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We present the second-order gravitational dynamics for a spacetime inhabited by matter fields which
feature vacuum birefringence. The derivation follows a perturbative variant of the covariant constructive
gravity program, ensuring diffeomorphism invariance of gravity and causal compatibility of matter theory
and gravity. A subsequent spatiotemporal split of this theory reveals the presence of unphysical artifacts,
which are cured by imposing constraints on the gravitational constants, reducing their number from ten to
seven. Within this sector, we derive the gravitational radiation emitted by a binary system in circular
motion. The system emits massless waves, which correspond to the radiation predicted by Einstein gravity,
but also massive waves, which are generated only above a certain angular frequency threshold and are
unknown to Einstein gravity. A gravitational-wave detector modeled as a sphere of freely falling test
masses shows quantitatively and qualitatively new behavior under the influence of this radiation. The result
is a prediction of gravitational self-coupling from first principles, demonstrating the predictive power of
covariant constructive gravity for modified gravity research, especially in the era of gravitational-wave
astronomy.
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I. INTRODUCTION

The first Earth-bound detections of gravitational waves
by the LIGO and Virgo Collaborations [1–3] opened up a
new avenue for research on modified gravity [4]. These
high-precision experiments demonstrated the feasibility of
measuring tiny oscillations of spacetime that have their
origin in faraway astrophysical events. Any modified
theory of gravity that introduces changes to the generation,
propagation, or detection of gravitational waves is now—in
principle—falsifiable in this regard [5,6].
Using the example of area metric gravity, we demon-

strate how the covariant constructive gravity program [7]
can be employed to construct gravitational theories that
predict quantitatively and qualitatively new effects con-
cerning gravitational radiation. Just like general relativity
provides the dynamics for the spacetime metric governing
Maxwell electrodynamics and similar field theories,
area metric gravity provides the dynamics for the
geometry governing a birefringent generalization of
Maxwell electrodynamics.
The derivation of novel effects of gravitational radiation

in area metric gravity is divided into three parts: First, in
Sec. II, we are concerned with the construction of area
metric gravity as the gravitational theory consistent with
birefringent generalizations of Maxwell electrodynamics.
For this purpose, we revert to previous results [7] but

shortly review the construction procedure in order to keep
the article self-contained.
In Sec. III, we perform a 3þ 1 split of the thus obtained

gravitational field equations. These equations turn out to be
too general, allowing for unphysical behavior of solutions.
Consequently, we restrict the theory to a subsector with
sane phenomenology.
With the newly constructed theory at hand, we then turn to

the emission of gravitational waves from a binary system in
the third part, Sec. IV. First, we solve the problem in metric
general relativity in order to establish a procedure which we
subsequently adapt to area metric gravity. Finally, we con-
sider a detector for gravitationalwavesmodeled as a sphere of
freely falling test masses and derive the signal induced by
gravitational radiation emitted from the binary system.

II. PERTURBATIVE CONSTRUCTION
OF AREA METRIC GRAVITY

A. General linear electrodynamics

Our considerations start out from the assumption that
spacetime is filled with matter obeying the laws of general
linear electrodynamics (GLED). GLED is the most general
theory of electrodynamics where electric charge and
magnetic flux are conserved and the superposition principle
holds [8,9]. In a very specific sense, this theory is more
general than Maxwell electrodynamics: While the dynam-
ics of the electromagnetic field in Maxwell’s theory are
governed by a Lorentzian metric g,*nils.alex@fau.de
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SMaxwell ¼
Z ffiffiffiffiffiffi

−g
p

gacgbdFabFcdd4x; ð1Þ

where F is the field-strength 2-form, the dynamics of
GLED employ a higher-rank tensor field G,

SGLED ¼
Z

ωGGabcdFabFcdd4x: ð2Þ

The tensor field G is subject to the symmetries

Gabcd ¼ Gcdab ¼ −Gbacd; ð3Þ

and ωG is a 1-density derived from G. We call G the area
metric and the corresponding vector bundle Farea ⊂ T4M
with fiber dimension 21 the area metric bundle. Of course,
Maxwell electrodynamics is contained within GLED by
choosing

Gabcd ¼ gacgbd − gadgbc þ ffiffiffiffiffiffi
−g

p
ϵabcd ð4Þ

and

ωG ¼ 1

24
ϵabcdGabcd: ð5Þ

A distinctive feature of GLED is the causality of light
rays. The wave covector k of a ray subject to Maxwell
electrodynamics is constrained to the quadratic surface

gðk; kÞ ¼ 0; ð6Þ

which is nothing other than the well-known light cone in
relativity. In GLED, however, the surface of causal wave
covectors is given by the quartic constraint

PðkÞ ≔ −
1

24
ω−2
G ϵmnpqϵrstuGmnraGbpscGdqtukakbkckd

¼ 0: ð7Þ

The object P, often referred to as the Fresnel polynomial in
the literature, is the principal polynomial for the GLED
field equations and has been calculated in this context by
Obukhov, Fukui, and Rubilar [10]. An important qualitative
difference between Eqs. (6) and (7) is that, in Maxwell
electrodynamics, there is only one admissible wave
covector in spacetime for each spatial codirection, while
in GLED there are, in general, two.1 The consequence is a
polarization-dependent speed of light or, more succinctly,

vacuum birefringence. In the following, we explore the
gravitational ramifications of allowing for such birefrin-
gence in electrodynamics.

B. Perturbative construction

Our method of choice for deriving gravitational dynam-
ics compatible with GLED is covariant constructive gravity
as introduced in Ref. [7]. This approach provides a precise
procedure for constructing the second-order Lagrangian

L∶ J2Farea → Λ4M ð8Þ

over the second-order jet bundle J2Farea based on two
fundamental axioms on the dynamics from L: diffeomor-
phism invariance and causal compatibility with matter
dynamics. The perturbative variant yields a perturbative
expansion of L around a flat expansion point N. Since our
ultimate goal is the prediction of a second-order effect, we
construct the Lagrangian up to third order:

L ¼ a0 þ aAHA þ aAIHA
I

þ aABHAHB þ aABIHAHB
I þ aApBqHA

pHB
q

þ aABCHAHBHC þ aABCIHAHBHC
I

þ aABpCqHAHB
pHC

q þOðH3Þ: ð9Þ

The notation is borrowed from Ref. [7]: We make use of
the coordinate chart ðxm;GA;GA

p;GA
IÞ on J2Farea, the

coordinate representation L ¼ Ld4x, and the coordinate
deviation H from the expansion point N:

ðHA;HA
p;HA

IÞ ≔ ðGA − NA;GA
p; GA

IÞ: ð10Þ

An appropriate expansion point is2

Nabcd ¼ ηacηbd − ηadηbc þ ϵabcd; ð11Þ

since the two requirements formulated in Ref. [7] are
satisfied: N is Lorentz invariant and reduces GLED to
Maxwell electrodynamics on Minkowski spacetime.
Hence, N provides a suitable background for predicting
first- and second-order gravitational effects of birefringence.
The fact that the expansion (9) is around a Lorentz-

invariant point already reduces the coefficients a0; aA;… to
Lorentz-invariant tensors [7]. For exactly this reason, we
refrained from introducing coefficients with only a single
derivative index, such as aAp, because they drop out
anyway when implementing Lorentz invariance. We will
also set the coefficients aA to zero, because, otherwise,
the flat expansion point N would not be a solution to the1This stems from the fact that, for fixed spatial components,

the constraints on the wave covector reduce to quadratic
(Maxwell) or quartic (GLED) equations for the temporal com-
ponent. Consequently, there are two solutions in Maxwell
electrodynamics—one future directed and one past directed—
but four solutions in GLED, two of which are future directed.

2This definition of N is formulated using a coordinate-induced
chart on T4M. The transition to the chart on Farea can be made
using the intertwiner technique [7].
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Euler-Lagrange equations, contradicting the premise of
perturbation theory. Since it is very straightforward to infer
a0 ¼ 0 from diffeomorphism invariance, we also drop this
coefficient.
Efficient computer algebra [11,12] yields a 237-

dimensional basis for the remaining coefficients

aAI; aAB; aABI; aApBq; aABC; aABCI; aABpCq; ð12Þ

which is enumerated in the Appendix A. We used the same
software suite [12,13] in order to evaluate the perturbative
expansion of the diffeomorphism equivariance conditions
for (9), which results in a linear system constraining the
237 expansion coefficients. Solving this system reduces the
number of free parameters, which play the role of gravi-
tational constants for area metric gravity, to 50. The
reduction is displayed in Appendix B.
The last step of the construction procedure is to adapt the

causality of the newly constructed gravitational theory to
the causality of GLED. Because we constructed the theory
up to second-order equations of motion, the principal
polynomial is of first order. Axiom 2 formulated in
Ref. [7] now requires that the corresponding null surfaces
and hyperbolicity cones of the gravitational polynomial
match the null surfaces and hyperbolicity cones of the
GLED polynomial up to first order. To this end, we expand
the polynomial (7) as

PGLED ¼
��

1 −
1

24
ϵðHÞ

�
ηðk; kÞ þ 1

2
Hðk; kÞ

�
2

þOðH2Þ

≕ ½Pð1Þ�2 þOðH2Þ; ð13Þ

where ϵðHÞ ¼ ϵabcdHabcd and Hðk; kÞ ¼ ηacHabcdkbkd.
Below, also the abbreviation ηðHÞ ¼ ηacηbdHabcd will be
used. It is now a remarkable consequence of the diffeo-
morphism equivariance of (9) that we actually do not need to
enforce this matching up to our desired perturbation order,
because it already follows from equivariance. In the remain-
der of this sectionwe establish this fact, startingwith proving
that the Euler-Lagrange equations to a diffeomorphism
equivariant Lagrangian are a tensor density of weight 1.
Proposition 1.—Let F be a subbundle of some tensor

bundle over the four-dimensional spacetime manifold M
and L∶J2F → Λ4M be a diffeomorphism equivariant
Lagrangian with coordinate representation L ¼ Ld4x
which is degenerate in the sense that the Euler-Lagrange
equations

EA ¼ δL
δGA ¼ L∶A −DpL∶A

p þDpDqL∶A
pq; ð14Þ

where Dpf ¼ f∶AGp
A þ f∶AqGA

pq þ f∶AqrGA
pqr, are of

second derivative order, i.e., also functions on J2F. Let an
infinitesimal diffeomorphism on M induced by a vector
field ξ lift to F as

δξGA ¼ CA
B
m
nGBξn;m: ð15Þ

It follows that the Euler-Lagrange equations are diffeo-
morphism equivariant with respect to the diffeomorphism-
induced action on Λ4M ⊗ F�. In particular, the local
representation (14) exhibits the infinitesimal transformation
behavior

δξEA ¼ EAξ
m
;m − EBCB

A
m
nξ

n
;m: ð16Þ

Proof.—The equivariance of the Lagrangian implies
infinitesimally

δξL ¼ L;mξ
m þ L∶AδξGA þ L∶A

pδξGA
p þ L∶A

pqδξGA
pq

¼ Lξm;m: ð17Þ

Expanding EA by using its definition (14) and subsequently
making use of (17) in the infinitesimal transformation

δξEA ¼ EA∶BδξGB þ EA∶B
pδξGB

p þ EA∶B
pqδξGB

pq ð18Þ

yields Eq. (16). ▪
This property immediately translates into the principal

symbol of the Euler-Lagrange equations being a tensor
density of weight 1.
Proposition 2.—Consider the same situation as in

Proposition 1. The principal symbol of the Euler-Lagrange
equations

TAB ¼ EA∶B
pqkpkq ð19Þ

for a covector k ∈ T�M exhibits the infinitesimal trans-
formation behavior

δξTAB¼TABξ
m
;m−TCBCC

A
m
nξ

n
;m−TACCC

B
m
nξ

n
;m: ð20Þ

Proof.—A covector k∈T�M transforms infinitesimally as

δξka ¼ knξn;a: ð21Þ

Expanding TAB using its definition (19) and employing (16)
and (21) in the infinitesimal transformation

δξTAB ¼ TAB∶CδξGC þ TAB∶C
pδξGC

p þ TAB∶C
pqδξGC

pq

þ ∂TAB

∂ka δξka ð22Þ

yields Eq. (20). ▪
With the principal symbol being a tensor density of

weight 1, we are now in a position to prove the central
result. For our purposes, we are interested only in
Lagrangians that yield principal symbols which do not
depend on derivatives of the gravitational field. Otherwise,
it would be impossible to reconcile the causality of
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gravitational dynamics with matter dynamics, where the
gravitational field contributes only locally. In other words,
TAB is a function on F ⊕ T�M. This reduces the principal
symbol to

