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Numerical-relativity simulations are essential for studying the last stages of the binary neutron star
coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density
atmosphere. Here we discuss a new framework in which we can effectively set the density surrounding the
neutron stars to zero to ensure a more accurate simulation. We test our method with a number of single star
test cases and for an equal-mass binary neutron star simulation. While the bulk motion of the system is not
influenced, and hence there is no improvement with respect to the emitted gravitational-wave signal, we
find that the new approach is superior with respect to mass conservation and it allows a much better
tracking of outward moving material. This will allow a more accurate simulation of the ejected material and
supports the interpretation of present and future multimessenger observations with more accurate
numerical-relativity simulations.
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I. INTRODUCTION

Binary neutron star (BNS) systems are a unique labo-
ratory for answering some of the most interesting questions
in modern physics. For example: What is the equation of
state (EOS) of supranuclear dense matter [1–9]?What is the
expansion rate of the Universe [10–14]? How have the
heavy elements in the cosmos [15–19] been produced?
And, is general relativity the correct theory for describing
gravity [20–23]?
An investigation of the full BNS coalescence requires a

detailed analysis and understanding of the merger process.
Because of the strong gravitational fields and the high
velocities of the stars just before merger, one has to
solve Einstein’s equations with all nonlinearities using full
ð3þ 1ÞD numerical-relativity simulations [24–26]. Thus,
numerical relativity has consolidated its role for the
interpretation of compact binary mergers and was used
to study the BNS merger GW170817 [27] and its electro-
magnetic counterparts [28].
To enable stable simulations, state-of-the-art numerical-

relativity simulations of neutron stars use an artificial
atmosphere to model vacuum and near-vacuum conditions
outside the stars, see, e.g., [26,29–31]. Starting with the
initial data for neutron stars in vacuum, the standard method
fills all the vacuum regions with a very low-density
atmosphere (often with a cold equation of state). This
atmosphere is not physical and is artificially added for
numerical reasons. One reason for this approach is that for
the matter evolution we use conserved matter variables, i.e.,
variables whose change inside a given cell volume is

determined by fluxes across the cell surfaces. To compute
these fluxes one has to use interpolation from the cell
centers to cell interfaces. In low-density regions this
interpolation can return matter densities or energies that
lie outside what is physically reasonable or allowed. An
artificial atmosphere cures these issues. However, even
with an artificial atmosphere, some of the same problems
can still occur. In addition, the atmosphere has to be tuned to
avoid most of these problems, while at the same time kept
tenuous enough to not unduly influence the simulation. One
of the most sophisticated atmosphere implementations is
explained in [32]. In this approach a positivity preserving
limiter is used for the density.Yet even in this approach a low-
density atmosphere is still needed. However, it has the
advantage that the density of the atmosphere can be made
much lower than in more straightforward approaches so that
the effects of the artificial atmosphere can be reduced. There
is also a new hydrodynamics approach that uses Hamilton-
Jacobi methods [33], and thus its evolution equations take a
different form. Thus far it has been only used for barotropic
fluids and, interestingly for us, in its current formulation it
also requires an artificial atmosphere.
Our goal here is to find a scheme that does not explicitly

add such an atmosphere.Wewill first describe the ingredients
that allow us to perform simulations that contain true
vacuum. After this we discuss tests of our new scheme,
wherewe evolve neutron stars with and without atmosphere.
Throughout this study, we use dimensionless units where

G ¼ c ¼ M⊙ ¼ 1. and adopt the signature ð−;þ;þ;þÞ for
the 4-metric. Greek indices on tensors run from 0 to 3 and

PHYSICAL REVIEW D 102, 104014 (2020)

2470-0010=2020=102(10)=104014(16) 104014-1 © 2020 American Physical Society

https://orcid.org/0000-0001-5752-8218
https://orcid.org/0000-0002-8707-754X
https://orcid.org/0000-0003-4623-0525
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.104014&domain=pdf&date_stamp=2020-11-06
https://doi.org/10.1103/PhysRevD.102.104014
https://doi.org/10.1103/PhysRevD.102.104014
https://doi.org/10.1103/PhysRevD.102.104014
https://doi.org/10.1103/PhysRevD.102.104014


latin indices from 1 to 3, with the standard summation
convention for repeated indices. The following can be
used to convert from dimensionless units to the
International System of Units: time 1000 ¼ 4.93 ms, dis-
tance 1 ¼ 1.47735 km, energy 1 ¼ 1.7872 × 1047 J, and
density 1 ¼ 6.177413 × 1017 g=cm3

II. NUMERICAL METHOD

A. The BAM code

We perform our dynamical simulations with the BAM

code [30,34–37], which uses the method of lines with
Runge-Kutta time integrators and finite differences
approximating spatial derivatives. A Courant-Friedrich-
Lewy factor of 0.25 is employed for all runs (see [34,38]).
The numerical domain contains a mesh made of a

hierarchy of cell-centered nested Cartesian boxes and
consists of L refinement levels from l ¼ 0 to L − 1.
Each refinement level is made out of one or more equally
spaced Cartesian grids with grid spacing hl. There are n
points per direction on each grid plus a certain number of
buffer points on each side. The levels are refined in
resolutions by a factor of 2 such that the grid spacing in
level l is hl ¼ h0=2l, where h0 is the grid spacing of the
coarsest level. The coordinate extent of a grid at level l ≥ 0
entirely contains grids at any level greater than or equal to
lþ 1. The moving box technique is used to dynamically
move and adapt some of the mesh refinement levels during
the time evolution. These moving refinement levels are
used for the cases like BNS where the center of each star
moves during the time evolution. All levels with l > lm are
moving refinement levels. This is implemented in such a
way that the moving refinement levels always stay within
the coarsest level. The number of points in one direction for
moving level (nm) can be set to a different value than n.
There are six buffer points per direction on each side of the
refinement grid; cf. Refs. [34,39] for more information
about the buffer points. For simplicity, we shall always
quote grid sizes without buffer points. For the wave zone, a
shell made up from six “cubed sphere” patches [40–42]
can be added. This helps to improve the accuracy in
gravitational-wave (GW) extraction and allows for the
implementation of boundary conditions derived for spheri-
cal geometries; see, e.g., [43].

B. Spacetime and matter evolution

We employ the Z4c formulation of the Einstein equations
[43–45] combined with the moving puncture gauge using
the 1þ log-slicing condition [46] and the gamma-driver
shift [47,48]. For our single star evolutions, Sommerfeld
boundary conditions [49] are used. For binary neutron
stars, we add spherical patches outside of the coarsest cubic
box to allow the use of constraint-preserving boundary
conditions [44].

