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A dark photon may kinetically mix with the Standard Model photon, leading to observable cosmological
signatures. The mixing is resonantly enhanced when the dark photon mass matches the primordial plasma
frequency, which depends sensitively on the underlying spatial distribution of electrons. Crucially,
inhomogeneities in this distribution can have a significant impact on the nature of resonant conversions. We
develop and describe, for the first time, a general analytic formalism to treat resonant oscillations in the
presence of inhomogeneities. Our formalism follows from the theory of level crossings of random fields
and only requires knowledge of the one-point probability density function (PDF) of the underlying electron
number density fluctuations. We validate our formalism using simulations and illustrate the photon-to-dark
photon conversion probability for several different choices of PDFs that are used to characterize the low-
redshift Universe.
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I. INTRODUCTION

A dark photon A0 which kinetically mixes with the
Standard Model (SM) photon, γ, is one of the simplest
extensions of the SM [1]. The range of possible A0 masses
mA0 spans many orders of magnitude, and an intense
theoretical and experimental program is ongoing to con-
strain and test dark photon models. At low masses
(mA0 ≲ 10−9 eV), the Compton wavelength of mA0 starts
to exceed the size of typical experiments, and terrestrial
probes start to become increasingly insensitive to the
presence of A0, motivating probes on larger length scales.
Light dark photons in this mass range are also a well-
motivated candidate for dark matter [2–12], while relativ-
istic A0 particles produced by decaying dark matter which
then resonantly convert into γ has also been proposed as a
new-physics explanation [13,14] and can be detected by
21-cm observations. Probes of the dark photon over
cosmological scales are therefore critical to constraining
its properties.
Existing experimental measurements are sensitive to oscil-

lations of cosmic microwave background (CMB) photons
into dark photons, γ → A0, or to oscillations of dark photon
darkmatter into low-energy photons,A0 → γ. The probability
of these conversions at a particular redshift z and position in

space x⃗ depends on the photon plasma mass at that point,
mγðz; x⃗Þ, and becomes resonantly enhanced whenever it
becomes equal to mA0 :γ → A0 conversions can leave a
distortion in the energy spectrum of the CMB due to a
disappearance of photons from the spectrum, while A0 → γ
conversions for low mass dark photons produce SM photons
that are readily absorbed by baryons and electrons, resulting
in an increase of the intergalacticmedium (IGM) temperature.
Under the assumption of a completely homogeneous

universe, constraints on the kinetic mixing parameter ϵ for
the case of γ → A0 were obtained using the COBE/FIRAS
[15] measurement of the CMB energy spectrum, which
shows no significant evidence of distortion from a pure
blackbody spectrum [16,17]. More recently, Ref. [18]
presented new homogeneous constraints for A0 → γ in
the case of dark photon dark matter, finding strong limits
on ϵ using IGM temperature measurements during HeII
reionization, among other novel cosmological constraints.
This paper is part of a pair of companion papers with the

overarching goal of establishing a new formalism for under-
standing both the physics and the experimental consequences
of γ → A0 and A0 → γ oscillations in our inhomogeneous
Universe. In Ref. [19], hereafter referred to as Paper I, we
briefly introduce our formalism and present (i) the γ → A0
CMB spectral distortion and (ii) A0 → γ dark photon dark
matter IGM temperature constraints on the kinetic mixing
parameter ϵ. We find that limits derived under the assumption
of a homogeneous photon plasma were not conservative and
that including inhomogeneities allows for constraints to be set
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over a much broader mass range of A0. In this paper, we
provide a detailed description of the formalism and its mathe-
matical derivation, as well as an elaboration on the cosmo-
logical inputs that go into the A0 limits obtained in Paper I.
This paper is organized as follows. We begin Sec. II with a

