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The binary black holes (BBHs) formed near the supermassive black holes (SMBHs) in the galactic
nuclei would undergo eccentricity excitation due to the gravitational perturbations from the SMBH and
therefore merger more efficiently. In this paper, we study the coupling of the three body 1st post-Newtonian
(PN) effects with the spin effects from the SMBH in the hierarchical triple system. We extend previous
work by including the coupling between the de Sitter precession and the Lense-Thirring precession from
the SMBH spin. This coupling includes both the precessions of the inner orbit angular momentum and the
Runge-Lenz vector around the outer orbit angular momentum in a general reference frame. We find the
change of the (maximal) eccentricity in the neighboring Kozai-Lidov cycles due to spin effects is detectable
by LISA in the future. Our general argument on the coupling of the three body 1PN effects in three body
systems could be extended to any other situation as long as the outer orbital plane evolves.
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I. INTRODUCTION

The first detection of a gravitational wave (GW) from a
merger event of a binary black hole (BBH) by LIGO/Virgo
[1] in 2015 showed the tremendous success of general
relativity (GR) and opened an era of gravitational wave
astrophysics. Up to now, the LIGO-VIRGO collaboration
observed eleven gravitational wave signals from compact
binary mergers during the first and second runs (O1 and
O2) [2], and the third observation run (O3) is undergoing
since April 2019 [3]. Currently, we have five ground-based
detectors [4–7] that focus on the merger and ringdown
phase of GW sources which is characterized by a frequency
of 10 Hz to 1000 Hz and a strain of order 10−22.
The space-based detector Laser Interferometer Space

Antenna (LISA) is expected to explore the lower frequency
GW sources with frequency range from 10−4 Hz to 1 Hz
and characteristic strain of order 10−21 [8]. The DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO)
is aiming to fill the gap between LIGO and LISA with
frequency band around 10−2 Hz to 10 Hz [9]. There are

several other big projects on the space detectors in the
future: advanced LISA (aLISA) [10], TianQin and Taiji in
China [11,12]. The space and ground based gravitational
wave detectors could cover all the inspiral-merger-ring-
down phase of compact binaries. The observations of GWs
enable us to figure out the binary formation channels (see,
e.g., [13,14]), test the validity of GR in the strong-field
regime (see, e.g., [15–17]), and shed light on the gravita-
tional wave astrophysics [18–21].
The origin of the LIGO/Virgo BBHs is a mystery.

Conventionally, they are believed to be formed as the
remnant of massive binary stars or they are formed dynami-
cally in the star clusters [22]. While according to the recent
studies, the centers of galaxies [23], especially those hosting
supermassive black holes (SMBHs) [24] are also important
places for BBHs to form. In these environments, the merger
rate of BBHs could be enhanced to a significant fraction of
the LIGO/Virgo event rate due to the complex astrophysical
dynamics [25–37]. And a fraction of the BBHs in galaxy
centers could either form at [29–31,38,39] or be captured to
places very close to the SMBHs [40,41].
The BBH formed near the SMBH are in a stable

hierarchical triple system. Here, we call it the “SMBH-
BBH” triple system, where the BBH as the inner binary and
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their center of mass revolving around the SMBH at a larger
outer orbit. The BBH is perturbed by the SMBH, and the
dominant Newtonian quadrupole perturbation causes the
“Kozai-Lidov” oscillation [42–44] on the BBH orbit.
The Kozai-Lidov oscillation is described by the exchange
between the inner orbital eccentricity and the inclination
angle, as a result of the interaction between the inner and
the outer orbit angular momentum.
The general relativistic effects are proved to be important

in the secular evolution of three body systems. The
relativity precession of the inner orbital pericenter is known
to suppress the Kozai-Lidov oscillation [44,45] if the
timescale of the former is shorter than the latter. And the
gravitational radiation is known to circularize and shrink
the binary orbit [45,46]. These two effects are due to the
post-Newtonian (PN) interactions in the inner binary. The
three body PN effects are coming from the post-Newtonian
interactions between the three bodies which are considered
in [47–50]. It is found in [47] that there is a resonant
eccentricity excitation behavior in the three bodies under
PN dynamics in some parameter space by conducting an
orbit-averaged three body 1PN Hamiltonian, though, the
Hamiltonian approach does not resolve all of the three body
PN effects which is stated in [48,50]. Will points out that to
find the full solution to the problem of secular evolution
with quadrupole and 1PN effects together, the cross terms
in the accelerations [48] and a multiple-scale analysis to
account for the corrections of the periodic effects are
needed [49]. When the mass of the inner binary is relatively
small, it is found in [50] there are three dominant three body
PN effects, where the main effect is the de Sitter precession
[51] which comes directly from the accelerations. The
above works either consider the three body systems at 1PN
order or assume Schwarzschild black holes. In these cases,
the outer orbital plane is nearly a constant, and thus the de
Sitter precession is decoupled in the zero order (of multiple-
scale analysis) secular evolutions since the equations of
motion do not depend on the longitude of ascending nodes.
While the observations indicate that the SMBHs are
universally spinning [52,53]. Our recent studies [54,55]
show that when it comes to a three body system where the
third body is a spinning SMBH, the Lense-Thirring
precession of the outer orbit will cause the Newtonian
quadrupole secular dynamics to depend on the angle
between the two orbital line of nodes ðΩ −Ω3Þ, here we
call it the “generalized Kozai-Lidov oscillation,” thus lead
to different evolutionary behaviors. So, it is worthy to study
the dynamical behaviors depend on the angles of nodes,
such as the Lense-Thirring precession and the de Sitter
precession.
The de Sitter precession is previously considered as a

