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Analogue black holes, which can mimic the kinetic aspects of real black holes, have been proposed for
many years. The growth of the radial momentum toward the acoustic horizon is calculated for acoustic
black holes in flat and curved spacetimes. Surprisingly, for a freely infalling vortex approaching the
acoustic black hole, the Lyapunov exponent of the growth of the momentum at the horizon saturates
the chaos bound ΛLyapunov ≤ 2πT. We investigate the orbits of test vortices and sound wave rays in the
(2þ 1)-dimensional “curved” spacetime of an acoustic black hole. We show that the vortices orbit, the
sound wave orbit, and the time delay of sound are similar to those famous effects of general relativity. These
effects can be verified experimentally in future experiments.
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I. INTRODUCTION

Analogue black holes have recently been a hot topic
as they can provide interesting connections between
astrophysical phenomena with tabletop experiments.
Remarkably, the very recent experiments have reported
that the thermal Hawking radiation and the corresponding
temperature were observed in a Bose-Einstein condensate
system [1] (see [2] for the experiment on stimulated the
Hawking radiation in an optical system). In the seminal
paper of Unruh [3], the idea of using hydrodynamical flows
as analogous systems to mimic a few properties of black
hole physics was proposed. In this model, sound waves like
light waves, cannot escape from the horizon, and therefore
it is named “acoustic (sonic) black hole” (ABH). A moving
fluid with speed exceeding the local sound velocity through
a spherical surface could in principle form an acoustic black
hole. The event horizon is located on the boundary between
subsonic and supersonic flow regions. The horizon, ergo-
sphere, and Hawking radiation of (3þ 1)-dimensional
static and rotating acoustic black holes were later studied
in [4]. The spherical singular hypersurface in static super-
fluid was studied in [5]. It was shown that these shells form
acoustic lenses analog to the ordinary optical lenses.

Acoustic black holes for relativistic fluids were derived
from the Abelian Higgs model [6–9]. Since the Abelian
Higgs model describes high energy physics, the result in
[8] implies that acoustic black holes might be created in
high energy physical processes, such as quark matters
and neutron stars. The quasi-one-dimensional supersonic
flow of a Bose Einstein condensate (BEC) in Laval nozzle
(convergent divergent nozzle) is considered in [10] in
order to find out which experimental settings can amplify
the effect of acoustic Hawking radiation and provide
observable signals. The acoustic black holes with non-
extremal black D3-brane were considered in [11]. The
particle production near the horizon of the acoustic black
hole was studied by [12]. The acoustic black hole
geometry in a viscous fluid with a dissipation effect
was considered in [13].
Recently, measures of operator complexity have received

considerable attention in studies of information scrambling
and quantum complexity in holographic systems [14,15]. The
conjectured momentum/complexity duality states that the rate
of operator complexity growth corresponds to appropriately
defined radial component of momentum for a test system
falling into a black hole [14,15]. For the Schwarzschild-AdS
black hole, a test particle’s momentum grows at a maximal
rate [14] and the Lyapunov exponent obtained saturates the
chaos bound ΛLyapunov ≤ 2πT proposed in [16]. It seems to
be a universal property because all the near horizon regions
with a nonzero temperature are locally the Rindler-like. We
are going to examine the momentum growth of an infalling
vortex toward acoustic black holes and check whether the
chaos bound is saturated for analogue black holes. This might
be realizable because acoustic black holes would be realized
in tabletop experiments.

*Corresponding author.
gexh@shu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 104009 (2020)

2470-0010=2020=102(10)=104009(14) 104009-1 Published by the American Physical Society

https://orcid.org/0000-0002-3984-9832
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.104009&domain=pdf&date_stamp=2020-11-04
https://doi.org/10.1103/PhysRevD.102.104009
https://doi.org/10.1103/PhysRevD.102.104009
https://doi.org/10.1103/PhysRevD.102.104009
https://doi.org/10.1103/PhysRevD.102.104009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


More than that, we further explore the geodesic motion
outside a (2þ 1)-dimensional acoustic black hole. We
will concentrate on predicting the orbits of “test” particles
(i.e., vortices) in fluids and sound rays in the “curved”
acoustic spacetime. We will exhibit the Lyapunov exponent
of a particle falling radially near the event horizon and
some well-known effects analogous to those in general
relativity—the vortices orbits, the sound wave ray deflec-
tion, the time delay of sound waves for acoustic black
holes. These results can be verified by two-dimensional
spherically symmetric superfluid experiments.
The paper is organized as follows: In Sec. II, we briefly

review the geometry of acoustic black holes. In Sec. III,
considering an infalling vortex towards acoustic black
holes, we calculate the growth of the radial momentum.
In Sec. IV, we further consider the Lyapunov exponent
of radial motion of vortices toward the event horizon
of the acoustic black hole which is embedded in the
Schwarzschild-anti–de Sitter (AdS) geometry. We then
study the orbit of vortices and the corresponding stability
in Sec. V. The sound wave trajectory is then studied in
Sec. VI in which the deflection and the time delay of the
sound wave prorogation are studied. The conclusion and
discussions are provided in the last section.

II. THEMETRICOF ACOUSTIC BLACKHOLES IN
FLAT AND CURVED SPACETIMES

In this section, we mainly consider three different kinds
of acoustic black holes: the line element first given by
Unruh [3,4], the metric obtained from the Gross-Pitaeskii
equation in curved spacetime [6] and the metric obtained
from general relativistic fluids [17–19]. The reason to
consider these three different types of metric is for the
purpose of examining the universality of the relation
ΛLyapunov ≤ 2πT. Later, we will focus on the geodesic
motion in acoustic black hole in flat spacetime which is
more realizable in experiments.

