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We consider particle collisions in the background of a nonextremal black hole. Two particles fall from
infinity, particle 1 is fine-tuned (critical), collision occurs in its turning point. The first example is the
Reissner-Nordström (RN) one. If the energy at infinity E1 is big enough, the turning point is close to the
horizon. Then, we derive a simple formula according to which Ec:m: ∼ E1κ

−1=2, where κ is a surface gravity.
Thus significant growth of Ec:m: is possible if (i) particle 1 is ultrarelativistic (if both particles are
ultrarelativistic, this gives no gain as compared to collisions in flat space-time), (ii) a black hole is near-
extremal (small κ). In the scenario of multiple collisions the energy Ec:m: is finite in each individual
collision. However, it can grow in subsequent collisions, provided new near-critical particles are heavy
enough. For neutral rotating black holes, in case (i) a turning point remains far from the horizon but large
Ec:m: is still possible. Case (ii) is similar to that for collisions in the RN metric. We develop a general
theoretical scheme, direct astrophysical applications can be a next step to be studied.
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I. INTRODUCTION

During the last decade, a lot of effort was devoted to high
energy processes near black holes. A large series of papers
was triggered by the observation made by Bañados, Silk
andWest [1]. They noticed that if two particles fall toward a
black hole and one of particles is fine-tuned (critical), the
energy Ec:m: can grow unbounded (this is the so-called
BSW effect, after the names of its authors). It is important
that a black hole was supposed to be extremal. Moreover, in
[2] the impossibility of astrophysical black holes to be
exactly extremal was considered as an obstacle to the
realization of this effect. This was repeated many times in
subsequent works. The main objection against the counter-
part of the BSWeffect for nonextremal black holes consists
in that the critical particle cannot approach the horizon in
this case. But if both particles are not fine-tuned (they are
called “usual”), Ec:m: remains modest.
Meanwhile, in [3] an important observation was made.

Let one particle be not exactly critical but, instead, near-
critical. Then, one can adjust the deviation from the critical
state to the proximity of the point of collision to the horizon
in such a way, that Ec:m: becomes unbounded. However,
one difficulty remains for nonextremal black holes. The
most physically interesting situation arises when both
particles fall from infinity. This can be realized for extremal
black holes. But for nonextremal ones, the potential barrier

prevents a near-critical particle from reaching the horizon in
the same manner as this happens for an exactly critical one.
To overcome this difficulty, the scenario of multiple

scattering was proposed in [3]. According to it, particles 1
and 2 come from infinity and collide close to the horizon,
creating particles 3 and 4. In doing so, particle 3 is almost
critical. Afterwards, a new particle 5 coming from infinity
collides with particle 3 producing an indefinitely large Ec:m:
However, straightforward application of the multiple scat-
tering scenario is not fruitful. At first glance, one can obtain
finally unbounded Ec:m:ð3; 5Þ in this way (arguments in
parentheses indicate particle numbers). The problem is,
however, that if particles 1 and 2 are both usual, particle 3
cannot be near-critical. Indeed, Ec:m:ð1; 2Þ ¼ Ec:m:ð3; 4Þ.
Meanwhile, it follows from general principles [1,3,4] that
near-horizon collision of two usual (or two near-critical)
particles 1 and 2 with finite individual energies leads to
bounded Ec:m:ð1; 2Þ while collision between the critical and
usual particles gives unboundedEc:m:ð3; 4Þ. Thus we have a
contradiction, so particle 3 with desired properties cannot
appear as a result of previous collision between particles
arrived from infinity. A special case arises when particle 3
is not a critical in the standard sense but simply has small
individual energy E [5]. However, careful analysis shows
that such a particle cannot be obtained as a result of a
precedent collision too [6], so the same problem remains.
In [7] the authors categorically claimed that nonextremal