subleading effect in the three body systems when the third
body is of smaller mass [48,56], or in the case when it is
decoupled in the zero order secular equations [50]. While
the spin effect from the SMBH will cause it to couple in the

secular dynamics through the generalized Kozai-Lidov
oscillation. And due to the large mass of the SMBH, the
de Sitter precession could reach to or even larger than the
amplitude of the binary 1PN effect. Liu and Lai in the paper
[57] noticed that the de Sitter precession of the inner orbit
also becomes important when combined with the Lense-
Thirring precession of the outer orbit. However, they only
added the precession of the inner orbit angular momentum
alone the outer orbit one in that work, while we point out in
this work is just a part of the de Sitter precession in this
case. In this work, we study the coupling of the three body
1PN effect which is dominated by the de Sitter precession
in the SMBH-BBH system where the SMBH is spinning,
thus revolving this system up to 1.5PN order. We analyze
theoretically the condition when the three body 1PN effect
is significant in the dynamics of our SMBH-BBH triple
system. And we discuss the impact of the de Sitter
precession on the gravitational waves of the BBH by
LISA’s detection. Furthermore, we give a proposal to find
the unique characteristic left by SMBH spin effect on the
BBH waveforms.
This paper is organized as follows. We calculate the

equations of motion in Sec. II. In Secs. II A and II B, we
analysis the Newtonian quadrupole order, full 1PN order
and the 1.5PN order equations of motion. In Sec. III we
calculate systematically the three body 1PN order effects in
a general reference frame and discuss the connections
between the secular equations of motion listed in Sec. II.
We present our numerical results in Sec. IV. In Sec. IVA,
we show numerical results of the general relativity effects
calculated and considered in this work. And in Sec. IV B,
we show typical characteristics on GW singles due to spin
effects. We conclude our paper in Sec. V.
Throughout this paper we use the natural units with c ¼

G ¼ 1 in our calculations.

II. EQUATIONS OF MOTION UP TO 1.5PN ORDER

A. Full 1PN dynamics

We now consider a hierarchical three-body system in
which the binary bodies of mass m1 and m2 are in a close
orbit with separation r, their center of mass revolving
around a SMBH of mass m3 at a much larger distance
Rð≫rÞ. We define the relative separation vector of the
binary system and the vector from the center of mass of the
binary to the SMBH by

x≡ x1 − x2; X ≡ x0 − x3; ð1Þ
where

x0 ≡m1x1 þm2x2
m

; ð2Þ

is the center of mass of the inner binary, andm≡m1 þm2.
We work in the center of mass-frame of the entire system,
thus,
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m1x1 þm2x2 þm3x3 ¼ mx0 þm3x3 ¼ 0; ð3Þ

where we have ignored the post-Newtonian corrections
to the center of mass. Then, the positions of the three
bodies are,

x1 ¼
m2

m
xþm3

M
X; x2 ¼−

m1

m
xþm3

M
X; x3 ¼−

m
M

X;

ð4Þ

where M ¼ m1 þm2 þm3 is the total mass. Since the
mass of SMBH is much larger than the binary system,
with m3 ≫ m, the center of mass frame of the entire

system is set to the position of m3. Thus Eq. (4) is
simplified to

x1 ¼
m2

m
xþ X; x2 ¼ −

m1

m
xþ X; x3 ¼ 0: ð5Þ

We also define the velocities v≡ dx=dt, V ≡ dX=dt,
accelerations a≡ dv=dt, A≡ dV=dt, distances r≡ jxj,
R≡ jXj, and unit vectors n≡ x=r, N ≡ X=R.
The accelerations are directly computed with the post-

Newtonian N-body equations of motion, which is com-
monly referred to as the Einstein-Infeld-Hoffman equations
of motion [58]:

aa ¼ −
X
b≠a

mbxab
r3ab

þ
X
b≠a

mbxab
r3ab

�
4
mb

rab
þ 5

ma

rab
þ

X
c≠a;b

mc

rbc
þ 4

X
c≠a;b

mc

rac

−
1

2

X
c≠a;b

mc

r3bc
ðxab · xbcÞ − v2a þ 4va · vb − 2v2b þ

3

2
ðvb · nabÞ2

�

−
7

2

X
b≠a

mb

rab

X
c≠a;b

mcxbc
r3bc

þ
X
b≠a

mb

r3ab
xab · ð4va − 3vbÞðva − vbÞ; ð6Þ

where rab ¼ jxabj ¼ jxa − xbj, nab ¼ xab=rab, va ¼ dxa=dt, and a, b, c denotes 1, 2, 3.
The inner binary acceleration could be decomposed as follows,

a ¼ −
mn
r2

−
m3r
R3

½n − 3ðn · NÞN� þ ½a�binary 1PN þ ½a�3body1PN þO

�
mm3

R3

�
þO

�
m3

2r
R4

�
þO

�
m2r
r3R

�
þ � � � ; ð7Þ

where we have expanded the Newtonian perturbation term from the third body to quadrupole order. And ½a�binary 1 PN is the
1PN order acceleration of the binary system (m1 and m2), while ½a�3 body 1PN is the 1PN order acceleration contribute by the
three body interactions. To leading order, they are