A. Acoustic black holes in Minkowski spacetime

We first consider the general acoustic black hole metric
given by Unruh, which is derived from the fluid continuity
equation in a uniform fluid medium [3] (see also [4]),

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2

¼ ρ0
cs

�
−ðc2s − v2Þdt2 þ c2s

c2s − v2
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ
�
: ð1Þ

Here we assume the flow is a static spherically symmetric
conservation flow. In this formula, cs refers to the speed
of sound in the fluid medium, and ρ0 is the fluid density.
The velocity v is the flow rate of the fluid along the radial

direction. Assuming ρ0 and cs are two constants and
coordinates independent, absorbing the factor ρ0

cs
into the

line element on the left and setting cs ¼ 1, we can write

ds2 ¼ −ð1 − v2Þdt2 þ ð1 − v2Þ−1dr2
þ r2ðdθ2 þ sin2 θdϕ2Þ:

For a spatially two-dimensional fluid model, we can take
θ ¼ π

2
, so that dθ2 ¼ 0, sin2θ ¼ 1. The metric rewritten in a

matrix form is

gμν ¼

0
B@

−ð1 − v2Þ 0 0

0 ð1 − v2Þ−1 0

0 0 r2

1
CA: ð2Þ

It is also known from fluid continuity and incompress-
ibility ∇ · v ¼ 0 (for outside the central area), the speed v
should satisfy v ¼ −λ=r, where λ is a positive constant and
the negative sign means that the direction of the fluid
velocity points to the center of the acoustic black hole (see
Fig. 1). Then the (2þ 1)-dimensional acoustic black hole
metric can be written as [14,20]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dϕ2;

fðrÞ ¼ 1 −
λ2

r2
: ð3Þ

The acoustic event horizon locates at r0 ¼ λ. The Hawking
temperature of the acoustic black hole is given by [3,4,21]

T ¼ f0ðrÞjr¼λ

4π
¼ 1

2πλ
: ð4Þ

FIG. 1. Schematic view of a two-dimensional acoustic black
hole. The arrow represents the direction of fluid flow. The black
circle is the acoustic horizon where the fluid velocity reaches the
sound velocity. The region in the ring represents the acoustic
black hole. For the region in the central black circle, we can
regard it as a sink leading to the high-dimensional space from
which the fluid flows to the third dimensional space.
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B. Acoustic black holes from Gross-Pitaeskii
equation in curved spacetime

In curved spacetime, the Gross-Pitaeskii theory is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂μφj2 þm2jφj2 − b

2
jφj4
�
; ð5Þ

where φ is a complex scalar order parameter. The function
φ is taken as a probe and does not backreact on the
background geometry. The acoustic black hole metric can
be derived by considering perturbations around the back-
ground ðρ0; θ0Þ: ρ ¼ ρ0 þ ρ1 and θ ¼ θ0 þ θ1. The acous-
tic black hole metric then can be written as [6]

ds2 ¼ ðgGRμν � gABHμν Þdxμdxν

¼ csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − vμvμ

q �
ðc2s − vrvrÞgGRtt dt2

þ c2s
c2s − vμvμ

c2s − vrvr
gGRrr dr2 þ ðc2s − vμvμÞgGRϑϑ dϑ2

þ gGRϕϕ ðc2s − vμvμÞdϕ2

�
; ð6Þ

where vt ¼ −_θ, vi ¼ ∂iθ, ði ¼ r; θ;ϕÞ, cs the sound of
speed, m denotes a parameter related to the particle mass
and b is a parameter. Intriguingly, this is an analogue black
hole embedded in the spacetime governed by general
relativity. Among them, gGRμν is the spacetime metric of
gravity and gABHμν describes the geometry of the acoustic
black hole, where μ; ν ¼ t; r; θ;ϕ. The metric tensor used
to raise or lower indices of vμ is by gGRμν . The dispersion
relation is given by vμvμ ¼ m2 − c2s. As m ¼ 0, we can
recover the normalized four-velocity relation vμvμ ¼ −c2s .
For a Schwarzschild black hole in the background of
thermal radiation, the event horizon is at r0 ¼ 2M=c2.
At rs ¼ 6M=c2, the sound speed of thermal radiation is
cs ¼ c=

ffiffiffi
3

p
with c the speed of light. In the region of

r < rs, the thermal radiation sound wave cannot escape,
that is, rs corresponds to the acoustic horizon.
As a warm-up exercise, we consider some kinds of fluid

surrounded black holes in (2þ 1)-dimensional AdS space.
In the following, we set dθ ¼ 0. The (2þ 1)-dimensional
spacetime metric of AdS-Schwarzschild black holes is
given by [22]

ds2GR ¼ −r2
�
1 −

r20
r2

�
dt2 þ 1

r2ð1 − r2
0

r2Þ
dr2 þ r2dϕ2; ð7Þ

where r0 is the radius of the black hole horizon, and we take
AdS radius to be 1 and G ¼ M ¼ c ¼ 1. Combined with
the acoustic metric given in Eq. (1), we write down the

(2þ 1)-dimensional acoustic black hole metric embedded
in AdS-Schwarzschild spacetime as follows:

ds2 ¼ ðgGRμν � gABHμν Þdxμdxν ¼ Gttdt2 þ Grrdr2 þ Gϕϕdϕ2:

ð8Þ

By setting c2 ¼ 1 and c2s ¼ 1=3 and taking the sign of gGRμν
as ημν and the sign of gABHμν as δμν, we can write the metric
components as

Gtt ¼ −
1

3
fABHðrÞfGRðrÞ;

Grr ¼
1

fABHðrÞfGRðrÞ
; Gϕϕ ¼ r4; ð9Þ

where the blacken factors are given by

fABHðrÞ ¼ 1 −
3λ2

r2
; fGRðrÞ ¼ r2

�
1 −

r20
r2

�
: ð10Þ

Note that the horizon
ffiffiffi
3

p
λ of the acoustic black hole is

required to be larger than the event horizon r0 of the
black hole. Inside the event horizon Gtt is less than 0
and Grr is greater than 0; between the two horizons, i.e.,ffiffiffi
3

p
λ > r > r0, the opposite is true, Gtt > 0 and Grr < 0.
In the curved spacetime, the Hawking temperature at the

acoustic horizon is [6]

T ¼ 1

4π
ffiffiffiffiffiffiffi
Grr

p
 
−

ffiffiffiffiffiffiffiffiffiffiffi
gABHtt

−gGRtt

s
g0GRtt þ

ffiffiffiffiffiffiffiffiffiffiffi
−gGRtt
gABHtt

s
g0ABHtt

!�����
r¼ ffiffi

3
p

λ

¼ 3λ2 − r20
6πλ

; ð11Þ

where the prime represents derivative with respect to r.
If gABHμν and cs are taken as δμν and 1 respectively, the metric
(8) reduces to the form (7) of the AdS-Schwarzschild
spacetime. On the other hand, if we take gGRμν and cs to be
ημν and 1 respectively, then the metric (8) returns to the
metric given in (3).