TAB ¼ ½L∶A∶B
pq þ L∶A

pq
∶B − L∶A

p
∶B

q�kpkq: ð23Þ

In particular, TAB is symmetric. In light of this symmetry
and the diffeomorphism equivariance (16), it is straight-
forward to see that, speaking in terms of linear algebra, the
four vectors

χAðiÞ ¼ CA
B
p
iGBkp for i ¼ 1…4 ð24Þ

span the right and left kernels of the principal symbol,

0 ¼ TABχ
A
ðiÞ ¼ TBAχ

A
ðiÞ: ð25Þ

This is a consequence of the four-dimensional gauge
symmetry in diffeomorphism-invariant field theory. In such
a situation, where the principal symbol is a square, singular
matrix, the principal polynomial P is given by the adjugate
matrix [14,15]

QA1…A4B1…B4 ¼ ∂4 detT
∂TA1B1

…∂TA4B4

¼ ϵi1…i4ϵj1…j4

�Y4
l¼1

χAl
ðilÞχ

Bl
ðjlÞ

�
P: ð26Þ

In particular, P is a homogeneous polynomial of degree
2N − 16, with N being the fiber dimension of F. We now
turn back to the bundle in question, Farea, and prove that, up
to second perturbation order in the Euler-Lagrange equa-
tions and, consequently, up to first perturbation order in the
principal polynomial, there is no causality mismatch left to
be fixed. Diffeomorphism invariance of the gravitational
dynamics is sufficient to constrain the principal polynomial
to the GLED polynomial.
Theorem 1.—Consider the same situation as in

Proposition 1 with F ¼ Farea. Let TAB be independent
from the derivatives of the gravitational field, i.e., be a
function on F ⊕ T�M. The principal polynomial P, as
defined in Eq. (26), is a scalar density of weight 57.
In particular, it exhibits the infinitesimal transformation
behavior

δξP ¼ 57 · Pξm;m: ð27Þ

To first order in the expansion G ¼ N þH of the area
metric field with N as in Eq. (11), the principal polynomial
is equivalent to the GLED principal polynomial Pð1Þ:

P ¼ ½ωPð1Þ�13 þOðH2Þ: ð28Þ

ω denotes a 57
13

density on Farea. In particular, both
polynomials describe the same null surfaces and hyper-
bolicity cones.
Proof.—The area metric field transforms under infini-

tesimal spacetime diffeomorphisms as

δξGA ¼ CA
B
m
nGBξn;m ¼ −4JAabcnIabcmBGBξn;m: ð29Þ

I and J are a choice of constant injection and surjection,
respectively, relating T4M with its subbundle Farea such
that J∘I ¼ id [7]. It is straightforward to see that the
functions χAðiÞ spanning the left and right kernels of TAB

are tensor valued, i.e., transform infinitesimally as

δξχ
A
ðiÞ ¼ CA

B
m
nχ

B
ðiÞξ

n
;m þ χAðmÞξ

m
;i: ð30Þ

Putting everything together, we first calculate

δξQA1…A4B1…B4 ¼ δξ

�
4

21!
ϵA1…A21ϵB1…B21TA5B5

…TA21B21

�

¼ 59 ·QA1…A4B1…B4ξm;m

þ CA1
A
m
nQAA2A3A4B1…B4ξn;m þ � � �

þ CB4
A
m
nQA1…A4B1B2B3Bξn;m ð31Þ

and

δξ

�
ϵa1…a4ϵb1…b4

Y4
i¼1

χAi
ðaiÞχ

Bi
ðbiÞ

�

¼ 2 · ϵa1…a4ϵb1…b4ξm;m

Y4
i¼1

χAi
ðaiÞχ

Bi
ðbiÞ

þ CA1
A
m
nϵ

a1…a4ϵb1…b4ξn;mχ
A
ða1Þ…χB4

ðb4Þ þ � � �
þ CB4

B
m
nϵ

a1…a4ϵb1…b4ξn;mχ
A1

ða1Þ…χBðb4Þ: ð32Þ

When verifying both calculations, the identities
ϵ½a1…a4Ta�… ¼ 0 and ϵ½A1…A21TA�… ¼ 0 come in handy.
Substituting Eqs. (31) and (32) in the infinitesimal trans-
formation of P as defined in Eq. (26) yields the trans-
formation of a density of weight 57:

δξP ¼ 57 · Pξm;m: ð33Þ

This is equivalent to the symmetric coefficients Pa1…a26

being a tensor density of weight 57. For such a bundle
function, we set up the diffeomorphism equivariance equa-
tions in partial differential equation (PDE) form (see [7]):

Pa1…a26
;m ¼ 0;

Pa1…a26∶ACA
B
m
nGB ¼ 57 · Pa1…a26δmn

− 26 · Pmða1…a25δa26Þn: ð34Þ
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The constant Lorentz-invariant Ansatz to first order reads3

P ¼ ηðk; kÞ13 þ A · ϵðHÞηðk; kÞ13 þ B · ηðHÞηðk; kÞ13
þ C ·Hðk; kÞηðk; kÞ12 þOðH2Þ: ð35Þ

Evaluating and solving the equivariance equations results in
the most general principal polynomial of area metric gravity
to first order, which after “completing the thirteenth power”4

amounts to

P ¼
��

1 −
35

12 · 13
ϵðHÞ þ A

13

�
ηðHÞ − 1

2
ϵðHÞ

��
ηðk; kÞ

þ 1

2
Hðk; kÞ

�
13

þOðH2Þ: ð36Þ

Using the same procedure as above to derive the most
general scalar density ω of weight 57

13
on Farea, we find

ω ¼ 1þ A

�
ηðHÞ − 1

2
ϵðHÞ

�
−

19

8 · 13
ϵðHÞ ð37Þ

and by simple multiplication of ω with Pð1Þ [see Eq. (13)]
finally verify assertion (28). ▪

III. 3 + 1 SPLIT OF AREA METRIC GRAVITY

A. Sliced spacetime

Because the field equations to the just devised theory
are—as it will turn out—hyperbolic, we now turn to a 3þ 1
formulation where the initial value problem becomes
manifest. This will later be the starting point for the
prediction of gravitational radiation in Sec. IV.
Definition 1 (slicing).—Let M be a four-dimensional

spacetime manifold. A slicing of M is a diffeomorphism

ϕ∶Σ × R → M; ð38Þ

where Σ is the three-dimensional spatial manifold.
Note that such a diffeomorphism always exists, as we

consider a matter theory with a well-defined initial value
problem,5 mandating the existence of a spatial manifold Σ
for the prescription of initial data. The slicing (38) is not
unique: Any diffeomorphism ψ∶M → M yields another
slicing ϕ̃ ¼ ψ∘ϕ.

With every slicing comes a holonomic basis

∂
∂xa ¼

� ∂
∂t ;

∂
∂xα

�
ð39Þ

of the tangent spaces Tϕðs;λÞM, constructed as pushforwards
of holonomic bases on TsΣ and TλR. In the same fashion, a
holonomic basis

dxa ¼ ðdt; dxαÞ ð40Þ

of cotangent spaces follows from the slicing. This split of
TM and T�M carries over to higher-rank tensor bundles,
proper subbundles thereof, and corresponding jet bundles,
including J2Farea.
We define spatial quantities using an observer definition

for arbitrary tensor theories [17]. This definition makes use
of only the principal polynomial. An observer frame is a
nonholonomic frame ðT; eα ¼ ∂

∂xαÞ together with a dual
coframe ðn ¼ λ · dt; ϵαÞ, subject to the conditions

PðnÞ ¼ 1 and T ¼ 1

degP
DPðnÞ
PðnÞ : ð41Þ

We decompose the time direction using the observer frame
into lapse N and shift Nα:

∂
∂t ¼ NT þ Nα ∂

∂xα ð42Þ

and perform the spatiotemporal split of Farea in terms of
observer quantities (see also [17]):

Gðdt; dxα; dt; dxβÞ ¼ 1

N2
Gðn; ϵα; n; ϵβÞ; ð43Þ

Gðdt; dxα; dxβ; dxγÞ ¼ −
2

N2
Gðn; ϵα; n; ϵ½γÞNβ�

þ 1

N
Gðn; ϵα; ϵβ; ϵγÞ; ð44Þ

Gðdxα; dxβ; dxγ; dxδÞ ¼ 4

N2
N½αGðn; ϵβ�; n; ϵ½δÞNγ�

þ 2

N
N½αGðn; ϵβ�; ϵγ; ϵδÞ

þ 2

N
N½γGðn; ϵδ�; ϵα; ϵβÞ

þ Gðϵα; ϵβ; ϵγ; ϵδÞ: ð45Þ

It is convenient to introduce the fields

3The first coefficient can be absorbed into an irrelevant overall
factor, so we set it to 1.

4
1þ ϵþOðϵ2Þ ¼ ½1þ ϵ

13
�13 þOðϵ2Þ.

5The GLED principal polynomial is hyperbolic for certain
algebraic classes of area metrics, in particular, for the class
containing the flat expansion point N [16].
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Ĝαβ ¼ −Gðn; ϵα; n; ϵβÞ;

Ĝα
β ¼

1

2
ðωĜÞ−1ϵβμνGðn; ϵα; ϵμ; ϵνÞ − δαβ;

Ĝαβ ¼
1

4
ðωĜÞ−2ϵαμνϵβρσGðϵμ; ϵν; ϵρ; ϵσÞ; ð46Þ

with

ωĜ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ĝ··

p
: ð47Þ

Obviously, Ĝαβ and Ĝαβ are symmetric. Moreover, it
follows from the frame conditions (41) for the GLED
polynomial (7) that Ĝα

β is symmetric with respect to Ĝαβ

and trace-free. We thus have a decomposition of the 21
spacetime components of G into 17 observer quantities Ĝ,
three shift components Nα, and the lapse N—similar to the
3þ 1 decomposition of a spacetime metric g into shift,
lapse, and a spatial metric ĝ.
For the perturbative formulation of area metric gravity,

we expand the observer quantities around the flat expansion
point N (11) as

N ¼ 1þ A;

Nα ¼ bα;

Ĝαβ ¼ γαβ þ hαβ;

Ĝα
β ¼ kαβ;

Ĝαβ ¼ γαβ þ lαβ: ð48Þ

From now on, spatial indices will be raised and lowered at
will using the flat spatial metric γ and its inverse. Instead of
working with the perturbations h, k, l directly, we define a
more convenient set of fields which will later on decouple
in the field equations:

uαβ ¼ hαβ− lαβ; vαβ ¼ hαβþ lαβ; wαβ ¼ 2kαβ: ð49Þ

B. Gauge fixing

Beforewepresent thegravitational field equations in terms
of these fields, we will fix the gauge symmetry we delib-
erately introduced by making the theory diffeomorphism
invariant. To this end, we employ Helmholtz’s theorem and
decompose the shift perturbation into a longitudinal scalarB
and a transverse vector Bα with ∂αBα ¼ 0:

bα ¼ ∂αBþ Bα: ð50Þ

On the same basis, we decompose the field uαβ into two
scalars U and Ũ, a transverse vector Uα with ∂αUα ¼ 0,
and a transverse traceless tensor Uαβ with ∂αUαβ ¼ 0 and
γαβUαβ ¼ 0:

uαβ ¼ Uαβ þ 2∂ðαUβÞ þ γαβŨ þ ΔαβU; ð51Þ

where the scalar U enters via the traceless Hessian
Δαβ ¼ ∂α∂β − 1

3
γαβΔ. The fields vαβ and wαβ decompose

in a similar way, but with wαβ being traceless, there is no
scalar W̃.
A gauge transform is infinitesimally represented by a

vector field ξ [see Eq. (29)], such that the perturbation H
transforms as

H0A ¼ HA þ CA
B
m
nNBξn;m: ð52Þ

Inspecting the individual components ofH0A, we notice that
the four components of ξ can be chosen such that the four
gauge conditions

0 ¼ B;

0 ¼ Uα − Vα;

0 ¼ U þ V ð53Þ

are satisfied (see [18]). Adopting this choice leaves us with
17 degrees of freedom in the scalars A; Ũ; Ṽ; V;W, the
transverse vectors Bα, Uα, Wα, and the transverse traceless
tensors Uαβ; Vαβ;Wαβ.