½a�binary 1PN ¼ mn
r2

�
ð4þ 2ηÞm

r
− ð1þ 3ηÞv2 þ 3

2
ηðn · vÞ2

�
þ ð4 − 2ηÞmðn · vÞv

r2
; ð8Þ

½a�3body 1PN ¼ 5mm3n
r2R

þ m
r2

��
3

2
ðn · VÞ2 − 2Δv · V þ V2

�
n − Δðn · VÞv

�

þm3

R2
½4v · NðV − ΔvÞ þ ðΔv2 − 2v · VÞN þ 4ðV · NÞv�

þ Δmm3

2rR2
½9ðn · NÞn − N�; ð9Þ

where η ¼ m1m2

m2 , Δ ¼ m1−m2

m . We only keep the dominant terms in ½a�3body 1PN which are combined of m
r2 or

m3

R2 with v2ð∼ m
rÞ,

V2ð∼ m3

R Þ, or v · V. We drop the subleading terms in ½a�3body 1 PN since here we are considering the dominant effect regarding
the three-body 1PN interactions which could be the same order or even larger than the binary 1PN effect due the large mass
of the SMBH.
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We treat the acceleration of the outer binary as the similar way:

A ¼ −
MN
R2

þ 3

2

Mηr2

R4
½Nð1 − 5ðn · NÞ2Þ þ 2nðn · NÞ� þ ½A�binary 1PN

þ ½A�3body 1PN þO

�
mm3

R3

�
þO

�
m3

2r
R4

�
þO

�
m2r
r3R

�
þ � � � ; ð10Þ

where

½A�binary1PN ¼ m3N
R2

�
4m3

R
− V2

�
þ 4m3

R2
ðV · NÞV; ð11Þ

½A�3body 1PN ¼ ηmn
r2

�
Δm
r

− 3ðn · vÞðn · VÞ þ Δ
�
3

2
ðn · vÞ2 − v2

�
þ 2v · V

�

þ ηmv
r2

ð2n · V − Δn · vÞ þ ηm3

R2
½4ðv · NÞv − v2N�

þ ηmm3

rR2
½N − 4ðn · NÞn�: ð12Þ

The first terms in Eq. (7) and (10) are the leading
Newtonian gravitational force which form the Kepler orbit
of the inner and outer binary, and the rests in Eqs. (7) and
(10) are all treated as perturbations. The second terms are
the Newtonian quadrupole forces which cause the Kozai-
Lidov oscillation (see, e.g., [59]). The binary 1PN accel-
eration contains the standard terms for a body in orbit
around a point mass m (or m3). The three body 1PN
accelerations come from the leading three body interactions
at 1PN which result the de Sitter precession as is presented
in the section III.

B. 1.5 PN dynamics from the spin of the SMBH

In the previous paper [54,55], we studied the spin effects
from the SMBH on the dynamical evolution of a nearby
BBH. In the SMBH-BBH triple system, the gravitational
potential is dominated by the mass of the SMBH which
contributes the electrical part of dynamics. And similarly,
for a relatively large spin parameter of the SMBH, its spin
angular momentum will dominant the total angular
momentum of this system which contributes the magnetic
part of the dynamics [54,55,60]. The spin of the SMBHwill
induce a strong gravitomagnetic field (denoted as H) in its
spacetime. The BBH moving close to the rotating SMBH
will feel the gravitomagnetic force va ×H [60,61], and the
field H is related to the spin momentum S as

H ¼ ∇ ×

�
−2

S × r
r3

�
; ð13Þ

where S ¼ am3s, a=m3 is the dimensionless spin param-
eter, s is the spin direction vector, and r here denotes the
position of the binary relative to the SMBH.

Decomposing the gravitomagnetic force into the inner
and outer orbit equation of motion, the accelerations are
dominated by [54]

a½1.5PN;spin� ≃ 2am3v ×
ðeZ − 3ðeZ ·NÞNÞ

R3
; ð14Þ

A½1.5PN;spin� ≃ 2am3V ×
ðeZ − 3ðeZ ·NÞNÞ

R3
; ð15Þ

The force in (15) causes the Lense-Thirring precession of the
out orbit while the force in (14) causes another precession on
the inner orbit which is listed in the next section.

III. SECULAR EVOLUTION
OF THE ORBIT ELEMENTS

We are interested in the secular evolutions which are left
after a complete evolution of the inner and outer orbit. This
is obtained by average the Lagrange planetary equations
over the period of the inner and outer orbital (see, e.g.,
[62]). We denote the inner and outer orbits with the time-
dependent osculating orbital elements fp; e;ω;Ω; ιg and
fP;E;ω3;Ω3; ι3g respectively. See Fig. 1 for details. The
positions and velocities of each orbit are defined in terms of
the orbital elements as

r ¼ pn=ð1þ e cosϕÞ;

v ¼
ffiffiffiffi
m
p

r
½e sinϕnþ ð1þ e cos ϕÞλ�;

R ¼ PN=ð1þ E cosΦÞ;