C. Acoustic black holes from general relativistic fluids

To test the generality of the chaotic bound, we will also
consider the acoustic metric in Schwarzschild spacetime.
Starting from the hydrodynamics, we consider uμ, ρ, p, n, s
are the three-velocity, energy density, pressure, particle
number density and entropy density of the fluid respec-
tively. From the continuity equation,

∂μ

� ffiffiffiffiffiffiffiffiffiffiffi
−gGR

p
nuμ
	
¼ 0; ð12Þ

where uμuμ ¼ gGRμν uμuν ¼ −1 and the velocity potential
equation,
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wuμ ¼ −∂μψ ; ð13Þ

and the specific enthalpy w ¼ ðpþ ρÞ=n. By making the
acoustic perturbations on uμ, w, n, ψ ,

uμ → uμ þ δuμ; w → wþ δw;

n → nþ δn; ψ → ψ þ δψ ; ð14Þ

we can obtain the wave equation,

∂μ


 ffiffiffiffiffiffiffiffiffiffiffi
−gGR

p n
w

�
gμνGR þ

�
1 −

w
n
∂n
∂w
�
uνuμ

��
∂νδψ ¼ 0:

ð15Þ

By some transformations and taking c2s ¼ n
w
∂w
∂n js=n, the

form of metric can be recast as (see [17–19] for details)

ds2 ¼ G̃μνdxμdxν ¼ ½gGRμν þ ð1 − c2sÞuμuν�dxμdxν: ð16Þ

In fact, there is a common coefficient factor in front of
each metric component, which is related to the speed of
sound, the density of fluid particles, the density of fluid
energy and the pressure of the fluid. In order to simplify the
calculation, we set this coefficient be 1. There are some
differences between formula (6) and formula (16). The
former is obtained from the Gross-Pitaevskii theory, while
the latter is obtained from fluid mechanics.

III. FALLING INTO THE (2 + 1)-DIMENSIONAL
ACOUSTIC BLACK HOLES IN MINKOWSKI
SPACETIME: VORTEX MOTION AND CHAOS

In this section, we study the momentum growth of an
infalling vortex toward an acoustic black hole. Unstable
orbits and the momentum growth can be quantified by their
Lyapunov exponents [23]. We use Lyapunov exponent to
describe the motion of a vortex near the acoustic black hole.
It was proposed that vortices can behave as relativistic
particles with their dynamics governed by the fluid metric
[24,25] and their stability ensured by a topological number.
Vortices with mass m0 given by the Einstein’s relation
E ¼ m0c2 [26,27] cannot propagate at velocities faster than
the sound speed. Let us consider a vortex with massm0 ¼ 1
freely falling into the acoustic black hole along the radial
axis. The acoustic metric is given in Eq. (3). The action of
the geodesic motion of the infalling vortex is [28]

S ¼ −
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gαβuαuβ
q

dτ; ð17Þ

where uα ¼ dxα=dτ is tangent to the world line and xα is the
spacetime coordinate, τ is an arbitrary parameter of the
vortex world line. The equation of motion from the above
action is

_uμ þ Γμ
αβu

αuβ −
_ηuμ

2η
¼ 0; ð18Þ

where η ¼ −gABHμν uμuν > 0 and the dot represents the
derivative with respect to τ. Note that the acoustic black
hole metric in general does not satisfy the Einstein
equation. The canonical momentum can be obtained by

pα ¼
δS
δuα

¼ gαβuβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνuμuν

p : ð19Þ

We choose the gauge τ ¼ t and take the ansatz r ¼ rðtÞ,
ϕ ¼ constant. Then, Eqs. (18) and (19) reduce to

_r ¼ −
�
−grrgtt −

grrg2tt
A2

�
1=2

; ð20Þ

pr ¼ ð−A2gttgrr − grrÞ1=2; ð21Þ

where _r < 0 means the vortex falls into the acoustic black
hole and A ¼

ffiffiffiffiffiffiffiffiffiffi
g2tt=η

p
> 0 is an integral constant. We

substitute Eq. (3) into (20)–(21) and obtain

_r ¼ −
�
f2 −

f3

A2

�
1=2

; ð22Þ

pr ¼ ðA2f−2 − f−1Þ1=2: ð23Þ

We evaluate the growth rate of the momentum in the
Rindler coordinate [29,30]. Since dρ=dr ∼ 1=

ffiffiffi
f

p
, the

Rindler momentum pρ near the acoustic horizon is given by

pρ ∼
ffiffiffi
f

p
pr ∼ ðA2f−1 − 1Þ1=2: ð24Þ

We can find ðr − λÞ ∝ e−4πTt in Eq. (22) near the acoustic
black hole horizon, where T ¼ 1=ð2πλÞ is the Hawking
temperature of the acoustic black hole. Near the acoustic
horizon, the radial momentum pρ can be approximated as

pρ ∝ ðr − λÞ−1=2 ∼ e2πTt: ð25Þ

We then obtain pρ ∼ e2πTt. Therefore, the growth of the
radial momentum near the acoustic horizon is described by
the Lyapunov exponent ΛLyapunov,

ΛLyapunov ¼ 2πT: ð26Þ

It is interesting to note that the chaos bound is satisfied by
the momentum growth of the “test” particle in the geometry
of acoustic black holes. This shows that acoustic black
holes are similar to the real black hole, which provides the
possibility for the experimental simulation of the chaotic
behavior near the black hole horizon.
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IV. VORTEX MOTION AND CHAOS
FOR ACOUSTIC BLACK HOLES

IN CURVED SPACETIME

In this section we further consider vortex motion for
acoustic black holes in curved spacetime. From the field
theory and fluid mechanics, we will consider the motion of
vortices as probe particles falling along the radial direction
in Schwarzschild-AdS and Schwarzschild space-time
respectively, so as to further test whether the momentum
growth chaos bound to the falling particles in the bulk are
still satisfied in the curved space-time background.

