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We demonstrate the existence of static stable spherical fluid shells in the Schwarzschild-Rindler–anti–
de Sitter (SRAdS) spacetime where ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ with fðrÞ ¼ 1 − 2Gm
r þ

2br − Λ
3
r2. This is an alternative to the well-known gravastar geometry where the stability emerges due to

the combination of the repulsive forces of the interior de Sitter space with the attractive forces of the
exterior Schwarzschild spacetime. In the SRAdS spacetime the repulsion that leads to stability of the
shell comes from a negative Rindler term while the Schwarzschild and anti–de Sitter terms are attractive.
We demonstrate the existence of such stable spherical shells for three shell fluid equations of state: vacuum
shell (p ¼ −σ), stiff matter shell (p ¼ σ) and dust shell (p ¼ 0) where p is the shell pressure and σ is the
shell surface density. We also identify the metric parameter conditions that need to be satisfied for shell
stability in each case. The vacuum stable shell solution in the SRAdS spacetime is consistent with previous
studies by two of the authors that demonstrated the existence of stable spherical scalar field domain walls in
the SRAdS spacetime.

DOI: 10.1103/PhysRevD.102.104015

I. INTRODUCTION

Boundary layers (shells of matter sources with zero
thickness) play an important role in both electromagnetism
and general relativity. They provide a useful laboratory for
the exploration of new phenomena while at the same time
they approximate smooth solutions such as domain walls
[1–5] or braneworlds [6–10]. Thin shells are also useful in
describing gravitational collapse [11–13] or in constructing
spherically symmetric vacuum solutions that avoid the
presence of singularities (e.g., gravastars [14–19]).
Despite the divergence of the stress-energy tensor on the

thin shell, the corresponding singularities of the Einstein
equations are mild and in fact they are easily integrable.
Thus they lead to a simplification of the dynamical
gravitational equations by converting the corresponding
differential equations to finite difference equations known
as “junction conditions” [20–22]. These conditions lead to
a determination of the discontinuities of various fields as
the shell is crossed.
Thin spherical shells in general relativity may be defined

as 2þ 1 boundary hypersurfaces with energy-momentum
tensor Sij ≡

R
Rþ
R− Ti

jdr ¼ diagð−σ; p; pÞ, where R is the
shell radius, r is the radial coordinate of the (3þ 1)-
dimensional spacetime, σ is the surface energy density and

p is the surface pressure on the shell hypersurface with
equation of state p ¼ pðσÞ. The thin shell interpolates
between an interior and an exterior spherically symmetric
metric. The exterior metric is related to the interior metric in
the context of the Israel junction conditions [20–22].
A well-known spherical static stable thin shell configu-

ration corresponds to the gravastar that interpolates
between an interior de Sitter metric and an exterior
Schwarzschild metric and constitutes an extension of the
Schwarzschild metric with eliminated singularity [14–18].
An alternative thin shell solution obtained using spheri-

cally symmetric scalar field dynamical equations in a non-
trivial background geometry has been obtained in Ref. [5].
It was demonstrated that static metastable solutions can exist
in the presence of a Schwarzschild–anti–de Sitter curved
spacetime [4,5] supplemented with the Rindler acceleration
term. Thus the total metric is a Schwarzschild-Rindler–anti–
de Sitter (SRAdS) metric [23],

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2Gm
r

þ 2br −
Λ
3
r2 ð1:1Þ

where b is the Rindler acceleration parameter and Λ is the
cosmological constant.
The metric (1.1) has been constrained by Solar System

observations, indicating that jbj < 3 nm=sec2 [24,25] and
it has been shown that it can lead to the production of flat
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rotation curves as well as contribute to the explanation
[26,27] of the Pioneer anomaly [28,29] for b > 0.
Such a metric including a linear term in r is nonstandard

but it has been widely considered in the literature pre-
viously and is physically motivated by at least three factors:

