
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I. INTRODUCTION

The first Earth-bound detections of gravitational waves
by the LIGO and Virgo Collaborations [1-3] opened up a
new avenue for research on modified gravity [4]. These
high-precision experiments demonstrated the feasibility of
measuring tiny oscillations of spacetime that have their
origin in faraway astrophysical events. Any modified
theory of gravity that introduces changes to the generation,
propagation, or detection of gravitational waves is now—in
principle—falsifiable in this regard [5,6].

Using the example of area metric gravity, we demon-
strate how the covariant constructive gravity program [7]
can be employed to construct gravitational theories that
predict quantitatively and qualitatively new effects con-
cerning gravitational radiation. Just like general relativity
provides the dynamics for the spacetime metric governing
Maxwell electrodynamics and similar field theories,
area metric gravity provides the dynamics for the
geometry governing a birefringent generalization of
Maxwell electrodynamics.

The derivation of novel effects of gravitational radiation
in area metric gravity is divided into three parts: First, in
Sec. II, we are concerned with the construction of area
metric gravity as the gravitational theory consistent with
birefringent generalizations of Maxwell electrodynamics.
For this purpose, we revert to previous results [7] but
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shortly review the construction procedure in order to keep
the article self-contained.

In Sec. III, we perform a 3 + 1 split of the thus obtained
gravitational field equations. These equations turn out to be
too general, allowing for unphysical behavior of solutions.
Consequently, we restrict the theory to a subsector with
sane phenomenology.

With the newly constructed theory at hand, we then turn to
the emission of gravitational waves from a binary system in
the third part, Sec. IV. First, we solve the problem in metric
general relativity in order to establish a procedure which we
subsequently adapt to area metric gravity. Finally, we con-
sider a detector for gravitational waves modeled as a sphere of
freely falling test masses and derive the signal induced by
gravitational radiation emitted from the binary system.

II. PERTURBATIVE CONSTRUCTION
OF AREA METRIC GRAVITY

A. General linear electrodynamics

Our considerations start out from the assumption that
spacetime is filled with matter obeying the laws of general
linear electrodynamics (GLED). GLED is the most general
theory of electrodynamics where electric charge and
magnetic flux are conserved and the superposition principle
holds [8,9]. In a very specific sense, this theory is more
general than Maxwell electrodynamics: While the dynam-
ics of the electromagnetic field in Maxwell’s theory are
governed by a Lorentzian metric ¢,
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SMaxwell = / V _ggacgbdFachdd4x7 (1)

where F is the field-strength 2-form, the dynamics of
GLED employ a higher-rank tensor field G,

SGLED = /wGGudeFachdd4x' (2)
The tensor field G is subject to the symmetries
Gabcd — G(?dab — _Gbacd (3)

and wg is a 1-density derived from G. We call G the area
metric and the corresponding vector bundle F,., C T*M
with fiber dimension 21 the area metric bundle. Of course,
Maxwell electrodynamics is contained within GLED by
choosing

Gabcd — gacgbd _ gadgbc + \/__geabcd (4)
and

1 :
WG = ﬂeabchude' (5)
A distinctive feature of GLED is the causality of light
rays. The wave covector k of a ray subject to Maxwell
electrodynamics is constrained to the quadratic surface

g(k. k) =0, (6)

which is nothing other than the well-known light cone in
relativity. In GLED, however, the surface of causal wave
covectors is given by the quartic constraint

1 -2
- ﬂ Dg emnpq

= 0. (7)

P(k) = erstuGmnraGbpschquakbkckd

The object P, often referred to as the Fresnel polynomial in
the literature, is the principal polynomial for the GLED
field equations and has been calculated in this context by
Obukhov, Fukui, and Rubilar [10]. An important qualitative
difference between Eqs. (6) and (7) is that, in Maxwell
electrodynamics, there is only one admissible wave
covector in spacetime for each spatial codirection, while
in GLED there are, in general, wo.' The consequence is a
polarization-dependent speed of light or, more succinctly,

"This stems from the fact that, for fixed spatial components,
the constraints on the wave covector reduce to quadratic
(Maxwell) or quartic (GLED) equations for the temporal com-
ponent. Consequently, there are two solutions in Maxwell
electrodynamics—one future directed and one past directed—
but four solutions in GLED, two of which are future directed.

vacuum birefringence. In the following, we explore the
gravitational ramifications of allowing for such birefrin-
gence in electrodynamics.

B. Perturbative construction

Our method of choice for deriving gravitational dynam-
ics compatible with GLED is covariant constructive gravity
as introduced in Ref. [7]. This approach provides a precise
procedure for constructing the second-order Lagrangian

L: PFu — A*M (8)

over the second-order jet bundle J?F,., based on two
fundamental axioms on the dynamics from £L: diffeomor-
phism invariance and causal compatibility with matter
dynamics. The perturbative variant yields a perturbative
expansion of £ around a flat expansion point N. Since our
ultimate goal is the prediction of a second-order effect, we
construct the Lagrangian up to third order:

L = ao + aAHA + ClAIHAI
+ aspH H® + a,p' HAH® | + a,? p'H ,H?,
+ angcH*HPHC + a5 H*HPHE
+(1ABquHAHBpHCq+O(H3). (9)

The notation is borrowed from Ref. [7]: We make use of
the coordinate chart (x™,G* G*,,G*) on J?F,, the
coordinate representation L = Ld*x, and the coordinate
deviation H from the expansion point N:

(H*, HA,,H*)) == (G* —=N*,G*,.G*).  (10)
An appropriate expansion point is
Nabcd — nacnhd _ nudnhc + eabcd, (11)

since the two requirements formulated in Ref. [7] are
satisfied: N is Lorentz invariant and reduces GLED to
Maxwell electrodynamics on Minkowski spacetime.
Hence, N provides a suitable background for predicting
first- and second-order gravitational effects of birefringence.

The fact that the expansion (9) is around a Lorentz-
invariant point already reduces the coefficients ay, ay, ... to
Lorentz-invariant tensors [7]. For exactly this reason, we
refrained from introducing coefficients with only a single
derivative index, such as a,”, because they drop out
anyway when implementing Lorentz invariance. We will
also set the coefficients ay to zero, because, otherwise,
the flat expansion point N would not be a solution to the

*This definition of N is formulated using a coordinate-induced
chart on T*M. The transition to the chart on F,,, can be made
using the intertwiner technique [7].
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Euler-Lagrange equations, contradicting the premise of
perturbation theory. Since it is very straightforward to infer
ap = 0 from diffeomorphism invariance, we also drop this
coefficient.

Efficient computer algebra [11,12] yields a 237-
dimensional basis for the remaining coefficients

ay’, axp. anp's an? g%, aspes anpc’s anp’c?,  (12)
which is enumerated in the Appendix A. We used the same
software suite [12,13] in order to evaluate the perturbative
expansion of the diffeomorphism equivariance conditions
for (9), which results in a linear system constraining the
237 expansion coefficients. Solving this system reduces the
number of free parameters, which play the role of gravi-
tational constants for area metric gravity, to 50. The
reduction is displayed in Appendix B.

The last step of the construction procedure is to adapt the
causality of the newly constructed gravitational theory to
the causality of GLED. Because we constructed the theory
up to second-order equations of motion, the principal
polynomial is of first order. Axiom 2 formulated in
Ref. [7] now requires that the corresponding null surfaces
and hyperbolicity cones of the gravitational polynomial
match the null surfaces and hyperbolicity cones of the
GLED polynomial up to first order. To this end, we expand
the polynomial (7) as

24
= [PO]2 + O(H?), (13)

Poten — { {1 - ie(H)} n(k, k) + %H(k, k)}2 + O(H?)

where €(H) = €,,qH and H(k, k) = 3, H®*k,k,.
Below, also the abbreviation n(H) = n,.1,,H°? will be
used. It is now a remarkable consequence of the diffeo-
morphism equivariance of (9) that we actually do not need to
enforce this matching up to our desired perturbation order,
because it already follows from equivariance. In the remain-
der of this section we establish this fact, starting with proving
that the Euler-Lagrange equations to a diffeomorphism
equivariant Lagrangian are a tensor density of weight 1.

Proposition 1.—Let F be a subbundle of some tensor
bundle over the four-dimensional spacetime manifold M
and L:J°F — A*M be a diffeomorphism equivariant
Lagrangian with coordinate representation £ = Ld*x
which is degenerate in the sense that the Euler-Lagrange
equations

oL
Ey=or=Lia=DyLia? +D,D Lis™.  (14)
where D,f = f.4G,* + f.49G* ,, + .4 G* ., are of
second derivative order, i.e., also functions on J2F. Let an
infinitesimal diffeomorphism on M induced by a vector
field & lift to F as

5:G* = CApm ,GBE . (15)

It follows that the Euler-Lagrange equations are diffeo-
morphism equivariant with respect to the diffeomorphism-
induced action on A*M ® F*. In particular, the local
representation (14) exhibits the infinitesimal transformation
behavior

SeEq = Ex&" , — EgCP ™, 8" . (16)

Proof.—The equivariance of the Lagrangian implies
infinitesimally

6514 - L’mfm + L:AégGA + L:AP(S(EGAP + L:quééGqu
=Lem (17)

Expanding E4 by using its definition (14) and subsequently
making use of (17) in the infinitesimal transformation

yields Eq. (16). [
This property immediately translates into the principal
symbol of the Euler-Lagrange equations being a tensor
density of weight 1.
Proposition 2.—Consider the same situation as in
Proposition 1. The principal symbol of the Euler-Lagrange
equations

TAB = EA:qukpkq (19)

for a covector k € T*M exhibits the infinitesimal trans-
formation behavior

6§TAB = TABgm,m - TCB CCA mngn,m - TACCCangn,m . (20)
Proof.—A covector k€T*M transforms infinitesimally as
Ocky = ky&" 4. (21)

Expanding T 4 using its definition (19) and employing (16)
and (21) in the infinitesimal transformation