We assume that the matter is properly described as a
perfect fluid for which the stress-energy tensor is given by

Tμν ¼ ðeþ PÞuμuν þ Pgμν; ð1Þ

with the energy density e, the pressure P, and the four-
velocity uμ. The total energy density is given by
e ¼ ρð1þ ϵÞ, where ρ is the rest-mass energy density
and ϵ is the specific internal energy. In many equations we
also use the specific enthalpy given by

h≡ 1þ ϵþ P=ρ: ð2Þ

The matter equations follow from the conservation law
for the energy-momentum tensor and the conservation law
for the baryon number. Following [50] the equations
governing the evolution of general relativistic fluids, can
be written in first-order flux-conservative form

∂tq⃗þ ∂if⃗
ðiÞðq⃗Þ ¼ s⃗ðq⃗Þ; ð3Þ

with q⃗ denoting the conserved variables, f⃗ðiÞ the fluxes, and
s⃗ðq⃗Þ the source terms. The conserved variables are rest-
mass density (D), the momentum density (Si), and internal
energy (τ) as seen by Eulerian observers. The conserved
variables are related to the original variables via

D ¼ ρW; ð4Þ

Si ¼ ρhW2vi; ð5Þ

τ ¼ ρhW2 − P − ρW; ð6Þ

where vi is the three-velocity and W the Lorentz factor of
the fluid.
To close the evolution system, we have to specify an

EOS for the fluid. We choose to employ a simple ideal-gas
EOS in our single star evolutions. For the BNS evolutions
we use a more realistic EOS that is a piecewise polytropic
fit to the zero-temperature SLy EOS [51–53] plus an
additional thermal ideal-gas contribution [54] with Γhot ¼
1.75 [55].

C. Dealing with low-density or vacuum regions

1. Original implementation in BAM

NSs surrounded by vacuum are modeled in numerical-
relativity simulations by using an artificial atmosphere,
e.g., [30,56–58]. The artificial atmosphere outside of the
stars is chosen as a fraction of the initial central density of
the star as ρatm ≡ fatm · ρcðt ¼ 0Þ. The atmosphere pressure
and internal energy is computed by employing the zero-
temperature part of the EOS. The fluid velocity within the
atmosphere is set to zero. At the start of the simulation, the
atmosphere is added before the first evolution step. During
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the recovery of the primitive variables from the
conservative variables, a point is set to atmosphere if the
density is below the threshold ρthr ≡ fthrρatm. In this article,
we are using fatm ¼ 10−11 and fthr ¼ 102 in all test cases.

2. A new vacuum treatment

Conservative to primitive conversion.—Unfortunately, in
general there is no closed analytic expression for the
primitive variables in terms of the conserved ones. We
thus have to resort to a root finder. Within our new vacuum
treatment, we use the following scheme. We square Eq. (5)
and use the definition of the conservative variables to find

W2 ¼ ðDþ τ þ P�Þ2
ðDþ τ þ P�Þ2 − S2

: ð7Þ

Here P� is an initial guess for the pressure and we have
defined S2 ¼ γijSiSj. Once WðP�Þ is known, we can solve
Eqs. (4) and (6) for ρ and ϵ. We obtain

ρðP�Þ ¼ D
WðP�Þ ð8Þ

and

ϵðP�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDþ τ þ P�Þ2 − S2
p

−WðP�ÞP�

D
− 1: ð9Þ

Using a one-dimensional root finder, we adjust P� until the
EOS of the form P ¼ Pðρ; ϵÞ is satisfied. However,
both WðP�Þ and ϵðP�Þ contain a square root of
ðDþ τ þ P�Þ2 − S2. Thus, we need P� > S −D − τ.
Furthermore, we expect the pressure to be positive. Thus,
we need a root finder that searches for the root P� in the
interval ½Pmin;∞Þ, where

Pmin ¼ minð0; S −D − τÞ: ð10Þ

Our algorithm employs a Newton-Raphson scheme but falls
back on bisection whenever the Newton step would bring us
outside the allowed interval. In addition, we limit Eq. (9) to
not violate the weak energy condition; i.e., whenever
ϵðP�Þ ≤ −1, we set it to −ð1. − 10−10Þ. In most cases we
can then find a root and obtain a suitable P�. In cases where
this is not possible, we reset all variables to vacuum; i.e.,
we set

D ¼ τ ¼ Si ¼ ρ ¼ ϵ ¼ P ¼ vi ¼ 0: ð11Þ

We also reset all variables to vacuum if we find that D < 0,
since negative rest mass densities are nonphysical. We point
out that similar checks are also present with artificial
atmospheres, but with larger threshold values.

Reconstruction and fluxes.—The evolution equations for
the conserved fluid variables are computed from fluxes at
cell interfaces where we do not have grid points. In order to
obtain these fluxes, we interpolate the quantities necessary
for computing them at the cell interface locations. For the
smooth gravitational fields such as α, βi, and γij we use a
sixth-order Lagrangian interpolation, while for the poten-
tially nonsmooth matter fields we use a fifth-order WENOZ
interpolation for the primitive variables [36,59]. The
interpolation results at each interface are constructed in
two ways: once from data to the left (L) of the interface and
one from data to the right (R) of the interface. For the
primitive variables this results in ρL=R, ϵL=R and WviL=R.

1

Interpolation can still lead to unphysical values on either
side. If the determinant of γij is less than or equal to zero,
we set it to 1 and also set ρL=R ¼ ϵL=R ¼ 0. Furthermore, if
ρL < 0 we set ρL ¼ ϵL ¼ 0, and if ρR < 0 we set
ρR ¼ ϵR ¼ 0. In order to obtain the pressure PL=R as well
as the sound speed squared c2sL=R ¼ 1

h ð∂P∂ρ þ P
ρ2

∂P
∂ϵÞL=R, we

use the EOS. If c2s < 0 or c2s > 1, we set it to zero; we also
set it to zero if ρ ¼ 0 or h ¼ 0. We use the thus interpolated
and limited primitive variables to compute the conserved
variables as well as the fluxes f⃗L=R at both interfaces. In

addition, we compute the speeds λ⃗L=R of the characteristic
variables on both sides using

λ1 ¼ α
vnð1 − c2sÞ þ

ffiffiffiffiffiffi

C2
p

1 − v2c2s
− βn; ð12Þ

λ2 ¼ α
vnð1 − c2sÞ −

ffiffiffiffiffiffi

C2
p

1 − v2c2s
− βn; ð13Þ

λ3 ¼ αvn − βn; ð14Þ

λ4 ¼ αvn − βn; ð15Þ

λ5 ¼ αvn − βn; ð16Þ

where C2 ¼ c2sfð1 − v2Þ½gnnð1 − v2c2sÞ − vnvnð1 − c2sÞ�g,
vn ¼ vini, and ni is the normal to the interface. If
1 − v2c2s ¼ 0 or C2 < 0, we simply set λ1 ¼ λ2 ¼ 0.
The final numerical flux F⃗ at the interface is then

computed using a standard method such as the local
Lax-Friedrichs (LLF) scheme where

F⃗interface ¼
1

2
½f⃗R þ f⃗L − jλjmaxðq⃗R − q⃗LÞ�: ð17Þ

Here q⃗L=R are the conserved variables on the left or right
and jλjmax is the characteristic speed with the largest
magnitude. In fact, in the simulations presented in this

1Notice that we interpolateWvi and not vi to avoid cases where
the three-velocity is interpolated to a value above light speed.
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paper we always use the LLF flux at low densities, while
possibly using a higher-order flux at higher densities. In
this case, the higher-order flux F⃗HO

interface is obtained by
interpolating the characteristic variables from five neigh-
boring points using the WENOZ scheme [36]. In some
simulations labeled with HO we use this higher-order flux
F⃗HO
interface above a certain density threshold (typically on the

order of 1% of the maximum of ρ at the star center).