(i) In the context of general relativity (GR) a linear term
in r it emerges naturally in a spherically symmetric
metric, in the context of a perfect fluid with density ρ
and pressure components ρ¼−pr¼−2pθ¼−2pϕ∼
1=r [5]. In this sense it may be viewed as a
generalization of the cosmological constant which
gives a quadratic term in the metric and emerges in a
spherically symmetric metric in the context of a
homogeneous perfect fluid with ρ ¼ −pr ¼ −pθ ¼
−pϕ ¼ constant. In fact any spherically symmetric
metric given as a power series

fðrÞ ¼ 1 −
XN
n¼−N

anrn ð1:2Þ

is supported by an energy-momentum tensor of
the form

T0
0 ¼

1

κ

XN
n¼−N

anð1þ nÞrn−2 ¼ ρ; ð1:3Þ

Tr
r ¼ T0

0 ¼ −pr; ð1:4Þ

Tθ
θ ¼

1

2κ

XN
n¼−N

annð1þ nÞrn−2 ¼ −pθ; ð1:5Þ

Tϕ
ϕ ¼ Tθ

θ ¼ −pϕ: ð1:6Þ

For a linear term in the metric (n ¼ 1), the corre-
sponding energy-momentum term varies as 1=r
which leads to asymptotic flatness since the
energy-momentum tensor vanishes at infinity. For
n ¼ 2 we have constant energy density pressure via
the cosmological constant term and for the case of
n ¼ −1 we have the vacuum solution which corre-
sponds to the zero energy-momentum tensor.

(ii) It is the spherically symmetric vacuum solution in
various modified gravity theories including Weyl
[30] and in two-dimensional scalar-tensor theories
[26,31]. In these theories, the proper sign of the
linear term can lead to additional attractive gravity
that can play the role of dark matter without
actual existence of any form of energy-momentum
[24,25,30].

(iii) In view of the generic and natural existence of the
terms proportional to 1=r (GR vacuum) and r2

(cosmological constant) the presence of a linear
term ∼r emerges as a natural generalization with

potentially interesting physical effects. One of these
effects is the existence of scalar hair (stable spherical
scalar domain wall demonstrated in Ref. [4]).

The metric’s property of supporting metastable spherical
domain walls motivates the search of additional stable shell
solutions described as general fluid thin shells as opposed to
scalar field vacuum energy shells (domain walls). Such an
analysis would be based on the Israel junction conditions
formalism as opposed to the solution of dynamical scalar
field equations. The following questions therefore emerge:

(i) Are there static, stable fluid shell solutions in a
SRAdS background geometry?

(ii) If yes, what are the conditions for their stability
given the equation of state of the fluid shell?

(iii) What is the metric parameter range for shell stability
and how does the stability radius change as a
function of these parameters?

These questions will be addressed in the present analysis.
We implement the Israel junction conditions in the context
of a fixed equation of state of the fluid shell and a SRAdS
background metric with a discontinuous value of m across
the shell and fixed values of b and Λ with no discontinuity
as the shell is crossed. We thus derive the stability
conditions and identify the range of metric parameters b,
Λ, that satisfy these conditions for given values of the
shell coordinate radius R, shell surface density σ and mass
parameters inside and outside the shell (m−, mþ). The
conditions that need to be satisfied for stability by the shell
density and shell radius are also determined.
The structure of this paper is the following: In the next

section we develop the general formalism for the derivation
of stability conditions by implementing the Israel junction
conditions on the SRAdS metric for a shell with a general
fluid equation of state. In Sec. III we consider three specific
applications of the method for the corresponding shell fluid
equations of state: vacuum shell, stiff matter shell and
matter shell and find the particular stability conditions and
parameter regions in each case. Finally in Sec. IV we
conclude, summarize and discuss possible extensions of
this analysis.
In what follows we set G ¼ c ¼ 1. In most cases we will

also set the interior mass parameter m− ¼ 1. Thus in this
context, a dimensionless form of Λ corresponds to the
dimensionless combination m2

−Λ. Furthermore, whenever
greek letters are used as indices they correspond to
spacetime ones, while roman (latin) indices range over
the coordinates of the (2þ 1)-surface of the shell. Also, the
radius of the shell is always considered in the region outside
the event horizon of the black hole. Notice that for the
parameter values considered (AdS) there is no cosmologi-
cal horizon but only an event horizon.

II. THIN SHELLS: EXISTENCE AND STABILITY

Consider a thin spherical shell with coordinate radius R
interpolating between an interior (g−μν) and an exterior
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metric (gþμν). Let the interior and exterior metrics be of the
form [14,15,32],

ds2 ¼ f�ðr�Þdt2 −
dr2�

f�ðr�Þ
− r2�ðdθ2 þ sin2 θdϕ2Þ ð2:1Þ

where

f�ðr�Þ ¼ 1 −
2m�ðr�Þ

r�
ð2:2Þ

and

m�ðr�Þ ¼ m� − br2� þ Λ
6
r3�: ð2:3Þ

We now impose the following conditions:
(1) Continuity of the metric on the shell ðr− ¼ rþ ¼ RÞ.