8:Tap = Tap:c0:GE + Typ:cP6:GC ) + Tap.c"16:GC

ok,

Seky (22)

yields Eq. (20). L]

With the principal symbol being a tensor density of
weight 1, we are now in a position to prove the central
result. For our purposes, we are interested only in
Lagrangians that yield principal symbols which do not
depend on derivatives of the gravitational field. Otherwise,
it would be impossible to reconcile the causality of
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gravitational dynamics with matter dynamics, where the
gravitational field contributes only locally. In other words,
T 4p is a function on F @ T*M. This reduces the principal
symbol to

Typ = [L:A:qu + L.4".p _L:AP:Bq]k kg (23)

r*q
In particular, 7,5 is symmetric. In light of this symmetry
and the diffeomorphism equivariance (16), it is straight-
forward to see that, speaking in terms of linear algebra, the
four vectors

A CABpiGka

X fori=1...4 (24)

span the right and left kernels of the principal symbol,

0= TAB)(?,-) = TBA)(?I‘)- (25)
This is a consequence of the four-dimensional gauge
symmetry in diffeomorphism-invariant field theory. In such
a situation, where the principal symbol is a square, singular
matrix, the principal polynomial P is given by the adjugate
matrix [14,15]

O detT
8TA Bl .o

'8TA4B4
= lilagh-ds [HX 1, i :|P. (26)

In particular, P is a homogeneous polynomial of degree
2N — 16, with N being the fiber dimension of F. We now
turn back to the bundle in question, F,,, and prove that, up
to second perturbation order in the Euler-Lagrange equa-
tions and, consequently, up to first perturbation order in the
principal polynomial, there is no causality mismatch left to
be fixed. Diffeomorphism invariance of the gravitational
dynamics is sufficient to constrain the principal polynomial
to the GLED polynomial.

Theorem 1.—Consider the same situation as in
Proposition 1 with F = F,.,. Let T4z be independent
from the derivatives of the gravitational field, i.e., be a
function on F @ T*M. The principal polynomial P, as
defined in Eq. (26), is a scalar density of weight 57.
In particular, it exhibits the infinitesimal transformation
behavior

QA1-AsB1 By —

5:P = 57-Pem,,. (27)

To first order in the expansion G = N + H of the area
metric field with N as in Eq. (11), the principal polynomial
is equivalent to the GLED principal polynomial P():

P = [wPW]3 + O(H?). (28)

@ denotes a 1—3 density on F,.,. In particular, both

polynomials describe the same null surfaces and hyper-
bolicity cones.

Proof.—The area metric field transforms under infini-
tesimal spacetime diffeomorphisms as

5§GA = CAanGBZjn,m = _4JAabcn1abcmBGB§n~m' (29)

I and J are a choice of constant injection and surjection,
respectively, relating T*M with its subbundle F,., such
that Jol =id [7]. It is straightforward to see that the
functions )(?l.) spanning the left and right kernels of T4p

are tensor valued, i.e., transform infinitesimally as

55)(?,') = CAan)(fgi)fnﬁm +)(?m>§m.i- (30)

Putting everything together, we first calculate
4
21!

=59. QAI...A4BI...B4§m’m
+ CAlAanAA2A3A4Bl...B4§n m +

+ CB4AanA].‘.A4BleB3B€n m (31)

5§QA1...A4BI...B4 —_ 55 — A An By B71TA By

TAZIBZI

and

4
% [ealm%h' e 1 e fé}J
i=1

4
e 2 . €ﬂl~~.a4€b]...b4§mym HX?;)be )

+ CAlAmné'a] a4€b1 b4§n al) _.be‘:) + .-
4 CB4an€a| ...a4€h1 ...h4§n’m)(?all) B ‘}(](3174)' (32)
When verifying both calculations, the identities

glaraiTal = and elAr-AaT4 =0 come in handy.
Substituting Eqgs. (31) and (32) in the infinitesimal trans-
formation of P as defined in Eq. (26) yields the trans-
formation of a density of weight 57:

5:P =57 P&m,,. (33)

This is equivalent to the symmetric coefficients P“1 42
being a tensor density of weight 57. For such a bundle
function, we set up the diffeomorphism equivariance equa-
tions in partial differential equation (PDE) form (see [7]):
P4 ---a2 = 0’
ACAanGB =57. Pal...azﬁémn
—26- Pm(al-»ﬂzs(sazs)n_ (34)

P |
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The constant Lorentz-invariant Ansatz to first order reads’

P =n(k.k)? +A-e(H)n(k,k)"* + B -n(H)n(k, k)"

+ C - H(k, k)n(k, k)'? + O(H?). (35)
Evaluating and solving the equivariance equations results in
the most general principal polynomial of area metric gravity

to first order, which after “completing the thirteenth power”™
amounts to

P { [1 () + (n(H) - %E(H)ﬂ n(k,K)
+ %H(k, k)}13 +O(H?). (36)

Using the same procedure as above to derive the most
general scalar density @ of weight % on F.,, we find

w=1 +A[11(H) —e(H)} -

and by simple multiplication of @ with P(!) [see Eq. (13)]
finally verify assertion (28). u

III. 3+1 SPLIT OF AREA METRIC GRAVITY

A. Sliced spacetime

Because the field equations to the just devised theory
are—as it will turn out—hyperbolic, we now turntoa 3 + 1
formulation where the initial value problem becomes
manifest. This will later be the starting point for the
prediction of gravitational radiation in Sec. IV.

Definition 1 (slicing).—Let M be a four-dimensional
spacetime manifold. A slicing of M is a diffeomorphism

P ExR > M, (38)

where X is the three-dimensional spatial manifold.

Note that such a diffeomorphism always exists, as we
consider a matter theory with a well-defined initial value
problem,5 mandating the existence of a spatial manifold X
for the prescription of initial data. The slicing (38) is not
unique: Any diffeomorphism y:M — M yields another

slicing ¢ = wog.

3The first coefficient can be absorbed into an irrelevant overall
factor, so we set it to 1.

21 +e+0(e) = [1 + 5P + O(e?).

The GLED principal polynomial is hyperbolic for certain
algebraic classes of area metrics, in particular, for the class
containing the flat expansion point N [16].

With every slicing comes a holonomic basis

0 o 0
o (55?) (39)

of the tangent spaces 7Ty, ;)M constructed as pushforwards
of holonomic bases on 7,Z and T,R. In the same fashion, a
holonomic basis

dxd = (dr, dx®) (40)

of cotangent spaces follows from the slicing. This split of
TM and T*M carries over to higher-rank tensor bundles,
proper subbundles thereof, and corresponding jet bundles,
including J?Fy,.

We define spatial quantities using an observer definition
for arbitrary tensor theories [17]. This definition makes use
of only the principal polynomial. An observer frame is a
nonholonomic frame (7, e, = ;%) together with a dual
coframe (n = A -dt, %), subject to the conditions

P(n) =1

(41)

We decompose the time direction using the observer frame
into lapse N and shift N*:

9 9
2 _ NT + N
o1 TN

(42)

and perform the spatiotemporal split of F,., in terms of
observer quantities (see also [17]):

1
G(dr,dx", dr, dv’) = 17 G(m. e, n.ef),  (43)

2
G(dr,dx*, dxP dx") = _WG(n,e“, n, €l )N?!

1
+NG(n,€“,€ﬂ,€7), (44)

4
G(dx*, dx”, dx?, dx%) = WN[“G(n, . n, 6[5)N7]
2
+ NN[“G(n, e e)

2
*N[J/G . 5]7 a B
+ (n,e”, €% €)

+ G(e%, €8, e, €9). (45)

It is convenient to introduce the fields
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G = —G(n,e% n,é’),

Gaﬂ = (O)G)_lé‘/jﬂyG(n, €%, et €D> - 50{/}’

==

Gaﬂ = (a)G)_2€(1ﬂU€/3/10G(€#’ €, e, eﬂ)’ (46)

with
we = VdetG . (47)

Obviously, G and f}aﬂ are symmetric. Moreover, it
follows from the frame conditions (41) for the GLED
polynomial (7) that Gaﬂ is symmetric with respect to G*
and trace-free. We thus have a decomposition of the 21
spacetime components of G into 17 observer quantities G,
three shift components N%, and the lapse N—similar to the
3 4+ 1 decomposition of a spacetime metric g into shift,
lapse, and a spatial metric g.

For the perturbative formulation of area metric gravity,
we expand the observer quantities around the flat expansion
point N (11) as

N=1+A4,
N* = b,
(";aﬁ — J/aﬁ i ha/f’
Ga/} — ka/;,

A

Gaﬂ = Yap + laﬁ' (48)

From now on, spatial indices will be raised and lowered at
will using the flat spatial metric y and its inverse. Instead of
working with the perturbations 4, k, [ directly, we define a
more convenient set of fields which will later on decouple
in the field equations:

uaﬂ — haﬂ _ laﬂ’

B = pob + la/’" Wl =P (49)

B. Gauge fixing

Before we present the gravitational field equations in terms
of these fields, we will fix the gauge symmetry we delib-
erately introduced by making the theory diffeomorphism
invariant. To this end, we employ Helmholtz’s theorem and
decompose the shift perturbation into a longitudinal scalar B
and a transverse vector B* with 0,B* = 0:

b® = 9“B + B“. (50)

On the same basis, we decompose the field u* into two
scalars U and U, a transverse vector U® with 0,U% =0,
and a transverse traceless tensor U% with 9,U% = 0 and
yaﬂ Ua/} =0:

u® =y +20@UP) +yPU + AU, (51)

where the scalar U enters via the traceless Hessian
Ayp = 8,05 — L y4pA. The fields v and w¥ decompose
in a similar way, but with wh being traceless, there is no
scalar W.