black holes cannot be accelerators, provided initial particles
come from infinity and have finite individual energies E.*zaslav@ukr.net
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Meanwhile, details of dynamics of collision were not taken
into account in [7] and this leaves some potential gaps and
questions. After the first collision, the second one can occur
much more close to the horizon. Can it lead to unbounded
Ec:m:? The main obstacle against obtaining very high Ec:m:
is related to the fact that the critical particle cannot
overcome the potential barrier on its way to the horizon
and bounces back in the turning point. But what happens if
the turning point itself becomes closer and closer to the
horizon? It was pointed out in [7] that indefinitely large
Ec:m: entails an indefinitely large individual energy E.
Meanwhile, the fact that E → ∞ is required does not
destroy the value of a black hole as a particle accelerator
since one can compare Ec:m: with a similar quantity
ðEc:m:Þ∞, had collision would have occurred at flat infinity.
If ðEc:m:Þ∞ is modest for such collision but Ec:m: ≫
ðEc:m:Þ∞, this can be considered as some kind of accelerator
even despite large initial E. We would also like to remind a
reader that collisions with very large Ec:m: were found to
be possible if (i) a corresponding nonextremal black is
near-extremal, (ii) this includes particles on the circular
orbits [8,9].
In the present work, we consider the result of collisions

when both particles come from infinity and collide in the
turning point of the critical particle. We discuss these
effects for charged static black holes and rotating neutral
ones separately. As we will see, this leaves some possibility
of nonextremal black holes to serve as particle accelerators,
although with some reservations. In doing so, the effect is
achieved at the first collision, whereas the second collision
does not bring new features, so the scenario of multiple
collisions is, typically, irrelevant in the situations under
considerations. Nonetheless, there is a special alternative. If
superheavy particles can be created in collisions, this can
significantly increase the energy gain. We develop a general
scheme that enables us to understand potential possibilities
of nonextremal black holes but refrain from concrete
astrophysical applications.
One reservation is in order. In papers [10–12] indefi-

nitely large Ec:m: was obtained irrespective of whether the
horizon is extremal or nonextremal. Moreover, fine-tuning
of a particle was not required there. However, head-on
collisions described by the first line in Eq. (2.57) of [12]
correspond to white holes (with one of particles moving
away from the horizon) rather to black holes (when both
particles move to the horizon). Such a scenario is possible
but it is beyond of scope of our work.
In what follows, we use the geometric system of units in

which fundamental constants G ¼ c ¼ 1.

II. EQUATIONS OF MOTION

We begin with the spherically symmetric case since it is
rather simple and admits a number of exact results. Let us
consider the black hole metric

ds2 ¼ −dt2f þ dr2

f
þ r2dω2; ð1Þ

where dω2 ¼ dθ2 þ sin2 θdϕ2, f ¼ fðrÞ. For the Reissner-
Nordström (RN) metric,

f ¼ 1 −
2M
r

þQ2

r2
¼
�
1 −

rþ
r

��
1 −

r−
r

�
; ð2Þ

where M is the mass, Q being the electric charge of a

nonextremal black hole. Here, rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, is

the event horizon radius, r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
is the

Cauchy horizon radius, M > Q, rþ > r−.
The electric potential equals

φ ¼ Q
r
: ð3Þ

If a particle with the mass m and electric charge q moves
in this background and other external forces are absent, the
equations of motion give us

m_t ¼ X
f
; ð4Þ

m _ϕ ¼ L
r2
; ð5Þ

X ¼ E − qφ ¼ E −
qQ
r

; ð6Þ

m_r ¼ σP; P ¼
ffiffiffiffi
U

p
; U ¼ X2 − fm̃2; ð7Þ

m̃2 ¼ m2 þ L2

r2
; ð8Þ

E is the energy, L being the angular momentum, dot
denotes derivative with respect to the proper time, σ ¼ �1.
The forward-in-time condition _t > 0 entails

X ≥ 0: ð9Þ

We use the standard classification. If XH > 0 is separated
from zero, we call a particle usual. If XH ¼ 0, it is called
critical. If XH ¼ Oð ffiffiffi

f
p Þ near the horizon is small, it is

called near-critical. Here, XH is the value of X on the
horizon.

III. PARTICLE COLLISIONS

Let particles 1 and 2 collide. One can define the energy
in the center of mass frame Ec:m: according to the relation