C. Field equations

Applying the decomposition of the area metric field into
observer quantities to the Lagrangian (9) and performing
variations with respect to the 21 degrees of freedom yields
21 field equations, four of which are redundant as a
consequence of the Noether theorem for the gauge sym-
metry. This calculation has been carried out using the
field-theory-motivated computer algebra system CADABRA

[19,20] and the previously computed Ansätze and
solutions.6 In this process, we observe that only a subset
of gravitational constants appearing in the Lagrangian enter
the field equations. Up to first order, the number of those
constants is ten.
The gravitational field equations are displayed in their

entirety in Appendix C. In the following, we will see that
there are exemplary cases which show that the first-order
theory still allows for unphysical phenomenology.
Restricting the theory to a physical subset manifests itself
in a further reduction of the first-order gravitational con-
stants from ten to seven.
First, consider the scalar equations for the gravitational

field sourced by a point mass M at rest at the origin of our
chart, i.e., with world line

γaðλÞ ¼ λδa0: ð54Þ

6The CADABRA code is publicly available at Ref. [13].
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This point mass shall be an idealization of a matter field
adhering to GLED dynamics. As such, its dynamics are
given by the action [21]

Smatter½γ� ¼ −M
Z

dλPGLEDðL−1ð_γðλÞÞÞ−1=4; ð55Þ

with L−1 being the inverse of the Legendre map associated
to PGLED.

7 Perturbatively, we obtain the nonvanishing
contribution

δSmatter

δAðxÞ ¼ −Mδð3ÞðxÞ: ð56Þ

Since the matter distribution is stationary, we also
consider stationary gravitational fields by assuming that
all time derivatives vanish. Time-dependent fields would
be solutions to the homogeneous field equations which
can, of course, be added at will. The stationary scalar
equations (C1) sourced by (56) then take the form

EðscalarÞ
i ¼ Mδð3ÞðxÞδ0i þ

X
j

½aijSj þ bijΔSj þ cijΔΔSj�:

ð57Þ

Solving these equations yields a mix of long-ranging
Coulomb potentials ∝ 1

r and short-ranging Yukawa poten-
tials ∝ 1

r e
−μr. The exact nature of this mix and the scales of

the Yukawa potentials follow from the gravitational con-
stants. This result is greatly simplified by imposing a
condition on its phenomenology: The solution to Eq. (57)
shall be given by the linearized Schwarzschild solution of
general relativity for a central mass M plus only short-
ranging Yukawa corrections. Using the above observer
frame definition, the 3þ 1 decomposition of a spacetime
metric g into a spatial metric ĝ, shift, and lapse reads

g00 ¼ 1

N2
≈ 1 − 2A;

g0α ¼ −
Nα

N2
≈ −bα;

gαβ ¼ NαNβ

N2
− ĝαβ ≈ −γαβ − φαβ: ð58Þ

Inserting this decomposition into themetrically induced area
metric (4) yields the spatial area metric fields

Ĝαβ ¼ ĝαβ ¼ γαβ þ φαβ;

Ĝα
β ¼ 0;

Ĝαβ ¼ ðĝ−1Þαβ ≈ γαβ − φαβ: ð59Þ

Comparing with the definitions of perturbative area metric
observer quantities (48) and (49), we find the metrically
induced perturbation

uαβ ¼ 2φαβ; vαβ ¼ 0; wαβ ¼ 0: ð60Þ
The metric solution around a stationary point mass to first
order is quickly obtained by expanding the well-known
Schwarzschild solution [22] to this order, which gives

A ∝
1

r
and φαβ ¼ 2Aγαβ: ð61Þ

With (60) and (61) in mind, the condition that the stationary
scalar equations (57) be solved by short-ranging Yukawa
corrections of the metrically induced linearized
Schwarzschild solution can now be formulated as

4A − Ũ ¼ ðYukawa correctionsÞ;
V ¼ ðYukawa correctionsÞ;
W ¼ ðYukawa correctionsÞ;
Ṽ ¼ ðYukawa correctionsÞ: ð62Þ

These conditions translate into two conditions on the ten
gravitational constants governing first-order area metric
gravity. Incorporating both conditions, the solution to
Eq. (57) reads

VðxÞ ¼ 0;

WðxÞ ¼ 0;

ŨðxÞ ¼ M
4πr

�
α − ðβ þ 3

4
γÞe−μr

�
;

ṼðxÞ ¼ M
4πr

�
1

4
γe−μr

�
;

AðxÞ ¼ M
4πr

�
1

4
αþ 1

4
βe−μr

�
: ð63Þ

α, β, γ, and μ are four independent combinations of the eight
remaining gravitational constants.8 From now on, we will
work in this sector of the theory, which we deem the
phenomenologically most relevant one.
The second unphysical phenomenon still present in the

theory is a divergence in the time evolution of some modes.
Inspecting, for example, the equations of motion for the
transverse traceless tensor fields in vacuo (C8), we find
coupled equations of the kind9

0 ¼ □uþ ν2uþ σv;

0 ¼ □vþ ν2v − σu: ð64Þ

7In the Maxwell-Einstein equivalent, this action measures the
length of the particle world line, which is to be maximized.

8See Appendix C for the details.
9
□u ¼ ü − Δu.
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Performing a spatial Fourier transform, we find the four
eigenvalues for the time evolution of a mode k:

λk ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ ν2Þ � iσ

q
: ð65Þ

Unless σ vanishes, there are always eigenvalues with
ReðλkÞ > 0. We dismiss such theories with divergingmodes
and impose σ ¼ 0. It turns out (see Appendix C) that every
divergence in the equations of motion is due to the same
combination of gravitational constants. Setting this combi-
nation to zero reduces the number of gravitational constants
to seven and defines the sector of linear area metric gravity
theories with physically relevant phenomenology.

D. Relation to canonical gravitational closure

Remarkably, this linear theory is equivalent to the linear
theory obtained by means of canonical gravitational closure
[14,17,18,23,24]. However, there are differences between
both approaches worth being highlighted: While it has been
claimed [14,17,23] that canonical gravitational closure rests
on the principal of reconciling gravity causality with matter
causality, we argue that causal compatibility is not inherent
in this approach. The mere fact that canonical gravitational
closure solves the gravitational constraint algebra using a
specific frame defined by matter causality does not restrict
the gravitational theory to this causality (see also [25]). The
constraint algebra is a manifestation of diffeomorphism
invariance, the solution to which—consequently—yields a
diffeomorphism-invariant theory. It is due to the coinci-
dence pointed out by Theorem 1 that both causalities
coincide to first order if diffeomorphism invariance is
implemented on the gravity side.
However, the linear theory obtained by canonical closure

in Ref. [18] does not even exhibit the same causality as
GLED unless a gravitational constant is fixed [24]. This
hints at missing equations constraining the linear theory
properly, and we suspect these equations to be equivalent to
those implementing Lorentz invariance of the perturbation
coefficients in the covariant approach [7]. As these equa-
tions are obtained only after a prolongation of the system,
it is natural for them to be missing in Ref. [18]. Using
Lorentz-invariant Ansätze circumvents the need for addi-
tional equations, a fact that has been exploited for the
present work. In Ref. [18], spatial Ansätze built from
γ and ϵ have been constructed for the 3þ 1 theory,
effectively implementing an Oð3Þ symmetry. The discrep-
ancy between Oð1; 3Þ invariant spacetime Ansätze for the
covariant theory and Oð3Þ invariant spatial Ansätze for the
3þ 1 theory is fixed by said choice of a gravitational
constant. This is symptomatic for the intricacies that
come with the infinity of canonical closure equations as
compared to the 137 equivariance equations: A PDE
theoretic analysis, which is necessary in order to devise
a perturbative solution strategy, is much more complicated

in the former case, while in the latter case it comes
almost for free.
Linear area metric gravity as constructed in the canonical

picture [18] is the basis for predictions in, e.g., lensing [26],
quantum electrodynamics [27], or galactic dynamics [28].
Our findings support these predictions, as they make
use of a complementary approach and still provide the
same theoretical basis, while also addressing some question
marks as pointed out above.

IV. GRAVITATIONAL RADIATION
FROM A BINARY SYSTEM

A dynamical theory for matter which makes use of some
geometry is always incomplete as long as the dynamics of
the geometry are not known. Gravity closes this picture by
providing the missing link. Only the joint model of matter
theory and gravity enables the physicist to predict the
evolution of matter over time—while also predicting how
geometry evolves in the process.
In this final part of the present work, we make use of

second-order area metric gravity as derived above in order
to demonstrate how covariant constructive gravity com-
pletes a matter theory to a joint theory of matter and gravity
by predicting a nontrivial interaction: the generation of
gravitational waves from a gravitationally bound matter
distribution.

A. Iterative solution strategy

Let the matter in question be a field ϕ in some bundle
over spacetime and the geometry be a field G in some other
spacetime bundle. G provides the local structure necessary
to formulate the matter action Smatter½ϕ; GÞ. Covariant
constructive gravity yields the total action

S½G;ϕ� ¼ Sgravity½G� þ κSmatter½ϕ; GÞ ð66Þ

by providing the gravity action Sgravity½G�. The coupling
constant κ controls the scale of coupling between matter
and geometry. Variations with respect to both fields yield
the Euler-Lagrange equations

e½G� ¼ −κT½ϕ; GÞ and f½ϕ; GÞ ¼ 0; ð67Þ

with abbreviations

e½G�¼δSgrav
δG

; T½ϕ;GÞ¼ δSmat

δG
; f½ϕ;GÞ¼ δSmat

δϕ
ð68Þ

for the constituents.
The PDE system (67) is, in general, tightly coupled

and correspondingly hard to solve. Effects of finite order in
the coupling can, however, be calculated by perturbative
iteration. We proceed similarly as in Ref. [29] and expand
the geometry formally as
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G ¼ N þ
X∞
k¼1

κkHðkÞ: ð69Þ

Truncating (69) at the kth order yields an approximation
GðkÞ of the geometric field G. We also expand the
contributions e and T to the Euler-Lagrange equations:

e½N þH� ¼ eð0Þ þ eð1Þ½H� þ eð2Þ½H� þOðH3Þ;
T½ϕ; N þHÞ ¼ Tð0Þ½ϕ� þ Tð1Þ½ϕ; HÞ þOðH2Þ: ð70Þ

For the zeroth iteration, we evaluate (67) at Gð0Þ ¼ N,
which yields the equation e½N� ¼ eð0Þ ¼ 0 for the zeroth
order. This states that N has to be chosen as solution to the
gravitational field equations in vacuo.
The first iteration starts with evaluating the Euler-

Lagrange equations at Gð1Þ ¼ N þ κHð1Þ. Using eð0Þ ¼ 0
from the zeroth iteration, this yields an equation for Hð1Þ:

eð1Þ½Hð1Þ� ¼ −Tð0Þ½ϕ�: ð71Þ

From the solution Hð1Þ, we fix the matter field to first order
by solving f½ϕ; Gð1ÞÞ ¼ 0þOðκ2Þ for ϕ.
The second iteration builds up on this result. We insert

the expansion Gð2Þ ¼ N þ κHð1Þ þ κ2Hð2Þ in (67), make
use of the lower-order equations for N and Hð1Þ, and obtain
for Hð2Þ

eð1Þ½Hð2Þ� ¼ −κ−1Tð0Þ½ϕ� − Tð1Þ½ϕ; Hð1ÞÞ − eð2Þ½Hð1Þ�
þOðκÞ: ð72Þ

Note that ϕ depends on κHð1Þ, so we have to be careful to
consider only terms of the order of κ1 from Tð0Þ½ϕ� and of
the order of κ0 from Tð1Þ½ϕ; Hð1ÞÞ when solving Eq. (72).
Aborting the procedure at this point, the final result is an

approximationGð2Þ ¼ N þ κHð1Þ þ κ2Hð2Þ of the geometry
sourced by matter ϕ subject to linearized gravity.