V ¼
ffiffiffiffiffi
M
P

r
½E sin ΦNþ ð1þ E cos ΦÞΛ�; ð16Þ
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where the bases ðn; λ; ĥÞ and ðN;Λ;HÞ are defined on the
inner and outer orbital plane which are related to the
reference frame ðeX; eY; eZÞ by Euler angles [62]:

n ¼ ½cos Ω cos ðωþ ϕÞ − cos ι sinΩ sin ðωþ ϕÞ�eX
þ ½sin Ω cos ðωþ ϕÞ þ cos ι cosΩ sin ðωþ ϕÞ�eY
þ sin ι sin ðωþ ϕÞeZ;

λ ¼ dn
dϕ

; ĥ ¼ n × λ; ð17Þ

N¼ ½cos Ω3 cos ðω3 þΦÞ− cos ι3 sinΩ3 sin ðω3 þΦÞ�eX
þ ½sinΩ3 cos ðω3 þΦÞ þ cos ι3 cosΩ3 sin ðω3 þΦÞ�eY
þ sin ι3 sin ðω3 þΦÞeZ;

Λ¼ dN
dΦ

; H¼N×Λ: ð18Þ

And the semimajor axis for the inner and outer orbits are
respectively α ¼ p=ð1 − e2Þ and A ¼ P=ð1 − E2Þ.
We define the perturbing accelerations as δa ¼ aþ m

r2 n
and δA ¼ Aþ m3

R2 N. The orbits are perturbed from Kepler
orbit. Take the inner orbit for example, the equation of
motion is govern by

dh
dt

¼ r × δa; m
dQ
dt

¼ δa × hþ v × ðr × δaÞ; ð19Þ

where h≡ r × v ¼ ffiffiffiffiffiffiffi
mp

p
ĥ, and Q is the Runge-Lenz

vector which is defined by Q≡ v × h=m − n ¼
eðcos ϕn − sin ϕλÞ.

The equations of motion of orbital elements are obtained
by resolving the equations in (19) as,

dp
dt

¼ 2

ffiffiffiffiffi
p3

m

r
S

1þ e cosϕ
;

de
dt

¼
ffiffiffiffi
p
m

r �
sin ϕRþ 2 cosϕþ eþ ecos2ϕ

1þ e cosϕ
S
�
;

dϖ
dt

¼ 1

e

ffiffiffiffi
p
m

r �
− cosϕRþ 2þ e cosϕ

1þ e cosϕ
sinϕS

�
;

dι
dt

¼
ffiffiffiffi
p
m

r
cos ðωþ ϕÞ
1þ e cosϕ

W;

sin ι
dΩ
dt

¼
ffiffiffiffi
p
m

r
sin ðωþ ϕÞ
1þ e cosϕ

W; ð20Þ

whereR ¼ n · δa, S ¼ λ · δa,W ¼ ĥ · δa, and _ω could be
obtained by _ω ¼ _ϖ − _Ω cos ι. The evolution of outer orbital
elements could be obtained analogously by replacing all
the elements in the inner orbit to the outer orbital ones,
specifically, by replacing e → E, p → P, m → M, ϕ → Φ,
ι → ι3, Ω → Ω3, ω → ω3, and R3 ¼ N · δA,
S3 ¼ Λ · δA, W3 ¼ H · δA.
The secular evolution of the orbital elements are calcu-

lated with a double-orbit-average as following

hF i ¼ 1

Tout

1

T in

Z
Tout

0

Z
T in

0

Fdtdt0; ð21Þ

where F denote the all the elements in the left of Eq. (20),
T in and Tout are the orbital periods. For convenience of
calculation, we change the integration on time to that on the
true anomaly ϕ and Φ, by dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p3=m

p
ð1þ e cosϕÞ−2dϕ

and dt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3=m3

p
ð1þ E cosΦÞ−2dΦ. Thus the average

in Eq. (21) becomes

hF i ¼ 1

4π2
ð1 − e2Þ3=2ð1 − E2Þ3=2

×
Z

2π

0

Z
2π

0

F
ð1þ e cosϕÞ2ð1þ E cosΦÞ2 dϕdΦ;

ð22Þ

The Newtonian quadrupole perturbing accelerations in
Eqs. (7) and (10) result to the Kozai-Lidov formula in the
most general form as follows [54],

FIG. 1. Orbits and angles see from a fixed reference frame
where the Z axis is in the direction of spin
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Quadrupole order

de
dτ

¼ 15πα3e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
m3

16A3ð1 − E2Þ3=2m ½sin2ι3ðcos 2ιþ 3Þ sin 2ω cosð2Ω − 2Ω3Þ þ 4sin2ι3 cos ι cos 2ω sinð2Ω − 2Ω3Þ

− 4 sin 2ι3 sin ι cos 2ω sinðΩ −Ω3Þ − 2 sin 2ι sin 2ι3 sin 2ω cosðΩ −Ω3Þ þ sin2ιð3 cos 2ι3 þ 1Þ sin 2ω�;
dι
dτ

¼ 3πα3m3

4A3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 − E2Þ3=2m

½sin ι sin ι3 cosðΩ −Ω3Þ þ cos ι cos ι3�ðsin ι3 sinðΩ −Ω3Þð5e2 cos 2ωþ 3e2 þ 2Þ

þ 5e2 sin 2ω½sin ι3 cos ι cosðΩ −Ω3Þ − sin ι cos ι3�Þ;
dΩ
dτ

¼ 3πα3m3

4A3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 − E2Þ3=2m

½sin ι3 cosðΩ −Ω3Þ þ cos ι3 cot ι�ð5e2 sin ι3 sin 2ω sinðΩ −Ω3Þ

þ ð5e2 cos 2ω − 3e2 − 2Þ½sin ι cos ι3 − sin ι3 cos ι cosðΩ −Ω3Þ�Þ;
dϖ
dτ

¼ 3πα3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
m3

8A3ð1 − E2Þ3=2m ð10 sin ι sin 2ι3 sin 2ω sinðΩ − Ω3Þ − 10sin2ι3 cos ι sin 2ω sinð2Ω − 2Ω3Þ