E2
c:m: ¼ −ðm1u1μ þm2u2μÞðm1u

μ
1 þm2u

μ
2Þ

¼ m2
1 þm2

2 þ 2m1m2γ; ð10Þ

O. B. ZASLAVSKII PHYS. REV. D 102, 104004 (2020)

104004-2



where γ ¼ −u1μu2μ is the Lorentz factor of relative motion,
uμ is the four-velocity. We consider pure radial motion of
particles in the RN background, so L1 ¼ L2 ¼ 0. From
equations of motion (4)–(7) one finds

m1m2γ ¼
X1X2 − P1P2

f
; ð11Þ

where we assumed that both particle move toward a black
hole, so σ1 ¼ σ2 ¼ −1. In particular, if collision occurs in
the turning point for one of particles (say, particle 1),

m1m2γ ¼
X1X2

f
: ð12Þ

To simplify formulas, we assume that particle 2 is
neutral. This also enables us to avoid the question about
the direct electric interaction between particles.
In what follows, we also assume for simplicity that

m1 ¼ m2 ≡m. Then, for collision in the turning point
where P1 ¼ 0, Eqs. (10), (11) give us

E2
c:m: ¼ 2m2 þ 2X1E2

f
; ð13Þ

where the right-hand side is taken in the turning point.

IV. FLAT SPACE-TIME

Before discussion of collisions in the RN metric, it is
instructive to list the main formulas for the flat space-time.
They are quite trivial by themselves, but in what follows we
will need to compare with them the results of collision
in the black hole background to check, whether collision in
the turning point gives some enhancement as compared to
the collision at infinity.
If E1 ∼ E2 ∼m it is obvious that Ec:m: ∼m as well. If

E2 ¼ m,

ðE2
c:m:Þflat ¼ 2m2 þ 2E1m: ð14Þ

Thus if E1 grows, ðE2
c:m:Þflat grows as well.

If E1 ¼ E2 ¼ E ≫ m, it follows from (10) and (11) with
f ¼ 1 that

ðE2
c:m:Þflat ≈ 4m2 ð15Þ

is finite.

V. ALLOWED ZONE OF MOTION

Now, we return to the RN metric. The motion is possible
where U ≥ 0. This condition gives us

�
E −

qQ
r

�
2

≥
�
m2 þ L2

r2

��
1 −

2M
r

þQ2

r2

�
: ð16Þ

We assume that Qq > 0 (say, Q > 0, q > 0) since it
is this case that potentially gives us unbounded Ec:m: [13].

In the turning points U ¼ 0. If L ¼ 0, we can find the
turning point analytically:

r1;2 ¼
1

ε2 − 1
ðεq̃Q −M �

ffiffiffiffi
D

p
Þ; ð17Þ

where ε ¼ E
m, q̃ ¼ q

m, r1 ≤ r2.

D ¼ Q2ðq̃2 þ ε2 − 1Þ − 2Mεq̃QþM2: ð18Þ

As a particle falls from infinity, where E ≥ m, we have
ε2 ≥ 1. Turning points outside the horizon are absent if
D < 0 or

r2 < rþ: ð19Þ

In what follows we will consider the case when particle 1 is
critical and particle 2 is neutral, q2 ¼ 0. This means that the
turning point r1 is absent for particle 2,

r2 ¼
ffiffiffiffi
D

p
−M

ε2 − 1
; ð20Þ

where

D ¼ M2 þQ2ðε2 − 1Þ: ð21Þ

It is easy to check that (19) is satisfied, so the point r2 is
absent too. Thus particle 2 comes from infinity and reaches
the horizon.

VI. CRITICAL PARTICLE

For the critical particle, XH ¼ 0, so we have from (6) that

E ¼ qQ
rþ

; ð22Þ

D ¼ M2 −Q2; ð23Þ

r1 ¼ rþ; ð24Þ

r2 ¼ rþ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ε2 − 1

¼ rþ

�
1þ 2κrþ

ε2 − 1

�
; ð25Þ

Xðr2Þ ¼ E

�
1 −

rþ
r2

�
¼ 2κr2þE

r2ðε2 − 1Þ : ð26Þ

Here, κ ¼ 1
2
f0ðrþÞ is the surface gravity,

κ ¼ 1

2rþ

�
1 −

r−
rþ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
r2þ

: ð27Þ

A special case arises if ε ¼ 1. Then, q̃Q ¼ rþ, and for

r → ∞ we have U ≈ 2m2ðM−rþÞ
r < 0. Such a particle cannot
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move at infinity, so to avoid this case, we assume ε > 1 in
what follows.