B. Einstein gravity

Let us first apply the iterative solution strategy to a
binary system subject to Einstein gravity.10 The matter
content of spacetime is given by two slowly moving point
masses mi following two world lines γðiÞ∶R → M. The
spacetime metric field g ∈ ΓðT0

2MÞ measures the length of
the world lines and, thus, provides the action

Smatter½γð1Þ; γð2Þ; gÞ ¼
X
i¼1;2

mic
Z

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_γðiÞðλÞ; _γðiÞðλÞÞ

q
:

ð73Þ

The dynamical theory for the geometry g completing
Eq. (73) to a model with predictive power is Einstein’s
general relativity with the Einstein-Hilbert action

Sgravity½g� ¼
c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R: ð74Þ

Performing the variations (68) and using the parameter-
ization γ0ðiÞðλÞ ¼ ct, we get the Euler-Lagrange equations

ffiffiffiffiffiffi
−g

p �
Rab −

1

2
gabR

�

¼ 8πG
c3

X
i¼1;2

miδ
ð3Þðx⃗ − γ⃗ðiÞðtÞÞ

_γaðiÞ _γ
b
ðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð_γðiÞ; _γðiÞÞ
q ð75Þ

and

0 ¼ ̈γaðiÞ þ Γa
bc _γ

b
ðiÞ _γ

c
ðiÞ: ð76Þ

Incorporating the slow movement of the source as
_γαðiÞ=c ≪ 1 simplifies Eq. (76) to

_γ0ðiÞ ¼ c and
1

c2
̈γαðiÞ ¼ −Γα

00: ð77Þ

We now construct the perturbative solution to second
order around the Minkowski metric, i.e., gab¼ηabþhab¼
ηabþGhabð1ÞþG2habð2ÞþOðG3Þ. The perturbation decom-

poses in the usual way as [compare Eq. (58)]

h00 ¼ −2A; h0α ¼ Bα; hαβ ¼ −Eαβ − γαβC: ð78Þ

Eαβ is a transverse traceless tensor and Bα a transverse
vector as introduced in Sec. III B. We made use of a gauge
condition which sets the scalar part of h0α as well as the
vector and traceless scalar part of hαβ to zero.
The zeroth iteration is already solved because the left-

hand side of Eq. (75) evaluated at gð0Þ ¼ η amounts to zero.
For the first iteration, we expand the left-hand side of

Eq. (75) to first order, which yields the decomposition

10The result is, of course, well known and extends to much
more complex configurations of matter as well as higher orders in
the perturbation; see Ref. [29] for a modern treatment. This
section is concerned with developing an approach hand tailored
to the binary system and easy to adapt to area metric gravity.
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e00ð1Þ½h� ¼ ΔC;

e0αð1Þ½h� ¼ −
1

2
ΔBα − ∂α _C;

eαβð1Þ½h� ¼ −
1

2
□Eαβ þ ∂ðα _BβÞ þ γαβ

�
C̈ −

2

3
Δ
�
−Aþ 1

2
C

��

þ Δαβ

�
−Aþ 1

2
C

�
: ð79Þ

Expanding also the right-hand side to first order, incorpo-
rating the slow-motion condition, and evaluating at
gð1Þ ¼ ηþGhð1Þ gives the equations

e00ð1Þ½hð1Þ� ¼
8π

c2
X
i¼1;2

miδ
ð3Þðx⃗ − γ⃗ðiÞðtÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρðx⃗;tÞ

;

e0αð1Þ½hð1Þ� ¼ 0;

eαβð1Þ½hð1Þ� ¼ 0: ð80Þ

Because much of this PDE system is trivial, the solution is
composed of only one scalar potential ϕ such that

Eαβ
ð1Þ ¼ 0; Bα

ð1Þ ¼ 0; Að1Þ ¼ ϕ=c2; Cð1Þ ¼ 2ϕ=c2;

ϕðx⃗; tÞ ¼−
Z

d3y⃗
ρðy⃗; tÞ
jx⃗− y⃗j

¼−
m1

jx⃗− γ⃗ð1ÞðtÞj
−

m2

jx⃗− γ⃗ð2ÞðtÞj
: ð81Þ

On this linear background, we now solve the geodesic
equations (76). Doing so, we encounter a common problem
with the point mass idealization. The gravitational field
sourced by a point mass diverges at its location. Thus,
divergences arise whenever a mass “feels” its own field.
There are two remedies pointed out in Ref. [29]: Either give
up the idealization and model the masses as extended
fluids, or perform a regularization of the diverging integrals
like Eq. (81). Both effectively boil down to the same rule
of thumb: We can keep using the point mass idealization
but must discard the diverging terms. With this in mind, we
obtain the equations of motion

̈γαðiÞ ¼ −G
X
j≠i

mj

γαðiÞ − γαðjÞ
jγ⃗ðiÞ − γ⃗ðjÞj3

: ð82Þ

This is, of course, the Newtonian limit of general relativity.
We know from Newtonian mechanics that the solutions to
Eq. (82) are conic sections. For our purposes, we keep it
simple and consider circular solutions with constant sep-
aration r and trajectories

γ⃗ð1ÞðtÞ ¼
m2

m
rn⃗; γ⃗ð2ÞðtÞ ¼ −

m1

m
rn⃗; ð83Þ

where m ¼ m1 þm2 is the total mass of the system
and the angular frequency amounts to ω2 ¼ Gm=r3. The
vectors n⃗ and λ⃗ (used below) are, in an orbit-adapted
frame,11 given as

n⃗ ¼

0
B@

cosωt

sinωt

0

1
CA; λ⃗ ¼

0
B@

− sinωt

cosωt

0

1
CA: ð84Þ

We have now set the stage for the second iteration. As
our goal is to predict the generation of gravitational waves,
we concern ourselves with the transverse traceless modes
of the perturbation—the other modes do not propagate and,
thus, cannot radiate. To this end, we expand Eq. (75) to
second order and evaluate at gð2Þ ¼ ηþ Ghð1Þ þ G2hð2Þ,
which gives the relevant equation for the transverse trace-
less mode:12

eαβð1Þ½hð2Þ� ¼
8π

c2
X
i¼1;2

miδ
ð3Þðx⃗ − γ⃗ðiÞðtÞÞ

_γαðiÞ _γ
β
ðiÞ

Gc2
− eαβð2Þ½hð1Þ�:

ð85Þ

The fact that the second order eð2Þ of e is evaluated at the
result (81) of the first iteration comes in very useful,
because eð2Þ½hð1Þ� can contain only the scalar potential ϕ.
Expanding the Einstein tensor to second order, the trans-
verse traceless projection (denoted by ½·�TT) turns out to be

eαβð2Þ½hð1Þ�TT ¼
1

c4
½−2∂αϕ∂βϕ�TTþ 1

c4
½4∂αðϕ∂βϕÞ�TT: ð86Þ

Using this expansion in Eq. (85), the field equation for the
transverse traceless mode reads

□Eαβ
ð2Þ ¼ −

16π

Gc4

�X
i¼1;2

miδ
ð3Þðx⃗ − γ⃗ðiÞðtÞÞ_γαðiÞ _γβðiÞ

�
TT

−
4

c4
½∂αϕ∂βϕ − 2∂αðϕ∂βϕÞ�TT: ð87Þ

The retarded solution to a wave equation of the kind
□ψðx⃗; tÞ ¼ 4πφðx⃗; tÞ is obtained by convolution of the
source with the retarded Green’s function:

11An orbit-adapted frame [29] consists of two perpendicular
vectors spanning the orbital plane and a third vector perpendicular
to this plane.

12The gravitational constant in the denominator is canceled by
a gravitational constant arising from the time derivatives of the
world lines.
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ψðx⃗; tÞ ¼
Z

d3y⃗
φðτ; y⃗Þ
jx⃗ − y⃗j ; ð88Þ

where τ ¼ t − jx⃗ − y⃗j=c is the retarded time. As we are
interested in only radiation into the far zone R ¼ jx⃗j ≫ r
and the sources in Eq. (87) are either confined to a bound
region of radius r—the separation of the binary system—or
decreasing with 1=jy⃗j4, the zeroth order in the expansion of
jx⃗ − y⃗j in Eq. (88) is a first approximation, such that

ψðx⃗; tÞ ¼ 1

R

Z
d3y⃗φðτ; y⃗Þ ð89Þ

and τ ¼ t − R=c. This leaves us with two integrals to be
evaluated, where we can already drop a boundary term in
the second integral:

Kαβ ¼
Z

d3y⃗ρðτ; y⃗Þ_γαðiÞ _γβðiÞ;

Uαβ ¼
Z

d3y⃗∂αϕ∂βϕ: ð90Þ

For the integral Kαβ, we readily obtain

Kαβ ¼ Gηm2

r
λαλβ; ð91Þ

with the reduced mass η ¼ m1m2

ðm1þm2Þ2.
The integral Uαβ requires more careful consideration.

First, it is instructive to make use of the integral repre-
sentation (81) of the scalar potential ϕ:

Uαβ ¼
Z

d3y⃗
Z

d3y⃗0
Z

d3y⃗00
ρðy⃗0Þρðy⃗00Þ

jy⃗ − y⃗0j3jy⃗ − y⃗00j3
× ðyα − y0αÞðyβ − y00βÞ: ð92Þ

Performing the integration over y⃗ gives

Uαβ ¼ 2π

Z
d3y⃗0

Z
d3y⃗00

ρðy⃗0Þρðy⃗00Þ
jy⃗0 − y⃗00j

×

�
γαβ −

ðy0α − y00αÞðy0β − y00βÞ
jy⃗0 − y⃗00j2

�
: ð93Þ

This integral can now be evaluated. Leaving out diverging
terms in order to regularize the integral, as already
explained, results in

Uαβ ¼ 4πηm2

r
½γαβ − nαnβ�: ð94Þ

We now put together Eqs. (91) and (94) and remove the
trace in order to obtain the far-field solution to Eq. (87).

Finally, we can predict that, to lowest order and in the far
field, a binary system of reduced mass η and total mass m
with separation r in circular motion emits gravitational
waves as

G2hαβð2Þ ¼
4η

c4R
ðGmÞ2

r
½λαλβ − nαnβ�TT: ð95Þ

This is in accordance with the results from post-
Minkowskian and post-Newtonian theory in the literature
[29], which have been confirmed by indirect [30–32] and,
recently, direct [1–3] observations. Note that we followed
a top-down approach, starting from the Einstein-Hilbert
action (74) and solving perturbatively up to second order.
We would have arrived at the same result using the bottom-
up approach provided by perturbative covariant gravity,
because the perturbative construction of metric gravity to
second order in the field equations coincides with the
corresponding expansion of the Einstein equations [7]. The
above procedure allows for the prediction of a nontrivial
second-order effect of matter-gravity interaction from a
theory constructed to second order—a technique we will
subsequently apply to area metric gravity, whose exact
dynamics are not known.
It is clear from our calculation that the generation of

gravitational waves is indeed a second-order effect. The
system is bound by gravity as a first-order effect, and
gravitational radiation is sourced by this gravitationally
bound system as an effect of second order. Derivations in
the older literature that arrive at Eq. (95) or its generali-
zation called the quadrupole formula from linearized
gravity are incorrect in their premises: They either silently
make use of the next order at some point or inadvertently
construct this order along the way. Earlier results show
that there is no leeway in the (iterative) construction of
metric gravity [7,33–37], so it comes as little surprise that,
eventually, the correct formula is obtained nevertheless.

C. Area metric gravity

As already pointed out in Sec. III C, the action for two
point masses following GLED dynamics is given as

Smatter½γ; GÞ ¼
X
i¼1;2

mic
Z

dλPGLEDðL−1ð_γðiÞðλÞÞÞ−1=4:

ð96Þ

Up to first order in the expansion around N as defined in
Eq. (11), PGLED is equivalent to a quadratic polynomial
(13), which using the perturbation fields (49) amounts to

Pð1ÞðkÞ ¼ ηðk; kÞ þ ½−2A�k0k0 þ ½−2bα�k0kα
þ
�
−
1

2
uαβ −

1

2
γμνwμνγαβ

�
kαkβ: ð97Þ
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The causality defined by Pð1Þ is effectivelymetric, such that
Eq. (96) is obtained by simple inversion (see [21]) as

Smatter ≈
X
i¼1;2

mic
Z

dλ
�
ηab _γ

a
ðiÞ _γ

b
ðiÞ þ 2A_γ0ðiÞ _γ

0
ðiÞ − 2bα _γ0ðiÞ _γ

α
ðiÞ

þ
�
1

2
uαβ þ

1

2
γμνvμνγαβ

�
_γαðiÞ _γ

β
ðiÞ

�
1=2

: ð98Þ

In Sec. II, we have constructed the gravitational Lagrangian
L, with the help of which we formulate the gravitational
action

Sgravity½G� ¼
c3

16πG

Z
d4xL: ð99Þ

We now start the iterative solution procedure for a
perturbation around N. The zeroth iteration is already
solved, because the construction procedure of the gravita-
tional dynamics has been set up such that N is a vacuum
solution.
For the first iteration, the perturbationHð1Þ is—due to the

slow-motion condition—sourced by only one contribution:

−
16πG
c3

δSmatter

δA
¼ −

16πG
c2

ρðx⃗; tÞ: ð100Þ

Using again the slow-motion condition and working within
the gauge (53), the solution to the linearized area metric
gravity field equations sourced by Eq. (100) is already
known from Eq. (63), such that the nonvanishing modes
read

Að1Þ ¼ −
1

c2

Z
d3y⃗ρðy⃗Þ

�
α

jx⃗ − y⃗j þ
βe−μjx⃗−y⃗j

jx⃗ − y⃗j
�
;

Ṽð1Þ ¼ −
1

c2

Z
d3y⃗ρðy⃗Þ

�
γe−μjx⃗−y⃗j

jx⃗ − y⃗j
�
;