þ sin2ι3 cosð2Ω − 2Ω3Þ½2 sin2ιð4 − 5cos2ωÞ þ 20cos2ω − 10�
þ sin 2ι sin 2ι3 cosðΩ −Ω3Þð3 − 5 cos 2ωÞ þ ð3 cos 2ι3 þ 1Þ½sin2ιð5cos2ω − 4Þ þ 1�Þ;

dE
dτ

¼ 0;

dι3
dτ

¼ −
3πα7=2m1m2

ffiffiffiffiffi
M

p

4A7=2ð1 − E2Þ2m5=2 ðcos ι3fsin 2ι sinðΩ − Ω3Þð−5e2cos2ωþ 4e2 þ 1Þ − 5 e2 sin ι sin 2ω cosðΩ −Ω3Þg

þ sin ι3fsinð2Ω − 2Ω3Þ½sin2ιð−5e2cos2ωþ 4e2 þ 1Þ þ 10e2cos2ω − 5e2�
þ 5e2 cos ι sin 2ω cosð2Ω − 2Ω3ÞgÞ;

dΩ3

dτ
¼ −

3πα7=2m1m2

ffiffiffiffiffi
M

p
csc ι3

8A7=2ð1 − E2Þ2m5=2

�
cos 2ι3fsin 2ι cosðΩ −Ω3Þð5e2 cos 2ω − 3e2 − 2Þ

− 10e2 sin ι sin 2ω sinðΩ −Ω3Þg þ sin 2ι3

�
1

2
sin2ι½cosð2Ω − 2Ω3Þ þ 3�ð5e2 cos 2ω − 3e2 − 2Þ

þ 5e2 cos ι sin 2ω sinð2Ω − 2Ω3Þ − 5e2 cos 2ω cosð2Ω − 2Ω3Þ þ 3e2 þ 2

��
;

dϖ3

dτ
¼ 3πα7=2m1m2

ffiffiffiffiffi
M

p

16A7=2ð1 − E2Þ2m5=2 ð30e2 sin ι sin 2ι3 sin 2ω sinðΩ −Ω3Þ − 30e2sin2ι3 cos ι sin 2ω sinð2Ω − 2Ω3Þ

þ 3sin2ι3 cosð2Ω − 2Ω3Þ½sin2ιð−5e2 cos 2ωþ 3e2 þ 2Þ þ 10e2 cos 2ω�
þ 3 sin 2ι sin 2ι3 cosðΩ −Ω3Þð−5e2 cos 2ωþ 3e2 þ 2Þ
þ ð2 − 3 sin2ι3Þ½sin2ιð15e2 cos 2ω − 9e2 − 6Þ þ 6e2 þ 4�Þ; ð23Þ

where the time derivation d=dt is converted to a dimensionless one d=dτ by rescaling time compared to the inner
orbital period with τ≡ t=T in ¼ t

2π

ffiffiffiffim
α3

p
.

The Kozai-Lidov oscillation of the inner orbit is approximately described by the first four equations in Eq. (23), and the
rest is the back reaction on the outer orbit which is ignorable. If the outer orbital plane is nearly a constant, then the reference
frame could be set approximately on the orbital plane where Jout is depart from Z axis by a very small angle with ι3 → 0.
Then the generalized Kozai-Lidov equations in Eq. (23) could be expanded by ι3 as:
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de
dτ

¼ 15π

2

α3m3eð1 − e2Þ1=2
A3mð1 − E2Þ3=2 sin2ðιþ ι3Þ sinω cosωþOðι3Þ;

dι
dτ

¼ −
15π

4

α3m3e2

A3mð1 − e2Þ1=2ð1 − E2Þ3=2 sin 2ðιþ ι3Þ sinω cosωþOðι3Þ;

dΩ
dτ

¼ −
3π

4

α3m3

A3mð1 − e2Þ1=2ð1 − E2Þ3=2
sin 2ðιþ ι3Þ

sin ι
ð1þ 4e2 − 5e2cos2ωÞ þOðι3Þ;

dϖ
dτ

¼ 3π

2

α3m3ð1 − e2Þ1=2
A3mð1 − E2Þ3=2 ½1 − sin2ðιþ ι3Þð4 − 5cos2ωÞ� þOðι3Þ; ð24Þ

which degenerate to the standard Kozai-Liodv formula
(see, e.g., [44,59]) in the dominant terms, and the
dependence on Ω −Ω3 is of order Oðι3Þ smaller. This
means when the outer orbital plane do not change
significantly, we could safely use the standard Kozai-
Lidov formula to describe the Newtonian quadrupole
perturbations. While when the outer orbital plane changes
moderately, the secular dynamics will depend on the angle
Ω −Ω3, and in this case we have to use the Kozai-Lidov
formula in the generalized form (23).
Though the equations in (23) seem a bit more complex