VII. COLLISION BETWEEN THE CRITICAL
AND NEUTRAL PARTICLES

If particles fall from infinity and collide in point r ¼ r2,
it follows from (13) that

E2
c:m: ¼ 2m2 þ

2E1E2ð1 − rþ
r2
Þ

fðr2Þ
: ð28Þ

In the region rþ < r < r2, motion of particle 1 is
forbidden since U becomes negative there.
The only hope to obtain unbounded E2

c:m: is to arrange
collision near the horizon, where f → 0. So, now we
examine, whether or not this gives the unbounded E2

c:m:.
The condition fðr2Þ ≪ 1 requires r2 → rþ. As we see it

from (25), this happens if the second term in parentheses is
small, so

κrþ
ε2 − 1

≪ 1: ð29Þ

There are two typical cases here.

A. κr+ =Oð1Þ, ε → ∞
Then,

fðr2Þ ≈ 2κðr2 − rþÞ ≈
4κ2r2þ
ε2

; ð30Þ

taking into account (26) we obtain

E2
c:m: ≈ 2m2 þ E1E2

κrþ
: ð31Þ

If E2 ¼ m, there is no energy gain as compared to the flat
case (14). However, if not only E1 ≫ m, but also E2 ≫ m,
collision near the horizon is much more effective due to the
factor E1E2 that is absent in (15).

B. ε=Oð1Þ, κr+ ≪ 1

This means that our black hole is near-extremal. Then,
we must retain in the expansion for the function fðrÞ also
the next term:

f ≈ 2κðr − rþÞ þ
ðr − rþÞ2

r2þ
; ð32Þ

so

fðr2Þ ≈ 4κ2r2þ
ε2

ðε2 − 1Þ2 ¼ 4κ2r2þ
E2
1m

2

ðE2
1 −m2Þ2 : ð33Þ

Taking into account (28), we obtain

E2
c:m: ≈

E2ðE2
1 −m2Þ

κrþE1

: ð34Þ

Independently of E1 and E2, we obtain formally
unbounded growth when κ → 0.
And, the combined case ε ≫ 1, κrþ ≪ 1 is possible as

well. Then, (34) turns into (31).

VIII. NONZERO ANGULAR MOMENTUM

Let us consider now the case, when L ≠ 0 for particle 1.
Then, if particle 1 is critical, we have for it

U ¼
�
1 −

rþ
r

��
E2

�
1 −

rþ
r

�
−
�
1 −

r−
r

�
m̃2

�
: ð35Þ

We are interested in the situation when the turning point
r2 is close to the horizon. Assuming

κrþ
m̃2

1ðrþÞ
E2 − m̃2

1ðrþÞ
≪ 1 ð36Þ

and repeating simple calculations step by step, we obtain
that if

E ≫ m̃ðrþÞ ð37Þ

is satisfied, then (31) holds.
If κrþ ≪ 1,

r2 − rþ
rþ

≈
m̃2

1ðrþÞ
E2 − m̃2ðrþÞ

�
1 −

r−
rþ

�
¼ 2κrþ

m̃2
1ðrþÞ

E2 − m̃2
1ðrþÞ

:

ð38Þ

Then we have, instead of (34),

E2
c:m: ≈

E2½E2
1 − m̃2ðrþÞ�
κrþE1

; ð39Þ

where now the case E1 ≳ m̃ðrþÞ is allowed.
The only difference as compared to the case L ¼ 0

consists in the fact that the quantity m̃ðrþÞ appears in some
formulas instead of m.

IX. MULTIPLE COLLISIONS

We see that indeed E2
c:m: can become large due to big E1

or small κ. Now, we want to elucidate, is it possible to
improve the result (39) and increase Ec:m:? To this end, we
consider the following realization of multiple scattering
scenario [3]. Particle 1 and 2 collide creating particles 3 and
4. We want to achieve X3 as small as possible. Then, in the
case of success, collision between particle 3 and particle 5
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coming from infinity can give large Ec:m:. Then, we can
take advantage of the results of analysis already carried out
in [14]. Although the corresponding equations are derived
in [14] for the rotating case whereas now a black hole is
static, the general formulas look the same. For simplicity,
againm1¼m2¼m, alsom3 ¼ m4 and all angular momenta
Li ¼ 0. Then, given parameters of particles 1 and 2, in the
point of collision (where subscript “c”will be used) one has
from Eqs. (19), (20) of [14] (this can also be reobtained
directly form the conservation laws)