Ũð1Þ ¼ 4Að1Þ −
�
3þ 8

β

γ

�
Ṽð1Þ: ð101Þ

Evaluating the integrals, we readily get

Að1Þ ¼ −
1

c2
X
i¼1;2

mi

�
α

jx⃗ − γ⃗ðiÞðtÞj
þ βe−μjx⃗−γ⃗ðiÞðtÞj

jx⃗ − γ⃗ðiÞðtÞj
�
;

Ṽð1Þ ¼ −
1

c2
X
i¼1;2

mi

�
γe−μjx⃗−γ⃗ðiÞðtÞj

jx⃗ − γ⃗ðiÞðtÞj
�
: ð102Þ

Because the matter action (98) is given by an effective
metric, the equations of motion for the source are again
geodesic equations (77). The relevant Christoffel symbol
expands as Γα

00 ¼ G∂αAþOðG2Þ. We again find the
circular solutions of constant separation r:

γ⃗ð1ÞðtÞ ¼
m2

m
rn⃗; γ⃗ð2ÞðtÞ ¼ −

m1

m
rn⃗: ð103Þ

This time, the angular velocity amounts to

ω2 ¼ ðGαÞm
r3

�
1þ β

α
e−μrð1þ μrÞ

�
: ð104Þ

Having solved the first iteration for Hð1Þ and the source
trajectories, we are ready to proceed with the second
iteration. Let us begin with the transverse traceless modes
of Hð2Þ, one of which is subject to the massless wave
equation (C8)

−
c3G
16π

1

8α
□Uαβ

ð2Þ ¼
��

δSgravity
δuαβ

�
ð2Þ
½GHð1Þ�

þ 1

4c

X
i¼1;2

miδ
ð3Þðx⃗− γ⃗ðiÞðtÞÞ_γαðiÞ _γβðiÞ

�
TT
:

ð105Þ

Using the third-order Lagrangian (see Appendixes A and B),
we perform a 3þ1 split with CADABRA

13 and evaluate the
second-order gravitational field equations ðδSgravity=δuαβÞð2Þ
at the first-order solution (101), obtaining

�
δSgravity
δuαβ

�
TT

ð2Þ
½GHð1Þ� ¼

G
16πc

½α∂αX∂βX þ β∂αY∂βY�TT;

ð106Þ

where we introduced abbreviations for the integrals

X ¼
Z

d3y⃗ρðy⃗Þ 1

jx⃗ − y⃗j ;

Y ¼
Z

d3y⃗ρðy⃗Þ e
−μjx⃗−y⃗j

jx⃗ − y⃗j : ð107Þ

With Eq. (106) in (105), we can now integrate the wave
equation using the same approximation as before [see
Eq. (89)], such that the solution reads

Uαβ
ð2Þ ¼ −

�
8α

Gc4R
Kαβ þ 2α2

πc4R

�
Φαβ

ð0Þ þ
β

α
Φαβ

ðμÞ

��
TT

ð108Þ

with the kinetic term

Kαβ ¼
Z

d3y⃗ρðy⃗Þ_γαðiÞ _γβðiÞ ð109Þ

and the potential terms

13The code is publicly available at Ref. [13].
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ΦðμÞαβ ¼
Z

d3y⃗
Z

d3y⃗0
Z

d3y⃗00ρðy⃗0Þρðy⃗00Þ

×

�
∂α

e−μjz⃗j

jz⃗j
�

z⃗¼jy⃗−y⃗0j

�
∂β

e−μjz⃗j

jz⃗j
�

z⃗¼jy⃗−y⃗00j
: ð110Þ

Evaluating the integrals, we finally obtain the gravitational
radiation on the massless Uαβ mode in the far zone from a
binary system with constant separation r:

G2Uαβ
ð2Þ ¼−

8η

c4R
ðGαmÞ2

r
½1þfðrÞ�½λαλβ−nαnβ�TT; ð111Þ

where fðrÞ ¼ β
α ð1þ μrÞe−μr.

This result is of remarkable consequence, because, with
Eq. (60) in mind, we see that for α ¼ 1 it is the transverse
traceless wave induced by the metric gravitational wave
Eαβ
ð2Þ [see Eq. (95)] plus a Yukawa correction fðrÞ that falls

off exponentially with the separation:

G2Uαβ
ð2Þ ¼ 2G2Eαβ

ð2Þ½1þ fðrÞ�: ð112Þ

That is, the result (111) is a refinement of the metric result,
offering the same qualitative behavior with quantitative
corrections given by short-ranging Yukawa terms. In
particular, the phenomenology of gravitational radiation
in Einstein gravity is contained within this result, either for
sufficiently large separation r of bodies or for appropriate
choices of area metric gravitational constants.
As the inspection of the linearized theory in Sec. III C

revealed, the metrically inducible mode Uαβ is the only
massless degree of freedom. All other propagating modes
are subject to massive wave equations. First, let us consider
the trace-free fields ṽαβ ¼ vαβ − 1=3γαβγμνvμν and wαβ.
Since the first-order matter action (98) depends only on
the trace of vαβ and does not depend on wαβ at all, the
respective equations of motion are not sourced by kinetic
terms, leaving us with14

□ṽαβð2Þ þ ν2ṽαβð2Þ ¼ δ½∂αX∂βY�TF;
□wαβ

ð2Þ þ ν2wαβ
ð2Þ ¼ ϵ½∂αX∂βY�TF: ð113Þ

δ and ϵ are gravitational constants arising during the
construction of the third-order area metric gravity
Lagrangian, and the mass ν is a gravitational constant of
the second-order Lagrangian (compare Appendix C). These
wave equations govern the radiation of traceless tensor
modes Vαβ and Wαβ, the vector modes Uα and Wα (via the
gauge condition Uα ¼ Vα), and the traceless scalar modes
V and W. The remaining trace-free mode—the vector

Bα—does not propagate on its own but follows from a
constraint (see Appendix C).
The retarded solution to a massive wave equation of the

kind ð□þm2ÞψðxÞ ¼ 4πφðxÞ is obtained by convolution
of φ with the retarded Green’s function

Gretðx; yÞ ¼ θðx0 − y0Þ
Z

d3k⃗
ð2πÞ3

sinωkðx0 − y0Þ
ωk

eik⃗·ðx⃗−y⃗Þ;

ð114Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q
. Carrying out the integrals for

the wave equations (113), we arrive at two qualitatively
different solutions, depending on the value of ω0 ≔ 2ω.
For ω0 < cν, the gravitational fields are decaying expo-

nentially with R. In the orbit-adapted frame, we have

G2ṽαβð2Þ ¼
δη

c4R
ðGmÞ2

r
gðrÞ

2
643e−ν̃R

0
B@

cosω0t sinω0t 0

sinω0t − cosω0t 0

0 0 0

1
CA

þ e−νR

0
B@

1
2

1
2

−1

1
CA
3
75
αβ

; ð115Þ

where

gðrÞ ¼ 1 − ½1þ μrþ 1
3
ðμrÞ2e−μr�

ðμrÞ2 ;

ν̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − ðω0=cÞ2

q
: ð116Þ

wαβ
ð2Þ has the same solution, only with ϵ instead of δ. This

behavior is in line with results for the generation of
gravitational waves on massive modes from nongravita-
tionally bound systems [38]: Below a certain threshold for
the angular frequency (or related measures like energy) of
the generating system, no radiation is emitted into the far
zone. Also, the oscillating (but exponentially damped) part
of the solution does not follow the retarded time but the
coordinate time—which is not the behavior of a wavelike
solution.
In the case of ω0 > cν, the nonoscillating part of the

solution remains unchanged. The oscillating part, however,
is now radiating as

G2ṽαβð2Þ ¼
3δη

c4R
ðGmÞ2

r
gðrÞ

0
B@
cosφ sinφ 0

sinφ −cosφ 0

0 0 0

1
CA

αβ

; ð117Þ

where
14½tαβ�TF ¼ tðαβÞ − 1

3
γμνtμνγαβ is the idempotent projection

on the symmetric trace-free part.
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φ ¼ ω0t − ω̃
R
c

and ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − ðcνÞ2

q
: ð118Þ

Again, the same holds for wαβ
ð2Þ with ϵ instead of δ.

It remains to derive wave equations for the trace modes
Ũ, Ṽ, and A. One such equation is obtained as [see
Appendix C, Eq. (C6)]

□Ṽð2Þ þμ2Ṽð2Þ ¼−γ
�
1

4
ρA−

�
1þ3

4

γ

β

�
ρuþ

γ

4β
ρv

�
: ð119Þ

ρA denotes the variations with respect to A:

ρA ¼
�
δSgravity
δA

�
ð2Þ
½Hð1Þ�

þ 16π

Gc3

�
δSmatter

δA

�
ð0Þ
½γð1Þ; γð2Þ; N�

þ 16π

c3

�
δSmatter

δA

�
ð1Þ
½γð1Þ; γð2Þ; Hð1Þ�

þOðGÞ; ð120Þ

ρu and ρv denote traces of variations with respect to uαβ and

vαβ, respectively. In setting up the wave equations for Uαβ
ð2Þ,

ṽαβð2Þ, and wαβ
ð2Þ, we did not pick up contributions from

ðδSmatter=δGÞð1Þ, because the time derivatives of the spatial
trajectories, _γαðiÞ, are already of OðGÞ. However, an expan-

sion of the GLED principal polynomial to second order
reveals that the variation with respect to A comes with
½_γ0ðiÞ�4 ¼ c4 ¼ OðG0Þ and, thus, has to be considered as a

source for the second iteration.
Unfortunately, the expansion of Smatter to second order is

not as readily accessible as the linearized action. This is
because only the first-order GLED principal polynomial
factors into the square of a polynomial of second degree as
in Eq. (13). We leave the calculation of ρA and the solution
for Ṽð2Þ open for future research. However, Ṽ is the only
propagating trace degree of freedom, because the system
must have four constraint equations,15 two of which already
constrain Bα and the other two, consequently, must con-
strain the remaining degrees of freedom, A and Ũ.

D. A simple detector

The effect of the previously derived gravitational waves
on test matter is best demonstrated using a spherical
distribution of freely falling point masses as a detector
and considering its deformation as the wave passes
through. We call this arrangement a geodesic sphere. As
the dynamics of point masses are, to first nontrivial order,

given by an effective metric (98), the standard procedure of
metric geodesic deviation can be used to derive

1

c2
Ẍα ¼ −Rα

0β0Xβ; ð121Þ

where R is the Ricci tensor related to the effective metric
and X⃗ is the spatial deviation vector between two test
masses. Using the 3þ 1 split (58) of the effective metric,
the deviation equation (121) becomes

Ẍα ¼ −
1

2
½φ̈α

β þ cð _bα;β þ _bβ;
αÞ þ 2c2A;

α
β�Xβ: ð122Þ

A purely spatial perturbation has only contributions from
φαβ, in which case the deviation equation is—for small
deviations—easily integrated as

XαðtÞ ¼ Xαð0Þ − 1

2
φα

βðtÞXβð0Þ: ð123Þ

Let us now consider the individual modes of gravitational
radiation and their effects on the geodesic deviation (123)
of test matter. All modes16 are proportional to the projec-
tions of

Mαβ ¼

0
B@

cosðφÞ sinðφÞ 0

sinðφÞ − cosðφÞ 0

0 0 1

1
CA

αβ

ð124Þ

onto the respective (transverse traceless, vector, and scalar
traceless) subspaces. The phase φ is defined as in Eq. (118)
and simplifies to φ ¼ 2ωτ for massless modes. Note that
Eq. (124) is still expressed in the orbit-adapted frame. We
now switch into a detector-adapted frame [29] as illustrated
in Fig. 1: The origin lies at the barycenter of the binary
system, the Z direction is pointing toward the spherical
point mass distribution, and the X-Y plane is perpendicular
to this direction. Because we consider only circular binary
systems without any distinguished points on the orbits, we
are free to choose the orbit-adapted y direction such that the
test masses lie in the y-z plane. The detector-adapted frame
is given by a simple rotation around the x axis:

e⃗X ¼

0
B@
1

0

0

1
CA; e⃗Y ¼

0
B@

0

cos ι

−sin ι

1
CA; e⃗Z ¼

0
B@

0

sin ι

cos ι

1
CA; ð125Þ

with the inclination angle ι. Making the transition into
this frame, the tensor (124) transforms accordingly and
decomposes into the traceless tensor part

15This follows from the same arguments that can be made for
general relativity [25,39].