Matter removal.—We use a fourth-order Runge-Kutta
scheme to evolve the conserved variables. Before we
evaluate the right-hand side within each Runge-Kutta
substep, we set the conserved variables to vacuum if one
of the following two conditions is true: (1) if D < 0, or
(2) if D > fWρ and α < 0.2, where the factor f is usually
chosen to be 100. The first condition is obvious and allows
only positive matter density. The second case is used for
matter removal inside black holes (BHs). Since we use the
standard moving puncture gauges 1þ log-lapse and
gamma-driver shift [47,48,60], the BH horizon is located
near the surface where α ∼ 0.3. Therefore, condition (2) is
true only inside the horizon. We have observed that when
matter accumulates near the BH center after a star collap-
ses, D rises much faster than ρ, so Eq. (4) is violated. This
happens because the BH center in this gauge is only very
poorly resolved [61,62]. Condition (2) ensures that matter
is removed whenever D becomes much larger than ρ. An
alternative approach was described in [63], where matter is
not removed but some of the eigenvalues and W are reset
for regularity, which could be explored in future work.

III. SINGLE STAR SPACETIMES

To test our new implementation, we start by studying
three different single star configurations:
(1) A stationary, static star (TOVstatic (Tolman-

Oppenheimer-Volkoff)—Sec. III A).
(2) An unstable, migrating star (TOVmig—Sec. III B).
(3) A perturbed, collapsing, uniformly rotating neutron

star (RNScol—Sec. III C).
Each test uses the LLF flux with primitive reconstruction

[64–66], labeled as LLF, and the hybrid scheme employing
characteristic reconstruction for large and primitive
reconstruction for low densities (labeled as HOLLF). We
employ four different resolutions denoted as Low, Mid,
High, and Fine. Details about the physical setup and the
grid parameters are given in Tables I and II, respectively. In
order to assess the performance of the old “atmosphere”
and the new “vacuum” method, we compare the central
density, the total rest mass, and the Hamiltonian constraint
during the evolution for all tests.

A. Stationary TOV simulations

In Fig. 1, we plot the relative central density 1 − ρcðtÞ
ρcðt¼0Þ,

the relative rest-mass change j1 − MbðtÞ
Mbðt¼0Þ j, and the

Hamiltonian constraint for all TOVstatic simulations. All
quantities are extracted at level l ¼ 4 which is the finest
level but also fully covers the entire star. The stars are
evolved up to a time of 1000 M⊙, i.e., 4.93 ms. Truncation
errors trigger small-amplitude pulsations in the stars
[56,67] that can be seen as oscillations in the relative
central density. The central density oscillations are larger
for the hybrid HOLLF method but decrease clearly with an

TABLE I. Parameters and properties of the single neutron star
tests. We report the density at which we switch between primitive
and characteristic reconstruction (ρswitch), threshold density, and
atmosphere density for the artificial atmosphere (ρthr & ρatm),
EOS parameters Γ andK for the polytropic EOS (p ¼ KρΓ) to set
up the initial data, and we employ symmetry to reduce computa-
tional costs. For completeness, we also present the gravitational
mass M, the baryonic rest mass Mb, the initial central density ρc,
the equatorial radius Re, and the aspect ratio Rp=Re.

Stars TOVstatic TOVmig RNScol

ρswitch × 10−5 1.28 7.83 3.12
ρthr × 10−12 1.280 7.9934 3.1160
ρatm × 10−14 1.280 7.9934 3.1160
Γ 2 2 2
K 100 100 99.5
Symmetry Octant Octant Quadrant
M 1.400 1.448 1.861
Mb 1.506 1.535 2.044
ρc × 10−3 1.2800 7.9934 3.1160
Re 8.126 4.268 9.652
Rp=Re 1 1 0.65

TABLE II. The grid parameters for the single star configura-
tions at all four resolutions are tabulated here. The atmosphere
and vacuum treatments have the same parameters and thus are
tabulated only once. L is the total number of boxes, n ðnmvÞ is the
number of points in the fixed (moving) boxes, and h0; hL−1 are
the grid spacings in level l ¼ 0, L − 1. The grid spacing in level l
is hl ¼ h0=2l.

Grid parameters

Tests Resolutions L n nmv h0 hL−1

TOVstatic Low (L) 5 64 64 1.125 0.281
Med (M) 5 96 96 0.750 0.188
High (H) 5 128 128 0.563 0.141
Fine (F) 5 160 160 0.450 0.113

TOVmig Low (L) 7 64 64 19.20 0.300
Med (M) 7 96 96 12.80 0.200
High (H) 7 128 128 9.600 0.150
Fine (F) 7 160 160 7.680 0.120

RNScol Low (L) 9 64 28 18.00 0.070
Med (M) 9 96 42 12.00 0.047
High (H) 9 128 56 9.00 0.035
Fine (F) 9 160 72 7.20 0.028
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increasing resolution. There is no noticeable difference
between the old atmosphere and the new vacuum method.
Considering the mass conservation, one sees a clear

advantage of our new implementation. In the case of the old
atmosphere method, the limit for setting the density to the
atmosphere value is 1.28 × 10−12. In the first few time
steps, the star surface grows slightly, causing the density to
drop below this threshold. This leads to a visible violation
of mass conservation after the first time step. With our new
vacuum approach a low-density layer builds up around the
star. Thus, with our new approach mass is much better
conserved. In addition, even during the subsequent evolu-
tion one observes a larger mass violation for the atmosphere
method than for our new implementation, where for the
highest resolution the mass violation is below 10−8.
It is also important to point out that for the atmosphere

case, we do not observe convergence in the mass. This
applies to both the HOLLF and the LLF scheme. On the
contrary, for the new vacuum method we find second-order
convergence most of the time for LLF and up to t ¼
600 M⊙ for HOLLF.
The bottom panel of Fig. 1 shows the evolution of the

Hamiltonian constraint. We observe a reduction of the
Hamiltonian constraint for increasing resolution exhibiting
clean second-order convergence. As an example we show a

convergence test for the LLF vacuum setup in Fig. 2. Here
the differences in the Hamiltonian constraint are scaled by
factors that correspond to assuming second-order conver-
gence. These scaled lines nicely coincide with the middle
line, as expected for second-order convergence.