ðX3Þc ¼
1

2

 
X0 − P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
3

m2
0

s !
c

; ð40Þ

ðX4Þc ¼
1

2

 
X0 þ P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
3

m2
0

s !
c

; ð41Þ

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0f
q

; ð42Þ

where m0 ¼ Ec:m:, X0 ¼ X1 þ X2. As before, particle 1 is
critical, particle 2 is usual. Let ε ≫ 1 with κrþ ∼ 1.
According to (30) and (31), in the point of collision near

the horizon f ¼ Oð 1
ε2
Þ, m2

0 ¼ OðεÞ, X0 ≈ E2 ¼ m,

P0 ≈ X0 −
m2

0f
2X0

: ð43Þ

Then,

ðX3Þc ≈
κrþðm2 þm2

3Þ
εm

: ð44Þ

Let q1 ¼ q3 ¼ q, q2 ¼ q4 ¼ 0. Then, it follows from (6),
(25) that

X3 ¼ ðX3Þc þ qQ

�
1

r2
−
1

r

�
: ð45Þ

In particular,

X3ðrþÞ ≈ ðX3Þc −
2κqQ
ε2

: ð46Þ

The first term in (45) has the order ε−1 and dominates
everywhere between rþ and r2. Thus, in the main approxi-
mation, the second term can be neglected and X3 ≈ ðX3Þc.
It is convenient to make the substitution

r − rþ ¼ ðX3Þ2c
2κm2

3

y: ð47Þ

Then, for f ≈ 2κðr − rþÞ we have

f ≈
ðX3Þ2c
m2

3

y: ð48Þ

Correspondingly,

P2
3 ≈ ðX3Þ2c −m2

3f ¼ ðX3Þ2cð1 − yÞ: ð49Þ

The collision between particles 1 and 2 occurred in the
point r ¼ r2, for which the corresponding value y ¼ y1
follows from (25), (47):

y1 ¼
4m2m2

3

ðm2
3 þm2Þ2 : ð50Þ

After this collision, a new particle 3 can move either
toward the horizon with σ3 ¼ −1 or reach a new turning
point where r ¼ r̃2, y ¼ 1. In the second case, it bounces
back there and moves further toward the horizon
with σ3 ¼ −1.
From (47) one can find a location of a new turning point:

r̃2 − rþ ¼ ðX3Þ2c
2κm2

3

¼ κr2þðm2 þm2
3Þ2

2ε2m2
3m

2
: ð51Þ

If m3 ¼ m, this coincides with (25). Then, a particle either
has σ3 ¼ −1 or bounces back and changes σ3 to −1
immediately. In general,

r̃2 − rþ
r2 − rþ

¼ ðm2
3 þm2Þ2
4m2

3m
2

≥ 1: ð52Þ

Let a usual particle 5 with the energy E5 ¼ m5 ¼ m and
q ¼ 0 fall from infinity, σ5 ¼ −1. If collision occurs when
σ3 ¼ þ1, we have from (10), (11), (44) that

E2
c:m: ≈

2E1m2
3mFþðyÞ

κrþðm2 þm2
3Þ

; ð53Þ

FþðyÞ ¼
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − y
p
y

; ð54Þ

where y ≥ y1, This function is monotonically decreasing
with y, so it attains the maximum value at y ¼ y1, where

ðE2
c:m:Þmax ≈

2E1m2
3mFþðy1Þ

κrþðm2 þm2
3Þ

: ð55Þ

The most “profitable” case corresponds to head-on colli-
sion in the point y ¼ y1. This implies that the 2nd collision
occurs in the same point as the first one. If m ≪ m3,
y1 ≈ 4m2

m2
3

≪ 1. Then, Fþðy1Þ ≈ 2
y1
,
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ðE2
c:m:Þmax ≈

E1m2
3

κrþm
: ð56Þ

But, if κrþ ¼ Oð1Þ, E2
c:m: remains limited.