A gauge transform is infinitesimally represented by a
vector field & [see Eq. (29)], such that the perturbation H
transforms as

H/A — HA + CAanNBém,m. (52)
Inspecting the individual components of H'A, we notice that

the four components of £ can be chosen such that the four
gauge conditions

0=B,
0=U*—V",
0=U+V (53)

are satisfied (see [18]). Adopting this choice leaves us with
17 degrees of freedom in the scalars A, U,V.V,W, the
transverse vectors B%, U%, W%, and the transverse traceless
tensors U, V& Wb,

C. Field equations

Applying the decomposition of the area metric field into
observer quantities to the Lagrangian (9) and performing
variations with respect to the 21 degrees of freedom yields
21 field equations, four of which are redundant as a
consequence of the Noether theorem for the gauge sym-
metry. This calculation has been carried out using the
field-theory-motivated computer algebra system CADABRA
[19,20] and the previously computed Ansdtze and
solutions.® In this process, we observe that only a subset
of gravitational constants appearing in the Lagrangian enter
the field equations. Up to first order, the number of those
constants is ten.

The gravitational field equations are displayed in their
entirety in Appendix C. In the following, we will see that
there are exemplary cases which show that the first-order
theory still allows for unphysical phenomenology.
Restricting the theory to a physical subset manifests itself
in a further reduction of the first-order gravitational con-
stants from ten to seven.

First, consider the scalar equations for the gravitational
field sourced by a point mass M at rest at the origin of our
chart, i.e., with world line

ya(A) = A6%,. (54)

The cADABRA code is publicly available at Ref. [13].
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This point mass shall be an idealization of a matter field
adhering to GLED dynamics. As such, its dynamics are
given by the action [21]

Smatalr] = M / 2P uen(L7 (H(A) V4, (55)

with L~! being the inverse of the Legendre map associated
to PGLED.7 Perturbatively, we obtain the nonvanishing
contribution

S ma
— I = M50 (x). 56

Since the matter distribution is stationary, we also
consider stationary gravitational fields by assuming that
all time derivatives vanish. Time-dependent fields would
be solutions to the homogeneous field equations which
can, of course, be added at will. The stationary scalar
equations (C1) sourced by (56) then take the form

El(scalar) _ M5(3)(x)5? + Z{au J
Jj

(57)

Solving these equations yields a mix of long-ranging
Coulomb potentials % and short-ranging Yukawa poten-
tials %e"”. The exact nature of this mix and the scales of
the Yukawa potentials follow from the gravitational con-
stants. This result is greatly simplified by imposing a
condition on its phenomenology: The solution to Eq. (57)
shall be given by the linearized Schwarzschild solution of
general relativity for a central mass M plus only short-
ranging Yukawa corrections. Using the above observer
frame definition, the 3 + 1 decomposition of a spacetime
metric g into a spatial metric g, shift, and lapse reads

1
00 _ ~
g _N2N1—2A,

N¢
Oa __ ~ 0
g =——~-b%

NeNP
g7 = N2 A S (58)

Inserting this decomposition into the metrically induced area
metric (4) yields the spatial area metric fields

Gaﬂ _ gaﬂ — yaﬂ + QOaﬂ,

Gaﬁ = 0,
Ga/} = (fJ_l)a/; RYap ~ Pap- (59)

"In the Maxwell-Einstein equivalent, this action measures the
length of the particle world line, which is to be maximized.

Comparing with the definitions of perturbative area metric
observer quantities (48) and (49), we find the metrically
induced perturbation
u®” =29, v =0, w = 0. (60)
The metric solution around a stationary point mass to first
order is quickly obtained by expanding the well-known
Schwarzschild solution [22] to this order, which gives
1
Acx— and @% =24y". (61)
r
With (60) and (61) in mind, the condition that the stationary
scalar equations (57) be solved by short-ranging Yukawa
corrections of the metrically induced linearized
Schwarzschild solution can now be formulated as

4A — U = (Yukawa corrections),

V = (Yukawa corrections

’

W = (Yukawa corrections

’

V = (Yukawa corrections). (62)
These conditions translate into two conditions on the ten
gravitational constants governing first-order area metric

gravity. Incorporating both conditions, the solution to
Eq. (57) reads

V(x) =0,

W(x) =0,

- [ 3

0s) = oy [a= B+ 1) |

~ M |1

V) = [grev .

Ax) = 4]% }‘a + %ﬁe‘”’] . (63)

a, p, v, and p are four independent combinations of the eight
remaining gravitational constants.® From now on, we will
work in this sector of the theory, which we deem the
phenomenologically most relevant one.

The second unphysical phenomenon still present in the
theory is a divergence in the time evolution of some modes.
Inspecting, for example, the equations of motion for the
transverse traceless tensor fields in vacuo (C8), we find
coupled equations of the kind®

0 = Ou + t*u + ov,

0=0v+ v —ou. (64)

¥See Appendix C for the details.
*Ou = ii — Au.
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Performing a spatial Fourier transform, we find the four
eigenvalues for the time evolution of a mode k:

Iy = i/ (K +12) +io. (65)

Unless o vanishes, there are always eigenvalues with
Re(4;) > 0. We dismiss such theories with diverging modes
and impose ¢ = 0. It turns out (see Appendix C) that every
divergence in the equations of motion is due to the same
combination of gravitational constants. Setting this combi-
nation to zero reduces the number of gravitational constants
to seven and defines the sector of linear area metric gravity
theories with physically relevant phenomenology.

D. Relation to canonical gravitational closure

Remarkably, this linear theory is equivalent to the linear
theory obtained by means of canonical gravitational closure
[14,17,18,23,24]. However, there are differences between
both approaches worth being highlighted: While it has been
claimed [14,17,23] that canonical gravitational closure rests
on the principal of reconciling gravity causality with matter
causality, we argue that causal compatibility is not inherent
in this approach. The mere fact that canonical gravitational
closure solves the gravitational constraint algebra using a
specific frame defined by matter causality does not restrict
the gravitational theory to this causality (see also [25]). The
constraint algebra is a manifestation of diffeomorphism
invariance, the solution to which—consequently—yields a
diffeomorphism-invariant theory. It is due to the coinci-
dence pointed out by Theorem 1 that both causalities
coincide to first order if diffeomorphism invariance is
implemented on the gravity side.

However, the linear theory obtained by canonical closure
in Ref. [18] does not even exhibit the same causality as
GLED unless a gravitational constant is fixed [24]. This
hints at missing equations constraining the linear theory
properly, and we suspect these equations to be equivalent to
those implementing Lorentz invariance of the perturbation
coefficients in the covariant approach [7]. As these equa-
tions are obtained only after a prolongation of the system,
it is natural for them to be missing in Ref. [18]. Using
Lorentz-invariant Ansdtze circumvents the need for addi-
tional equations, a fact that has been exploited for the
present work. In Ref. [18], spatial Ansdgtze built from
y and e have been constructed for the 3+ 1 theory,
effectively implementing an O(3) symmetry. The discrep-
ancy between O(1,3) invariant spacetime Ansditze for the
covariant theory and O(3) invariant spatial Anscitze for the
3+ 1 theory is fixed by said choice of a gravitational
constant. This is symptomatic for the intricacies that
come with the infinity of canonical closure equations as
compared to the 137 equivariance equations: A PDE
theoretic analysis, which is necessary in order to devise
a perturbative solution strategy, is much more complicated

in the former case, while in the latter case it comes
almost for free.

Linear area metric gravity as constructed in the canonical
picture [18] is the basis for predictions in, e.g., lensing [26],
quantum electrodynamics [27], or galactic dynamics [28].
Our findings support these predictions, as they make
use of a complementary approach and still provide the
same theoretical basis, while also addressing some question
marks as pointed out above.

IV. GRAVITATIONAL RADIATION
FROM A BINARY SYSTEM

A dynamical theory for matter which makes use of some
geometry is always incomplete as long as the dynamics of
the geometry are not known. Gravity closes this picture by
providing the missing link. Only the joint model of matter
theory and gravity enables the physicist to predict the
evolution of matter over time—while also predicting how
geometry evolves in the process.

In this final part of the present work, we make use of
second-order area metric gravity as derived above in order
to demonstrate how covariant constructive gravity com-
pletes a matter theory to a joint theory of matter and gravity
by predicting a nontrivial interaction: the generation of
gravitational waves from a gravitationally bound matter
distribution.

A. Tterative solution strategy

Let the matter in question be a field ¢ in some bundle
over spacetime and the geometry be a field G in some other
spacetime bundle. G provides the local structure necessary
to formulate the matter action Suer[¢h, G). Covariant
constructive gravity yields the total action

S[Gv ¢] = Sgravity [G] + KSmalter [¢’ G) (66)

by providing the gravity action Sguyiy[G]. The coupling
constant x controls the scale of coupling between matter
and geometry. Variations with respect to both fields yield
the Euler-Lagrange equations

¢[G] = —kT[$.G) and f[p.G)=0,  (67)

with abbreviations

o8 grav
5G

58
Tlp.G)==¢""

f19.6)=2m (68)

e[G]= 50

for the constituents.

The PDE system (67) is, in general, tightly coupled
and correspondingly hard to solve. Effects of finite order in
the coupling can, however, be calculated by perturbative
iteration. We proceed similarly as in Ref. [29] and expand
the geometry formally as
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G=N+Y «Hpy. (69)

Truncating (69) at the kth order yields an approximation
Gy of the geometric field G. We also expand the
contributions e and T to the Euler-Lagrange equations:

e[N+ H] = e() + 6(1)[H] + 6(2>[H} + O(HS),
T¢.N + H) = To)[¢] + Ty [¢. H) + O(H?). (70)

For the zeroth iteration, we evaluate (67) at G, = N,
which yields the equation e[N] = e(g) = 0 for the zeroth
order. This states that N has to be chosen as solution to the
gravitational field equations in vacuo.

The first iteration starts with evaluating the Euler-
Lagrange equations at G(;) = N + kH ;). Using ¢y =0
from the zeroth iteration, this yields an equation for H :

emy[Hm) = =T )¢ (71)

From the solution H ), we fix the matter field to first order
by solving f[¢.G (1)) = 0+ O(k?) for ¢.