FIG. 1. Results of the TOVstatic test. Left to right: Atmosphere-LLF, Atmosphere-HOLLF, Vacuum-LLF, and Vacuum-HOLLF. Top

panels: relative change in central density 1 − ρcðtÞ
ρcðt¼0Þ. Middle panels: relative rest-mass change j1 − MbðtÞ

Mbðt¼0Þ j. Bottom panels: the time

evolution of the Hamiltonian constraint (H).

FIG. 2. Convergence test of the Hamiltonian constraint of the
LLF vacuum case of a TOVstatic neutron star. The dotted cyan and
dashed green lines are obtained by scaling the dash-dotted orange
line and the dashed blue line, respectively, in order to match up
with the solid red line.
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B. Migration of an unstable star

TOVmig represents a test based on the unstable U0 model
of Ref. [30], with a central energy density of ϵc ¼ 8.73 ×
10−3 and a gravitational mass of M ¼ 1.557, A small
perturbation caused by truncation errors leads to pulsations
that migrate the star toward a stable configuration of the
same rest mass. Initially, the central density decreases and
the star expands rapidly. Later its inner core contracts,
which leads to a shrinking of the star and an increase of the
central density. As a result, it pulsates, causing matter to
cross the grid refinement boundaries. To better resolve the
dynamics, we are using a larger number of refinement
levels than in the TOVstatic test.
In Fig. 3weplot the central density on the finest level l ¼ 6

and the rest mass and Hamiltonian constraint on level l ¼ 1.
In the top panels, we see a decrease in the amplitude of
pulsation of central density as the simulation progresses. If
we would run the simulation longer, the star would finally
settle down to a stable configuration. The Hamiltonian
constraint in the bottom panels converges roughly with a
second-order convergence in all four cases. For the LLF case
we see convergence throughout the simulation, whereas in
HOLLF we see convergence roughly from 300 to 1000 M⊙.

Thus, considering the Hamiltonian constraint, the LLF
simulations perform better than the HOLLF ones.
As for the TOVstatic case, we find a better mass con-

servation for the vacuum configurations than for the old
atmosphere method. Convergence consistent with the
second order is observed in the early part of the HOLLF
simulations; for the LLF method no convergence at all is
present. During the evolution time and because of the
pulsation of the star, mass is crossing the refinement level.
At this time, mass conservation is generally lost if no
additional conservative refluxing step as introduced in
[35,68] is applied. To prove this point, we perform a
simulation with the highest resolution and activate the
refluxing scheme, labeled as Finecamr in Fig. 3. We find that
for the vacuum method mass conservation is significantly
improved up to about t ¼ 600 M⊙. At this time low-
density material hits the outer boundary of the considered
computational domain and leaves it; consequently, the total
mass cannot be conserved after this point.
Considering 2D snapshots of the matter evolution clearly

reveals the advantage of the new vacuum treatment. As can
be seen in Fig. 4, when very low-density material expands,
it is stopped due to the artificial atmosphere (see the bottom
left panel), while it expands freely in the vacuum case

FIG. 3. Results of the TOVmig test. Left to right: Atmosphere-LLF, Atmosphere-HOLLF, Vacuum-LLF, and Vacuum-HOLLF. Top

panels: relative change in central density 1 − ρcðtÞ
ρcðt¼0Þ. Middle panels: relative rest-mass change j1 − MbðtÞ

Mbðt¼0Þ j. Bottom panels: the time

evolution of Hamiltonian constraint (H). Since matter is expected to cross refinement boundaries during this test, we also perform for the
highest resolution a simulation in which we apply the conservative refluxing algorithm that we developed in [35].
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FIG. 4. The rest-mass density in the xy plane for the TOVmig test on refinement level l ¼ 1 at different times for the finest resolution
(n ¼ 160 points) employing conservative mesh refinement [35]. The left panels show the previous atmosphere scheme, and the right
panel shows the new vacuum implementation. For the atmosphere case, the threshold density below which artificial atmosphere is set up
(ρthr) is ∼7.9934 × 10−12 and the artificial atmosphere level (ρatm) is ∼7.993 × 10−14.
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(bottom right panel). Such an artificial impact on the
outgoing matter could be of significant importance if
one wants to track outward going ejecta.

C. Collapsing, rotating neutron star

As a last single-star test case, we study the collapse of a
rotating neutron star (RNS). This test aims toward a better
understanding if a BH can be properly modeled within our
new algorithm.
The initial data are computed using a polytropic EOS

with K ¼ 100, ρc ¼ 3.1160 × 10−3, and axis ratio 0.65,
which leads to a star with gravitational mass ofM ¼ 1.861,
baryonic mass of Mb ¼ 2.044, and angular velocity of
Ω ¼ 3.96 × 10−2. The star is evolved with the polytropic
EOS with K ¼ 99.5 and Γ ¼ 2. This initial perturbation
due to the change of the EOS triggers the collapse of the
star to a BH. A similar configuration has been investigated
in the past, e.g., Refs. [69–71]. We are evolving the star
with quadrant symmetry, i.e., use reflection symmetry
along the x and y axes, and employ nine refinement levels.
In Fig. 5we plot the central density in the finest level l ¼ 8

and the rest mass and Hamiltonian constraint on level l ¼ 3.
The collapse to a BHhappens at around t ¼ 200 M⊙ inmost

cases except for the lowest resolution using the LLF scheme.
For both vacuum and atmosphere cases with LLF at n ¼ 64
points, collapse happens at around t ¼ 380 M⊙. After the
star collapses into a BH, matter is removed to avoid the
occurrence of steep density gradients, as mentioned before.
The Hamiltonian constraint shows second-order con-

vergence before the BH formation. After the collapse, the
convergence order reduces to first order. In both the
vacuum and atmosphere cases, the error of rest mass
behaves in a similar way.
Overall, we find no clear and noticeable difference

between the old atmosphere and new vacuum method.

D. Summary of the single star simulations

We have studied evolutions with an updated implemen-
tation of our vacuum treatment for a number of single star
spacetimes. The main observations are as follows:
(a) Mass conservation can be improved with the new

implementation; cf. TOVstatic.
(b) The new implementation improves the simulation of

outflowing, low-density material; cf. TOVmig.
(c) The new vacuummethod is capable of tracking the BH

formation; cf. RNScol.