If collision occurs when σ3 ¼ −1, we have σ5σ3 ¼ þ1.
Then, in the same manner we obtain

E2
c:m: ≈

2E1m2
3mF−ðyÞ

κrþðm2 þm2
3Þ

; ð57Þ

F−ðyÞ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

¼ 1

1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p : ð58Þ

Here, F is monotonically increasing bounded function,
Fð0Þ ¼ 1

2
, Fð1Þ ¼ 1. Thus if the second collision occurs at

y ¼ 1, the result for E2
c:m: is as twice as many as compared

to the collision on the horizon. This is quite similar to the
observation made for the nonextremal Kerr metric in [15]
(see discussion after Eq. (31) there) and generalized in
Sec. 2.2. of [9]. Thus a second collision does not lead to
unbounded Ec:m:.
We can compare ðE2

c:m:Þ2 after the 2nd collision with a
similar quantity ðE2

c:m:Þ1 (31) after the 1st collision. Taking
into account (56), we obtain

ðE2
c:m:Þ2

ðE2
c:m:Þ1

≈
m2

3

m2
: ð59Þ

If all masses have the same order m, there is no big

gain. However, if, say, m5 ¼ m but m3 ≫ m, ðE2
c:m:Þ2

ðE2
c:m:Þ1 ≫ 1.

Meanwhile, there is an upper bound here. As
ðEc:m:Þ1 ≥ 2m3, there is a bound

ðE2
c:m:Þ2

ðE2
c:m:Þ1

≤
ðE2

c:m:Þ1
4m2

≈
E1

4mκrþ
; ð60Þ

where (31) with E2 ¼ m was used again.
One can repeat the procedure. Let a new particle 6 with

m6 ¼ m is sent from infinity. It collides with particle 3
and produces a new near-critical particle 7. Repeating
derivation, we obtain in the new point of collision (44) with
m3 replaced with m7. In Eq. (59) m3 should be replaced
with m7.
We can imagine a scenario in which initially a (near)

critical particle 1 with E1 ≫ m is sent from infinity together
with particle 2 having E2 ¼ m. They collide, create a near-
critical particle with m3 that collides with a new particle
having E ¼ m and coming from infinity, etc. If, for
simplicity, all new near-critical particles have the same
mass m3 and falling particles have the same mass m, each
time Ec:m: can acquire an additional factor ðm3

m Þ that results
in ðm3

m Þn, where n is the number of additional collisions. It
can be quite big, provided new near-critical particles are
heavy enough. In this scenario, a big energy E1 is pumped

into the system but this is done only one time. It is worth
noting that in the multiple scenario suggested in [3],
only the angular momentum changes due to collisions.
Meanwhile, now parameters of a near-critical particle are
fixed, the effect of big Ec:m: is achieved due to the relation
between masses of a near-critical and usual particles.
Thus if we want to obtain big Ec:m:, the near-critical

particle should be superheavy. In this sense, there is some
analogy between collisions in our scenario and collisions
near extremal charged black holes. Namely, it was shown in
[16] that in the scenario denoted there OUT+, there is no
upper bound on m3 and, instead, there is a lower bound.
The similar result was obtained in somewhat different
approach in [17]. In this sense, the collisional Penrose
process with ultrahigh Ec:m: can be accompanied with
ultrahigh m3. Meanwhile, there is also difference between
the process under discussion in the present work and that
considered in [16,17]. In the extremal case, Ec:m: andm3 are
independent, so it can happen that Ec:m: is ultrahigh
whereas m3 is modest (although restricted from below).
Meanwhile, for nonextremal black holes, big m3 is a
necessary condition for obtaining high Ec:m:.
There is also a counterpart of the phenomenon of

interrelation between Ec:m: and m3 for rotating black holes.
It was found in [18] for the Kerr metric and was generalized
in [19]. Then, although there is an upper bound on Ec:m:,
significant increase in Ec:m: occurs when a created particle
is superheavy.
One additional remark is in order. As it is clear from the

method of derivation, it is not important, whether the new
particle will have parameters close to the criticality con-
dition XH ≈ 0 due to the compensation between E and qφ
or simply it has q ¼ 0 and small energy [5,6].

X. ROTATING CASE

It is the case of rotating black holes that we now turn to.
In doing so, we assume no electric interaction between
particles and a black hole. It means that either particles or a
black hole are electrically neutral (or both a black hole and
particles). As consideration of collisions runs along the
same line, we give only brief description. The metric has
the form

ds2 ¼ −N2dt2 þ gϕðdϕ − ωdtÞ2 þ dr2

A
þ gθdθ2; ð61Þ

where for shortness gϕ ≡ gϕϕ and gθ ≡ gθθ. We assume that
the metric coefficients do not depend on t and ϕ and
possess symmetry because of which motion within the
plane θ ¼ π