compared to the standard one, it is a more general
description of the Newtonian quadrupole perturbation
which could be extended to the case where the outer
orbital angular momentum is evolving. And the generalized
Kozai-Lidov formula in Eq. (23) will certainly degenerate
to the standard Kozai-Lidov oscillation dynamically with
an approximately constant outer orbital plane, as it is
guaranteed by the equations of motion. This degeneration
happens in two situations. On the one hand, up to
Newtonian order, the total orbital angular momentum of
the three body system is strictly conserved. This conserva-
tion could simplify the formula in Eq. (23) by the fact that
the relation Ω −Ω3 ¼ π is precisely granted [59]. On the
other hand, if the other orders of perturbations do not
change the outer orbital plane, like the de Sitter precession
(as shows in the next part of this section), the dynamics on
Ω −Ω3 is decoupled with the Newtonian quadrupole
perturbations. An analogous discussion also suits the other
orders of Newtonian perturbations, like the octupole [63]
and the hexadecapole order perturbations [59].
The binary 1PN acceleration in Eqs. (8) and (11) induce

the typical relativity precession on the pericenter ω (ω3) of
the binary system by

dω
dτ

¼ 6πm
p

;
dω3

dτ
¼ T in

Tout

6πM
P

: ð25Þ

In this paper, we derive the secular evolutions contrib-
uted by the leading three body 1PN accelerations in our
system as presented in Eqs. (9) and (12), the results are
listed as bellow,

Leading three body 1PN effects

de
dt

¼ dp
dt

¼ 0;

dι
dt

¼ −
3m3=2

3

2A5=2ð1−E2Þ sin ι3 sin ðΩ−Ω3Þ;

dΩ
dt

¼ 3m3=2
3

2A5=2ð1−E2Þ ½cos ι3 − sin ι3 cot ιcos ðΩ−Ω3Þ�;

dω
dt

¼ 3m3=2
3

2A5=2ð1−E2Þ sin ι3 csc ι cos ðΩ−Ω3Þ;
dE
dt

¼ dP
dt

¼ dι3
dt

¼ dΩ3

dt
¼ dω3

dt
¼ 0; ð26Þ

the precession on ι andΩ in Eq. (26) gives the de Sitter
precession of Jin about Jout and the precession on ω
gives the precession of the Runge-Lenz vector Q
about Jout. These precessions together describe the de
Sitter precession in a general reference frame where
the Z axis is not necessarily set to the outer orbit
angular momentum. But when Z is aligned with Jout
and ι3 → 0, only Ω is affected in the de Sitter effect as
is described below

dΩ
dt

¼ 3m3=2
3

2A5=2ð1 − E2Þ þOðι3Þ;
dι
dt

¼ Oðι3Þ;
dω
dt

¼ Oðι3Þ: ð27Þ

For an evolving outer orbital plane, the de Sitter
precession couples in the secular evolutions through the
generalized Kozai-Lidov formula. And since the third body
is a SMBH in our triple system, the de Sitter precession
could be the same order or even larger than the (inner)
binary 1PN precession under a large parameter space. Thus,
the three body 1PN effects dominated by the de Sitter
precession could couple in the secular dynamics at zero
order in the multiple-scale analysis method (which is
defined in such as Eq. (12.235) of [62], or Eq. (3.50)
of [50]).
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The secular dynamics from the spin effects of the SMBH
is resulted by accelerations in (14) and (15), which are
calculated in [54]. The nonvanishing results are,

spin effects at 1.5PN order

dι
dt

¼ 3am3

4A3ð1 − E2Þ3=2 sin 2ι3 sinðΩ −Ω3Þ;
dΩ
dt

¼ −
am3

4A3ð1 − E2Þ3=2
× ½−3 sin 2ι3 cot ι cosðΩ −Ω3Þ
þ 3 cos 2ι3 þ 1�;

dω
dt

¼ −
3am3

4A3ð1 − E2Þ3=2 sin 2ι3 csc ι cosðΩ −Ω3Þ;
dΩ3

dt
¼ 2am3

A3ð1 − E2Þ3=2 ;
dω3

dt
¼ −

6am3

A3ð1 − E2Þ3=2 cos ι3; ð28Þ

where the change of Ω3 in Eq. (28) is the Lense-
Thirring precession on the outer orbit. The inner orbit
is not simply precessing around the spin axis, but in a
rather complex way. Note that up to the orders
considered in our full text, the outer orbital pericenter
ω3 is decoupled from the evolution of other orbital
elements. The coupling of ω3 happens at octuple order
which is usually small due to the small ratio of α=A,
so it is ignored in this context, though, for a full
parameter space of evolution, it is needed to consider.
The triple systems where the octuple effect matters is
studied such as in [64].

