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Universal relations and constants have important applications in understanding a physical theory. In this
article, we explore this issue for Hawking-Page phase transitions in Schwarzschild anti–de Sitter black
holes. We find a novel exact dual relation between the minimum temperature of the (dþ 1)-dimensional
black hole and the Hawking-Page phase transition temperature in d dimensions, reminiscent of the
holographic principle. Furthermore, we find that the normalized Ruppeiner scalar curvature is a universal
constant at the Hawking-Page transition point. Since the Ruppeiner curvature can be treated as an indicator
of the intensity of the interactions amongst black hole microstructures, we conjecture that this universal
constant denotes an interaction threshold, beyond which a virtual black hole becomes a real one. This new
dual relation and universal constant are fundamental in understanding Hawking-Page phase transitions, and
might have new important applications in the black hole physics in the near future.
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I. INTRODUCTION

Phase transitions are indicative of the competition
between various internal interactions within a system and
play a crucial role in contributing to our understanding of
its macroscopic and microscopic properties. This becomes
particularly pertinent when universal relations and con-
stants emerge from such investigations, the most celebrated
of which are critical exponents in mean field theory that are
believed to depend only on general features of a system but
not on its particular details.
In black hole physics the most well-known phase

transition is that observed by Hawking and Page [1], which
is between a thermal radiation phase and a stable large
black hole phase in an anti–de Sitter (AdS) spacetime.
This Hawking-Page (HP) phase transition was explained
as a confinement/deconfinement phase transition in gauge
theory by Witten [2] in the AdS=CFT correspondence,
which is a holographic duality between a (dþ 1)-dimen-
sional quantum gravity and a d-dimensional quantum field
theory [3–5]. It can also be understood as a solid/liquid
phase transition in the context of black hole chemistry [6],
where the cosmological constant Λ can regard as the
system’s pressure [7]:

P ¼ −
Λ

8πGd
¼ ðd − 1Þðd − 2Þ

16πl2
; ð1Þ

where l is the AdS radius. We take the d-dimensional
gravitational constant Gd ¼ 1 for simplicity. If the black
hole is charged, a complete analogy holds between the
phases of a van der Waals fluid and the black hole [8].
We demonstrate here some universal relations and

constants associated with the HP phase transition. We find
for the first time a duality relation between the minimum
temperature of a Schwarzschild-AdS black hole in (dþ 1)
dimensions and the HP phase transition temperature in d
dimensions. This provides us with a new interpretation of
the metastable large black hole phase, that we expect is
indicative of some new duality relation. We also find that
the Ruppeiner scalar curvature at the HP transition point is
a universal constant, independent of any parameters other
than the spacetime dimension. Since the Ruppeiner scalar
curvature is indicative of the microscopic interactions of the
constituents of a system, we conjecture that there are
universal properties underlying black hole microstructures
that are key to the formation of black holes. We expect that
our perspective on this phase transition will provide us with
a foundation for understanding the special properties of
other black holes in AdS spacetime.
We depict the HP phase transition and its properties in

Fig. 1. It can be seen that there are two branches corres-
ponding to small and large black hole phases. The small
black hole has negative heat capacity, and thus it is
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thermodynamically unstable, whereas the large black hole
has positive specific heat and is stable. There exists a
minimum temperature T0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2P=π

p
below which no black

hole can exist. In this parameter range the spacetime has
only one phase, the thermal radiation phase, characterized
by vanishing free energy. As the temperature of the system
increases from zero, it becomes possible to form a large
black hole for T > T0, whose free energy is larger than that
of the thermal radiation. As such, this black hole is
metastable. Further increasing the temperature leads to a
situation in which both the radiation and black hole have
vanishing free energy, which is where the HP transition
takes place, at THP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8P=3π

p
. Above this temperature it

is thermodynamically favorable for the radiation to collapse
into a large black hole, which is the most stable phase.
The metastable large black hole branch (red thin curve in

Fig. 1) that exists for T0 < T < THP is often neglected.
However for continuous decreasing temperature it is
possible for a large black hole to pass through the HP
point and for the metastable phase to emerge just like a
supercooled liquid phase of water below its freezing point.
We will show that this branch has a new and interesting
interpretation.