This implies

fþðrþÞdt2þ−
dr2þ

fþðrþÞ
¼f−ðr−Þdt2−−

dr2−
f−ðr−Þ

; ð2:4Þ

which leads to

t− ¼ fþðRÞ
f−ðRÞ

tþ; ð2:5Þ

dr−
drþ

¼ f−ðRÞ
fþðRÞ

: ð2:6Þ

(2) The Israel junction conditions [20] expressed
through a discontinuity of the extrinsic curvature
on the shell hypersurface Σ. The extrinsic curvature
(second fundamental form) at either side of the
three-dimensional (2þ 1) hypersurface Σ swept
by a spherically symmetric shell, embedded in the
four-dimensional spacetime is

K�
ij ¼

�
hλμnν;λ

dxμ

dxi
dxν

dxj

��

Σ
; ð2:7Þ

where xi are coordinates on Σ, hμν ¼ gμν − nμnν, and
(;) denote covariant derivative with respect to g�μν.
Let

gðxαðxiÞÞ ¼ 0 ð2:8Þ

denote the parametric equation for Σ as embedded in
the four-dimensional spacetime. The unit 4-normals
to Σ in the four-dimensional spacetime are given
by [22]

nα ¼ �
�����gβγ ∂g

∂xβ
∂g
∂xγ

����
�

−1=2 ∂g
∂xα : ð2:9Þ

We assume nα ≠ 0 and label Σ as timelike for
nαnα ¼ 1 (a spacelike normal). The Israel junction
conditions are expressed as discontinuities of the
extrinsic curvature of the shell

½½Kij�� ¼ −8π
�
Sij −

1

2
Shij

�
ð2:10Þ

where ½½X��≡ ½Xþ� − ½X−� denotes the discontinuity
of the quantity X as the shell is crossed.
In the case of a static shell in the SRAdS metric

(1.1) the extrinsic curvature tensor takes the form

Kij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðr�Þ

p
diag

�1
2
f0�ðr�Þ
f�ðr�Þ

;
1

r�
;
1

r�

�
; ð2:11Þ

and the Israel junction conditions for a dynamic shell
are of the form [15]

σ ¼ −
1

4πR

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m�ðRÞ=Rþ _R2

q ��
; ð2:12Þ

p ¼ 1

8πR

��
1 −m�ðRÞ=R −m�ðRÞ0 þ _R2 þ RR̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m�ðRÞ=Rþ _R2
q

��

ð2:13Þ

where ( 0) denotes derivative ofm�ðrÞwith respect to
r at r ¼ R and the dot denotes derivative with
respect to the proper time of the shell defined as

dτ2¼
�
1−

2m�ðRÞ
R

�
dt2−

1

1−2m�ðRÞ=R
�
dR
dt

�
2

dt2:

ð2:14Þ

These equations lead also to the energy conservation
equation on the shell,

d
dτ

ðσR2Þ þ p
d
dτ

R2 ¼ 0: ð2:15Þ

Equation (2.12) may also be expressed as

1

2
_R2 þ VðRÞ ¼ E ð2:16Þ

where

VðRÞ≡1þ4mþðRÞm−ðRÞ
16π2σ2R4

−
�
4πσR2

2R
þmþðRÞþm−ðRÞ

4πσR2

�
2

ð2:17Þ

and E ¼ 0.
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Clearly, Eq. (2.16) is identical to the energy conservation
equation of a particle moving in one dimension with
coordinate RðτÞ and zero energy. Thus, the conditions
for the existence of a static, stable shell may be written as

VðRÞ ¼ 0;

V 0ðRÞ ¼ 0;

V 00ðRÞ > 0: ð2:18Þ

These conditions, along with the equation of state pðσÞ
and the energy conservation Eq. (2.15) may be used to
identify constraints on the metric parameters appearing in
the expressions of m−ðRÞ and mþðRÞ required for the
existence of a stable spherical shell with given radius R.
In the present analysis we consider the particular forms of
m�ðrÞ given by Eq. (2.3) corresponding to the SRAdS
metric. In this case the potential of Eq. (2.17) takes the
form,