FIG. 5. Results of the RNScol test. Left to right: Atmosphere-LLF, Atmosphere-HOLLF, Vacuum-LLF, and Vacuum-HOLLF. Top

panels: relative change in central density 1 − ρcðtÞ
ρcðt¼0Þ. Middle panels: relative rest-mass change j1 − MbðtÞ

Mbðt¼0Þ j. Bottom panels: the time

evolution of the Hamiltonian constraint (H).
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IV. BINARY NEUTRON STAR EVOLUTIONS

A. Binary configurations

Finally, we want to discuss the performance of our new
vacuum treatment for the simulation of BNS setups. We
focus here on the simulation of an equal-mass, nonspinning
configuration evolved with the old atmosphere and the new
vacuum method. To save computational costs, we perform
simulations only with the HOLLF scheme, for which
Ref. [36] showed its superiority compared to the LLF
scheme with primitive reconstruction.
The individual stars have a baryonic mass of 1.495 and a

gravitational mass in isolation of 1.350. For the EOS, we
use a piecewise polytropic fit of the zero-temperature SLy
EOS [51–53] and add an additional thermal ideal-gas
pressure component during the dynamical simulation.
The initial data are calculated using the pseudospectral

SGRID code [72–74]. The initial separation of the stars is
35.5, i.e., 52.4 km, which results in an orbital frequency of
0.0070, an initial Arnowitt-Deser-Misner (ADM) mass of
2.678, and an initial ADM angular momentum of 7.686.
The eccentricity of the inspiral is approximately 1.3 × 10−4.
This relatively low value has been achieved by using the
eccentricity reduction discussed in [74].
Details about the grid setup for the BAM evolutions are

given in Table III. To save computational costs, we have
employed bitant symmetry. In contrast to the single star
tests, we substitute a shell made up of six cubed sphere
patches [40–42] for the outermost Cartesian box (level
l ¼ 0). In this shell matter is not evolved.

B. Dynamical evolution

During the inspiral, a general (almost linear) reduction of
the central density is visible. This linear trend is reduced
significantly with increasing resolution and is connected to
the numerical dissipation [36], which decreases with
decreasing grid spacing; cf. Fig. 6. Overall, there is
generally a second-order convergence in the central density
visible for both the atmosphere and the vacuum method.
In addition, we plot the time evolution for the central

density for the two highest resolutions in Fig. 7. Clearly

visible are large density oscillations after the merger, which
correspond to radial oscillations of the formed hyper-
massive neutron star (HMNS); see, e.g., Refs. [77,78]
for further details. The main difference between the old
atmosphere and the new vacuum method is that for the two
highest resolutions the lifetime of the HMNS is shorter for
the vacuum method than for the atmosphere treatment. We
note that the determination of the remnant’s lifetime does
influence (i) the material outflow and its composition and
(ii) the properties of the BHþ disk system, i.e., the
potential short gamma-ray burst.
The middle panel of Fig. 6 shows the conservation of the

rest-mass density, where we note that these simulations do
not yet employ the conservative refluxing algorithm. We
plan to repeat the simulations with conservative refluxing in
the future when we have more computer time. The error of
the rest mass seems to decrease as we go to higher
resolutions. For the highest resolution, the total rest mass
is conserved up to 0.5% throughout the inspiral, indepen-
dent of the employed atmosphere/vacuum scheme. For the
Hamiltonian constraint, convergence consistent with the
second order is seen until 2000 M⊙ in both the atmosphere
and vacuum cases. After that, the order of the convergence
rises up to fourth order, which is higher than theoretically
expected. However, throughout the simulation there is a
clear pattern of the Hamiltonian constraint decreasing for
both cases as we go to higher resolutions. Looking at the
plots of these three quantities, there is not a clear advantage
for either the atmosphere or the vacuum method.

C. Gravitational waveforms

For both methods an increasing resolution leads to a later
merger, which is due to the increase of the numerical
dissipation for lower resolutions. For the simulations with
BAM code this effect is discussed in [36]. We report the
merger time in Table IV for all BNS simulations. Most
importantly, the difference between the atmosphere and
vacuum methods decreases with increasing resolution;
consequently, the two methods seem to lead to a similar
continuum limit.
In Fig. 8, we present the GW signal for all simulations in

the top panels for the atmosphere (left panels) and the
vacuum methods (right panels). The bottom panels shows
the phase differences between different resolutions. We
rescale the phase differences assuming second-order con-
vergence (dashed lines) and generally find that both
methods show the expected convergence order, with a
sightly better convergence behavior for the original atmos-
phere treatment. For all methods the low-resolution sim-
ulation stops being second-order convergent after about
1500M, which indicates that this resolution is not sufficient
to be in the convergent regime until merger. Overall, we
find very close agreement between the individual phase
differences reported in Fig. 8. In the bottom right panel, we
show the phase difference between the two highest
resolutions for the vacuum (solid, orange line) and the

TABLE III. The grid parameters for the BNS simulations. The
atmosphere and vacuum simulations use the same grid configu-
rations to allow a proper comparison. L denotes the total number
of levels, lmv the finest nonmoving level, n (nmv) the number of
points in the fixed (moving) boxes, and h0; hL−1 the grid spacings
in levels l ¼ 0, L − 1. The grid spacing of level l is hl ¼ h0=2l. nr
is the radial point number, and nθ is angular point number.

Resolutions L lmv n nmv h0 hL−1 nr nθ

Low 7 2 128 64 15.040 0.235 128 56
Med 7 2 192 96 10.027 0.157 192 84
High 7 2 256 128 7.520 0.117 256 112
Fine 7 2 320 160 6.016 0.094 320 140
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atmosphere method (purple, dotted line). We find that the
difference is almost identical; thus, there is no improvement
in the extracted GW signal for our new vacuum method,
which we assume is because the overall bulk motion is
dominating the GW radiation and the new vacuum treat-
ment mostly affects the low-density regions.

D. Ejecta quantities

Since the amount of ejected material is tightly
connected to the creation of electromagnetic counterparts
for a BNS merger (see, e.g., Ref. [79] and references
therein), it is important to improve the evolution of low-
density material.
Generally, when material gets ejected, the fluid expands

and the density reduces until it finally falls below the
artificial atmosphere threshold used within the atmosphere
implementation. In the atmosphere case such fluid elements
are then set to atmosphere values with zero velocity, and
they are thus no longer counted as ejecta so that the ejecta
mass decreases. This trend is clearly visible in Fig. 9. The

FIG. 6. Results of the BNS runs. Left to right: Atmosphere-HOLLF and Vacuum-HOLLF. Top panels: relative change in central

density 1 − ρcðtÞ
ρcðt¼0Þ. Middle panels: relative rest-mass change j1 − MbðtÞ

Mbðt¼0Þ j. Bottom panels: the time evolution of Hamiltonian constraint

(H). We employ a Savitzky-Golay filter [75,76] to increase the visibility of the presented curves.

FIG. 7. Central density of the BNS for the simulations with the
two highest resolutions. Solid lines are for the atmosphere and the
dashed lines are for the vacuum methods. This plot shows how
density changes in BNS during inspiral, merger, postmerger, and
black hole formation.

TABLE IV. Merger times for atmosphere and vacuum cases at
different resolutions. Here Low, Med, High, and Fine are
simulations with resolutions 64, 96, 128, and 160 points
respectively. The merger time values are in geometric units
where 6000 M⊙ ≈ 30 ms.