The second iteration builds up on this result. We insert
the expansion Gy = N + kH ) —|—1<2H(2) in (67), make
use of the lower-order equations for N and H (1) and obtain
for H(z)

eyHp) = =«""To)[¢] = Tyl Hiyy) — e [H )]
+ O). (72)

Note that ¢ depends on kH ), so we have to be careful to
consider only terms of the order of k' from T'(y)[¢] and of
the order of ” from T ;)[¢. H ;)) when solving Eq. (72).
Aborting the procedure at this point, the final result is an
approximation G5y = N +«kH 1) + K*H (2) of the geometry
sourced by matter ¢ subject to linearized gravity.

B. Einstein gravity

Let us first apply the iterative solution strategy to a
binary system subject to Einstein gravity.'” The matter
content of spacetime is given by two slowly moving point
masses m; following two world lines y):R — M. The
spacetime metric field g € I'(T9M) measures the length of
the world lines and, thus, provides the action

"The result is, of course, well known and extends to much
more complex configurations of matter as well as higher orders in
the perturbation; see Ref. [29] for a modern treatment. This
section is concerned with developing an approach hand tailored
to the binary system and easy to adapt to area metric gravity.

Smatter 7 (1), 7(2)5 9) = Zmic/dﬂ\/g(}"a)(/l),f/(i)(l))

i=1.2
(73)

The dynamical theory for the geometry g completing
Eq. (73) to a model with predictive power is Einstein’s
general relativity with the Einstein-Hilbert action

o3

. = 4y /=
Sawinld) = [ | VTR (79

Performing the variations (68) and using the parameter-
ization 7(()1‘) (1) = ct, we get the Euler-Lagrange equations

N [R“b - %g“bR}

a b
872G - - Yy i
==Y mdOE -7 () == (75)
i=12 Q(Y(i)v 7(1’))
and
0= 7‘(15) + Fabci’?j)ﬁj)- (76)

Incorporating the slow movement of the source as
7'/Z.> /¢ < 1 simplifies Eq. (76) to

1
0 = d —7% =-T%,. 77
Yo = ¢ an ) Y 00 ( )

We now construct the perturbative solution to second
order around the Minkowski metric, i.e., g*? =5 + he =
"’ +Ghy) —|—G2h’(12”) +O(G?). The perturbation decom-
poses in the usual way as [compare Eq. (58)]

hOO — —2A, hOa — B", h(l/)’ — _Ea/i _ y"ﬂC. (78)

E® is a transverse traceless tensor and B* a transverse
vector as introduced in Sec. III B. We made use of a gauge
condition which sets the scalar part of h°% as well as the
vector and traceless scalar part of h% to zero.

The zeroth iteration is already solved because the left-
hand side of Eq. (75) evaluated at g5y = 1 amounts to zero.

For the first iteration, we expand the left-hand side of
Eq. (75) to first order, which yields the decomposition
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1 .
——AB* - 0°C,
2

1 . .2 1
af _ o app Q
e(hlh) = -5 0 P4+ 0Bl 4y ﬂ[C—§A<—A+EC>}

1
+ AP [—A + 5 C] . (79)
Expanding also the right-hand side to first order, incorpo-

rating the slow-motion condition, and evaluating at
gy = n+ Ghyyy gives the equations

Zm(S 7 (1),

i=1.2

p(X.1)

O [h(l)] — 0,
e [hy)) = 0. (80)

Because much of this PDE system is trivial, the solution is
composed of only one scalar potential ¢ such that

E) =0, B‘(’):O, Agy=¢/c  Cuy=2¢/c
Ix—yl
ny my
SR e R . 81
F=7w® F=To® (®1)

On this linear background, we now solve the geodesic
equations (76). Doing so, we encounter a common problem
with the point mass idealization. The gravitational field
sourced by a point mass diverges at its location. Thus,
divergences arise whenever a mass “feels” its own field.
There are two remedies pointed out in Ref. [29]: Either give
up the idealization and model the masses as extended
fluids, or perform a regularization of the diverging integrals
like Eq. (81). Both effectively boil down to the same rule
of thumb: We can keep using the point mass idealization
but must discard the diverging terms. With this in mind, we
obtain the equations of motion

sz | (82)

J# @

This is, of course, the Newtonian limit of general relativity.
We know from Newtonian mechanics that the solutions to
Eq. (82) are conic sections. For our purposes, we keep it
simple and consider circular solutions with constant sep-
aration r and trajectories

. my
To)(t) = —ern, (83)

where m = m; + m, is the total mass of the system
and the angular frequency amounts to w®> = Gm/r>. The

vectors 7 and 1 (used below) are, in an orbit-adapted

frame,11 given as
cos wt — sinwt
n=| sinwt |, A= coswt |. (84)
0 0

We have now set the stage for the second iteration. As
our goal is to predict the generation of gravitational waves,
we concern ourselves with the transverse traceless modes
of the perturbation—the other modes do not propagate and,
thus, cannot radiate. To this end, we expand Eq. (75) to
second order and evaluate at g,y =1+ Gh) + Gzh(2>,
which gives the relevant equation for the transverse trace-
less mode:'?

8 Y J’ﬂ

11/3 (1)7 (i) afp

C2 Zm15 ( )) G2 - e(z)[h(l)}'
i=1,2

(85)

The fact that the second order e of e is evaluated at the
result (81) of the first iteration comes in very useful,
because e ;) [h(l)] can contain only the scalar potential ¢.
Expanding the Einstein tensor to second order, the trans-
verse traceless projection (denoted by [-]™T) turns out to be

1 1
ey h)]™ =[R20 I + (40 (pP P (86)

Using this expansion in Eq. (85), the field equation for the
transverse traceless mode reads

DEaﬂ 1 671' |:

Zmﬁ X=7u)(0)7(;

i=1,2

: % 09~ 207 (PP (57)

The retarded solution to a wave equation of the kind
Oy (X, 1) = 4zp(X, 1) is obtained by convolution of the
source with the retarded Green’s function:

"An orbit-adapted frame [29] consists of two perpendicular
vectors spanning the orbital plane and a third vector perpendicular
to this plane.

The gravitational constant in the denominator is canceled by
a gravitational constant arising from the time derivatives of the
world lines.
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mznz/h*” wJ) (88)

X =3

where 7 =7 — |X —y|/c is the retarded time. As we are
interested in only radiation into the far zone R = |X| > r
and the sources in Eq. (87) are either confined to a bound
region of radius r—the separation of the binary system—or
decreasing with 1/|¥|*, the zeroth order in the expansion of
|x — ¥| in Eq. (88) is a first approximation, such that

wiE.n =5 [ @5(e) (59)

and 7 =t — R/c. This leaves us with two integrals to be
evaluated, where we can already drop a boundary term in
the second integral:

k= [ 5ol 3)i1

U? = / d3F0pd . (90)
For the integral K%, we readily obtain
K% = GﬂTmz/la/lﬂ, (91)
with the reduced mass n = %

The integral U% requires more careful consideration.
First, it is instructive to make use of the integral repre-
sentation (81) of the scalar potential ¢:

Ua[i /dS"/dS //d3 " ( N)
|y - yI 5y
X (y* =y )y = y"7). (92)

Performing the integration over y gives

U = 2n / &y / d3y7’p7(¥>’0 0"
/_ //

w0 y”“)(y y”ﬂ)
X {y p |y’ //|2 } . (93)

This integral can now be evaluated. Leaving out diverging
terms in order to regularize the integral, as already
explained, results in

dxnm?

Uaﬂ — [yaﬂ _ I’lal’lﬂ]. (94)

r

We now put together Egs. (91) and (94) and remove the
trace in order to obtain the far-field solution to Eq. (87).

Finally, we can predict that, to lowest order and in the far
field, a binary system of reduced mass # and total mass m
with separation r in circular motion emits gravitational
waves as

Gzhaﬂ 4’7 (G )

) = @p [,1a,1ﬂ —

nnf|1T, (95)

This is in accordance with the results from post-
Minkowskian and post-Newtonian theory in the literature
[29], which have been confirmed by indirect [30-32] and,
recently, direct [1-3] observations. Note that we followed
a top-down approach, starting from the Einstein-Hilbert
action (74) and solving perturbatively up to second order.
We would have arrived at the same result using the bottom-
up approach provided by perturbative covariant gravity,
because the perturbative construction of metric gravity to
second order in the field equations coincides with the
corresponding expansion of the Einstein equations [7]. The
above procedure allows for the prediction of a nontrivial
second-order effect of matter-gravity interaction from a
theory constructed to second order—a technique we will
subsequently apply to area metric gravity, whose exact
dynamics are not known.

It is clear from our calculation that the generation of
gravitational waves is indeed a second-order effect. The
system is bound by gravity as a first-order effect, and
gravitational radiation is sourced by this gravitationally
bound system as an effect of second order. Derivations in
the older literature that arrive at Eq. (95) or its generali-
zation called the quadrupole formula from linearized
gravity are incorrect in their premises: They either silently
make use of the next order at some point or inadvertently
construct this order along the way. Earlier results show
that there is no leeway in the (iterative) construction of
metric gravity [7,33-37], so it comes as little surprise that,
eventually, the correct formula is obtained nevertheless.

C. Area metric gravity

As already pointed out in Sec. III C, the action for two
point masses following GLED dynamics is given as

Smatter 7’»

Zm C/d’lpGLED(L_l(7./(1')(’1)))_]/4'

i=12
(96)
Up to first order in the expansion around N as defined in

Eq. (11), Pgigp 1s equivalent to a quadratic polynomial
(13), which using the perturbation fields (49) amounts to

PU (k) = n(k, k) + [-2A]koko + [-2b%kok,

1 1
+ |- 5 u®” — > YWy | koks. (97)
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The causality defined by P(!) is effectively metric, such that
Eq. (96) is obtained by simple inversion (see [21]) as

Srnatter ~ lemic/d {”aby ) () + ZA}/() (i) 2ba7() (i)

1 U o p |17
|5 ap VOl | TG0 (98)
In Sec. II, we have constructed the gravitational Lagrangian

L, with the help of which we formulate the gravitational
action

C3 4
Sgravity[G] = /d xL. (99)

162G

We now start the iterative solution procedure for a
perturbation around N. The zeroth iteration is already
solved, because the construction procedure of the gravita-
tional dynamics has been set up such that N is a vacuum
solution.