IV. NUMERICAL RESULTS

A. On the dynamical evolution

In this subsection, we display the numerical results of
our SMBH-BBH three body system. We begin with a group
of initial data with a BBH of mass m1 ¼ m2 ¼ 20 M⊙ (or
30 M⊙), which are the typical mass detected by LIGO/
Virgo. The third body is a SMBH with m3 ¼ 4 × 106 M⊙
which is similar to the one in our galaxy center. The inner
binary is separated with semimajor axis α ¼ 0.04 AU and
has an initial eccentricity e ¼ 0.1. They are set to a distance
of A ¼ 30 AU to the SMBH with an outer orbit eccen-
tricity E ¼ 0.1. The line of apsides of the two orbits are set
to X axis thus Ω ¼ Ω3 ¼ ω ¼ ω3 ¼ 0, and the inclination
angle between the two orbits is simply ι − ι3 for conven-
ience but not lose generality.
In Fig. 2, we display the numerical evolution of

eccentricity. In the upper panel, we choose the BBH with
an equal mass of 20 M⊙, and compare the results of
evolution with all the dynamics considered in this work
with the results when the three body 1PN effects (de Sitter

precession) or the precession on ω in the three body 1PN
effects are absent. We could see that neither the absent of
the de Sitter precession nor the absent of the precession on
ω in de Sitter effects could lead to correct evolutions. This
indicates the de Sitter precession is needed to be considered
when there is a SMBH spin effect, which include both the
precession of the inner orbital angular momentum and the
Runge-Lenz vector around the outer orbit angular momen-
tum. In the lower panel, we choose a BBH with mass
30 M⊙ while keep the other initial conditions and line
styles the same to the upper panel. In the second case, the
difference of the results due to the absent the three body
1PN effects is more obvious.
As a comparison, it is trivial to verify that the de Sitter

precession decouples when the Lense-Thirring precession
disappears when a ¼ 0 or initially ι3 ¼ 0. These indicate
the three body 1PN effects (which is dominated by the de
Sitter precession) is decoupled in the secular dynamics
without spin effects or the outer orbital Lense-Thirring
precession.

B. On the gravitational waves

Finally, we will move onto the study of the impact of the
spin effects combined with the de Sitter precession on the
GW singles of the BBH. The maximal eccentricity of
the inner orbit excited by the Kozai-Lidov oscillation is
found to be limited to the vertical inner orbit angular
momentum (which is proportional to Θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
h ·H)

in the test particle approximation by [44,64]:

emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

3
Θ2

r
; ð29Þ

which is calculated with a small value for eccentricity and
zero for ω initially. Equation (29) also holds in our triple
system where m3 ≫ m1; m2. Since in this case, we have
Jout ≫ Jin, thus Jout is not affected by inner orbital motion,
then the projection of Jin along Jout is conserved at the
Newtonian quadrupole order. Combining this with the
Hamiltonian beyond the test particle limit (see, e.g.,
Eq. (22) of [44]) will lead to the result in Eq. (29). And
since the de Sitter precession do not change the value of Θ,
here Θ changes only due to the spin of the SMBH by

Θ0ðtÞ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ðS ×HÞ · h

2A3ð1 − E2Þ3=2 ; ð30Þ

where S is the spin angular momentum, h and H are the
unit direction of Jin and Jout respectively as discussed
before.
The maximal eccentricity excited by the Kozai-Lidov

oscillation is modulated by the spin of the SMBH through
Eq. (29) and (30). And the peak frequency of the GW is
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closely related to the eccentricity by fpeak ¼
ffiffiffi
m

p ð1þeÞ−0.3046
π½αð1−eÞ�3=2

[45]. In Fig. 3, we illustrate the evolutionary behaviors of
the maximal values of the eccentricity in the upper panel
(and thus fpeak in the lower panel) which modulated by spin
(red solid line), and also the results when either spin is zero
(black dashed line) or the de Sitter effect is absent (blue
dotted line) as a comparison. In this example, the spin
effects will cause the closest distance between the BBH
ð1 − emaxÞα to change by several percent in the neighboring
Kozai-Lidov circles. As a result, the corresponding maxi-
mal values of fpeak could reach to a difference of nearly
0.001 Hz as shows in the lower panel. The ignoring of the
de Sitter precession when spin is a ¼ 0.9m3 will lead to
a shift in the phase and a small change in the amplitude of

the Kozai-Lidov oscillation. These maximal values remain
constant within several Kozai-Lidov circles without spin
while they change due to spin effects, these are the unique
characteristic resulted from spin here. Interestingly, when
the eccentricity of the BBH is excited to a relatively large
number, as shows in this case, the peak frequency of the
GWs could locate in LISA band.
The detectability of the Kozai-Lidov oscillation of the

BBH near a (nonspinning) SMBH due to their GWs by
the detection of LISA has been studied in [65]. And the
detectability of the spin effects from the SMBH through
these GW sources have been studied in [55] which
compared the fitting factor of the GWs calculated with a
SMBH of spin 0.9 and spin zero within four years, while
the de Sitter precession is not considered in this article.

FIG. 2. The evolution of eccentricity in 100 years. The initial conditions for the two panels are: ι3 ¼ 60° and ι ¼ 140°, thus the initial
angle between Jin and Jout is ι − ι3 ¼ 80°, and the SMBH has a spin parameter of a ¼ 0.9m3. In the upper panel we have a BBH of mass
m1 ¼ m2 ¼ 20 M⊙, while the lower line have a BBH with m1 ¼ m2 ¼ 30 M⊙. In the red line, we have included all the dynamical
effects considered in this work, including the Newtonian quadrupole effect (Kozai-Lidov) in Eq. (23), the binary 1PN precession in
Eq. (25), the three body 1PN effects in Eq. (26), the spin effects in Eq. (28), and radiation reaction [46] (this effect hardly contribute
within 100 years here, but it matters for a life-time evolution). The dotted blue line has included the same dynamical effects considered in
the red line except the three body 1PN effects in Eq. (26), and the dashed dark bule line only lacks the precession effect on ω in Eq. (26)
compared to the red line.
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Here, we step the topic on probing the spin of SMBH a little
further by looking at the unique characteristics due to the
spin effects shows in Fig. 3.
To see if we could discriminate between the cases with