Tests Low Med High Fine

BNS atm 6117 M⊙ 6583 M⊙ 6682 M⊙ 6740 M⊙
BNS vac 6150 M⊙ 6612 M⊙ 6689 M⊙ 6737 M⊙
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problem is present mostly at the outer region of the ejected
material for material which moves with the highest veloc-
ities. Consequently, removing this material also leads to a
drop in vej for the atmosphere simulations.
We have made 2D plots to further investigate the

difference in mass ejection in the atmosphere and the

vacuum methods (see Figs. 10 and 11). We plot the mass
density, velocity, and ejecta mass density at level l ¼ 1 of
the finest resolution simulation. We use a linear (velocity)
as well as logarithmic (mass density and ejecta mass
density) color scales and plot two snapshots in time at 1
(Fig. 10) and 11 ms (Fig. 11) after the merger. We choose
these two times for the following reasons. Both methods
begin with identical ejecta, the same velocity, and similar
mass density. As the ejecta expand to a larger radius the
density in the outer regions of the ejecta mass drop below
the atmosphere threshold value. Thus, low-density material
is removed and the ejected matter never reaches the outer
boundary. Therefore, we find that the outflowing material
seems to stall about ∼10 ms after the merger at a maximum
radial extend of ∼350. In the vacuum case, the ejecta moves
farther out. The eventual mass reduction for the vacuum
method in Fig. 9 at late times can be explained by unbound
material reaching the boundary of level 1, which is the
outermost refinement level where matter is evolved. We
also note that we see in the bottom right panel of Fig. 10 a
clear imprint of the refinement boundaries on the low-
density material. We expect, as in the TOVmig case, that the
use of the conservative refluxing algorithm would resolve
this issue but postpone this test due to the high computa-
tional costs of the presented BNS simulations.

FIG. 8. In the top panels, we plotted the GW signal for both the old atmosphere method (left panel) and the new vacuum method
(right panel). The bottom panels show the phase differences between different resolutions. The dashed lines are the rescaled phase
differences assuming second-order convergence. The bottom right panel also includes the phase difference of the two highest resolutions
for the atmosphere method for an easier comparison. Overall, we find similar phase difference and convergence properties for the
methods.

FIG. 9. The ejecta mass for the two highest resolutions. The
vertical lines indicate the merger time, the time 1 ms after the
merger, and the time 11 ms after the merger. For the last two, 2D
plots are shown in Figs. 10 and 11. The spike in the vacuum
simulations occurs due to the formation of the BH.
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FIG. 10. Snapshots of the mass density (top panels), velocity (middle panels), and ejecta mass density (bottom panels) in the xy plane
of BNS simulation at 1 ms after merger (vertical cyan line in Fig. 9). The finest resolution for both the atmosphere (left panels) and the
vacuum (right panels) is plotted with linear (for velocity) and logarithmic color scales (for mass density and ejecta mass density).
This is on level l ¼ 1, which extends up to 481.28. The atmosphere threshold density is ρthr ¼ 1.389 × 10−12. We label material as
unbound in case the fluid’s 0th component of the four-velocity is smaller than 1 (ut < −1) and the three-velocity is radially outward
pointing.
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FIG. 11. Snapshots of the mass density (top panels), velocity (middle panels), and ejecta mass density (bottom panels) in the xy plane
of the BNS simulation. The finest resolution for both the atmosphere (left panels) and the vacuum (right panels) at 11 ms after the
merger (vertical cyan line in Fig. 9) is plotted with a linear (velocity) and logarithmic (mass density and ejecta mass density)
color scales.
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V. CONCLUSION

In this article, we have introduced and studied a new
method to improve the vacuum treatment for general
relativistic hydrodynamics simulations. Our recipe allows
us to not set an explicit atmosphere value on the outside of a
star, which improves the quality of our simulations.
Previously, we implemented a method in BAM code that
used an artificial atmosphere while recovering primitive
variables.We have extensively tested bothmethods (vacuum
and atmosphere) in single star spacetimes focusing on their
performance when combined with a second-order local Lax-
Friedrich and higher-order numerical flux schemes. The use
of vacuum methods shows improvement in the mass con-
servation throughout our simulations. Typically, for the star
that forms a low-density region during evolution, the mass
conservation drops in the atmosphere method. Up to 0.5%
mass loss was detected in the atmosphere method when the
low-density layer crosses the refinement boundary. The
violation of mass conservation at the grid refinement
boundary does not occur in the case of our improved vacuum
method. In most cases, the vacuum method leads to second-
order convergence of the mass, in contrast to the atmosphere
case, where second-order convergence is often obtained for
only a short period of time. Our findings suggest that the use
of the vacuum method is desirable and recommended for
single star simulations.
To further investigate the performance of the new

vacuum method we have presented time evolutions of

irrotational equal-mass binary neutron star configuration.
Mainly, the merger and the postmerger dynamics are of
great interest because the artificial atmosphere setup
hinders the accurate computation of the ejecta [35]. Our
analysis suggests that the ejecta materials are better con-
served with the vacuum method. Around the moment of
merger, the ejected mass, the ejecta velocity, and the kinetic
energy of the ejecta are within the same range for both
methods (vacuum and atmosphere) for all resolutions. But
the difference in those quantities becomes prominent as the
ejecta expands to larger radii, and the density of the ejecta
drops below the atmosphere threshold. In the atmosphere
cases this leads to ejecta removal and does not allow a free
expansion of the ejecta material. In contrast, ejected matter
can expand freely for the vacuum method.

ACKNOWLEDGMENTS

It is a pleasure to thank S. Bernuzzi and S. V. Chaurasia
for fruitful discussions during this project. W. T. was
supported by the National Science Foundation under
Grants No. PHY-1305387 and No. PHY-1707227. B. B.
was supported by DFG Grant No. BR-2176/5-1.
Computations were performed on SuperMUC at the
LRZ (Munich, Germany) under Projects No. pr46pu and
No. pn56zo, Jureca (Jülich, Germany) under Project
No. HPO21, and Stampede (Texas, XSEDE Allocation
No. TG-PHY140019).

[1] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen, Phys.
Rev. Lett. 120, 172703 (2018).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 121, 161101 (2018).

[3] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018).

[4] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-
Bielich, Phys. Rev. Lett. 120, 261103 (2018).

[5] M.W. Coughlin, T. Dietrich, B. Margalit, and B. D.
Metzger, Mon. Not. R. Astron. Soc. Lett. 489, L91 (2019).

[6] C. D. Capano, I. Tews, S. M. Brown, B. Margalit, S. De, S.
Kumar, D. A. Brown, B. Krishnan, and S. Reddy, Nat.
Astron. 4, 625 (2020).

[7] D. Radice and L. Dai, Eur. Phys. J. A 55, 50 (2019).
[8] R. Essick, I. Tews, P. Landry, S. Reddy, and D. E. Holz,

arXiv:2004.07744 [Phys. Rev. C (to be published)].
[9] T. Dietrich, M.W. Coughlin, P. T. Pang, M. Bulla, J.