VðRÞ ¼ 1 −
m− þmþ

R
þ 2bR −

ΛR2

3

−
ðm− −mþÞ2
16π2R4σðRÞ2 − 4π2σðRÞ2R2: ð2:19Þ

In the context of a constant shell fluid equation of state
we have p ¼ wσ and it is easy to show that energy
conservation (2.15) leads to

σ ¼ σ00

�
R
R0

�
−2ðwþ1Þ

ð2:20Þ

where σ00 is the surface density of a shell of radius R0. In
what follows we define

σ0 ≡ σ00R
2ðwþ1Þ
0 : ð2:21Þ

For example in the special case of a pressureless matter
shell (w ¼ 0) we obtain the expected result σðRÞ ∼ R−2

while for a vacuum shell we have σðRÞ ¼ σ0 ¼ const. The
dimensionality of σ0 is therefore dependent on the equa-
tion-of-state parameter w, resulting in different dimensions
for σ0 regarding each case of w discussed in the next
section.
In the special case when σ is independent of R discussed

in the next section (vacuum shell) it is straightforward
to show that a minimum of the potential (2.19) exists for
b < 0 and Λ < 0 due to the attractive nature of the linear
potential term 2bR which dominates at large R competing
with the repulsive effects of the quadratic potential term
−ΛR2=3 which dominates at even larger R.
For more general metrics or fluid equations of state than

the one considered here it is clearly possible to have several
minima for the potential corresponding to configurations of
more than one stable concentric shell.

In the next section we identify the metric parameter
ranges of b and Λ that allow for stable shells in the special
cases of three shell fluid equations of state. We then
proceed by finding the ranges of the parameters b, Λ
which allow for stable spherical shell solutions, via the
implementation of these conditions for different cases of
interior and exterior equations of state.

III. SPECIAL CASES

A. Vacuum fluid shell (w= − 1)
The simplest case of a stable spherical shell is obtained

assuming a vacuum fluid equation of state

p ¼ −σ: ð3:1Þ

This case is similar to the case of a stable domain wall in the
SRAdS metric discussed in [5] using theoretical methods.
It was shown that such metastable topological field
configurations may indeed exist for b < 0, Λ < 0 due to
the competing attractive-repulsive effects of the linear and
quadratic terms of the metric functions. In the vacuum fluid
case we have from Eq. (2.20)

σðRÞ ¼ σ0 ¼ const ð3:2Þ

where the σ0 has dimensions of R−1, in accordance with
Eq. (2.21). In this case the system (2.18) becomes

VðRÞ ¼ 1 −
m− þmþ

R
þ 2bR −

ΛR2

3
−
ðm− −mþÞ2
16π2R4σ20

− 4π2σ20R
2 ¼ 0; ð3:3Þ

∂V
∂r

����
r¼R

¼ 2bþm− þmþ
R2

−
2ΛR
3

þ ðm− −mþÞ2
4π2R5σ20

− 8π2σ20R ¼ 0; ð3:4Þ

∂2V
∂r2

����
r¼R

¼ −
2Λ
3

−
2ðm− þmþÞ

R3
−
5ðm− −mþÞ2

4π2R6σ20

− 8π2σ20 > 0: ð3:5Þ

The solution of the system (3.3)–(3.5) may be written as

ΛðR;σ0Þ ¼
15ðm− −mþÞ2
16π2R6σ20

þ 6ðm− þmþÞ− 3R
R3

− 12π2σ20;

ð3:6Þ

bðR; σ0Þ ¼
3ðm− −mþÞ2 þ 8π2½3ðm− þmþÞ − 2R�R3σ20

16π2σ20R
5

;

ð3:7Þ

R > 3ðm− þmþÞ≡ Rmin; ð3:8Þ
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σ0 ≡
ffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðm−−mþÞ2

R3ð3m−þ3mþ−RÞ

q
4π

þ Δσ

>

ffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðm−−mþÞ2

R3ð3m−þ3mþ−RÞ

q
4π

≡ σ0min; ð3:9Þ

where Δσ allows for small perturbations on the surface
density, higher than that of its minimum value σ0min.
The existence of lower limits on the values of R and σ0

allows the analytical derivation of the boundaries in the b,
Λ parameter space of the region that permits a stable
shell solution. In particular when the shell radius takes its
lower limit value R ¼ Rmin, we have σ0min ¼ ∞ and
Λ → −∞ which implies the existence of a low bound on
b for large jΛj as