A. Acoustic black holes from Gross-Pitaevskii equation

In a Schwarzschild-AdS spacetime, through the
Hadamard product, we consider that the metric (8) of
the acoustic black hole in the curved space-time of (2þ 1)-
dimensional Schwarzschild-AdS background.
Similarly, the action in curved spacetime is considered as

S ¼ −
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Gαβuαuβ
q

dτ: ð27Þ

We can obtain the radial momentum,

_r ¼ −
�
f2ABHf

2
GR

3
−
f3ABHf

3
GR

9A2

�
1=2

; ð28Þ

pr ¼ A
�
3f−2ABHf

−2
GR −

f−1ABHf
−1
GR

A2

�
1=2

; ð29Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
G2
tt=η1

p
> 0 is the integral constant with the

timelike condition η1 ¼ −Gμνuμuν > 0.
Since dρ=dr ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fABHfGR

p
, the Rindler momentum

pρ is

pρ ¼
�

3A2

fABHfGR
− 1

�
1=2

: ð30Þ

Near the acoustic horizon, the Rindler momentum pρ can
be approximated as

pρ≈
�

3
ffiffiffi
3

p
A2

2ð3λ− ffiffiffi
3

p
r0Þðr−

ffiffiffi
3

p
λÞ

�1=2
∼
�
r−

ffiffiffi
3

p
λ
	
−1=2

: ð31Þ

By calculating the expression (28), we can obtain

ðr − ffiffiffi
3

p
λÞ ∝ e−4πTt, where T ¼ 3λ2−r2

0

6πλ . We can find that
the Lyapunov exponent ΛLyapunov of the stable acoustic
black hole in AdS-Schwarzschild space-time (i.e., the
temperature T is a constant at the acoustic horizon) is
equal to 2πT and still satisfies the relationΛLyapunov ¼ 2πT.
This is consistent with the results of pure acoustic black
holes obtained in Eq. (26). It shows that for different types

of acoustic black holes, the growth of radial momentum
still satisfies the chaotic bound.

B. Acoustic black holes from general
relativistic fluids

From the perspective of fluid mechanics, in the
(2þ 1)-dimensional Schwarzschild background, uμ¼
ð−1;− 1

f0
ð2Mr Þ1=2;0Þ, Eq. (16) is considered as

ds2 ¼ G̃μνdxμdxν

¼
�
2

3
− f0

�
dt̃2 þ 4

ffiffiffiffiffiffiffi
2M

p

3f0
ffiffiffi
r

p dtdr

þ
�
4M
3f20r

þ 1

f0

�
dr2 þ r2dϕ2; ð32Þ

where M is the mass of the black hole and f0 ¼ 1 − 2M
r .

By considering the coordinate transformation dt ¼
dt̃þ 2

ffiffiffiffiffi
2M

p
3f0

ffiffi
r

p dr, we can obtain

ds2 ¼ Gμνdxμdxν

¼
�
2

3
− f0

�
dt2 −

3f0rþ 4M − 2r
2f0r− 3f20r

dr2 þ r2dϕ2: ð33Þ

For a null hypersurface FðxμÞ ¼ 0, it satisfies the
definition,

Gμν ∂F
∂xμ

∂F
∂xν ¼ 0: ð34Þ

For steady-state spacetime, F should be time independent,
and spacetime should be symmetric along ϕ direction, that
is, F is a function of r. Therefore, the acoustic horizon can
be calculated as r ¼ 6M. And from the metric (32), we can
find that the Hawking temperature of the acoustic balck
hole is T ¼ 1

24
ffiffi
3

p
πM

.

Analogously, from the action S ¼ −
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Gαβuαuβ
q

dτ,

we obtained the radial coordinate change rate and radial
momentum are respectively,

_r ¼ −
�
−
Gtt

Grr
−

G2
tt

A2Grr

�
1=2

; ð35Þ

pr ¼
�
−
A2Grr

Gtt
− Grr

�
1=2

¼ −
AGrr

Gtt
_r; ð36Þ

where A is an integral constant and greater than 0. Through
the approximate calculation near the acoustic horizon, we
obtained _r ∼ ðr − 6MÞ ∼ e−4πTt from Eq. (35). The Rindler
momentum can be expressed as

pρ ¼ G−1=2
rr pr ¼ −

AG1=2
rr

Gtt
_r ∼ e2πTt; ð37Þ
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which shows the momentum growth bound still holds at the
horizon.
This demonstrates that not only near the real black hole,

but also for the general nonrotating acoustic black hole, the
exponent of the momentum growth of the Rindler co-
ordinate near the event horizon satisfy ΛLyapunov ≤ 2πT.

V. VORTICES ORBITS

In the above two sections, we consider the momentum
growth of the vortex as the test particle near the horizon of the
acoustic black hole. In this section, we will study the
trajectory of vortices near acoustic black holes. We will
consider the falling trajectory of vortices with different initial
energy and angular momentum, and numerically calculate
the radial momentum of particles growth with time t.