For the first iteration, the perturbation H ;) is—due to the
slow-motion condition—sourced by only one contribution:

1 6xG

167G 6S matter -
- = 2 /)( )

A BA

(100)

Using again the slow-motion condition and working within
the gauge (53), the solution to the linearized area metric
gravity field equations sourced by Eq. (100) is already
known from Eq. (63), such that the nonvanishing modes
read

A = - 2/&()hiﬂ
.

_ B\ -
Uy =4A0) - <3+8; V-

ﬂe—uz—y]
X -7

(101)

Evaluating the integrals, we readily get

ﬂe—ll|f—l7(i)(l):|
= m; t5—= ;
e z {lx 7o 18 =7i )]

i=1,2

Yoy == 2ZWP€WVJ}

=12 [x-7

(102)

Because the matter action (98) is given by an effective
metric, the equations of motion for the source are again
geodesic equations (77). The relevant Christoffel symbol
expands as %, = GO“A + O(G?). We again find the
circular solutions of constant separation r:

- mp o

1) =——rn. 103
7o) (1) m (103)
This time, the angular velocity amounts to

(Gaym [ b _,
w? = o 1+ e”(l+yr).

(104)

Having solved the first iteration for H ;) and the source
trajectories, we are ready to proceed with the second
iteration. Let us begin with the transverse traceless modes
of H(y), one of which is subject to the massless wave
equation (C8)

Gl 88 gravity
- Q) — ravi GH
1678a @ {( Sty ) (2)[ o]

4CZm5 X=70) )7, yﬁ}TT

i=1,2

(105)

Using the third-order Lagrangian (see Appendlxes A and B),
we perform a 3-+1 split with CADABRA ~ and evaluate the
second-order gravitational field equations (&S grayiry/ 5uaﬂ) 2)

at the first-order solution (101), obtaining

5Sgravity T G TT

Loty ) CIGH )] = —— [ad" XX + pOYIPY)

Su M 16
ap ) TC

(106)
where we introduced abbreviations for the integrals
~ [ @)
X =5
v= [ #56) s (107)
= Y\) ==
X =5l

With Eq. (106) in (105), we can now integrate the wave
equation using the same approximation as before [see
Eq. (89)], such that the solution reads

8a 202 B T
aff _ af af r aff
U(2) N {Gc“R K 7c*R <q)(0) + a q)(”))] (108)
with the kinetic term
K% = / EIp(F)ie 7, (109)

and the potential terms

“The code is publicly available at Ref. [13].
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D@ up = / d’y / d*y’ / ay'p(y")p(y")
eHIZl —ulZ|
(0 ) )
Z| 7 2l /5y

Evaluating the integrals, we finally obtain the gravitational
radiation on the massless U% mode in the far zone from a
binary system with constant separation r:

(110)

“ 8n (Gam)? . u
GUY =- g, A =T (1)
where f(r) =L (1 + pr)e".

This result is of remarkable consequence, because, with
Eq. (60) in mind, we see that for a = 1 it is the transverse
traceless wave induced by the metric gravitational wave

E((lg [see Eq. (95)] plus a Yukawa correction f(r) that falls
off exponentially with the separation:

G*UY = 2G*EQ (1 + f(r)].

g (112)

That is, the result (111) is a refinement of the metric result,
offering the same qualitative behavior with quantitative
corrections given by short-ranging Yukawa terms. In
particular, the phenomenology of gravitational radiation
in Einstein gravity is contained within this result, either for
sufficiently large separation r of bodies or for appropriate
choices of area metric gravitational constants.

As the inspection of the linearized theory in Sec. III C
revealed, the metrically inducible mode U% is the only
massless degree of freedom. All other propagating modes
are subject to massive wave equations. First, let us consider
the trace-free fields 7% = v —1/3y"y,, v* and w*.
Since the first-order matter action (98) depends only on
the trace of v* and does not depend on w* at all, the
respective equations of motion are not sourced by kinetic
terms, leaving us with'*

Do) + 125 =

Dwaﬁ Jruzw?ﬁ =

[0°XPY|TF,

e[0?X0PY|™F (113)
0 and e are gravitational constants arising during the
construction of the third-order area metric gravity
Lagrangian, and the mass v is a gravitational constant of
the second-order Lagrangian (compare Appendix C). These
wave equations govern the radiation of traceless tensor
modes V% and W the vector modes U® and W (via the
gauge condition U* = V%), and the traceless scalar modes
V and W. The remaining trace-free mode—the vector

Y@ TF = f@h) Ly p¥y% s the idempotent projection
on the symmetric trace-free part.

B“—does not propagate on its own but follows from a
constraint (see Appendix C).

The retarded solution to a massive wave equation of the
kind (O + m?)y(x) = 4ngp(x) is obtained by convolution
of ¢ with the retarded Green’s function

37 o 0_ 0y -
Grat(x,y) = 0(x° = y") / (d k3 SOt =) ik ),

271') ()%

(114)

where @), = 1/ |/€|2 + m?. Carrying out the integrals for

the wave equations (113), we arrive at two qualitatively

different solutions, depending on the value of wg := 2w.
For @, < cv, the gravitational fields are decaying expo-

nentially with R. In the orbit-adapted frame, we have

50 (Gm)? cosaof  sinaot 0
G2ty = SO o) 3e-it | sinant —coson 0
0 0 0
3 i
Fer| , (115)
~1
where
g(r):1 [1+ ur 45 (ur)*e™]
(W)2 ’
b=/t = (wp/c)>. (116)
af

W) has the same solution, only with ¢ instead of &. This

behavior is in line with results for the generation of
gravitational waves on massive modes from nongravita-
tionally bound systems [38]: Below a certain threshold for
the angular frequency (or related measures like energy) of
the generating system, no radiation is emitted into the far
zone. Also, the oscillating (but exponentially damped) part
of the solution does not follow the retarded time but the
coordinate time—which is not the behavior of a wavelike
solution.

In the case of wy > cv, the nonoscillating part of the
solution remains unchanged. The oscillating part, however,
is now radiating as

cosp sing 0\ %
361 (Gm)?
G2 f(lﬁ)_TZ( ’:1) g(r)| sing —cosg 0 , (117)
0 0 0
where
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w} — (cv)?. (118)

Again, the same holds for w((’f) with € instead of .

It remains to derive wave equations for the trace modes
U, V, and A. One such equation is obtained as [see
Appendix C, Eq. (C6)]

3y Y
1+ZB>PM+EPU]~ (119)

p4 denotes the variations with respect to A:

0S gravi
gravity
o= (B

16” 5Smatter
T~ 3 ) ) N
G ( SA )(0)[7(1> 7(2) ]

167 <5Smatter>
+—3 lvay 72 Ho)
3 SA 0 (1) 7(2)> (1)

- - 1
OV o)+ Vi =—y |:ZPA - <

C

+0(G), (120)

pu and p, denote traces of variations with respect to u,; and

Vqp, TESPectively. In setting up the wave equations for U ?f)

17?5), and w?f), we did not pick up contributions from

(6Smatter/0G) (1> because the time derivatives of the spatial
trajectories, }'/‘("), are already of O(G). However, an expan-

sion of the GLED principal polynomial to second order
reveals that the variation with respect to A comes with
[7%y]* = ¢* = O(G’) and, thus, has to be considered as a

source for the second iteration.

Unfortunately, the expansion of S, to second order is
not as readily accessible as the linearized action. This is
because only the first-order GLED principal polynomial
factors into the square of a polynomial of second degree as
in Eq. (13). We leave the calculation of p4 and the solution
for 17(2) open for future research. However, V is the only
propagating trace degree of freedom, because the system
must have four constraint equations,15 two of which already
constrain B* and the other two, consequently, must con-
strain the remaining degrees of freedom, A and U.

D. A simple detector

The effect of the previously derived gravitational waves
on test matter is best demonstrated using a spherical
distribution of freely falling point masses as a detector
and considering its deformation as the wave passes
through. We call this arrangement a geodesic sphere. As
the dynamics of point masses are, to first nontrivial order,

This follows from the same arguments that can be made for
general relativity [25,39].

given by an effective metric (98), the standard procedure of
metric geodesic deviation can be used to derive

1 Ya a P
?X == —R Oﬁox N

(121)

where R is the Ricci tensor related to the effective metric

and X is the spatial deviation vector between two test
masses. Using the 3 + 1 split (58) of the effective metric,
the deviation equation (121) becomes

. 1 : :
X= =3[+ e(bp+ bp") +22A X0 (122)

A purely spatial perturbation has only contributions from
@“, in which case the deviation equation is—for small
deviations—easily integrated as

X4(1) = X7(0) = 3"y ()X*(0).

(123)
Let us now consider the individual modes of gravitational
radiation and their effects on the geodesic deviation (123)
of test matter. All modes'® are proportional to the projec-
tions of

cos(p) sin(p) 0\
M = | sin(p) —cos(p) O (124)
0 0 1

onto the respective (transverse traceless, vector, and scalar
traceless) subspaces. The phase ¢ is defined as in Eq. (118)
and simplifies to ¢ = 2wz for massless modes. Note that
Eq. (124) is still expressed in the orbit-adapted frame. We
now switch into a detector-adapted frame [29] as illustrated
in Fig. 1: The origin lies at the barycenter of the binary
system, the Z direction is pointing toward the spherical
point mass distribution, and the X-Y plane is perpendicular
to this direction. Because we consider only circular binary
systems without any distinguished points on the orbits, we
are free to choose the orbit-adapted y direction such that the
test masses lie in the y-z plane. The detector-adapted frame
is given by a simple rotation around the x axis:

1 0 0
ex=10], ey=| cost |, ez=|sint |, (125)
0 —sinz cos1

with the inclination angle 1. Making the transition into
this frame, the tensor (124) transforms accordingly and
decomposes into the traceless tensor part

16Except for the trace modes, which we left open for future
consideration.
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Vy

FIG. 1. Orbit-adapted frame (x,y,z) and detector-adapted
frame (X = x, Y, Z). The constituents m; and m, of the binary
system describe circular orbits in the x-y plane, producing
gravitational radiation. The detector—a spherical distribution
of test masses in the Z direction—is undergoing periodic
deformations as gravitational radiation passes through. : mea-
sures the inclination of the orbital plane with respect to the
X-Y plane.