and without SMBH spin effect, or with and without the de
Sitter precession effect from only one or two GW peaks in
Fig. 3 by LISA mission, we calculate the single to noise
ratio (SNR) of the GWs which is defined for example in
Eq. (55) of [66]. In our case, the semimajor axis and the
Kepler orbital frequency is approximate a constant within
the first several years, the SNR in the frequency domain
could be converted to the time domain by Parseval’s
theorem as [66]

hSNR2i ¼
X∞
n¼1

2

5π2D2

1

fn2ShðfnÞ
Z

_Endt; ð31Þ

where _En is the GW radiation power given by

_En ¼
32

5
μ2m4=3ð2πfÞ10=3gðn; eÞ; ð32Þ

where μ ¼ m1m2

m , and

gðn; eÞ ¼ n4

32

�
½Jn−2ðneÞ − 2eJn−1ðneÞ þ

2

n
JnðneÞ

þ 2eJnþ1ðneÞ − Jnþ2ðneÞ�2
þ ð1 − e2Þ½Jn−2ðneÞ − 2JnðneÞ þ Jnþ2ðneÞ�2

þ 4

3n2
½JnðneÞ�2

�
: ð33Þ

When assuming the source in our galaxy center, the SNR
for the first two peaks in Fig. 3 with spin a ¼ 0.9m3 are
respectively 260 and 283, while the SNR for the first two
peaks with spin zero are both 260. These results are

consistent with the evolution of the maximal eccentricity:
the larger the eccentricity, the larger of the radiation power
of GWs. The SNR difference ΔSNRðΔemaxÞ between any
two peaks in the red line varies from peak to peak, but can
at times reach up to 23, such as the first two. The separation
between the nearby two peaks is about four years, thus is
potentially detectable by a four-year LISA mission espe-
cially when LISA is extended to ten years. Besides, the
SNR for the first two peaks when spin is a ¼ 0.9m3 while
the de Sitter effect is absent are respectively 261 and 271,
this indicates that considering the 3B1PN effect is neces-
sary when modeling the GW signal.

V. CONCLUSION

In this paper,we study the secular evolution of the SMBH-
BBH system up to 1.5PN order where the SMBH have a
large spin. We resolving the three-body 1PN effects starting
from the Einstein-Infeld-Hoffmann equations of motion
[58], which the dominant effect is the de Sitter precession
on the inner orbit. We conduct the double average of the
Lagrange planetary equations to get the secular evolutionary
equations with the help of Mathematica software.
The de Sitter precession is previously considered as a

subleading effect in the three body systems either with a small
third body [48,56] or in a casewhen it is decoupled in the zero
order secular equations [50]. While in our triple system, the
large mass of the SMBH could cause the de Sitter precession
to reach to or even larger than the amplitude of the binary 1PN
effect in a large parameter space. More over, the spin effects
from the SMBH will cause the outer orbital plane to precess
due to the Lense-Thirring effect, the evolving outer orbital
plane causes the generalized Kozai-Lidov effect to depend on
the angle between the two lines of nodes Ω −Ω3 [54], thus
couples the de Sitter precession in the secular dynamics and
contribute significantly in the evolutions. We state that the de
Sitter precession include both the precession of the inner
orbital angular momentum and its Runge-Lenz vector around
the outer orbit angular momentum in a general reference
frame where the Z axis is not set to the outer orbit angular
momentum due to the Lense-Thirring precession. This is
different from the description of the de Sitter precession only
with a precession of the inner orbital longitude of ascending
node when seeing from a reference frame where the outer
orbit angular momentum is alone Z axis. Our general argu-
ment on the coupling of the three body 1PN effects could be
extended to any situation where the outer orbital plane is
evolving due to other mechanisms, such as a nonspherical
gravitational potential [67,68].
We show numerical results of the impact of spin effect

and the de Sitter effect on the evolution and the GW singles
of the BBH. The spin effect from the SMBH modulates the
Kozai-Lidov oscillation both in the phase and the amplitude
[54,55], and the maximal eccentricity excited by the Kozai-
Lidov oscillation is evolving at Kozai-Lidov timescale
due to spin, which is caused by spin uniquely in our

FIG. 3. Upper panel: zoom in of the eccentricity evolution in
the upper panel of Fig. 2 near its maximal values. Lower panel:
the peak frequency of the GWs correspond to the eccentricity
in the upper panel. The red solid line and the blue dotted line
have the same line styles with that in Fig. 2, while the dashed
black line is only different from the red line by the spin parameter
of the SMBH with a ¼ 0.

YUN FANG and QING-GUO HUANG PHYS. REV. D 102, 104002 (2020)

104002-10



consideration. We also show that without the de Sitter
precession effect, the modulation behavior of the spin effect
will be different. Our numerical result indicates that the
spin effect is detectable by two nearby GW peaks in our
representative example, and the de Sitter effect is not
ignorable when calculating the SNR and analysis the spin
effect. These results could lead to a potential way to prob
the SMBH spin effect or the spin parameter the SMBH by
LISA in the future, in which the de Sitter precession effect
is needed to be considered.
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