A. Effective potential

Since the metric (2) is independent of t and ϕ, the
quantities ξ · u and η · u are conserved, where u is the
“three-velocity” of the vortex, ξα ¼ ð1; 0; 0Þ and ηα ¼
ð0; 0; 1Þ are killing vectors. The conserved energy per unit
of static mass is [31,32]

ϵ ¼ −ξ · u ¼ ð1 − v2Þ dt
dτ

: ð38Þ
The conservation angular momentum per unit of rest mass is

l ¼ η · u ¼ r2
dϕ
dτ

: ð39Þ

The “three-velocity” vectors satisfy the relation,

u · u ¼ gαβuαuβ ¼ −1: ð40Þ
Substituting (2) into (40), we arrive at

−ð1 − v2ÞðutÞ2 þ ð1 − v2Þ−1ðurÞ2 þ r2ðuϕÞ2 ¼ −1: ð41Þ
Writing ut ¼ dt=dτ, ur ¼ dr=dτ, and uϕ ¼ dϕ=dτ, and
substituting (38) and (39) into (41) to eliminate dt=dτ
and dϕ=dτ, we obtain

−ð1 − v2Þ−1ϵ2 þ ð1 − v2Þ−1
�
dr
dτ

�
2

þ l2

r2
¼ −1: ð42Þ

The square of the conservation energy per unit of rest mass
can be obtained as

ϵ2 ¼
�
dr
dτ

�
2

þ
�
l2

r2
þ 1

�
ð1 − v2Þ: ð43Þ

By defining the effective energy [33–35],

ε≡ ϵ2 − 1

2
¼ 1

2

�
dr
dτ

�
2

þ VeffðrÞ; ð44Þ

where the effective potential is

VeffðrÞ ¼
1

2

�
−v2 þ l2

r2
− v2

l2

r2

�
; ð45Þ

and v ¼ −λ=r. We obtain the expression of the effective
potential,

VeffðrÞ ¼
1

2r4
½ðl2 − λ2Þr2 − λ2l2�: ð46Þ

For a concrete acoustic black hole, we know that λ is a
positive constant, and l2 ≥ 0. If the first order derivative
of the effective potential V 0

effðrÞ ¼ 0, the critical radius

satisfies r2� ¼ 2λ2l2

l2−λ2.When l2 > λ2, we can obtain r� ¼
ffiffi
2

p
λlffiffiffiffiffiffiffiffi

l2−λ2
p ,

and the second derivative of the effective potential,
V 00
effðr�Þ ¼ − 4λ2l2

r6�
< 0, which means that r� is the radius

of the unstable orbit. When l2 ≤ λ2, we can find V 0
effðrÞ > 0

and V 00
effðrÞ < 0, which means that the effective potential

VeffðrÞ increases with the increase of r and there is no stable
orbit [36,37].
As shown in Fig. 2, the effective potential energy VeffðrÞ

does not have a minimum value, so there is no stable
circular orbit for the acoustic black hole of this type.
Figure 3 shows four types orbits for values of l and e. As
shown in the first row in Fig. 3, when the conservation
angular momentum of the test particle is 0, the radial
potential function of the particle increases monotonically
with r and the particle always falls straight into the acoustic
black hole. The second and the third row in Fig. 3 with the
same potential but has different value of e (l=λ ¼ 1.4),
which means the different orbits. The value of e2=λ2 is 1.16,
and the vortex will fall into the acoustic black hole as
shown in the second row in Fig. 3. When the value of
e2=λ2 ¼ 1.08, the vortex will approach but escape the
acoustic black hole as shown in the third row in Fig. 3,
which also demonstrates the critical unstable orbit with the
ratio of e2=λ2 is about 1.12.

5 10 15 20

0.05

0.05

0.10
2

1.5

1

0

FIG. 2. We plot the effective potential Veff as a function of r=λ
by setting l=λ ¼ 0, 1, 1.5, 2. It can be seen from the figure that
there is no minimum point for the effective potential, that is, there
is no stable circular orbit for the vortex.
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B. Radial infalling orbit

From the effective energy equation (44) and the effective
potential equation (45), we can study the radial motion of the
vortices. From the Eq. (44) with ϵ¼1 and l¼0, there is

0 ¼ 1

2

�
dr
dτ

�
2

−
1

2
v2 ¼ 1

2

�
dr
dτ

�
2

−
1

2

λ2

r2
; ð47Þ

where r decreases with the increase of τ in which the “three-
velocity” component is given by dr=dτ ¼ v < 0. Taken
together with the time component dt=dτ given by Eq. (38),
the “three-velocity” is

uα ¼ ½ð1 − v2Þ−1; v; 0� ¼
��

1 −
λ2

r2

�
−1
;−

λ

r
; 0

�
: ð48Þ

Considering that λ > 0, we take a negative sign. Rewritten
(47) in the form,

0 2 4 6 8 10 12 14
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0 2 4 6 8 10 12 14

0.05
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0.10

10 5 0 5 10
10

5
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5
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FIG. 3. From the first row, it can be seen that when l ¼ 0, the potential function increases monotonically with r, and the vortex always
falls straight into the acoustic black hole. The case of l2 < λ2 is similar. The value l=λ is 1.4 in other parts. For l2 > λ2, if the vortex
energy is large enough, it will fall into the acoustic black hole, as shown in the second row. If the vortex energy is low, when the vortex is
near the acoustic black hole, it will escape from the acoustic black hole, as shown in the third pair of pictures, where the dotted line on the
right is the position of unstable orbit, corresponding to the maximum potential energy in the left figure.
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1

v
dr ¼ dτ; ð49Þ

−
�
λ2

r2

�
−1
2

dr ¼ −
r
λ
dr ¼ dτ; ð50Þ

the integral result is

rðτÞ ¼ ½−2λðτ − τ�Þ�1=2 ¼ ð2λÞ1=2ðτ� − τÞ1=2; ð51Þ

where τ� is an integral constant. Computing dt=dr from
Eq. (38) with ϵ ¼ 1 and Eq. (47), we obtain

dt
dr

¼ ð1 − v2Þ−1v−1 ¼ −
�
1 −

λ2

r2

�
−1 r

λ
¼ −

r3

λðr2 − λ2Þ :