2(1+cos?t)cosg cossin @ 0

M™ = cosising —1(14cos?t)cosgp 0 |,
0 0 0
(126)
the vector part
0 0 sinzsing
MY = 0 0 —cosisinicosg |,
sinzsing —cosisinicos@ 0
(127)
and the trace-free scalar part
1
> 00
MSTF = sin?1cosp| 0 oo | (128)
0 0 -1

The traceless tensor part (126) is responsible for periodic
deformations of the geodesic sphere into ellipsoids by
contractions and expansions in both lateral directions X
and Y. This kind of deformation—and only this kind—
arises in metric gravity, where the spatial effective metric
perturbation ¢® in Eq. (123) is given by the spatial part of
the spacetime metric. The oscillating deformation d x M™T
is of amplitude

2 (Gm)?
TR r

d

(129)

and, because of the gravitational wave being massless,
follows the phase

R
¢:2wT:2w<t—>.
c

Predictions of this effect have been made since the early
days of general relativity [40,41] and recently confirmed in
Earth-bound experiments [1-3].

In area metric gravity, ¢ can be read off from the point
mass action (98) as

(130)

1
(paﬂ =5 [uaﬂ + yaﬁyﬂvvw]‘

5 (131)

On the transverse traceless mode, the deformation of
geodesic spheres corresponding to Eq. (131) coincides
with the result from metric gravity, up to a correction factor
of [I+f(r)] as introduced in Eq. (112). This is a
quantitative refinement of the metric result (129), which
does not introduce new qualitative behavior and can be
arbitrarily close to the metric result for appropriate choices
of separation r or gravitational constants.

The solution of the wave equation (113) for 17"5 , together
with the gauge conditions relating U and U* with —V and
V4, yields the combined vector and scalar traceless con-
tribution. For 2w < cv, the binary system does not radiate
on these modes, and test matter remains unaffected. If
2w > cv, however, radiation is switched on and deforms
geodesic spheres according to the deformation matrix

e x [MY — MSTF] (132)
with amplitude
o= 2O ) 2sgna (1)
and phase
0 = 201 — /o) - (cy)zg (134)

It is worth noting that Eq. (132) vanishes for : = 0, the case
of the detector being placed exactly along on the rotation
axis of the binary system. In this configuration, the source
can induce only lateral deformations of the test mass
distribution, which is not at all surprising considering
the geometry of this particular situation. Let us consider
a second case of 1 = z/2, where the geodesic sphere lies
within the orbital plane. The radiation on the transverse
traceless mode is now restricted to the + polarization (as
defined in Ref. [29]). On the mixed vector and scalar trace-
free mode, we have deformations in all three directions'’
according to the deformation matrix

17 .
All eigenvalues are nonzero.
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—%cos 17 0 sin ¢
M=ex 0 —lcosgp 0 (135)
sin @ 0 cos @

This constitutes new qualitative behavior.

With the solution of the wave equation for the trace
mode V still pending, it is not possible to predict the exact
behavior of deformations mediated via this mode.
However, being proportional to the identity map, we can
already infer that they are uniform scalings of geodesic
spheres. The mass of the trace mode V is, according to its
wave equation (119), given by y, so we expect a similar
low-energy cutoff as for the trace-free massive modes of
mass v.

V. CONCLUSIONS

We have implemented the perturbative covariant con-
structive gravity program for GLED compatible area metric
gravity up to second order in the equations of motion, as
already outlined in Ref. [7]. This included a proof of the
fact that, up to this order, the causality of gravity is already
fixed to GLED causality by the requirement of diffeo-
morphism invariance alone. A subsequent 3 + 1 split of the
corresponding field equations exposed unphysical artifacts
of the theory, which we ruled out by considering a sector of
the theory where three of the ten first-order gravitational
constants are fixed.

With this gravitational theory at hand, we followed an
iterative solution strategy to obtain the circular orbits of a
binary system in linearized area metric gravity and its
gravitational radiation as a second-order effect. The result is
arefinement of the gravitational waves emitted by a circular
binary system in Einstein gravity: The two massless wave
modes in area metric gravity correspond to the two
propagating modes in Einstein gravity, and their emission
from the binary system follows the same formula (112), up
to a correction factor determined by gravitational constants
from the first-order field equations and the separation of the
binary system. The remaining trace-free modes are massive
and, thus, generated only above a certain energy threshold.
Once this threshold is exceeded, the emitted radiation is
described by a similar formula (117) as for the massless
modes but scaled with two gravitational constants coming
from the second-order field equations. There are technical
hurdles barring us from obtaining exact results for the trace
modes in the same manner, but based on the wave
equation (119) we conjecture that their generation is very
similar to the other massive modes, where the mass v is to
be replaced with the mass .

Lastly, we modeled a detector for gravitational waves as
a sphere of freely falling point masses. Because of the
massless transverse traceless modes emitted from the
binary system, this sphere undergoes the same volume-
preserving lateral deformations into ellipsoids as already

known from Einstein gravity, only corrected with the
above-mentioned factor. A qualitatively new kind of
deformation (132) into all three spatial directions, which
is still preserving volume, is caused by the radiation on the
remaining trace-free modes. The deformations from the
trace modes, of which we do not know the precise wave
form at the time being, can be distinguished from the rest,
because they consist of uniform scalings.

Our work demonstrates the potential of covariant con-
structive gravity in modified gravity research: Modeling
matter using nonmetric geometries necessitates the con-
ception of a novel gravitational theory. Covariant con-
structive gravity establishes a procedure for the
construction of such a theory. For applications where only
weak geometric fields are relevant, the construction can be
performed perturbatively and aborted at any order. The
such obtained theory allows the prediction of quantitatively
and qualitatively new phenomenology, which can, in turn,
be used to constrain parameters or outright falsify the
theory.

Several effects in linearized area metric gravity derived
by canonical gravitational closure [14,17,18,23] have
already been described: The authors of Refs. [26,27]
predict effects from the area-metric-corrected linearized
Schwarzschild solution on (quantum) electrodynamics.
Galactic dynamics building up on this solution have also
been investigated [28]. Furthermore, the linearized theory is
sufficient in order to predict the generation of gravitational
waves from nongravitationally bound systems [38]. In the
present work, we propose an experiment for testing self-
coupling in area metric gravity by predicting how orbiting
point masses bound by gravity affect distributions of test
masses at a large distance. Note, however, that this proposal
should not be understood too literally: Realistic astrophysi-
cal sources responsible for the strong signals that can be
measured with contemporary technology are much more
complex than the simple configuration we considered in
Sec. IV. Consequently, a prediction of the emitted wave-
form needs a more thorough treatment, e.g., modeling the
masses as extended fluids and considering higher orders in
the post-Newtonian expansion [29]. We kept the technical
difficulty at a minimum and were still able to deduce a
nontrivial effect of gravitational self-coupling. This dem-
onstrates the predictive power of covariant constructive
gravity, which should be explored further to give more
detailed predictions for astrophysical measurements in
promising modified theories of gravity such as area metric
gravity.

APPENDIX A: ANSATZE

Displayed below are the Lorentz-invariant perturbation
Ansditze for the third-order area metric Lagrangian (9). The
source code for Ansatz generation is publicly available [13]
and is based on two Haskell libraries [11,12] implementing
tensor algebra.
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(1) First order (constants esg, €39, €40):

aA[HAl = [638 *MNaclballpq + ez Nacllbpfag + ey - eabcdnpq] X nprnquade,rS' (Al)

(i) Second order (constants ey, ..., €37):

axgHYH® = e - achpallegpn + €2 - Nacllbellagsn + €3 - NaellbfMeqllan
+ ey NaellpgleNan + €5 - €apcallegth + €6 * €aveMeglan) X H abed pefon, (A2)

aAquHApHBp = [67 “Naclbalpell fgtlhg +eg- NacbalpgMeg fh +eg “NacllbpMfaell fgllhg
+ejo- NaclbellagpMhg +eqp- NacbellagN pgtlrh +ep- NaclbellagM pglfh
+e3- NapMpellcfNaghg +ey4- NapMpellcgantlfq +e5- Naelb M egNan®l pg
+epe €abcdlpellfgllhg +ep7- €abcdpgfeg! fn +eps: €abpellcfMdghg

+ep- €abpellcgNaqghfn +ey- €abefNepaglhg +eo- eabef’/lcg’/ldhnpq] X nprnquabcd,rHefgh‘S’ (A3)

asg' HAH® | = e - Nachballeg ihlpg + €23 - Naclballeglfpling + €24 * NacllbeNagh fallpg
+ €25 NacllpeNlagh pting T €26 * NacllbeNlapt fgling T €27 * Nacllbpfaghegt fh
+ €28 * NaellpMegantlpg T €29 * NaellbflegMapting T €30 * NaellbglerManllpg
+ €31 €apcallegfnllpg 1 €32 * €apcalleglypllng + €33 * €avefNeglantlpg
+ €34 €apefNegNapting 1 €35 * €aveptlefNaghng + €36 * €avepllcganllfq
+ €37 " €cpgnllactlvallpg) X NP T HOCH9" | (A4)