II. NOVEL DUALITY IN THE HP TRANSITION

In d dimensions, the Hawking temperature of a
Schwarzschild-AdS black hole is

T ¼ 4Prh
d − 2

þ d − 3

4πrh
; ð2Þ

with rh the radius of the black hole horizon. The pressure P
is defined in Eq. (1). The temperature is obviously
dependent on the dimension of the spacetime. The free
energy has the following form [9,10]:

F ¼ ωd−2rd−3h ððd − 3Þd − 16πPr2h þ 2Þ
16πðd − 2Þðd − 1Þ ; ð3Þ

where ωd−2 ¼ 2πðd−1Þ=2=Γ½ðd − 1Þ=2� is the volume of the
unit (d − 2)-sphere. Combining (2) and (3), we can obtain
the black hole minimum temperature and HP phase
transition temperature

T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðd − 3Þ
ðd − 2Þπ

s
×

ffiffiffiffi
P

p
; ð4Þ

THP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðd − 2Þ
ðd − 1Þπ

s
×

ffiffiffiffi
P

p
: ð5Þ

These two temperatures share similar dependence on the
pressure, T ∼

ffiffiffiffi
P

p
with different d-dependent coefficients.

We illustrate the complete phase diagram in Fig. 2 for
d ¼ 4; the same qualitative picture holds for any d > 4.
Indeed it is easy to see that

T0ðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 3Þ
d − 2

r
T0ð4Þ; ð6Þ

THPðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðd − 2Þ
2ðd − 1Þ

s
THPð4Þ ð7Þ

allowing these temperatures to be computed in any dimen-
sion from knowledge of the d ¼ 4 case; note that THP=T0

is a decreasing function of d for d > 3. Three system
phases—thermal radiation, a stable large black hole, and a
metastable large black hole—are present. The minimum
temperature T0 and the HP transition temperature THP are
respectively indicated by the blue solid and red dashed
curves. These two curves extend to infinity [6], consistent
with solid/supercooled-liquid/liquid phase behavior at any
temperature.

FIG. 1. Free energy of the four-dimensional Schwarzschild-
AdS black hole. The arrows indicate increasing black hole
horizon radius, and THP and T0 denote the HP phase transition
temperature and minimum temperature. The black dashed curve
is the unstable small black hole branch, whereas the metastable
and stable large black hole branches are described by the red thin
solid and blue solid curves, respectively.

FIG. 2. Phase diagram for a four-dimensional Schwarzschild-
AdS black hole. The blue solid and red dashed curves respec-
tively correspond to the black hole minimum temperature and the
HP phase transition temperature. Both curves extend to infinity.
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Simple inspection of (4) and (5) indicates an underlying
interesting relation

THPðdÞ ¼ T0ðdþ 1Þ ð8Þ
stating that the d-dimensional HP phase transition temper-
ature exactly equals to the black hole minimum temperature
in one larger dimension. This relation is also independent of
the pressure P and it is reminiscent of the AdS=CFT
correspondence. If T0 is the temperature of a physical
quantity in the bulk, then THP can be treated as the
temperature of the dual physical quantity on the boundary.
We conjecture that this universal relation will have impor-
tant holographic applications and that some holographic
properties should originate from it. On thing worth empha-
sizing is that different from the AdS=CFT correspondence,
both sides of (8) are in gravitational theories. Furthermore,
since T0 is the minimum temperature of a black hole, we
can treat this as the ground state of the AdS black hole [11],
with the black hole at THP as one of its excited states. Thus
Eq. (8) can also be interpreted as the duality between the
ground state and an excited state of a physical system in
two successive dimensions.
We sketch this dual relation in Fig. 3. The metastable

large black hole branch is the horizontal line and from left
to right the horizon radius increases from r0 to rHP. Cor-
respondingly the temperature increases from T0ðdþ 1Þ to
THPðdþ 1Þ (see above the horizontal line). According to
the dual relation (8), we have T0ðdþ 1Þ ¼ THPðdÞ. By
writing

ϵ ¼ rh − r0
rHP − r0

∈ ð0; 1Þ; ð9Þ

we see that as ϵ varies from 0 to 1 we observe a new dual
relation

THPðdÞ → THPðdþ 1Þ; ð10Þ
see below the horizontal line. A similar process can also
be applied to the minimum temperature of the black hole.