ð52Þ

After integration, we have

t ¼
Z

ð1 − v2Þ−1v−1dr ¼ t� −
r2 þ λ2 lnðr2 − λ2Þ

2λ
; ð53Þ

where t� is another integral constant. From (53), when
r → ∞; t → −∞, the vortex is falling from infinity.
From Eq. (51) we can see that for any fixed r1 value
outside the horizon, it takes only a finite amount of
proper time τ to reach r2 ¼ λ, while Eq. (53) shows that
it takes an infinite quantity of coordinate time t. This is
just a sign that the coordinates are flawed at r ¼ λ. This
shows that for the falling object A itself, the time from
r1 to r2 is limited. For the observer B with fixed
coordinates, he observed that A keeps approaching the
horizon r2. The observation here refers to the sound
waves received by B from A. Replacing ω∞, v∞ with
ωr1 , vr1 and replacing ω�, v� with ωr2 , vr2 in (A9), we
then obtain ωr1 ¼ 0. The sound waves from r2 are
infinitely redshift.1 B receives A’s sound frequency is
becoming lower and lower, and finally A’s voice seems
to solidify at r2.
We can also use formula (53) to verify the relationship

between the radial momentum of vortex falling and time.
From Eqs. (20), (21) and (24), we obtain pρ ∼ −_r=ð ffiffiffiffiffi

fη
p Þ.

Further considered the formula (53), the relationship
between pρ and t can be obtained. Setting t� ¼ 0, λ ¼ 1,
thus 2πT ¼ 1, and r near the horizon, we obtain pρ ∼
e0.9997t as shown in Fig. 4. Notice that t� only shifts the
pρ − t curve horizontally, it does not affect the exponential
relationship between pρ − t. After careful verifications, we

observe that as r approaches the horizon λ, lnpρ

t approaches
2πT. This shows that the acoustic black hole still satisfies
the chaos bound of the momentum growth, which may

provide a theoretical basis for simulating the chaotic
behavior of particles falling into the real black hole.

VI. SOUND WAVE ORBITS

In addition to the computation of the Lyapunov expo-
nent, the stability of the sound wave orbits and the Shapiro
time delay of sound propagation near acoustic black hole
deserve further investigations. In what follows, we first
calculate the deflection angle and then the time delay of
sound wave propagation in a (2þ 1)-dimensional acoustic
black hole background in flat spacetime.

A. Sound wave deflection

The calculation of sound wave orbits in the acoustic
geometry is analogous to the calculation of vortices orbits,
but with some important differences. For vortices, the
unstable critical orbit does not necessarily exist, and the
critical radius of the orbit is related to angular momentum,
while the unstable critical radius of the acoustic wave is
fixed and smaller. The world line of sound waves can be
described by the coordinates xα as function of a family of
affine parameters χ. The null vector uα ¼ dxα=dχ is tangent
to the world line. Since the acoustic metric (2) is indepen-
dent of t and ϕ, the quantities,

ϵ ¼ ð1 − v2Þ dt
dχ

; ð54Þ

l ¼ r2sin2 θ
dϕ
dχ

; ð55Þ

are conserved along sound wave orbits. If the normalization
of χ is chosen so that u coincides with the momentum p of
a beam of sound wave moving along the null geodesic, then
ϵ and l are the sound wave’s energy and angular momentum

3.0 3.5 4.0 4.5 5.0

50

100

150

200

250

FIG. 4. In the figure, the blue points are the values of pρ and t
calculated by numerical solution, and the green line is the curve
of exponential fitting of data. Setting t� ¼ 0, λ ¼ 1, which means
2πT ¼ 1, and r near the horizon, the fitting result is pρ ∼ e0.9997t.

1For the discussions on redshift of sound wave propagation,
one may refer to the Appendix.
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at infinity. Since u · u ¼ gαβ
dxα
dχ

dxβ
dχ ¼ 0, considering the

equatorial plane condition θ ¼ π=2, we have

−ð1 − v2ÞðutÞ2 þ ð1 − v2Þ−1ðurÞ2 þ r2ðuϕÞ2 ¼ 0: ð56Þ

Utilizing Eqs. (54) and (55), we have

−ð1 − v2Þ−1ϵ2 þ ð1 − v2Þ−1
�
dr
dχ

�
2

þ l2

r2
¼ 0: ð57Þ

Multiplied by ð1 − v2Þ=l2, it can be written as

1

b2
¼ 1

l2

�
dr
dχ

�
2

þWeff ; ð58Þ

therein

b2 ¼ l2=ϵ2; ð59Þ

and

Weff ¼
1

r2
ð1 − v2Þ: ð60Þ

In the equatorial plane,

x ¼ r cosϕ; y ¼ r sinϕ; ð61Þ

suppose a beam of sound wave moves parallel to the x-axis,
and the distance from the x-axis is d, as shown in Fig. 5.
At a distance from the source of an acoustic black hole,
the sound wave moves in a straight line. For r ≫ λ, the
quantity b is

b ¼
���� lϵ
���� ¼ r2

1 − v2
dϕ
dt

≈ r2
dϕ
dt

: ð62Þ

For very large r there are ϕ ≈ d=r, and dr=dt ≈ −1, it
becomes

dϕ
dt

¼ dϕ
dr

dr
dt

¼ d
r2
: ð63Þ

Therefore,

b ¼ d: ð64Þ

This shows that the constant b is a parameter of sound
waves ray reaching infinity and is defined to be positive.
Figure 6 shows Weff as a function of r on the left. It goes
to zero at large r, and it has a maximum at r ¼ ffiffiffi

2
p

λ.
If b ¼ 2λ, the circular orbit of the sound wave at the
maximum r ¼ ffiffiffi

2
p

λ. The maximum is

Weffð
ffiffiffi
2

p
λÞ ¼ 1

4λ2
: ð65Þ

If b2 ¼ 4λ2, it can be seen from formula (58) that the
circular orbit of the sound wave is possible at radius
r ¼ ffiffiffi