2
is possible. In this plane, we can redefine the

radial coordinate to have N2 ¼ A. Then, the equations of
motion for a free particle have the form

m_t ¼ X
N2

; ð62Þ
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m _ϕ ¼ L
gϕ

þ ωX
N2

; ð63Þ

m_r ¼ σP; P ¼
ffiffiffiffi
U

p
ð64Þ

with

U ¼ X2 − m̃2N2; ð65Þ

X ¼ E − ωL; ð66Þ

m̃2 ¼ m2 þ L2

gϕ
: ð67Þ

The main difference with respect to the RN case consists
in that the critical particle has

L ¼ E
ωH

; ð68Þ

so for it, E and L are not independent parameters any
longer.
The rotational counterpart of Eq. (13) for collision in the

turning point rt of particle 1 now reads

E2
c:m: ¼ 2m2 þ 2X1ðrtÞX2ðrtÞ

N2ðrtÞ
−
2L1L2

gϕðrtÞ
: ð69Þ

A. Ultrarelativistic particles

It turns out that even for ultrarelativistic particles with
(37), the turning point does not approach the horizon.
Indeed, if N ≪ 1, r−rþ

rþ
≪ 1 and the Taylor expansion has

the form

ω ¼ ωH − B1ðr − rþÞ þ � � � ð70Þ

where B1 is some constant. For the critical particle,

X ¼ E
ωH

B1ðr − rþÞ þ � � � ð71Þ

The first term in U has the order ðr − rþÞ2 whereas the
second negative one has the orderN2 ∼ ðr − rþÞ, soU < 0.
For the RNmetric, we were able to choose a large energy of
the particle to achieve proximity of the turning point to the
horizon since large E compensated small r − rþ. But now
this is impossible since the negative contribution in U has
the same factor E2 as a positive one due to condition (68).
Thus the turning point is located in some intermediate

region where N ∼ 1. Now, the type of particle is irrelevant
at all. Let, for simplicity, both particles be usual with
L1 ¼ L2 ¼ 0, so X1 ¼ E1. X2 ¼ E2. Then, in the turning
point r ¼ rt

E2
c:m: ¼ 2m2 þ 2E1E2

NðrtÞ
: ð72Þ

By itself, E2
c:m: is finite. However, one can obtain a

significant energy gain as compared to collision in the flat
space-time (15) even in this “trivial” scenario, provided
both particles are ultrarelativistic, E1 ≫ m, E2 ≫ m. The
corresponding additional factor equals E1E2

m2 . As now
E1

m and
E2

m are free parameters, we can formally increase the energy
gain without a limit. The only difficulty is that we must
have ultrarelativistic particles from the very beginning. (To
some extent, that resembles the “energy feeding problem”
discussed in Sec. IV C1 of [20] for another scenario of
collision in the extremal black hole background, when
particles move along the axis. Now, a similar problem
reveals itself for nonextremal ones and equatorial particle
motion.)

B. Near-extremal black holes

Now, let us consider the limit κ → 0. If κ is small,

N2 ≈ 2κðr − rþÞ þHðr − rþÞ2; ð73Þ

where H is the model-dependent coefficient. Then, the
position of the turning point rt for the critical particle is
determined by equation U ¼ 0. Taking into account (71),
we obtain from (65)

ðrt − rþÞC ≈ 2κ

�
m2 þ E2

ω2
HðgϕÞH

�
; ð74Þ

where

C ¼ E2

ω2
H

�
B2
1 −

H
ðgϕÞH

�
−Hm2 ð75Þ

and it is assumed that C > 0, subscript “H” refers to
quantities calculated on the horizon. Bearing in mind that
E ≥ m, it is sufficient to require that B2

1 > Hðω2
H þ 1

ðgϕÞHÞ.
Then,

rt − rþ ≈
2κm̃2ðrþÞ

C
: ð76Þ

If κrþ ∼ 1 and E
m → ∞, the numerator has the same order as

the denominator, so rt − rþ does not become small in
accordance with what is said after Eq. (71). However, for
κ → 0 we see that indeed rt → rþ.
For the critical particle 1, it follows from (71) and (76)

that

X ≈
E
ωH

B1

2κm̃2ðrþÞ
C

: ð77Þ
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Equation (73) gives us