Put succinctly, we can say that the metastable black hole
branch indeed has a physical meaning insofar as it realizes
the new dual relation THPðdÞ → THPðdþ 1Þ parametrized
by ϵ.

III. UNIVERSAL CONSTANT FOR BLACK
HOLE MICROSTRUCTURE.

Understanding black hole microstructure, while a chal-
lenge in the absence of a quantum theory of gravity, has a
wide range of applications, including for example the
formations of black holes from gravitational collapse.
Making use of Ruppeiner geometry [12], constructed from
thermodynamic fluctuation theory, negative or positive
Ruppeiner scalar curvature respectively indicates (empiri-
cally) attractive or repulsive interaction among a system’s
microstructures. This approach was taken for the charged
AdS black hole [13,14], which was shown to exhibit
repulsive interactions that dominate in a certain parameter
range, a phenomenon that has no counterpart in a van der
Waals fluid [14,15], for which all microstructure inter-
actions are attractive.
The Schwarzschild-AdS black hole is the simplest such

black hole. As such we expect its microstructures to be
fundamental, having characteristic properties that should be
shared amongst all AdS black holes. The line element of its
thermodynamic geometry reads

dl2 ¼ −
1

T

�∂2F
∂T2

�
V
dT2 þ 1

T

�∂2F
∂V2

�
T
dV2; ð11Þ

where the thermodynamic volume is V¼ωd−2rd−1h =ðd−1Þ.
Note that in the original Ruppeiner geometry, the black hole
mass and volume, both extensive quantities, are chosen as
the fluctuation coordinates, and then transformed to tem-
perature and volume. Using (11) it is straightforward to
construct the scalar curvature, where we normalize it as in
our previous study [14,15], while it is different from that
of Ref. [16].
For the d-dimensional Schwarzschild-AdS black hole,

the corresponding normalized scalar curvature is

R ¼ −
d − 3

2

4πTV̂
1

d−1 − dþ 3

ð2πTV̂ 1
d−1 − dþ 3Þ2

; ð12Þ

with V̂ ¼ ðd − 1ÞV=ωd−2 ¼ rd−1h . We see that R has both
vanishing and divergent behaviors. Since the small black
hole branch is unstable (as shown above) we will not
consider that branch. From (2), we find that the black hole
temperature is functions of the pressure P and horizon
radius rh, so we can say that the normalized scalar
curvature is dependent on the pressure P.
In Fig. 4 we plot R as a function of V for d ¼ 4; in other

dimensions the behavior is similar. The red dashed and blue
solid curves correspond to metastable and stable large black

r0 rHP

T0(d + 1) THP(d + 1)
rh

THP(d) THP(d + 1)

FIG. 3. Schematic depiction of the dual relation. The red
horizontal line denotes the metastable black hole branch, with
r0 and rHP the horizon radii of the black holes at the minimum
temperature and HP phase transition point respectively. The
dotted box on the left is realized by the new dual relation (8).
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holes respectively. For both of these large black hole
branches the scalar curvature is negative, and the attractive
interaction always dominates for both. This result is not
hard to understand: in this spacetime there exists a com-
petition between thermal radiation and black hole phases.
Thermal radiation has effectively repulsive microstructure
interactions and so in order to form a black hole these must
become attractive. A detailed study also shows that at the
black hole minimum temperature, the normalized scalar
curvature diverges. If we conjecture that the absolute value
of R is an indicator of the intensity of the interaction, this
black hole case is more like an ideal rigid body.
Note that if we exclude the metastable large black hole

branch, the divergent behavior is also removed. The curves
then begin at the HP phase transition points, and upon
inserting the temperature (5) into the scalar curvature (12),
we obtain the amazing result