2
p

λ in the first pair of Fig. 6. However, the circular
orbit is unstable. A small perturbation in b will result in
orbit far away from the maximum. A stable sound wave
circular orbit is impossible around the two-dimensional
acoustic black hole in our model. The qualitative character-
istics of other sound wave orbits depend on whether 1=b2 is
greater than the maximum value of Weff , as shown in
Fig. 6. First of all, consider that orbits start at infinity, if
1=b2 < 1=4λ2, the orbit will have a turning point and
returns to infinity again,also as shown in the first line of
Fig. 6. We will discuss the size of the deflection angle in
detail in a minute. If 1=b2 > 1=4λ2, the sound wavewill fall
all the way to the origin and be captured, as in the second
line of Fig. 6. The angle of interest is the deflection angle
δϕdef , showed in Fig. 7. This angle shows a property of the
shape of the sound wave orbit. This shape of a beam of
sound wave can be calculated in the same way as the shape
of a vortex orbit. Solve (55) for dϕ=dχ, solve (58) for
dr=dχ, divide the second into the first, and then predigest
using (59) and (60) to find

dϕ
dr

¼ � 1

r2

�
1

b2
−Weff

�
−1
2

: ð66Þ

The plus or minus sign indicates the direction of the orbit.
When the sound wave comes in from infinity and comes
back again, the total sweep angle Δϕ is twice the sweep
angle from the turning point r ¼ r1 to infinity. Therefore,

Δϕ ¼ 2

Z
∞

r1

dr
r2

�
1

b2
−
1 − v2

r2

�
−1
2

: ð67Þ

The radius r1 satisfies 1=b2 ¼ ð1 − v2Þ=r21; i.e., the radius
where the bracket in the preceding expression vanishes.
Set a new variable w defined byFIG. 5. The orbit of the sound wave comes from infinity.
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r ¼ b
w
; ð68Þ

the expression of Δϕ turns out to be

Δϕ ¼ 2

Z
w1

0

dw½1 − w2ð1 − v2Þ�−1
2; ð69Þ

where w1 ¼ b=r1 is the value of w at the turning point. For
v2 ¼ λ2=r2 ¼ λ2w2=b2, we have

Δϕ ¼ 2

Z
w1

0

dw

�
1 − w2

�
1 −

λ2

r2

��
−1
2

¼ 2

Z
w1

0

dw

�
1 − w2

�
1 −

λ2w2

b2

��
−1
2

: ð70Þ

When the value of v is much less than 1, i.e., r is much
larger than λ and λw=b is far less than 1, we can recast
Eq. (70) as

Δϕ ¼ 2

Z
w1

0

dw

�
1 −

λ2w2

b2

�
−1
2

��
1 −

λ2w2

b2

�
−1

− w2

�
−1
2

:

ð71Þ

Expand the exponential term of ð1 − λ2w2=b2Þ as a
power series,

Δϕ¼2

Z
w1

0

dw
1þ2λ2w2=b2

ð1þλ2w2=b2−w2Þ12¼
π

ð1−λ2=b2Þ32 ; ð72Þ
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FIG. 6. The picture shows three tracks corresponding to different b values. The relationship between potentialWeff and 1=b2 is shown
in the left column. The effective potential of the acoustic black hole and the behavior of the sound wave passing through the acoustic
black hole: when the beam of sound wave energy is equal to the maximum value of the effective potential of the acoustic black hole, it is
a critical state; when the beam of sound wave energy is less than the height of the barrier, the sound wave does not fall into the acoustic
black hole; when the beam of sound wave energy is greater than the barrier height, the sound wave will fall into the black hole.

FIG. 7. In this figure, b is the linear distance from the black hole
to the incident direction of the sound wave. A beam of sound
wave coming from infinite distances pass through the vicinity of
acoustic black holes and deflect in a direction of δϕdef .
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where w1 is a root of the denominator in Eq. (72). For small
λ=b, it becomes

Δϕ ¼ π

�
1þ 3

2

λ2

b2

�
: ð73Þ

Therefore, the deflection angle is

δϕdef ¼
3

2

λ2

b2
π: ð74Þ

Reinserted the factor of cs (sound velocity), the above
formula can be written as (b has dimensions of length)

δϕdef ¼
3

2

c2sλ2

b2
π; ð75Þ

for small csλ=b. This shows that the deflection angle of
the sound wave is directly proportional to the square of
the csλ=b.

B. Time delay of sound waves

Since the sound wave trajectory bends near the acoustic
black hole, the path of sound wave transmission at the
same two points becomes longer, as shown in Fig. 8. The
quantities r1, r2, and r3 are radii of the orbits of the closest
point, reflector, and observer to the acoustic black hole,
respectively. Thus, the time for the sound wave to travel
back and forth between the observer and the reflector will

increase. According to Eq. (54) for dt=dχ and Eq. (58) for
dr=dχ, we can obtain

dt
dr

¼ � 1

b

�
1 −

λ2

r2

�
−1
�
1

b2
−Weff

�
−1
2

; ð76Þ

where the positive sign is suitable for increasing radius, and
the negative sign is suitable for decreasing radius. From the
left of Fig. 8, we can see that the total time for sound wave
travel forth and back between observer and reflector is

Δttotal ¼ 2tðr1; r2Þ þ 2tðr1; r3Þ; ð77Þ

where the time required for a beam of sound wave moving
from a radius of r1 to a radius of r is

tðr1; rÞ ¼
Z

r

r1

dr
1

b

�
1 −

λ2

r2

�
−1
�
1

b2
−Weff

�
−1
2

; ð78Þ

among them,

b2 ¼ r21

�
1 −

λ2

r21

�
−1
; Weff ¼

1

r2

�
1 −

λ2

r2

�
: ð79Þ

We consider λ=r as a small quantity, simplify and approxi-
mate the above formula, then