quantum mechanical derivation of the oscillation probability
of γ ↔ A0 for both relativistic and nonrelativistic A0 with
multiple resonance crossings. We then introduce our analytic
formalism for computing the expected probability of
conversion for both γ → A0 and A0 → γ, taking as input
the one-point probability density function (PDF) of baryon
inhomogeneities in our Universe, described in Sec. III. In
Sec. IV, we explore our formalism in the regime where
fluctuations are Gaussian to gain some analytic understand-
ing. We then move on to describe the two main cosmological
inputs that are needed to apply our results to ourUniverse: the
one-point probability density functions of baryon fluctuations
in Sec. V and the variance of fluctuations (characterized by
power spectra for the number density fluctuation of baryons
and free electrons) in Sec. VI. We validate our formalism
against several simulations of baryon fluctuations and γ ↔ A0
conversions, which we describe in Sec. VII. Some results for
the γ ↔ A0 conversion probability obtained fromour analytic
formalism for various cosmological inputs are presented in
Sec. VIII. We finally conclude in Sec. IX. In our Appendices,
weprovide a comparisonbetweenourworkand several recent
papers treating inhomogeneities [20–22] along with other
details of the formalism.
Throughout this work, we use natural units with

ℏ ¼ c ¼ kB ¼ 1, as well as the Planck 2018 cosmology
[23]. In the spirit of reproducibility, we provide links in the
figure captions [24] pointing to the Jupyter notebooks used
to generate them.

II. OSCILLATIONS

γ ↔ A0 oscillations are described by the same formalismas
neutrino flavor oscillations, which have been studied exten-
sively in the literature. In this section, we follow the neutrino
discussion of Ref. [25] closely, first reviewing γ → A0
oscillations and highlighting any differences between γ ↔
A0 and neutrino oscillations whenever they arise. A0 → γ
oscillations are similar and discussed at the endof this section.
Consider a single photon passing through some worldline

from the early Universe to us. Along this path, parametrized
by t, there are variations in the number densities of free
electrons and neutral atoms, leading to variations in the
plasma properties, giving rise to a plasma mass mγðtÞ [16],

m2
γðtÞ ≃

4παEMneðtÞ
me

− 2ω2ðtÞðnHIðtÞ − 1Þ

≃ 1.4 × 10−21 eV2

�
neðtÞ
cm−3

�

− 8.4 × 10−24 eV2

�
ωðtÞ
eV

�
2
�
nHIðtÞ
cm−3

�
: ð1Þ

Here, αEM is the electromagnetic fine structure constant, me
is the electron mass, nHI is the refractive index of monatomic
hydrogen [26], ωðtÞ is the photon energy, and neðtÞ and
nHIðtÞ are the local free electron and neutral hydrogen

densities along the path.1 We similarly define m2
γ as the

homogeneous value of m2
γ , evaluated with the mean cos-

mological values of ne and nHI. We neglect helium, which
makes up only 8% by number density and has a smaller
index of refraction. If fluctuations in free electron density xe
are small, i.e., xe has essentially the same value everywhere
in space at each point in time, then fluctuations in ne and nHI
track fluctuations in the number density of baryons, nb,

m2
γðtÞ

m2
γðtÞ

¼ nb
n̄b

: ð2Þ

Further discussion of this proportionality and the effect of
fluctuations in xe can be found in Sec. VI. Figure 1 illustrates
the variation of the photon plasma mass as a function of
redshift for several representative values of the present-day
photon frequency ω0.
The kinetic mixing between γ and A0 induces oscillations

between these two interaction eigenstates, described by the
Schrödinger equation

i
d
dt

�
γ

A0

�
¼ H

�
γ

A0

�
; ð3Þ

where H is the Hamiltonian (assuming all particles are
relativistic) [25],

H ¼ 1

4ωðtÞ
�
m2

γðtÞ −m2
A0 2ϵm2

A0

2ϵm2
A0 −m2

γðtÞ þm2
A0

�
: ð4Þ

The plasma mass is an in-medium effect similar to the
Mikheyev-Smirnov-Wolfenstein effect in the case of neu-
trino oscillations [28,29], leading in our case to the familiar
correction of m2

γ=2ω relative to the propagation phase of a
massless particle [30,31]. H can be conveniently written in
terms of Pauli matrices,

H ¼ ϕðtÞσ3 þ ηðtÞσ1; ð5Þ

where

ϕðtÞ≡m2
γðtÞ −m2

A0

4ωðtÞ ; ηðtÞ ¼ ϵm2
A0

2ωðtÞ : ð6Þ

1Our expression clarifies the actual species densities that enter
the plasma mass expression in Ref. [16] and corrects earlier
expressions for the photon mass, which mistakenly used the
refractive index of diatomic hydrogen gas and not monatomic
hydrogen.