16Except for the trace modes, which we left open for future
consideration.
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MTT ¼

0
B@

1
2
ð1þ cos2 ιÞ cosφ cos ι sinφ 0

cos ι sinφ − 1
2
ð1þ cos2 ιÞ cosφ 0

0 0 0

1
CA;

ð126Þ

the vector part

MV ¼

0
B@

0 0 sin ι sinφ

0 0 − cos ι sin ι cosφ

sin ι sinφ − cos ι sin ιcosφ 0

1
CA;

ð127Þ

and the trace-free scalar part

MS-TF ¼ sin2 ι cosφ

0
B@

1
2

0 0

0 1
2

0

0 0 −1

1
CA: ð128Þ

The traceless tensor part (126) is responsible for periodic
deformations of the geodesic sphere into ellipsoids by
contractions and expansions in both lateral directions X
and Y. This kind of deformation—and only this kind—
arises in metric gravity, where the spatial effective metric
perturbation φαβ in Eq. (123) is given by the spatial part of
the spacetime metric. The oscillating deformation d ×MTT

is of amplitude

d ¼ 2η

c4R
ðGmÞ2

r
ð129Þ

and, because of the gravitational wave being massless,
follows the phase

φ ¼ 2ωτ ¼ 2ω

�
t −

R
c

�
: ð130Þ

Predictions of this effect have been made since the early
days of general relativity [40,41] and recently confirmed in
Earth-bound experiments [1–3].
In area metric gravity, φαβ can be read off from the point

mass action (98) as

φαβ ¼ −
1

2
½uαβ þ γαβγμνvμν�: ð131Þ

On the transverse traceless mode, the deformation of
geodesic spheres corresponding to Eq. (131) coincides
with the result from metric gravity, up to a correction factor
of ½1þ fðrÞ� as introduced in Eq. (112). This is a
quantitative refinement of the metric result (129), which
does not introduce new qualitative behavior and can be
arbitrarily close to the metric result for appropriate choices
of separation r or gravitational constants.
The solution of the wave equation (113) for ṽαβð2Þ, together

with the gauge conditions relating U and Uα with −V and
Vα, yields the combined vector and scalar traceless con-
tribution. For 2ω < cν, the binary system does not radiate
on these modes, and test matter remains unaffected. If
2ω > cν, however, radiation is switched on and deforms
geodesic spheres according to the deformation matrix

e × ½MV −MS-TF� ð132Þ
with amplitude

e ¼ 3δη

4c4R
ðGmÞ2

r
gðrÞ ¼ 3

8
δgðrÞd ð133Þ

and phase

φ ¼ 2ωt −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ωÞ2 − ðcνÞ2

q R
c
: ð134Þ

It is worth noting that Eq. (132) vanishes for ι ¼ 0, the case
of the detector being placed exactly along on the rotation
axis of the binary system. In this configuration, the source
can induce only lateral deformations of the test mass
distribution, which is not at all surprising considering
the geometry of this particular situation. Let us consider
a second case of ι ¼ π=2, where the geodesic sphere lies
within the orbital plane. The radiation on the transverse
traceless mode is now restricted to the þ polarization (as
defined in Ref. [29]). On the mixed vector and scalar trace-
free mode, we have deformations in all three directions17

according to the deformation matrix

FIG. 1. Orbit-adapted frame ðx; y; zÞ and detector-adapted
frame (X ¼ x, Y, Z). The constituents m1 and m2 of the binary
system describe circular orbits in the x-y plane, producing
gravitational radiation. The detector—a spherical distribution
of test masses in the Z direction—is undergoing periodic
deformations as gravitational radiation passes through. ι mea-
sures the inclination of the orbital plane with respect to the
X-Y plane.

17All eigenvalues are nonzero.
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M ¼ e ×

0
B@

− 1
2
cosφ 0 sinφ

0 − 1
2
cosφ 0

sinφ 0 cosφ

1
CA: ð135Þ

This constitutes new qualitative behavior.
With the solution of the wave equation for the trace

mode Ṽ still pending, it is not possible to predict the exact
behavior of deformations mediated via this mode.
However, being proportional to the identity map, we can
already infer that they are uniform scalings of geodesic
spheres. The mass of the trace mode Ṽ is, according to its
wave equation (119), given by μ, so we expect a similar
low-energy cutoff as for the trace-free massive modes of
mass ν.

V. CONCLUSIONS

We have implemented the perturbative covariant con-
structive gravity program for GLED compatible area metric
gravity up to second order in the equations of motion, as
already outlined in Ref. [7]. This included a proof of the
fact that, up to this order, the causality of gravity is already
fixed to GLED causality by the requirement of diffeo-
morphism invariance alone. A subsequent 3þ 1 split of the
corresponding field equations exposed unphysical artifacts
of the theory, which we ruled out by considering a sector of
the theory where three of the ten first-order gravitational
constants are fixed.
With this gravitational theory at hand, we followed an

iterative solution strategy to obtain the circular orbits of a
binary system in linearized area metric gravity and its
gravitational radiation as a second-order effect. The result is
a refinement of the gravitational waves emitted by a circular
binary system in Einstein gravity: The two massless wave
modes in area metric gravity correspond to the two
propagating modes in Einstein gravity, and their emission
from the binary system follows the same formula (112), up
to a correction factor determined by gravitational constants
from the first-order field equations and the separation of the
binary system. The remaining trace-free modes are massive
and, thus, generated only above a certain energy threshold.
Once this threshold is exceeded, the emitted radiation is
described by a similar formula (117) as for the massless
modes but scaled with two gravitational constants coming
from the second-order field equations. There are technical
hurdles barring us from obtaining exact results for the trace
modes in the same manner, but based on the wave
equation (119) we conjecture that their generation is very
similar to the other massive modes, where the mass ν is to
be replaced with the mass μ.
Lastly, we modeled a detector for gravitational waves as

a sphere of freely falling point masses. Because of the
massless transverse traceless modes emitted from the
binary system, this sphere undergoes the same volume-
preserving lateral deformations into ellipsoids as already

known from Einstein gravity, only corrected with the
above-mentioned factor. A qualitatively new kind of
deformation (132) into all three spatial directions, which
is still preserving volume, is caused by the radiation on the
remaining trace-free modes. The deformations from the
trace modes, of which we do not know the precise wave
form at the time being, can be distinguished from the rest,
because they consist of uniform scalings.
Our work demonstrates the potential of covariant con-

structive gravity in modified gravity research: Modeling
matter using nonmetric geometries necessitates the con-
ception of a novel gravitational theory. Covariant con-
structive gravity establishes a procedure for the
construction of such a theory. For applications where only
weak geometric fields are relevant, the construction can be
performed perturbatively and aborted at any order. The
such obtained theory allows the prediction of quantitatively
and qualitatively new phenomenology, which can, in turn,
be used to constrain parameters or outright falsify the
theory.
Several effects in linearized area metric gravity derived

by canonical gravitational closure [14,17,18,23] have
already been described: The authors of Refs. [26,27]
predict effects from the area-metric-corrected linearized
Schwarzschild solution on (quantum) electrodynamics.
Galactic dynamics building up on this solution have also
been investigated [28]. Furthermore, the linearized theory is
sufficient in order to predict the generation of gravitational
waves from nongravitationally bound systems [38]. In the
present work, we propose an experiment for testing self-
coupling in area metric gravity by predicting how orbiting
point masses bound by gravity affect distributions of test
masses at a large distance. Note, however, that this proposal
should not be understood too literally: Realistic astrophysi-
cal sources responsible for the strong signals that can be
measured with contemporary technology are much more
complex than the simple configuration we considered in
Sec. IV. Consequently, a prediction of the emitted wave-
form needs a more thorough treatment, e.g., modeling the
masses as extended fluids and considering higher orders in
the post-Newtonian expansion [29]. We kept the technical
difficulty at a minimum and were still able to deduce a
nontrivial effect of gravitational self-coupling. This dem-
onstrates the predictive power of covariant constructive
gravity, which should be explored further to give more
detailed predictions for astrophysical measurements in
promising modified theories of gravity such as area metric
gravity.

APPENDIX A: ANSÄTZE

Displayed below are the Lorentz-invariant perturbation
Ansätze for the third-order area metric Lagrangian (9). The
source code for Ansatz generation is publicly available [13]
and is based on two Haskell libraries [11,12] implementing
tensor algebra.
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(i) First order (constants e38, e39, e40):

aAIHA
I ¼ ½e38 · ηacηbdηpq þ e39 · ηacηbpηdq þ e40 · ϵabcdηpq� × ηprηqsHabcd

;rs: ðA1Þ

(ii) Second order (constants e1;…; e37):

aABHAHB ¼ ½e1 · ηacηbdηegηfh þ e2 · ηacηbeηdgηfh þ e3 · ηaeηbfηcgηdh

þ e4 · ηaeηbgηcfηdh þ e5 · ϵabcdηegηfh þ e6 · ϵabefηcgηdh� ×HabcdHefgh; ðA2Þ

aApBqHA
pHB

p¼ ½e7 ·ηacηbdηpeηfgηhqþe8 ·ηacηbdηpqηegηfhþe9 ·ηacηbpηdeηfgηhq

þe10 ·ηacηbeηdgηpfηhqþe11 ·ηacηbeηdgηpqηfhþe12 ·ηacηbeηdqηpgηfh

þe13 ·ηapηbeηcfηdgηhqþe14 ·ηapηbeηcgηdhηfqþe15 ·ηaeηbfηcgηdhηpq

þe16 · ϵabcdηpeηfgηhqþe17 · ϵabcdηpqηegηfhþe18 · ϵabpeηcfηdgηhq

þe19 · ϵabpeηcgηdqηfhþe20 · ϵabefηcpηdgηhqþe21 · ϵabefηcgηdhηpq�×ηprηqsHabcd
;rHefgh

;s; ðA3Þ

aABIHAHB
I ¼ ½e22 · ηacηbdηegηfhηpq þ e23 · ηacηbdηegηfpηhq þ e24 · ηacηbeηdgηfhηpq

þ e25 · ηacηbeηdgηfpηhq þ e26 · ηacηbeηdpηfgηhq þ e27 · ηacηbpηdqηegηfh

þ e28 · ηaeηbfηcgηdhηpq þ e29 · ηaeηbfηcgηdpηhq þ e30 · ηaeηbgηcfηdhηpq

þ e31 · ϵabcdηegηfhηpq þ e32 · ϵabcdηegηfpηhq þ e33 · ϵabefηcgηdhηpq

þ e34 · ϵabefηcgηdpηhq þ e35 · ϵabepηcfηdgηhq þ e36 · ϵabepηcgηdhηfq

þ e37 · ϵefghηacηbdηpq� × ηprηqsHabcdHefgh
;rs: ðA4Þ

(iii) Third order (constants e41;…; e237):

aABCHAHBHC ¼ ½e41 · ηacηbdηegηfhηikηjl þ e42 · ηacηbdηegηfiηhkηjl

þ e43 · ηacηbdηeiηfjηgkηhl þ e44 · ηacηbdηeiηfkηgjηhl

þ e45 · ηacηbeηdgηfiηhkηjl þ e46 · ηacηbeηdiηfgηhkηjl

þ e47 · ηaeηbfηciηdjηgkηhl þ e48 · ηaeηbfηciηdkηgjηhl

þ e49 · ϵabcdηegηfhηikηjl þ e50 · ϵabcdηegηfiηhkηjl

þ e51 · ϵabcdηeiηfjηgkηhl þ e52 · ϵabcdηeiηfkηgjηhl

þ e53 · ϵabefηcgηdhηikηjl þ e54 · ϵabefηcgηdiηhkηjl

þ e55 · ϵabefηciηdjηgkηhl� ×HabcdHefghHijkl; ðA5Þ
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aABpCqHAHB
pHC

q ¼ ½e56 · ηacηbdηegηfhηpiηjkηlq þ e57 · ηacηbdηegηfhηpqηikηjl þ e58 · ηacηbdηegηfpηhiηjkηlq

þ e59 · ηacηbdηegηfiηhkηpjηlq þ e60 · ηacηbdηegηfiηhkηpqηjl þ e61 · ηacηbdηegηfiηhqηpkηjl

þ e62 · ηacηbdηepηfiηgjηhkηlq þ e63 · ηacηbdηepηfiηgkηhlηjq þ e64 · ηacηbdηeiηfjηgkηhlηpq

þ e65 · ηacηbeηdgηfhηpiηjkηlq þ e66 · ηacηbeηdgηfhηpqηikηjl þ e67 · ηacηbeηdgηfpηhiηjkηlq

þ e68 · ηacηbeηdgηfpηhqηikηjl þ e69 · ηacηbeηdgηfiηhkηpjηlq þ e70 · ηacηbeηdgηfiηhkηpqηjl