FIG. 8. Sound waves bend by trajectories near acoustic black holes: the left figure shows the situation when the trajectory bends, while
the right figure corresponds to the trajectory without bending. Obviously, when the trajectory bends, the trajectory becomes longer and
the reflected signal is relatively delayed.
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tðr1; rÞ ¼
Z

r

r1

dr

�
1 −

λ2

r2

�
−3
2

�
1 −

r21
r2

�
−1
2

≈
Z

r

r1

dr

�
1þ 3λ2

2r2

��
1 −

r21
r2

�
−1
2

: ð80Þ

The integral can be evaluated as

tðr1; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r21

q
þ 3λ2

2r1

�
π

2
− arctan

r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r21

p �
: ð81Þ

Thus,

Δttotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r21

q
þ 3λ2

2r1

�
π

2
− arctan

r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r21

p �
: ð82Þ

Then the radar echo delay is

Δtexcess ¼ Δttotal − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − r21

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23 − r21

q
: ð83Þ

Considering r1=r2 ≪ 1; r1=r3 ≪ 1 and sound velocity cs,
we can recast (83) as

Δtexcess ≈
3c2sλ2

r1

�
π −

r1
r2

−
r1
r3

�
¼ 3c2sλ2

�
π

r1
−

1

r2
−

1

r3

�
:

ð84Þ

We can see that the time delay is mostly related to λ. The
larger the λ is, the more the time delay is. The parameter λ
corresponds to the flow velocity around the acoustic black
hole, which is equivalent to the mass of the black hole.
Note that λ also corresponds to the radius of the horizon.
Therefore, the time delay is closely related to the nature of
the central acoustic black hole. Then, since π=r1 is much
larger than 1=r2 and 1=r3, this reflects that r1 is the closest
point to the acoustic black hole, which has a greater impact
on the time delay effect. This can be understood as the
closer to the acoustic black hole is, the more obvious the
bending of the sound trajectory is, and the greater time
delay effect is.

VII. DISCUSSION AND CONCLUSION

In summary, the geometry outside a (2þ 1)-dimensional
acoustic black hole encodes interesting physics. For vor-
tices falling into the acoustic black holes along the radial
axis, the growth of the radial momentum near the horizon
has the relation pr ∼ e2πTt, signalizing the chaos behavior
with the Lyapunov exponent ΛLyapunov ¼ 2πT. In the case
of the AdS-Schwarzschild background, the increase of the
momentum near the horizon of acoustic black holes is
e2πTt. These are in agreement with the chaos bound
proposed in [16]. The result is further confirmed from
the numerical calculation of the radial infalling orbit of the

vortex. It is a little bit surprising that it saturates the chaos
bound since that acoustic black holes can only simulate
the kinetic aspects of real black holes, but it does not satisfy
the Einstein equation. It would be interesting to verify this
point experimentally.
Taking vortices as relativistic particles outside acous-

tic black holes, we calculated in detail the effective
potential and found that there is no stable circular
orbit for vortices. As the radial falling orbit is further
considered, there is no orbital precession. Sound wave
deflection and sound wave time delay are further
investigated. The results show that the deflection angle
of sound waves is inversely proportional to the square of
the distance to the acoustic black hole. The time delay of
sound waves passing through the vicinity of the acoustic
black hole has the greatest correlation with the distance
r2 when the sound wave trajectory is closest to the
acoustic black hole. It is inversely proportional to the
initial distance r1 and the final distance r3 and r1. That is
to say, the greater the r is, the less the effect on the time
delay will be.
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APPENDIX: ACOUSTIC REDSHIFT

Let us consider an observer who emits a sound signal
from a fixed radius r� near the acoustic black hole. The
original signal has frequency ω� as measured by this
stationary observer. The sound signal is measured by
another stationary observer (see Fig. 9), where its

receiving
observer

emitting
observer

sound
wave

FIG. 9. A sound wave traveling from r� to infinity, and the
sound frequency measured by the receiver is lower than that of
the sender.
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frequency ω∞ received by an observer at infinity is less
than ω�. The sound wave energy related to the viewer’s
“three-velocity” uobs is [32]

E ¼ −p · uobs: ðA1Þ

Since the energy of a beam of sound wave is E ¼ ℏω,
ℏω ¼ −p · uobs given the relationship between the observ-
er’s measured frequency and the “three-velocity” uobs. For
a stationary observer, the spatial component ujobs of the
“three-velocity” is zero (j ¼ r;ϕ). The time component
utobsðrÞ at radius r for a stationary observer depend on the
normalization condition,

uobsðrÞ · uobsðrÞ ¼ gαβuαobsðrÞuβobsðrÞ ¼ −1: ðA2Þ

For static black hole, ui
obsðrÞ ¼ 0, and this means

gttðrÞ½utobsðrÞ�2 ¼ −1: ðA3Þ

In other words,

utobsðrÞ ¼ ð1 − v2Þ−1
2: ðA4Þ

Thus, the time-component of the “three-velocity” is
given by

utobsðrÞ ¼ ½ð1 − v2Þ−1
2; 0; 0� ¼ ð1 − v2Þ−1

2ξα; ðA5Þ

where ξ is the Killing vector ξα ¼ ð1; 0; 0Þ corresponding to
the fact that the metric is time-independent. Therefore, for a
stationary observer at radius r, one has

uobsðrÞ ¼ ð1 − v2Þ−1
2ξ: ðA6Þ

Using ℏω ¼ −p · uobs in Eq. (A6), the frequencies of
the sound wave measured by the stationary observer at
radius r� and infinite radius r∞ are

ℏω� ¼ ð1 − v2�Þ−1
2ð−ξ · pÞr� ; ðA7Þ

ℏω∞ ¼ð1 − v2∞Þ−1
2ð−ξ · pÞr∞ : ðA8Þ

The quantity ξ · p is conserved along the sound wave’s
geodesic. That is, ð−ξ · pÞr� ¼ ð−ξ · pÞr∞ . Therefore, the
relationship between the frequencies is

ω∞ ¼ ω�

�
1 − v2�
1 − v2∞

�1
2 ¼ ω�

�
1 − λ2

r2�

1 − λ2

r2∞

�1
2 ¼ ω�

�
1 −

λ2

r2�

�1
2

:

ðA9Þ

In the r → ∞ limit, the frequency is less than the frequency
at r� by a factor ð1 − λ2=r2�Þ1=2. The sound wave should be
influenced by the “gravitational” redshift of the acoustic
metric. If the position r� of the signal sender approaches the
acoustic horizon infinitely, the frequency observed at
infinity will be infinitely low.
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