(iii) Third order (constants ey, ..., €37):

aABCHAH BHC = [641 “Haclpallegrniktji = €42 * Nacllpalleg Fillnitl ji

+ €43 * Nacllpalleilf jNgrtnt 1 €44 * Nacllpalleill kMg

+ €45 * NacllpeNag fiflnilji 1 €46 * NacllbeNaill fgMlnit ji

+ €47 * NaellpMeilajgkn T €as * NaellpMeillaxtgjn

+ €49 * €apcallegrniktji T €50 * €abeallegrillniM ji

+ €51 €apealleilfiNgktni + €52 * €apcalleill kM giMni

+ €53 €apeflegMantlistji + €54 * €apeMegailnkMl i

+ €55+ €apeMeillaifgen ¥ Hebed gefoh HUk, (AS)
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aABquHAHBpHCq = [656 “Nacllpallegl Ml pill jillig T €57 * Naclpalleg ntl pgMintlji = €58 * Nacllballegh Fpllnill jKtig

+€59'

+ (@)
+ €65
+ €68

+€71

+ €77

+ eg3
+ ege
+ ego
+ egy

+ €95

“NaclpalleprillgiMnkMig + €63
“Naclbelagh il pill kMg + €66
“Naclbelagh rpngikji + €69
“Naclbelag rillngM pkMji + €72
+e74-
“NaclbeNailolnpt jkig 1 €78
+ egp -
“Naclpellaillfpllgilnitliy T €84
“NacllpeNaill prllgiMngt pr 1 €87
“NaclbpNageg rllintlji T €90
“Naelbeghapnill kg + €93
“NaeNb M eglailnill pkMig T €96

Nacllpalleg Fillnitlp Mg + €60

NacllbeaptfillgiMnitliy + €75

Naclpellaill fgfni pilljq + €81

Nacllpalleg Fillnit pg!lji + €61 -

“NaclpallepNfilgnitjq T €64
“Naclbeag fll pgMik!lji + €67
“NaclpeNag rillntpjfiq + €70
“NaclpeNaplfgnilljklig + €73
“NacpeNaplyiflgnitljq T €76 *
“NacpeNaill fgtln il pkMig + €79 *
“NaclpeNaill fgllnikl pglljt 1 €82 -
“NaclpeNaill fpllgkTnifl jq 1 €85
“NaclpeNagh rgtnpMillji 1 €ss
“NaelpegMantl pitl kMg + €o1
“NaeMpMeghapngiklji + €94
“NaeMpeglailntlpjfig + €97

nacnbdneg’/lfinhqr[pkr/jl
nacnbdneinfjngknhlnpq

“Nacllbellagypnill jiig

nucnhendgnfir]hknpqnjl

“Nacllbellap™ fgMlngMikl i1

Macbelap £ill gkMhql i1
nacnbendinfgnhkﬂpjr/lq
nacﬂber/diﬂfgnhqr[pkﬂjl

“Hacbellaillf M gphikiq
“NacvelldgMygMnill pilj1
“HaelbMegan®l pgMik ji

naenbfncgrldinhpnjk’//lq
naenbfncgndirlhk’/lplrqu

+ €98 * Naellp fHegMailnktl pgMjt T €99 * Naellp fHegMaillngMpijt + €100 * HaellbfMegagnplinct ji
“NaelbNeglagnill pkj1 T €102 * Naellb e pNaitlgifinktli + €103 * NaellpMepfail gkt jq
+ €104 * Naellb e pNaillgkMng!jt + €105 * NaellpfMeilaifgptnitliy T €106 * Haellb fHeilla Mg it pg
“NaelMeilacgpniflig T €108 * Naellbgle Mantlpitl jxllig + €109 * Haellbghe fHantl pgMikM ji
+ €110 * NaelbpfeMaillginktliy + €111 * NaeloplleMaillgngtji T €112 * HaellpiflefMaiflgpnkMig
+ €113 * Naellpille Mail gt pg + €114

+e6

+ejo1

+ eo7

€abedlegN il pilljiMiq +eqs - €abedeg nll pgMixM ji

€abcdlegfplniljklliq + €117 * €abealleg fillnit pjfiq + €118 * €abealleg filnil pg ji

+ e119

+ €125
+ €28

+ €31

+ ey

+e137

+ €143

+ €149

+eis5 -

+ €155
+ €153

+ €161

+ €64 -

*€apedllegilng!piji + €120 *

+ e

€abcdlleillf Mokl pg + €123

*€abefNegMapniljklig + €126
*€abefNegNailnifpMig 1+ €129

* €abefNegNailnit pgji + €132 -

€abefNegNaqMnillpitlji + €135

*€apefNepNailgtingtlji + €138

+ e

€abefNeilargptnifig + €141

€abepNeganfifljKMiq + e1y7

*€abepNegaillfilng™ji +eys50 -

EabeillcfNagnillpjMig T €153

*€apeillefNagngpiji T €156 *
*€apeillefNapglngji - €159

*€abeilleNakNgpNnifig + €162 *

€abeqMeNagnpNiklji + €165

*€apefMepNaiflgiMnitiy + €136
*€apefNeilaiMgpnitliy + €139
*€apeplleMagnifl il + €142
*€apepllefMaillgiMnitig + €144
+ €46 *€apepllegNantlfgMiklji - €148

*€apeillefagnkMpitljq - €154

€abedllepNfillgiMnkMiq T €121

*€apefNeglantlpifljitig + €124

€abefNegMapngiklji + €127

*€abefNegailnitpiMig + €130 *

€abefNegMailngpk!ji + €133

€aveplefNailglniljq T €145

€abeillcNdgMnpjiq +eys51

eabeinc‘f”dpngjnhkﬂlq +e 157

*€apeillefNajNgpMnitiy + €160 *

€aveille fMaigpnilljq + €163 °
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€abefNegNan’l pgik ji

“CabefNegNailnpljkNig

eabef’//cgrldinhknpl”qu

“CabefNegNagMnpMinji
*C€abefMNepNaillgkTnif jq
*C€abefMNcillaiNgkMniM pg
*€abeplcfNdgngMikj1
*€abeplcfNaill kMgl j1
“€abepNegailly iMniMiq
“C€abeillcfMagnilpiliq
" €abeillcfMdgNni pqllji

“€abeillefMapNgkThif jq
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anpc' H*HPHC | = [e66 - NacllbalegM rnMlik jillpg T €167 * Nacllpallegl rnlikljptig + €168 * Hacllballeg rillniljil pg

+ €169
+temn
+eyrs
+ e
+ e
+ €184
+ eig7
+ €190
+eo3
+ €196
+ €199
+ e
+ ex0s
+ eas
+ ey
+ €214
+ ey
+ exn
+ €3
+ €26
+ e
+ e

+ €35

“Naclpdegrilnk!jptig + €170
“Naclballeif Mgl pg + €173
“Naclbelag rnlik jill pg + €176
“Nacpeag il jpMig + €179
“NacpeNailfgnijifl pg + €182
“NacpeNailf Mgl pg + €185
“NacpeNailfklgiMnpljq + €188
“NacpeNailf pNgkMng!ji + €191
“Nacpilaeglfpfng!ji + €194
“HaelpMeglaninlljpfig + €197
“Naep M eilagiMniMpg + €200
“Naepgeilaifl kil pg + €203

*NacllbalegriflnpM jitlig + €171
“Naclpalleillf N nptig + €174
“Nacllpeagh rrllint jptig + €177
“Naclpeagh filnpt kg + €180
“NacllbeNail Mkl jptig + €183
“Nacllpeaillf Nonptig + €186
*Nacllpeaill fptgiMnitig + €189
“Nacllbelapf FfngNikt ji + €192
*Naclpillaxtle N ptgillng + €195
*NaelpMeilaifgkMnifl pg + €198
*Naellpghe fanik! i pg + €201
*Naelbgeiaifl rilnptig + €204

“MNaclbdleg f plhg'ir™ ji
“Nacpdeill fkMgiMTniM pg
“Naclbellag rilnkM jif pg
“Nacbellagn fpThgMik™ ji
“Nacbellaill fgnpM kg
“Nacbelaill (kMg iMThpMiq
“Nacbellaill f ptgkMniM jq
“NaclbelaptyiflgjMniNiq
“NaelbfMegManikt jil pg
“NaelofMecila gk TnpMiq
“NaeloglecManMlik!jpMiq
“NaepillcgNar fpthg™lji

“€apcdlleg nikjiMpg + €206 * €abcallegl pnlintljpiq F €207 * €abcalleg fillnil jitl pg

“€apedlleg ik jptig + €209
“€apedlleillfMgkMniMpg + €212
“€apefNeglanikljiflpg + €215
“€apefNegailniljphig + €218
“€abefNeilaiNgnillpg + €221
*CapeilleNaiNgnillpg + €224
* €apeilleNakginpMiq + €227
“€apeillefHapN gt jq + €230
“€apiillceNlafNgnill pg + €233

“€apipleelafigiMnitiy + €236

X rlpr,,lqsHabcdHefthijkl,rS'

the Lagrangian up to second order, with 16 undetermined constants &y, ..
50 undetermined constants ki, ..