N2ðrtÞ ≈ 4
κ2m̃2ðrþÞ

C

�
1þH

m̃2ðrþÞ
C

�
: ð78Þ

Then, it follows from (69) that

E2
c:m: ≈

E1ðX2ÞHB1C
κωH½CþHm̃2ðrþÞ�

: ð79Þ

Thus again

E2
c:m: ∼

1

κ
ð80Þ

can grow unbounded if κ → 0.
For the near-extremal Kerr metric,

ðκrþÞ−1 ≈
2

η
; η ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

q
; ð81Þ

where a� ¼ a
M, a being the standard parameter character-

izing an angular momentum, M black hole mass.
In principle, there are three different scenarios: (i) the

near-critical particle is created already near the horizon [3],
(ii) collisions involve a particle moving on a circular orbit
near a black hole [8], (iii) both particles come from infinity
and collide in the turning point. Thus in all three cases there
is only one small parameter that is able to increase E2

c:m:
significantly. It is the same for all three scenarios and
depends on the properties of a black hole. This is the
surface gravity κ or, equivalently, η. If one takes the
astrophysically relevant limit a� ¼ 0; 998 [21] one obtains
that η−1 ≈ 22.361. There are also numeric factors depending
on the scenario but we omit such details. We see that there
exists enhancement of the energy E2

c:m:, although it remains
bounded. Meanwhile, the scenario under discussion gives
some additional factors that can improve the situation. It
consists in the process that include superheavy particles. We
considered it in detail for the RN black hole but a similar
phenomenon should happen also for the Kerr one. Then, the
ratio m3

m in each additional collision can somehow increase
the energy gain. Whether and how this can be realized in a
realistic astrophysical context is a separate interesting ques-
tion beyond the scope of the present paper.

XI. DISCUSSION AND CONCLUSIONS

Thus we considered two types of nonextremal black
holes: charged static and neutral rotating ones. In both
cases, we considered scenarios in which the critical and
usual particles come from infinity and collide in the turning
point of the critical particle. Under some conditions, the
location of this point turns out to be close to the horizon.
For the RN black hole, there are two different factors that
make it possible: either critical particle 1 is ultralativistic or
a black hole is near-extremal (or both factors are valid).
Then, E2

c:m: ∼
E1

κ . On the first glance, the necessity to have

large E1 from the very beginning, depreciates the ability of
a black hole to serve as a particle accelerator [7]. However,
this is not so. One can compare, say, the scenario under
discussion to collision of two ultrarelativistic particles at
flat infinity. Then, we have significant gain in the energy of
collisions if it happens near the horizon. Also, for a
moderate Killing energy E1.2 ∼m the energy of collision
becomes indefinitely large if the surface gravity κ is as
small as we like. This is a counterpart of collisions on near-
circular orbits in the background of near-extremal black
holes. There exist two versions of the corresponding
collisions in which E2

c:m: ∼ κ−1 similarly to our case or
E2
c:m: ∼ κ−2=3 for two different types of scenarios [8,9]. But

now, the scenario has nothing to do with the circular orbits,
both particles come from infinity.
We also saw that if, after the first collision, new particle 3

collides again with some particle that arrived from infinity,
the energy Ec:m: remains bounded in each individual
collisions. However, if new created near-critical particles
are heavy enough with m3 ≫ m, the process can be
repeated giving a growing factor proportional to ðm3=mÞ
for each new collision (where for simplicity we assumed
that new near-critical particles have the same mass m3).
Only an initial particle with big E1 is required, afterwards it
is sufficient to send from infinity particles with modest
energy of the order m.
As far as the neutral rotating black hole is concerned,

near-extremal black holes with κ → 0 are relevant in this
context with the same result E2

c:m: ∼ κ−1.
To summarize, there are two different types of accel-

erators connected with black holes. The first type is
presented by extremal black holes, where the presence
of the horizon reveals itself directly. It is the proximity of a
point of collision to the horizon (together with the fine-
tuning of parameters of one particle) that matters [1], while
the mass of colliding particles are of secondary importance.
Choosing this point close enough to the horizon, one can
obtain Ec:m: as large as one likes already in the first
collision. For nonextremal black holes this is impossible.
But, nonetheless, nonextremal black hole can indeed be
particle accelerators, although with a number of restrictions
described above. In doing so, the relation between masses
of particles that are created near the horizon and those
coming from infinity plays a crucial role in the scenario of
multiple collisions. It is able to enhance the initial gain in
the energy of collision. It would be interesting to consider
more realistic astrophysically relevant scenarios on the
basis of the results obtained in the present work.
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