Heinzel, L. Issa, I. Tews, and S. Antier, arXiv:2002.11355.
[10] B. F. Schutz, Nature (London) 323, 310 (1986).
[11] B. P. Abbott et al. (LIGO Scientific, VINROUGE, Las

Cumbres Observatory, DLT40, Virgo, 1M2H, and
MASTER Collaborations), Nature (London) 551, 85
(2017).

[12] M.W. Coughlin, T. Dietrich, J. Heinzel, N. Khetan, S.
Antier, M. Bulla, N. Christensen, D. A. Coulter, and R. J.
Foley, Phys. Rev. Research 2, 022006 (2020).

[13] S. Dhawan, M. Bulla, A. Goobar, A. S. Carracedo, and C. N.
Setzer, Astrophys. J. 888, 67 (2020).

[14] M.W. Coughlin, S. Antier, T. Dietrich, R. J. Foley, J.
Heinzel, M. Bulla, N. Christensen, D. A. Coulter, L. Issa,
and N. Khetan, Nat. Commun. 11, 4129 (2020).

[15] P. S. Cowperthwaite et al., Astrophys. J. 848, L17 (2017).
[16] S. J. Smartt et al., Nature (London) 551, 75 (2017).
[17] M.M. Kasliwal et al., Science 358, 1559 (2017).
[18] D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E.

Ramirez-Ruiz, Nature (London) 551, 80 (2017).
[19] D. Watson et al., Nature (London) 574, 497 (2019).
[20] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM,

INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride
Imager Team, IPN, Insight-Hxmt, ANTARES, Swift,
AGILE Team, 1M2H Team, Dark Energy Camera
GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA,
ASKAP, Las Cumbres Observatory Group, OzGrav, DWF
(Deeper Wider Faster Program), AST3, CAASTRO,
VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR,
CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS,

POUDEL, TICHY, BRÜGMANN, and DIETRICH PHYS. REV. D 102, 104014 (2020)

104014-14

https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1093/mnrasl/slz133
https://doi.org/10.1038/s41550-020-1014-6
https://doi.org/10.1038/s41550-020-1014-6
https://doi.org/10.1140/epja/i2019-12716-4
https://arXiv.org/abs/2004.07744
https://arXiv.org/abs/2002.11355
https://doi.org/10.1038/323310a0
https://doi.org/10.1038/nature24471
https://doi.org/10.1038/nature24471
https://doi.org/10.1103/PhysRevResearch.2.022006
https://doi.org/10.3847/1538-4357/ab5799
https://doi.org/10.1038/s41467-020-17998-5
https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.1038/nature24303
https://doi.org/10.1126/science.aap9455
https://doi.org/10.1038/nature24453
https://doi.org/10.1038/s41586-019-1676-3


MAXI Team, TZAC Consortium, KU, Nordic Optical
Telescope, ePESSTO, GROND, Texas Tech University,
SALT Group, TOROS, BOOTES, MWA, CALET, IKI-
GW Follow-up, HESS, LOFAR, LWA, HAWC, Pierre
Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team
at McGill University, DFN, ATLAS Telescopes, High Time
Resolution Universe Survey, RIMAS, RATIR, and SKA
South Africa/MeerKAT Collaborations), Astrophys. J. 848,
L12 (2017).

[21] J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett.
119, 251304 (2017).

[22] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and
I. Sawicki, Phys. Rev. Lett. 119, 251301 (2017).

[23] P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302
(2017).

[24] M. Alcubierre, Introduction to 3+1 Numerical Relativity
(Oxford University Press, New York, 2008).

[25] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity,
Solving Einstein’s Equations on the Computer (Cambridge
University Press, New York, 2010).

[26] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, New York, 2013).

[27] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[28] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM,
and INTEGRAL Collaborations), Astrophys. J. 848, L13
(2017).

[29] T. Yamamoto, M. Shibata, and K. Taniguchi, Phys. Rev. D
78, 064054 (2008).

[30] M. Thierfelder, S. Bernuzzi, and B. Brügmann, Phys. Rev. D
84, 044012 (2011).

[31] L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 096901
(2017).

[32] D. Radice, L. Rezzolla, and F. Galeazzi, Classical Quantum
Gravity 31, 075012 (2014).

[33] J. R. Westernacher-Schneider, C. Markakis, and B. J. Tsao,
Classical Quantum Gravity 37, 155005 (2020).

[34] B. Brügmann, J. González, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Phys. Rev. D 77, 024027
(2008).

[35] T. Dietrich, S. Bernuzzi, M. Ujevic, and B. Brügmann, Phys.
Rev. D 91, 124041 (2015).

[36] S. Bernuzzi and T. Dietrich, Phys. Rev. D 94, 064062
(2016).

[37] T. Dietrich, S. Ossokine, and K. Clough, Classical Quantum
Gravity 36, 025002 (2019).

[38] Z.-j. Cao, H.-J. Yo, and J.-P. Yu, Phys. Rev. D 78, 124011
(2008).

[39] B. Brügmann, W. Tichy, and N. Jansen, Phys. Rev. Lett. 92,
211101 (2004).

[40] D. Pollney, C. Reisswig, E. Schnetter, N. Dorband, and P.
Diener, Phys. Rev. D 83, 044045 (2011).

[41] J. Thornburg, in The Ninth Marcel Grossman Meeting: On
Recent Developments in Theoretical and Experimental
General Relavtivity, Gravitation, and Relativistic Field
Theories, edited by V. G. Gurzadyan, R. T. Jantzen, and R.
Ruffini (World Scientific, Singapore, 2003), pp. 1743–1744.

[42] J. Thornburg, Classical Quantum Gravity 21, 3665 (2004).
[43] M. Ruiz, D. Hilditch, and S. Bernuzzi, Phys. Rev. D 83,

024025 (2011).

[44] D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy,
W. Tichy, and B. Brügmann, Phys. Rev. D 88, 084057
(2013).

[45] S. Bernuzzi and D. Hilditch, Phys. Rev. D 81, 084003
(2010).

[46] C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. Lett.
75, 600 (1995).

[47] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D.
Pollney, E. Seidel, and R. Takahashi, Phys. Rev. D 67,
084023 (2003).

[48] J. R. van Meter, J. G. Baker, M. Koppitz, and D.-I. Choi,
Phys. Rev. D 73, 124011 (2006).

[49] A. Sommerfeld, Partial Differential Equation in Physics
(Academic Press, New York, 1949).

[50] F. Banyuls, J. A. Font, J. M. Ibáñez, J. M. Martí, and J. A.
Miralles, Astrophys. J. 476, 221 (1997).

[51] E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, and P.
Haensel, Nucl. Phys. A627, 710 (1997).

[52] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151
(2001).

[53] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,
Phys. Rev. D 79, 124032 (2009).