“€apedllegyiMnpM ity + €210
“€apealleillfiMginptig + €213
“€apefNeglanllikjptig + €216
“€apefNeglailnp ity + €219
*“€abefNeilaiNgnpliy + €222
*CabeillcfNaNgnptiy + €225
*€abeilleMakgiMnptjq + €228
“€apeille fHapNgtingtlji + €231
“€apiillcellafMgMnptiy + €234

“€apipleelafgntljq + €237

APPENDIX B: REDUCTION

We used the Haskell library [12] in order to solve the previously obtained Ansdtze for diffeomorphism invariance
(see also [7]). The source code and the solution are publicly available [13]. We display the 16-dimensional solution for

., ksg, we point to the aforementioned reference.

e = kl’
€y = kz,
2
€3 = —2k1 —gkz,

1
64 = 4k1 + _kz,

3
€5 = k3,

1
€ = —3k1 —Ekz - 3](3,
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67:k4,
68:k5,
69:k6,
eyo = ky,
ey = kg,

1 5
612:§k6+§k77

16 7 5 4

= — kg 16ks — ~ kg — —ky + ~ kg,
e 34+ 5 =356 127+38

8 13 11 2
614:—§k4+8k5—€k6—ﬁk7 +§kg,

1 23 1
615:k4—§k6—3—2k7—§ks,
e16 = ko,
e17 = ko,

3 3 3
618 :§k4+1k6_ﬁk7+3k9’
1 1 1
=—k —ke ——k ko,
€19 24+46 167+ 9
1 1 1 1
620*_1k4_§k6+3_2k7_5k97
1 3 1
€1 :k4—3k5 +Zk6_1_6k7_§k8+k9_3k10’
exn = ki,
ex3 = ki,
ex = ki3,
ers = kg,
3
e = ke +Zk7 — kg,
1
ey = —ky +§k7,
5 5 25 2 1
628:§k4+ﬁk6_ﬁk7_2kll_k12_§k13_1k14v

3
€29 = kg +Z_Lk7 — ki,

4 5 1 1 1
€3o:—§k4—8k6+ﬁk7+4k11+2k12 +§k13 +§k14,
e3) = ks,

e = ki,
1 1

e33 = ky —§k7 — 3k _EkIS — 6k,

1 3 3 1
€34 :Ekf’ +§k7 _Eklz —§k14 — 3k,

1
€35 = —2ky — ke + 7 k7,
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1 3 1
€36 = —ky +§k7 —Ekn —§k14 — 3kis,
1 1 1 1 1 1
€37 :Ek4 +Ek6 ‘l‘%lﬁ _§k12 _ﬁkl4+k15 +Zkl6’
ey = —2ky + k7,

3
e39 = —2ke — §k7,

1 1
€40 — k4+§k6—§k7.

APPENDIX C: LINEARIZED FIELD EQUATIONS

1. Unconstrained equations

(B1)

A three-plus-one split of the Lagrangian built from the Ansdtze above and subsequent variations with respect to the spatial
perturbation variables introduced in Sec. III yields the perturbative field equations for area metric gravity. We further split
these equations into traceless tensor, vector, and scalar parts and apply the gauge condition from Sec. III. This yields the

linearized field equations for the scalar-trace and scalar-trace-free modes:

SL | S-TF [ ST~ - .S .S
|:—5uaﬂ- :Aaﬂ -SIA—ZIU+S3V+S4V—?4AV+S6W—§6AW:|7
SL |S-TF [ 51 - 3s .
|:5Ua/i_ = Agﬂ -(Sl + 4S4)A + <4 + S4> U+ <4 + 3S4) \%
.. K 4s
+ sV - <§1+T4 + S11>AV + 53V + S14|:|W + SI6W:| ,
SL S-TF r ~ y
[5—(1ﬁ = Ayp |4s6A + 56U + 356V
W
. Ky s
+ (_SG + S14)V - <§6+ S14> AV + S16V - (Zl—’_ S4 + S11>DW - S13W:| s
[ 6L ]S-TR [ 28 S| =8~ 35, s 28y -
e = ——AA——U+—AU —— V-_"2AV
Su | Yap 3 5 + 6 + 2 + 53 3
FSUAT 4 2 aay 1+ 25 AW
3 9 9 ’
- 5L 7 S-TR r 4S3 3s1 . 2s3 _
_—51]“/}_ _Yaﬁ_<—sl+T)AA+ <—T+53>U—TAU
= 3S| - -
+S37V— 7_2s3 +S37 AV+S39V
s 283\, o s 28y 28y 256
——— AV + | =+ —+— | AAV + —=AAW/|,
+<2 3> +<6+9+3> —1—3
oL 1% - (45, 8 8
LSb"} = 0a: {_zsll” (=351 +4s3)V + <;'+;4> AV+;6AW],

oL ~ - 4s 8s 8s
1 = 2080 + (=3s; +4s3)AV + (Tl + T4> AAV + TéAAW,

which depend on ten independent combinations s; of the 16 undetermined constants k;:
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51 = 2ke +%k7,

53 = %ké +§k7 — 6kyy — 2kya,

S4 = _%]% —%/ﬁ —%km,

56 = ke +§k7 — 3kio — ky4 — 6k,

S1 :%k(, +%k7 + 2kg — 2k3 _%ka
S13 = —2ky,

S14 = —2ky + 24ks — kg — %lﬁ + dkg — 12k + 24k — 24k, — 6kyy — dky5 — 2Ky — 48kys — 12Ky,

s16 = —24k, — 4k, — 24ks,

537 = —24ks + 2kg + §k7 — dkg + 24k, — 12k, + 4ky3 — 4Ky,

S39 = 24k, + 4k,. (C2)

A subset of seven constants s; governs the field equations for the vector modes:

oL v . v . N v

514—(1/5 = ata(a SlB/;) - 2S4U/,7) - 2S6€'[,’>” Uﬂ,l/ + 2S6W/3) + —3 - 2S4 €/3)” Wﬂ,l/ s
SL |V .

|:51)—aﬁ:| = 8(0, |:(—Sl - 4S4)Bﬁ) + 4s6€ﬁ)m/B;4,u

.. 3s :
+ (Sl + 4S4 + 2S11)Uﬂ) + <—71 - 6S4 - 2S11>AU/3) + 2S6€/})””Uﬂ’y + 2S13U/,') + 2S14|:|W/,v) + 2s16W[;’) s

SL |V . .. .
|:Wj| = 8(a |:4SGBﬁ) + (Sl + 4S4)€ﬂ)MDBM’U + (2S6 =+ 2S14)Uﬁ) - 2S14AU/;) + (S?l + 254) €ﬁ>/wU/“, + 2S16Uﬂ)

3s
+<—71 - 6S4 — 2S11> DW/)’) - 2S13W/;):| s

SL 1V . .
[%:| = A[ZslBa - 4S4Ua - 4366'0/“/[]#’” + 456Wa + (—Sl - 4S4)€a’uDWM’U], (C3)

as well as the traceless tensor modes:

SL]TT ¢ s . s . . s .

[_&ﬂﬂ =7 U+ (Zl + s4) Vs + (Zl + s4) AV g5 = 2566 V gy + 56 W + 56 AW g5 + (El + 2s4) e Wppus
oL 17T N .. S . Ky

[W = <Zl + S4> Ugp + (Zl + S4> AUqp + 2566 Up)py + <Zl + 54+ S11> LVep +513Vap + 51400Wop + 516 Wg,
SL 1TT

{5W“ﬂ

= SGUaﬁ "‘ S6AU0(ﬂ - (s—21+ 234) €(aﬂyUﬂ)Mwy + S14DVaﬂ + s16Vaﬂ - (Z—l‘i‘ S4 + Sll) DWaﬁ' - 313Waﬁ’ (C4)

Note that the Noether identities [39] 0 = 9,2k — 9, 2F and 0 = 9, 2% — 46/,1% are easily verified.
2. Constrained equations

As discussed in Sec. 111, the field equations exhibit behavior we deem of unphysical phenomenology for a theory which
shall only introduce refinements to Einstein gravity. First, the scalar equations (C1) yield, among short-ranging Yukawa
corrections, long-ranging Coulomb corrections to the linearized Schwarzschild solution, except for
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s1+4s4, =0 and s4=0.

Constraining the theory to this sector yields the scalar field equations

5L |S-TF SI ~ ~ S] . S]
[&taﬂ_ =Dy {Slf\ —S U+ sV -V AV,
SL S-TF
[5vaﬂ = Aaﬂ[SnDV—f—S13V+514DW+516W],
rSL 1 STF
s af = A(l/}[sl4DV+S16V—S11|:|W—513W],
[ow
_6L S-TR 2 . ~ 3 . 2 . )
5 aﬂ] = Yop [—%AA ~S 0+ 2a+ <—%+s3>V—%AV+S3—IAV—i—éAAV],
u
_5L S-TR 4s 3s . 2 y . 3s i )
I (e R G L L G R
S 2S3 .. 2s3
SLER YN At YA
+<2 3 ) % ]
SL1S ) 5
N = 0,0, <2510 + (=35, +4s3)V + =LAV,
5b° 3
oL . )
T —251AU + (=3s; +4s3)AV +%AAV,

the vector field equations

5L v S1 .

|:5uaﬂ - Eafa(a [ZBﬂ) + Uﬁ)}’

SL VY

50| 20(a[s110Up) + s13Up) + 5140Wp) + 516Wp)],
SL 1V

W :26(0[S14DUﬂ) +S16Uﬂ) —SHDWﬂ) —S13Wﬂ)],
5L:V .

{W = 5;A2B, + U],

and the traceless tensor field equations

SL 11T s

L‘iu“ﬂ B ZDU“ﬁ’
oL 11T

[Mlﬁ = sV + 513V + 51aL0Wos + 516 W
SL :TT

|:—5Waﬁ = 514|:|Vaﬂ+slﬁvaﬂ_s11|:|waﬂ _S13Waﬂ'

As explained in Sec. III, the coupled wave equations of the kind

u=syUp+ 530+ sy + 516y,
v = s+ 5160 — s Ly — si3y

lead to diverging behavior of solutions, unless

5138514 — S11816 = 0.
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We thus enforce s, = 513514/, and arrive at a phenom-
enologically relevant subsector of the unconstrained lin-
earized theory with only seven independent gravitational
constants left.

Of these seven constants, five combinations appear
in the linearized Schwarzschild solution (63) and the
gravitational-wave solutions (111) and (117), two constants
which play the role of masses in wave equations or
screened Poisson equations,

851539 5118131514516
quz 3 5 and I/zzﬁ,
957 —24s,53+8s,53;+ 1653 STt

(C11)

and three other constants

B (3s) + 4s3)?
 651(957 — 245,53 + 85,537 + 1653)°
B —8(3s; + 4s3)

r= 6(9s7 — 245,53 + 851537 + 1653)

(C12)

CADABRA, MATHEMATICA, and MAPLE code assisting
calculations in this section is publicly available at Ref. [13].
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