þ e71 · ηacηbeηdgηfiηhqηpkηjl þ e72 · ηacηbeηdpηfgηhiηjkηlq þ e73 · ηacηbeηdpηfgηhqηikηjl

þ e74 · ηacηbeηdpηfiηgjηhkηlq þ e75 · ηacηbeηdpηfiηgkηhlηjq þ e76 · ηacηbeηdpηfiηgkηhqηjl

þ e77 · ηacηbeηdiηfgηhpηjkηlq þ e78 · ηacηbeηdiηfgηhjηpkηlq þ e79 · ηacηbeηdiηfgηhkηpjηlq

þ e80 · ηacηbeηdiηfgηhkηplηjq þ e81 · ηacηbeηdiηfgηhkηpqηjl þ e82 · ηacηbeηdiηfgηhqηpkηjl

þ e83 · ηacηbeηdiηfpηgjηhkηlq þ e84 · ηacηbeηdiηfpηgkηhlηjq þ e85 · ηacηbeηdiηfjηgpηhkηlq

þ e86 · ηacηbeηdiηfkηgjηhqηpl þ e87 · ηacηbeηdqηfgηhpηikηjl þ e88 · ηacηbeηdqηfgηhiηpkηjl

þ e89 · ηacηbpηdqηegηfhηikηjl þ e90 · ηaeηbfηcgηdhηpiηjkηlq þ e91 · ηaeηbfηcgηdhηpqηikηjl

þ e92 · ηaeηbfηcgηdpηhiηjkηlq þ e93 · ηaeηbfηcgηdpηhqηikηjl þ e94 · ηaeηbfηcgηdiηhpηjkηlq

þ e95 · ηaeηbfηcgηdiηhjηpkηlq þ e96 · ηaeηbfηcgηdiηhkηpjηlq þ e97 · ηaeηbfηcgηdiηhkηplηjq

þ e98 · ηaeηbfηcgηdiηhkηpqηjl þ e99 · ηaeηbfηcgηdiηhqηpkηjl þ e100 · ηaeηbfηcgηdqηhpηikηjl

þ e101 · ηaeηbfηcgηdqηhiηpkηjl þ e102 · ηaeηbfηcpηdiηgjηhkηlq þ e103 · ηaeηbfηcpηdiηgkηhlηjq

þ e104 · ηaeηbfηcpηdiηgkηhqηjl þ e105 · ηaeηbfηciηdjηgpηhkηlq þ e106 · ηaeηbfηciηdjηgkηhlηpq

þ e107 · ηaeηbfηciηdkηgpηhjηlq þ e108 · ηaeηbgηcfηdhηpiηjkηlq þ e109 · ηaeηbgηcfηdhηpqηikηjl

þ e110 · ηaeηbpηcfηdiηgjηhkηlq þ e111 · ηaeηbpηcfηdiηgkηhqηjl þ e112 · ηaeηbiηcfηdjηgpηhkηlq

þ e113 · ηaeηbiηcfηdjηgkηhlηpq þ e114 · ϵabcdηegηfhηpiηjkηlq þ e115 · ϵabcdηegηfhηpqηikηjl

þ e116 · ϵabcdηegηfpηhiηjkηlq þ e117 · ϵabcdηegηfiηhkηpjηlq þ e118 · ϵabcdηegηfiηhkηpqηjl

þ e119 · ϵabcdηegηfiηhqηpkηjl þ e120 · ϵabcdηepηfiηgjηhkηlq þ e121 · ϵabcdηepηfiηgkηhlηjq

þ e122 · ϵabcdηeiηfjηgkηhlηpq þ e123 · ϵabefηcgηdhηpiηjkηlq þ e124 · ϵabefηcgηdhηpqηikηjl

þ e125 · ϵabefηcgηdpηhiηjkηlq þ e126 · ϵabefηcgηdpηhqηikηjl þ e127 · ϵabefηcgηdiηhpηjkηlq

þ e128 · ϵabefηcgηdiηhjηpkηlq þ e129 · ϵabefηcgηdiηhkηpjηlq þ e130 · ϵabefηcgηdiηhkηplηjq

þ e131 · ϵabefηcgηdiηhkηpqηjl þ e132 · ϵabefηcgηdiηhqηpkηjl þ e133 · ϵabefηcgηdqηhpηikηjl

þ e134 · ϵabefηcgηdqηhiηpkηjl þ e135 · ϵabefηcpηdiηgjηhkηlq þ e136 · ϵabefηcpηdiηgkηhlηjq

þ e137 · ϵabefηcpηdiηgkηhqηjl þ e138 · ϵabefηciηdjηgpηhkηlq þ e139 · ϵabefηciηdjηgkηhlηpq

þ e140 · ϵabefηciηdkηgpηhjηlq þ e141 · ϵabepηcfηdgηhiηjkηlq þ e142 · ϵabepηcfηdgηhqηikηjl

þ e143 · ϵabepηcfηdiηgjηhkηlq þ e144 · ϵabepηcfηdiηgkηhlηjq þ e145 · ϵabepηcfηdiηgkηhqηjl

þ e146 · ϵabepηcgηdhηfiηjkηlq þ e147 · ϵabepηcgηdhηfqηikηjl þ e148 · ϵabepηcgηdiηfjηhkηlq

þ e149 · ϵabepηcgηdiηfkηhqηjl þ e150 · ϵabeiηcfηdgηhpηjkηlq þ e151 · ϵabeiηcfηdgηhjηpkηlq

þ e152 · ϵabeiηcfηdgηhkηpjηlq þ e153 · ϵabeiηcfηdgηhkηplηjq þ e154 · ϵabeiηcfηdgηhkηpqηjl

þ e155 · ϵabeiηcfηdgηhqηpkηjl þ e156 · ϵabeiηcfηdpηgjηhkηlq þ e157 · ϵabeiηcfηdpηgkηhlηjq

þ e158 · ϵabeiηcfηdpηgkηhqηjl þ e159 · ϵabeiηcfηdjηgpηhkηlq þ e160 · ϵabeiηcfηdjηgkηhlηpq

þ e161 · ϵabeiηcfηdkηgpηhjηlq þ e162 · ϵabeiηcfηdkηgpηhlηjq þ e163 · ϵabeiηcfηdkηgjηhqηpl

þ e164 · ϵabeqηcfηdgηhpηikηjl þ e165 · ϵefghηacηbdηpiηjkηlq�× ηprηqsHabcdHefgh
;rHijkl

;s; ðA6Þ
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aABCIHAHBHC
I ¼ ½e166 · ηacηbdηegηfhηikηjlηpq þ e167 · ηacηbdηegηfhηikηjpηlq þ e168 · ηacηbdηegηfiηhkηjlηpq

þ e169 · ηacηbdηegηfiηhkηjpηlq þ e170 · ηacηbdηegηfiηhpηjkηlq þ e171 · ηacηbdηegηfpηhqηikηjl

þ e172 · ηacηbdηeiηfjηgkηhlηpq þ e173 · ηacηbdηeiηfjηgkηhpηlq þ e174 · ηacηbdηeiηfkηgjηhlηpq

þ e175 · ηacηbeηdgηfhηikηjlηpq þ e176 · ηacηbeηdgηfhηikηjpηlq þ e177 · ηacηbeηdgηfiηhkηjlηpq

þ e178 · ηacηbeηdgηfiηhkηjpηlq þ e179 · ηacηbeηdgηfiηhpηjkηlq þ e180 · ηacηbeηdgηfpηhqηikηjl

þ e181 · ηacηbeηdiηfgηhkηjlηpq þ e182 · ηacηbeηdiηfgηhkηjpηlq þ e183 · ηacηbeηdiηfgηhpηjkηlq

þ e184 · ηacηbeηdiηfjηgkηhlηpq þ e185 · ηacηbeηdiηfjηgkηhpηlq þ e186 · ηacηbeηdiηfkηgjηhpηlq

þ e187 · ηacηbeηdiηfkηglηhpηjq þ e188 · ηacηbeηdiηfpηgjηhkηlq þ e189 · ηacηbeηdiηfpηgkηhlηjq

þ e190 · ηacηbeηdiηfpηgkηhqηjl þ e191 · ηacηbeηdpηfgηhqηikηjl þ e192 · ηacηbeηdpηfiηgjηhkηlq

þ e193 · ηacηbiηdkηegηfpηhqηjl þ e194 · ηacηbiηdkηejηfpηglηhq þ e195 · ηaeηbfηcgηdhηikηjlηpq

þ e196 · ηaeηbfηcgηdhηikηjpηlq þ e197 · ηaeηbfηciηdjηgkηhlηpq þ e198 · ηaeηbfηciηdjηgkηhpηlq

þ e199 · ηaeηbfηciηdkηgjηhlηpq þ e200 · ηaeηbgηcfηdhηikηjlηpq þ e201 · ηaeηbgηcfηdhηikηjpηlq

þ e202 · ηaeηbgηciηdjηfkηhlηpq þ e203 · ηaeηbgηciηdjηfkηhpηlq þ e204 · ηaeηbiηcgηdkηfpηhqηjl

þ e205 · ϵabcdηegηfhηikηjlηpq þ e206 · ϵabcdηegηfhηikηjpηlq þ e207 · ϵabcdηegηfiηhkηjlηpq

þ e208 · ϵabcdηegηfiηhkηjpηlq þ e209 · ϵabcdηegηfiηhpηjkηlq þ e210 · ϵabcdηegηfpηhqηikηjl

þ e211 · ϵabcdηeiηfjηgkηhlηpq þ e212 · ϵabcdηeiηfjηgkηhpηlq þ e213 · ϵabcdηeiηfkηgjηhlηpq

þ e214 · ϵabefηcgηdhηikηjlηpq þ e215 · ϵabefηcgηdhηikηjpηlq þ e216 · ϵabefηcgηdiηhkηjlηpq

þ e217 · ϵabefηcgηdiηhkηjpηlq þ e218 · ϵabefηcgηdiηhpηjkηlq þ e219 · ϵabefηcgηdpηhqηikηjl

þ e220 · ϵabefηciηdjηgkηhlηpq þ e221 · ϵabefηciηdjηgkηhpηlq þ e222 · ϵabefηciηdkηgjηhlηpq

þ e223 · ϵabeiηcfηdjηgkηhlηpq þ e224 · ϵabeiηcfηdjηgkηhpηlq þ e225 · ϵabeiηcfηdkηgjηhlηpq

þ e226 · ϵabeiηcfηdkηgjηhpηlq þ e227 · ϵabeiηcfηdkηglηhpηjq þ e228 · ϵabeiηcfηdpηgjηhkηlq

þ e229 · ϵabeiηcfηdpηgkηhlηjq þ e230 · ϵabeiηcfηdpηgkηhqηjl þ e231 · ϵabepηcfηdiηgjηhkηlq

þ e232 · ϵabijηceηdfηgkηhlηpq þ e233 · ϵabijηceηdfηgkηhpηlq þ e234 · ϵabijηceηdkηfpηglηhq

þ e235 · ϵabipηceηdfηgjηhkηlq þ e236 · ϵabipηceηdfηgkηhlηjq þ e237 · ϵijklηacηbdηegηfhηpq�
× ηprηqsHabcdHefghHijkl

;rs: ðA7Þ

APPENDIX B: REDUCTION

We used the Haskell library [12] in order to solve the previously obtained Ansätze for diffeomorphism invariance
(see also [7]). The source code and the solution are publicly available [13]. We display the 16-dimensional solution for
the Lagrangian up to second order, with 16 undetermined constants k1;…; k16. For the solution of the third order, with
50 undetermined constants k1;…; k50, we point to the aforementioned reference.