[54] M. Shibata, K. Taniguchi, and K. Uryu, Phys. Rev. D 71,
084021 (2005).

[55] A. Bauswein, H.-T. Janka, and R. Oechslin, Phys. Rev. D
82, 084043 (2010).

[56] J. A. Font, M. Miller, W.M. Suen, and M. Tobias, Phys.
Rev. D 61, 044011 (2000).

[57] H. Dimmelmeier, J. A. Font, and E. Müller, Astron.
Astrophys. 388, 917 (2002).

[58] L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla,
N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71,
024035 (2005).

[59] R. Borges, M. Carmona, B. Costa, and W. S. Don,
J. Comput. Phys. 227, 3191 (2008).

[60] C. Bona, J. Massó, and J. Stela, Phys. Rev. D 51, 1639
(1995).

[61] M. Hannam, S. Husa, F. Ohme, B. Brügmann, and N.
O’Murchadha, Phys. Rev. D 78, 064020 (2008).

[62] T. Dietrich and B. Brügmann, J. Phys. Conf. Ser. 490,
012155 (2014).

[63] M. Thierfelder, S. Bernuzzi, D. Hilditch, B. Brügmann, and
L. Rezzolla, Phys. Rev. D 83, 064022 (2011).

[64] A.KurganovandE.Tadmor, J.Comput. Phys.160, 214 (2000),
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/
central-schemes/Kurganov-Tadmor.JCP-00I.pdf.

[65] A. Lucas-Serrano, J. A. Font, J. M. Ibanez, and J. M. Marti,
Astron. Astrophys. 428, 703 (2004).

[66] H. Nessyahu and E. Tadmor, J. Comput. Phys. 87, 408
(1990).

[67] J. A. Font, T. Goodale, S. Iyer, M. Miller, L. Rezzolla, E.
Seidel, N. Stergioulas, W.-M. Suen, and M. Tobias, Phys.
Rev. D 65, 084024 (2002).

[68] M. J. Berger and P. Colella, J. Comput. Phys. 82, 64
(1989).

[69] B. Giacomazzo and R. Perna, Astrophys. J. 758, L8
(2012).

[70] C. Reisswig, R. Haas, C. D. Ott, E. Abdikamalov, P. Mösta,
D. Pollney, and E. Schnetter, Phys. Rev. D 87, 064023
(2013).

INCREASING THE ACCURACY OF BINARY NEUTRON STAR … PHYS. REV. D 102, 104014 (2020)

104014-15

https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.119.251302
https://doi.org/10.1103/PhysRevLett.119.251302
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevD.78.064054
https://doi.org/10.1103/PhysRevD.78.064054
https://doi.org/10.1103/PhysRevD.84.044012
https://doi.org/10.1103/PhysRevD.84.044012
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/0264-9381/31/7/075012
https://doi.org/10.1088/0264-9381/31/7/075012
https://doi.org/10.1088/1361-6382/ab93e9
https://doi.org/10.1103/PhysRevD.77.024027
https://doi.org/10.1103/PhysRevD.77.024027
https://doi.org/10.1103/PhysRevD.91.124041
https://doi.org/10.1103/PhysRevD.91.124041
https://doi.org/10.1103/PhysRevD.94.064062
https://doi.org/10.1103/PhysRevD.94.064062
https://doi.org/10.1088/1361-6382/aaf43e
https://doi.org/10.1088/1361-6382/aaf43e
https://doi.org/10.1103/PhysRevD.78.124011
https://doi.org/10.1103/PhysRevD.78.124011
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevD.83.044045
https://doi.org/10.1088/0264-9381/21/15/004
https://doi.org/10.1103/PhysRevD.83.024025
https://doi.org/10.1103/PhysRevD.83.024025
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.73.124011
https://doi.org/10.1086/303604
https://doi.org/10.1016/S0375-9474(97)00596-4
https://doi.org/10.1051/0004-6361:20011402
https://doi.org/10.1051/0004-6361:20011402
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevD.71.084021
https://doi.org/10.1103/PhysRevD.71.084021
https://doi.org/10.1103/PhysRevD.82.084043
https://doi.org/10.1103/PhysRevD.82.084043
https://doi.org/10.1103/PhysRevD.61.044011
https://doi.org/10.1103/PhysRevD.61.044011
https://doi.org/10.1051/0004-6361:20020563
https://doi.org/10.1051/0004-6361:20020563
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.1016/j.jcp.2007.11.038
https://doi.org/10.1103/PhysRevD.51.1639
https://doi.org/10.1103/PhysRevD.51.1639
https://doi.org/10.1103/PhysRevD.78.064020
https://doi.org/10.1088/1742-6596/490/1/012155
https://doi.org/10.1088/1742-6596/490/1/012155
https://doi.org/10.1103/PhysRevD.83.064022
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://home.cscamm.umd.edu/people/faculty/tadmor/pub/central-schemes/Kurganov-Tadmor.JCP-00I.pdf
https://doi.org/10.1051/0004-6361:20035731
https://doi.org/10.1016/0021-9991(90)90260-8
https://doi.org/10.1016/0021-9991(90)90260-8
https://doi.org/10.1103/PhysRevD.65.084024
https://doi.org/10.1103/PhysRevD.65.084024
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1088/2041-8205/758/1/L8
https://doi.org/10.1088/2041-8205/758/1/L8
https://doi.org/10.1103/PhysRevD.87.064023
https://doi.org/10.1103/PhysRevD.87.064023


[71] T. Dietrich and S. Bernuzzi, Phys. Rev. D 91, 044039
(2015).

[72] W. Tichy, Phys. Rev. D 74, 084005 (2006).
[73] W. Tichy, Classical Quantum Gravity 26, 175018 (2009).
[74] T. Dietrich, N. Moldenhauer, N. K. Johnson-McDaniel, S.

Bernuzzi, C. M. Markakis, B. Brügmann, and W. Tichy,
Phys. Rev. D 92, 124007 (2015).

[75] A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627
(1964).

[76] A. Savitzky, Anal. Chem. 61, 921A (1989).
[77] N. Stergioulas, A. Bauswein, K. Zagkouris, and H.-T. Janka,

Mon. Not. R. Astron. Soc. 418, 427 (2011).
[78] L. Rezzolla and K. Takami, Phys. Rev. D 93, 124051 (2016).
[79] B. D. Metzger, Living Rev. Relativity 20, 3 (2017).

POUDEL, TICHY, BRÜGMANN, and DIETRICH PHYS. REV. D 102, 104014 (2020)

104014-16

https://doi.org/10.1103/PhysRevD.91.044039
https://doi.org/10.1103/PhysRevD.91.044039
https://doi.org/10.1103/PhysRevD.74.084005
https://doi.org/10.1088/0264-9381/26/17/175018
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac00190a744
https://doi.org/10.1111/j.1365-2966.2011.19493.x
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1007/s41114-017-0006-z