Λ → −∞ ⇒ b → −
1

6ðmþ þm−Þ
: ð3:10Þ

Similarly for large shell radius ðR → ∞Þ we have

σ0min → 0 and Λ → −12π2σ20 > 0: ð3:11Þ

From Eq. (3.7) implies the existence of an upper bound for
the parameter b,

b < 0 with Λ < Λmax ¼ −12π2σ20: ð3:12Þ

These analytically derived boundaries of the stability
parameter region may be displayed by showing contours in
the ðb;ΛÞ parameter space that show the shell stability
regions in the context of the constraints (3.6)–(3.9) for fixed
values of mþ; m−. Clearly, the boundaries expressed by
Eqs. (3.10)–(3.12) are respected by these regions as
demonstrated in Fig. 1. As expected (right panel of
Fig. 1), the minimum value of b in the stability region
increases as mþ is increased [see Eq. (3.10)]. In Fig. 2 we
show the form of the potential (2.17) for three sets of
parameters ðR; σ; b;ΛÞ inside and outside the stability
region of Fig. 1. As expected the potential develops a
minimum with VðRÞ ¼ 0 only for the parameters inside the
stability region while the parameter values in the instability
region correspond only to a local maximum of the potential
at the corresponding value of R.
In order to illustrate the validity of the stability bounda-

ries shown in Fig. 1 we show a random set of stability
parameter points in Fig. 3 which is constructed as follows:
(1) We fix m− ¼ 1, mþ ≡mþ=m− ¼ 1.5. (m− and mþ

become dimensionless since we have set m− ¼ 1.)
Then we construct the stability boundary as the set of
points with b¼bðR;σ0minðRÞÞ, Λ¼ΛðR;σ0minðRÞÞ,
where R > Rmin [see Eq. (3.8)], σ0minðRÞ is obtained
from Eq. (3.9).

FIG. 1. The shell stability region (light blue region) in the b − Λ parameter space for two pairs of mþ −m−. The colored curves
correspond to the fixed value of surface density in the stability range σ0 ≡ σ0min þ Δσ > σ0min while R varies such that R > Rmin. Since
we have setm− ¼ 1, the cosmological constant becomes dimensionless and equal to the productm2

−Λ. We thus study two separate cases
with different values for the exterior mass mþ. In the right panel we set mþ=m− ¼ 1.5 and in the left panel at mþ=m− ¼ 1.05. We can
clearly see that compared to the mþ=m− ¼ 1.05 one, the shell which corresponds to the mþ=m− ¼ 1.5 exterior mass displays a greater
value of the lower boundary of the b parameter (bmin) as well as a smaller value of the Rmin limit.
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(2) We construct a random selection of shell radius
values Ri respecting the stability constraint (3.8). For
each value of R ¼ Ri we consider a random value
for σi such that σi > σ0minðRiÞ [see Eq. (3.9)]. For
the given random pair ðRi; σiÞ we obtain the stability
parameters ðΛ; bÞ and plot the corresponding point
in Fig. 3.

(3) We repeat this process for i ¼ 1;…; N ðN ¼ 5 ×
104Þ thus constructing Fig. 3.

Clearly all the points corresponding to stable shell para-
meter values are within the stable region thus testing the
validity of this region and the consistency of Fig. 1.

B. Stiff matter fluid shell (w= 1)

A stiff matter shell has equation of state

p ¼ σ: ð3:13Þ

From Eq. (2.20) with w ¼ 1 we obtain

σðRÞ ¼ σ0R−4 ð3:14Þ

where σ0 has dimensions of R3, in accordance with
Eq. (2.21). For this equation of state the potential (2.19)
takes the form,