e1 ¼ k1;

e2 ¼ k2;

e3 ¼ −2k1 −
2

3
k2;

e4 ¼ 4k1 þ
1

3
k2;

e5 ¼ k3;

e6 ¼ −3k1 −
1

2
k2 − 3k3;
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e7 ¼ k4;

e8 ¼ k5;

e9 ¼ k6;

e10 ¼ k7;

e11 ¼ k8;

e12 ¼
1

2
k6 þ

5

8
k7;

e13 ¼ −
16

3
k4 þ 16k5 −

7

3
k6 −

5

12
k7 þ

4

3
k8;

e14 ¼ −
8

3
k4 þ 8k5 −

13

6
k6 −

11

24
k7 þ

2

3
k8;

e15 ¼ k4 −
1

8
k6 −

23

32
k7 −

1

2
k8;

e16 ¼ k9;

e17 ¼ k10;

e18 ¼
3

2
k4 þ

3

4
k6 −

3

16
k7 þ 3k9;

e19 ¼
1

2
k4 þ

1

4
k6 −

1

16
k7 þ k9;

e20 ¼ −
1

4
k4 −

1

8
k6 þ

1

32
k7 −

1

2
k9;

e21 ¼ k4 − 3k5 þ
1

4
k6 −

3

16
k7 −

1

2
k8 þ k9 − 3k10;

e22 ¼ k11;

e23 ¼ k12;

e24 ¼ k13;

e25 ¼ k14;

e26 ¼ k6 þ
3

4
k7 − k14;

e27 ¼ −k4 þ
1

2
k7;

e28 ¼
5

3
k4 þ

5

12
k6 −

25

48
k7 − 2k11 − k12 −

2

3
k13 −

1

4
k14;

e29 ¼ k6 þ
3

4
k7 − k14;

e30 ¼ −
4

3
k4 −

5

6
k6 þ

1

24
k7 þ 4k11 þ 2k12 þ

1

3
k13 þ

1

2
k14;

e31 ¼ k15;

e32 ¼ k16;

e33 ¼ k4 −
1

2
k7 − 3k11 −

1

2
k13 − 6k15;

e34 ¼
1

2
k6 þ

3

8
k7 −

3

2
k12 −

1

2
k14 − 3k16;

e35 ¼ −2k4 − k6 þ
1

4
k7;
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e36 ¼ −k4 þ
1

2
k7 −

3

2
k12 −

1

2
k14 − 3k16;

e37 ¼
1

12
k4 þ

1

12
k6 þ

1

48
k7 −

1

8
k12 −

1

24
k14 þ k15 þ

1

4
k16;

e38 ¼ −2k4 þ k7;

e39 ¼ −2k6 −
3

2
k7;

e40 ¼ k4 þ
1

2
k6 −

1

8
k7: ðB1Þ

APPENDIX C: LINEARIZED FIELD EQUATIONS

1. Unconstrained equations

A three-plus-one split of the Lagrangian built from the Ansätze above and subsequent variations with respect to the spatial
perturbation variables introduced in Sec. III yields the perturbative field equations for area metric gravity. We further split
these equations into traceless tensor, vector, and scalar parts and apply the gauge condition from Sec. III. This yields the
linearized field equations for the scalar-trace and scalar-trace-free modes:

�
δL
δuαβ

�
S-TF

¼ Δαβ

�
s1A −

s1
4
Ũ þ s3Ṽ þ s4V̈ −

s4
3
ΔV þ s6Ẅ −

s6
3
ΔW

�
;

�
δL
δvαβ

�
S-TF

¼ Δαβ

�
ðs1 þ 4s4ÞAþ

�
s1
4
þ s4

�
Ũ þ

�
3s1
4

þ 3s4

�
Ṽ

þ s11V̈ −
�
s1
3
þ 4s4

3
þ s11

�
ΔV þ s13V þ s14□W þ s16W

�
;

�
δL
δwαβ

�
S-TF

¼ Δαβ

�
4s6Aþ s6Ũ þ 3s6Ṽ

þ ð−s6 þ s14ÞV̈ −
�
s6
3
þ s14

�
ΔV þ s16V −

�
s1
4
þ s4 þ s11

�
□W − s13W

�
;

�
δL
δuαβ

�
S-TR

¼ γαβ

�
−
2s1
3

ΔA −
s1
2
̈Ũ þ s1

6
ΔŨ þ

�
−
3s1
4

þ s3

�
̈Ṽ −

2s3
3

ΔṼ

þ s1
3
ΔV̈ þ 2s4

9
ΔΔV þ 2s6

9
ΔΔW

�
;

�
δL
δvαβ

�
S-TR

¼ γαβ

��
−s1 þ

4s3
3

�
ΔAþ

�
−
3s1
4

þ s3

�
̈Ũ −

2s3
3

ΔŨ

þs37
̈Ṽ −

�
3s1
2

− 2s3 þ s37

�
ΔṼ þ s39Ṽ

þ
�
s1
2
−
2s3
3

�
ΔV̈ þ

�
s1
6
þ 2s3

9
þ 2s4

3

�
ΔΔV þ 2s6

3
ΔΔW

�
;

�
δL
δbα

�
S
¼ ∂α∂t

�
−2s1Ũ þ ð−3s1 þ 4s3ÞṼ þ

�
4s1
3

þ 8s4
3

�
ΔV þ 8s6

3
ΔW

�
;

δL
δA

¼ −2s1ΔŨ þ ð−3s1 þ 4s3ÞΔṼ þ
�
4s1
3

þ 8s4
3

�
ΔΔV þ 8s6

3
ΔΔW; ðC1Þ

which depend on ten independent combinations si of the 16 undetermined constants ki:
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s1 ¼ 2k6 þ
3

2
k7;

s3 ¼
3

2
k6 þ

9

8
k7 − 6k12 − 2k14;

s4 ¼ −
1

2
k6 −

3

8
k7 −

1

2
k14;

s6 ¼ k6 þ
3

4
k7 − 3k12 − k14 − 6k16;

s11 ¼
1

2
k6 þ

11

8
k7 þ 2k8 − 2k13 −

1

2
k14;

s13 ¼ −2k2;

s14 ¼ −2k4 þ 24k5 − k6 −
3

4
k7 þ 4k8 − 12k9 þ 24k10 − 24k11 − 6k12 − 4k13 − 2k14 − 48k15 − 12k16;

s16 ¼ −24k1 − 4k2 − 24k3;

s37 ¼ −24k5 þ 2k6 þ
5

2
k7 − 4k8 þ 24k11 − 12k12 þ 4k13 − 4k14;

s39 ¼ 24k1 þ 4k2: ðC2Þ

A subset of seven constants si governs the field equations for the vector modes:

�
δL
δuαβ

�
V
¼ ∂t∂ðα

�
s1BβÞ − 2s4 _UβÞ − 2s6ϵβÞμνUμ;ν þ 2s6 _WβÞ þ

�
−
s1
2
− 2s4

�
ϵβÞμνWμ;ν

�
;

�
δL
δvαβ

�
V
¼ ∂ðα

�
ð−s1 − 4s4Þ _BβÞ þ 4s6ϵβÞμνBμ;ν

þ ðs1 þ 4s4 þ 2s11ÞÜβÞ þ
�
−
3s1
2

− 6s4 − 2s11

�
ΔUβÞ þ 2s6ϵβÞμν _Uμ;ν þ 2s13UβÞ þ 2s14□WβÞ þ 2s16WβÞ

�
;

�
δL
δwαβ

�
V
¼ ∂ðα

�
4s6 _BβÞ þ ðs1 þ 4s4ÞϵβÞμνBμ;ν þ ð2s6 þ 2s14ÞÜβÞ − 2s14ΔUβÞ þ

�
s1
2
þ 2s4

�
ϵβÞμν _Uμ;ν þ 2s16UβÞ

þ
�
−
3s1
2

− 6s4 − 2s11

�
□WβÞ − 2s13WβÞ

�
;

�
δL
δbα

�
V
¼ Δ½2s1Bα − 4s4 _Uα − 4s6ϵαμνUμ;ν þ 4s6 _Wα þ ð−s1 − 4s4ÞϵαμνWμ;ν�; ðC3Þ

as well as the traceless tensor modes:

�
δL
δuαβ

�
TT

¼ s1
4
□Uαβ þ

�
s1
4
þ s4

�
V̈αβ þ

�
s1
4
þ s4

�
ΔVαβ − 2s6ϵðαμν _VβÞμ;ν þ s6Ẅαβ þ s6ΔWαβ þ

�
s1
2
þ 2s4

�
ϵðαμν _WβÞμ;ν;�

δL
δvαβ

�
TT

¼
�
s1
4
þ s4

�
Üαβ þ

�
s1
4
þ s4

�
ΔUαβ þ 2s6ϵðαμν _UβÞμ;ν þ

�
s1
4
þ s4 þ s11

�
□Vαβ þ s13Vαβ þ s14□Wαβ þ s16Wαβ;�

δL
δwαβ

�
TT

¼ s6Üαβ þ s6ΔUαβ −
�
s1
2
þ 2s4

�
ϵðαμν _UβÞμ;ν þ s14□Vαβ þ s16Vαβ −

�
s1
4
þ s4 þ s11

�
□Wαβ − s13Wαβ: ðC4Þ

Note that the Noether identities [39] 0 ¼ ∂t
δL
δA − ∂α

δL
δbα

and 0 ¼ ∂t
δL
δbα − 4∂β

δL
δuαβ

are easily verified.

2. Constrained equations

As discussed in Sec. III, the field equations exhibit behavior we deem of unphysical phenomenology for a theory which
shall only introduce refinements to Einstein gravity. First, the scalar equations (C1) yield, among short-ranging Yukawa
corrections, long-ranging Coulomb corrections to the linearized Schwarzschild solution, except for
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s1 þ 4s4 ¼ 0 and s6 ¼ 0: ðC5Þ

Constraining the theory to this sector yields the scalar field equations

�
δL
δuαβ

�
S-TF

¼ Δαβ

�
s1A −

s1
4
Ũ þ s3Ṽ −

s1
4
V̈ þ s1

12
ΔV

�
;

�
δL
δvαβ

�
S-TF

¼ Δαβ½s11□V þ s13V þ s14□W þ s16W�;
�
δL
δwαβ

�
S-TF

¼ Δαβ½s14□V þ s16V − s11□W − s13W�;
�
δL
δuαβ

�
S-TR

¼ γαβ

�
−
2s1
3

ΔA −
s1
2
̈Ũ þ s1

6
ΔŨ þ

�
−
3s1
4

þ s3

�
̈Ṽ −

2s3
3

ΔṼ þ s1
3
ΔV̈ −

s1
18

ΔΔV
�
;

�
δL
δvαβ

�
S-TR

¼ γαβ

��
−s1 þ

4s3
3

�
ΔAþ

�
−
3s1
4

þ s3

�
̈Ũ −

2s3
3

ΔŨ þ s37
̈Ṽ −

�
3s1
2

− 2s3 þ s37

�
ΔṼ þ s39Ṽ

þ
�
s1
2
−
2s3
3

�
ΔV̈ þ 2s3

9
ΔΔV

�
;

�
δL
δbα

�
S
¼ ∂α∂t

�
−2s1Ũ þ ð−3s1 þ 4s3ÞṼ þ 2s1

3
ΔV

�
;

δL
δA

¼ −2s1ΔŨ þ ð−3s1 þ 4s3ÞΔṼ þ 2s1
3

ΔΔV; ðC6Þ

the vector field equations

�
δL
δuαβ

�
V
¼ s1

2
∂t∂ðα½2BβÞ þ _UβÞ�;�

δL
δvαβ

�
V
¼ 2∂ðα½s11□UβÞ þ s13UβÞ þ s14□WβÞ þ s16WβÞ�;�

δL
δwαβ

�
V
¼ 2∂ðα½s14□UβÞ þ s16UβÞ − s11□WβÞ − s13WβÞ�;�

δL
δbα

�
V
¼ s1Δ½2Bα þ _Uα�; ðC7Þ

and the traceless tensor field equations

�
δL
δuαβ

�
TT

¼ s1
4
□Uαβ;�

δL
δvαβ

�
TT

¼ s11□Vαβ þ s13Vαβ þ s14□Wαβ þ s16Wαβ;�
δL
δwαβ

�
TT

¼ s14□Vαβ þ s16Vαβ − s11□Wαβ − s13Wαβ: ðC8Þ

As explained in Sec. III, the coupled wave equations of the kind

u ¼ s11□φþ s13φþ s14□ψ þ s16ψ ;

v ¼ s14□φþ s16φ − s11□ψ − s13ψ ðC9Þ

lead to diverging behavior of solutions, unless

s13s14 − s11s16 ¼ 0: ðC10Þ
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We thus enforce s16 ¼ s13s14=s11 and arrive at a phenom-
enologically relevant subsector of the unconstrained lin-
earized theory with only seven independent gravitational
constants left.
Of these seven constants, five combinations appear

in the linearized Schwarzschild solution (63) and the
gravitational-wave solutions (111) and (117), two constants
which play the role of masses in wave equations or
screened Poisson equations,

μ2¼ 8s1s39
9s21−24s1s3þ8s1s37þ16s23

and ν2¼s11s13þs14s16
s211þs214

;

ðC11Þ

and three other constants

α ¼ 1

2s1
;

β ¼ ð3s1 þ 4s3Þ2
6s1ð9s21 − 24s1s3 þ 8s1s37 þ 16s23Þ

;

γ ¼ −8ð3s1 þ 4s3Þ
6ð9s21 − 24s1s3 þ 8s1s37 þ 16s23Þ

: ðC12Þ

CADABRA, MATHEMATICA, and MAPLE code assisting
calculations in this section is publicly available at Ref. [13].
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