RHP ¼ −
ðd − 1Þðd − 3Þ

2
; ð13Þ

namely that the Ruppeiner curvature at the HP transition
point is a universal constant, independent of the temper-
ature, pressure, or the horizon radius, while only dependent
on the dimension. We expect this constant may indicate the
fundamental nature of the HP phase transition, and we now
consider one possible interpretation of this result.
In physics, there exist many thresholds, beyond or below

which we have rather different physical behavior. We
contend that the HP transition is one such threshold. In
forming or destroying a massive black hole in the AdS
space, the HP phase transition is the formation of a black
hole from pure thermal radiation. At this point the repulsive
microstructure interactions of the radiation must become
attractive microstructure interactions for the black hole. The
lack of dependence on thermodynamic parameters of the
Ruppeiner curvature at this point strongly suggests a

universal property in the formation of black hole degrees
of freedom.

IV. SUMMARY

We have shown that a d-dimensional Schwarzschild-
AdS black hole exhibits a universal behavior at the HP
transition point. For any given dimension, the system is
characterized by two special temperatures: the HP phase
transition temperature and the black hole minimum temper-
ature. Although each is pressure dependent, we find an
exact universal relation (8) between them: the minimum
temperature T0 in (dþ 1) dimensions equals to the HP
phase transition temperature THP in d dimensions. Similar
to the AdS=CFT correspondence, the temperatures T0 and
THP can be regarded as the physical quantities residing in
the bulk and boundary respectively. The duality between
two HP phase transition temperatures in successive dimen-
sions is realized by the metastable black hole branch, which
has habitually been ignored. We expect that this dual
relation discloses deeper fundamental aspects of the HP
phase transition.
Furthermore, when applying methods of Ruppeiner

thermodynamic geometry to Schwarzschild-AdS black
holes, we find attractive interactions dominate amongst
the microstructures for both the metastable and stable large
black hole branches. Moreover, the normalized scalar
curvature at the HP phase transition point is a universal
dimension-dependent negative constant. We suggest that
this constant can be understood as a pressure independent
critical point where a virtual black hole turns to a real one
from the thermal radiation. Therefore, we presented a
corresponding microscopic threshold in contrast to the
macroscopic phase transition. This may be very helpful
for understanding the black hole formation at the micro-
scopic level, especially for supermassive black holes
formed from the huge interstellar clouds of radiation as
expected.
In summary, a novel dual relation between the black

hole minimum temperature and HP phase transition
temperature in two successive dimensions was discov-
ered. Another universal constant indicating a threshold of
the formation of a black hole in the microscopic level
was also found. It would be interesting to apply the study
of the HP phase transition to other black hole back-
grounds. Of further interest is the study of the holo-
graphic aspects of the HP phase transition and universal
underlying black hole microstructures with different
thresholds.
Our results for the dual relation can be extended to the

charged case, where the lowest temperature T0 and the HP
phase transition temperature are

T0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3ÞPð−2ðd − 3ÞΦ2 þ d − 2Þ

p
ffiffiffi
π

p ðd − 2Þ ; ð14Þ

0 5 10 15 20 25 30

–20

–15

–10

–5

0

V

R

FIG. 4. The scalar curvature R as a function of the volume V for
d ¼ 4 and T ¼ 0.2, 0.25, and 0.3 from bottom to top. The red
dashed and blue solid curves are for the metastable and stable
large black holes, respectively. Since the small black hole is
unstable, we have excluded them in this picture.
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THP ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð−2ðd − 3ÞΦ2 þ d − 2Þ

p
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ; ð15Þ

in the grand canonical ensemble, where the electric
potential Φ is fixed. This implies

T0

THP
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 3Þðd − 1Þp
d − 2

; ð16Þ

which is independent of Φ, and

T0

�
dþ 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 3Þp
d − 2

Φ
�

¼ THPðd;ΦÞ ð17Þ

is the generalization of (8).
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