VðRÞ ¼ 1þ 2bR −
ΛR2

3
−
ðm− −mþÞ2R4

16π2σ20

−
m− þmþ

R
−
4π2σ20
R6

: ð3:15Þ

The system of stability conditions (2.18) in this case
takes the form,

VðRÞ ¼ 1 −
m− þmþ

R
þ 2bR −

ΛR2

3
−
ðm− −mþÞ2R4

16π2σ20

−
4π2σ20
R6

¼ 0; ð3:16Þ

∂V
∂r

����
r¼R

¼ 2bþm− þmþ
R2

−
2ΛR
3

−
ðm− −mþÞ2R3

4π2σ20

þ 24π2σ20
R7

¼ 0; ð3:17Þ

∂2V
∂r2

����
r¼R

¼ −
2Λ
3

−
2ðm− þmþÞ

R3
−
3ðm− −mþÞ2R2

4π2σ20

−
168π2σ20

R8
> 0 ð3:18Þ

with solution for existence of shell solution

ΛðR; σ0Þ ¼ −
9ðm− −mþÞ2R2

16π2σ20
þ 6ðmþ þm−Þ − 3R

R3

þ 84π2σ20
R8

; ð3:19Þ

FIG. 2. The potential (3.3) for parameter values corresponding
to the three points shown in Fig. 1. These points correspond
to parameter values: ðR ¼ 14.28;Δσ ¼ 2.2 × 10−2; b ¼ −5.18×
10−2;Λ ¼ −6.76 × 10−2Þ (green point), ðR ¼ 20.78;Δσ ¼ 10−2;
b ¼ −3.97 × 10−2;Λ ¼ −1.72 × 10−2Þ (blue point) and ðR ¼
7.95;Δσ ¼ 10−3; b ¼ −5.25 × 10−2;Λ ¼ −6.39 × 10−3Þ (red
point). Notice that the red point which is outside the stability
region corresponds to a potential which does have an extremum
with VðRÞ ¼ 0 (for R ≃ 2) which implies the existence of a shell
solution. However, this extremum corresponds to a local
maximum indicating instability of the corresponding shell
solution.

FIG. 3. A random Monte Carlo selection of points that satisfy
the shell existence and stability conditions (3.6)–(3.9) for
mþ ¼ 1.5. The orange line represents the limit of the region
which is clearly respected by all the randomly selected points
which span the stability region.
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bðR; σ0Þ ¼ −
ðm− −mþÞ2R3

16π2σ20
þ 3ðm− þmþÞ − 2R

2R2

þ 16π2σ20
R7

: ð3:20Þ

The stability condition (3.18) leads to the constraints

− 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20ðR6 − 6mþR5 − 100π2σ20Þ

q

<
3½ðm− −mþÞR5 þ 8π2σ20�ffiffiffi

3
p

< 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20ðR6 − 6mþR5 − 100π2σ20Þ

q
; ð3:21Þ

R6 > 6mþR5 þ 100π2σ20; ð3:22Þ

which must be met simultaneously in order for a stability
region to exist.
Using again the Monte Carlo method of Fig. 3 with

random values of R and σ0 in the region allowed by
Eqs. (3.21) and (3.22), we obtain the corresponding
stability values of Λ and b which map the stability region
shown in Fig. 4.
The range of the ðb;ΛÞ parameters for which we have

stable solutions for the stiff matter case appears to be
significantly narrower than the corresponding one for the
case of the vacuum shell. The reduction of the stability
region in this case is due to the repulsive term of the
potential of Eq. (3.15) proportional to R4 which is not
present in the vacuum shell case and spoils the attractive
effects of the anti–de Sitter term ∼ΛR2 (Λ < 0) needed for
the formation of a potential minimum at large R.

C. Pressureless dust fluid shell (w= 0)

For a pressureless dust fluid shell we have p ¼ 0 and
Eq. (2.15) leads to a surface energy density of the form

σðRÞ ¼ σ0R−2 ð3:23Þ

with σ0 dimensions of R, in accordance with Eq. (2.21). In
this case the potential takes the form,

VðrÞ ¼ 1þ 2bR −
ΛR2

3
−
ðm− −mþÞ2

16π2σ20

−
m− þmþ

R
−
4π2σ20
R2

: ð3:24Þ

Solving the system (2.18) for this potential yields the
following forms for Λ and b (existence conditions)

ΛðR; σ0Þ ¼
3ðm− −mþÞ2
16π2R2σ20

þ 6ðm− þmþÞ − 3R
R3

þ 36π2σ20
R4

;

ð3:25Þ

bðR; σ0Þ ¼
ðm− −mþÞ2
16π2Rσ20

þ 3ðm− þmþÞ − 2R
2R2

þ 8π2σ20
R3

:

ð3:26Þ

Since the dimensionality of σ0 is R it is evident that
Eqs. (3.24)–(3.26) are dimensionally correct (Λ ∼ R−2,
b ∼ R−1). While stability of the shell implies that

k24π2σ20 þ ðm− −mþÞRk
< 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20ð12π2σ20 − 6mþRþ R2Þ

q
; ð3:27Þ

0 < 12π2σ20 − 6mþRþ R2: ð3:28Þ

Via the same Monte Carlo process as in the former cases
we show a map of the stability parameter region in the
ðb;ΛÞ space (Fig. 5). As is evident in Figs. 4 and 5
constructed using a Monte Carlo simulation of the stability

FIG. 4. A Monte Carlo map of the stiff matter shell stability
parameter region ðb;ΛÞ form− ¼ 1,mþ ¼ 1.5. Notice that in this
case the stability parameter range is much more narrow than in
the case of the vacuum shell.

FIG. 5. A Monte Carlo map of the dust matter shell stability
parameter region ðb;ΛÞ for m− ¼ 1, mþ ¼ 1.5.
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range indicated by Eqs. (2.18), in both the w ¼ 0 as well as
the w ¼ 1 case, in order to have the stability conditions
satisfied we must have Λ < 0 and b < 0.
In contrast to the potential of Eq. (3.15) which corre-

sponds to a stiff matter shell, the potential given by
Eq. (3.24) for a pressureless dust shell does not incorporate
any high order repulsive terms, e.g., R4. This allows for a
higher influence of the anti–de Sitter term ∼ΛR2 (Λ < 0),
which is crucial for the implementation of stability at
larger R. Therefore, the range of the ðb;ΛÞ parameters for
which we have stable solutions for the pressureless dust
matter case appears to be significantly wider than the
corresponding one for the case of the stiff matter shell.

IV. CONCLUSION AND OUTLOOK

We have demonstrated the existence of static, stable
spherically symmetric thin fluid shells in a SRAdS metric.
We have found analytically the conditions for stability and
the corresponding range of values of metric parameters that
admit stable fluid shells for different forms of the fluid
equation of state. These structures have similarities with the
well-known gravastar shell structures [14,15,33–35]. In our
shell structures the interior de Sitter term of the gravastars is
replaced by a combination of Rindler–anti–de Sitter terms
present in a continuous form (same values both in the
interior and in the exterior of the shell) allowing for the
existence of a minimum of the stability effective potential.
Interesting extensions of this analysis include the

following:
(i) The investigation of alternative forms of metrics that

may admit stable shell solutions. For example an
interesting alternative simple metric would be one
with a Rindler term inside the shell and a Schwarzs-
child term outside. Such a metric would be free of
singularities and would differ from a gravastar in the
replacement of the de Sitter interior by a Rindler
interior. Other types of metrics could accept multiple
concentric shell structures if the corresponding
stability potential has multiple minima at different
radii R.

(ii) The investigation of observational effects of such
shell structures. Since the radius of the shell is
always considered in the region outside the event
horizon of the black hole, lensing can be considered
in a straightforward manner by studying lightlike
geodesics in the SRAdS spacetime along the lines of

Refs. [36,37] where the lensing of similar metrics is
considered. For example signatures of such SRAdS
shell structures in typical lensing patterns could be
identified and compared to observed lensing patterns
around black holes [38–43]. Signatures of SRAdS
shells in such optical images could be specified and
compared with predicted signatures of other similar
exotic objects like gravastars [44].

(iii) The investigation of nonspherical junctions and
shells. An interesting problem would be the study
of joining rotating spacetimes in the presence of the
cosmological constant.

(iv) The consideration of more general fluid shell equa-
tions of state. In the case of phantom shells it may be
possible to have stable shells in a pure Schwarzs-
child background due to the tendency of such shells
to expand rather than contract (negative tension).
This is easily shown using the energy conservation
equation (2.15) with w < −1 which leads to a
surface density σðRÞ ¼ σ0R−2ðwþ1Þ which increases
with R. The positive value of the exponent for
w < −1 indicates that it is energetically favorable
for such phantom shell to expand rather than
contract leading to a negative tension (pressure)
that would tend to stabilize the shell even in a pure
Schwarzschild background.

(v) The investigation of the dynamical evolution of the
shell in the context of spherical symmetry and
beyond. Nonspherical dynamical excitations of the
shell could also lead to interesting gravitational
wave signatures.

Numerical analysis files: The numerical files for the
reproduction of the figures can be found in [45].
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