CAPUTO, LIU, MISHRA-SHARMA, and RUDERMAN PHYS. REV. D 102, 103533 (2020)

103533-2



ϕðtÞ has the intuitive interpretation of being half the relative
phase between γ and A0.
Starting with an initial state of γ, the Schrödinger

equation can be solved perturbatively in ϵ, with ηðtÞσ1
as an interaction Hamiltonian. To first order in ϵ, we obtain

A0ðtÞ ¼ −ieiαðtÞ
Z

t

0

dξηðξÞe−2iαðξÞ þOðϵ2Þ; ð7Þ

where we have defined

αðsÞ≡
Z

s

0

dξϕðξÞ; ð8Þ

the accumulated phase between 0 and s. This leads to the
probability of disappearance at t, given by jA0ðtÞj2, or
explicitly,

Pγ→A0 ðtÞ ¼
����
Z

t

0

dξηðξÞe−2iαðξÞ
����2 þOðϵ3Þ: ð9Þ

Away from regions of space where m2
γðtÞ ∼m2

A0 , ϕðtÞ is
given parametrically by

ϕðtÞ ∼ 200 kpc−1

1þ zðtÞ
�jm2

γðtÞ −m2
A0 j

10−26 eV2

��
10

ω0=TCMB;0

�
; ð10Þ

where TCMB;0 is the temperature of the CMB today, and
ωðtÞ ¼ ω0ð1þ zðtÞÞ, with zðtÞ being the cosmological
redshift at t. The FIRAS experiment detects photons in
the range 1.2≲ ω0=TCMB;0 ≲ 11.3 [15]. Over cosmological

distances, the integral of ϕðtÞ therefore oscillates rapidly
with t, except when m2

γðtÞ ∼m2
A0 ; we can therefore evaluate

the integral in Eq. (9) over the entire worldline of the
photon using the stationary phase approximation, giving

Pγ→A0 ¼ π

����Xi

ηðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffijϕ0ðtiÞj
p e−2iαðtiÞeiβi

����2 þOðϵ3Þ; ð11Þ

where i indexes positions ti where m2
γðtiÞ ¼ m2

A0 , ϕ0 is the
derivative of ϕ, and βi ¼ �π=4, with the sign given by the
sign of ϕ0ðtiÞ.
If there is only one point tr where m2

γðξÞ ¼ m2
A0 , then

oscillations from γ to A0 occur resonantly at tr, giving

Pγ→A0 ≃
πηðtrÞ2
jϕ0ðtrÞj

¼ πϵ2m2
A0

ωðtrÞ
���� d lnm2

γðtÞ
dt

����−1
t¼tr

: ð12Þ

This is the same expression derived using the Landau-
Zener approximation for nonadiabatic transitions of γ → A0
in Ref. [16]; it is also similar to expressions for the A0
production rate in stars under the narrow width approxi-
mation [32,33]. The stationary phase approximation has
also been used to calculate appearance and disappearance
probabilities with resonant oscillations in the context of
neutrino oscillations [25] and in axion-photon conversions
in magnetic fields [30,31,34].
When multiple resonances exist, the probability becomes

Pγ→A0 ≃
X
i

πηðtiÞ2
jϕ0ðtiÞj

þ
X
i<j

2πηðtiÞηðtjÞ cos θðti; tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffijϕ0ðtiÞj
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϕ0ðtjÞj

p ; ð13Þ

where θðti; tjÞ≡ 2αðtjÞ − 2αðtiÞ þ βi − βj. The second
summation in Eq. (13) corresponds to quantum interference
from resonance conversion of γ → A0 between two reso-
nance points [25].2 Interference from conversions along a
trajectory due to stochastic matter fluctuations can be
important in understanding neutrino oscillations within
supernovae [25,35,36]. To assess the importance of this
for cosmological γ → A0 oscillations, we note two things.
First, the minimum size of baryonic fluctuations is given by
the Jeans length, which we discuss in more detail in Sec. IV.
We can estimate this minimum expected value by setting Tb
to its expected value without reionization effects at z ¼ 20,
giving us RJ;min ∼ 10 kpc. Second, the size of fluctuations
in m2

γ and hence ϕ is given by the standard deviation of
baryon density fluctuations σb (see Fig. 2 for some typical
values of these fluctuations); in other words, we expect that
between resonances when m2

γ ¼ m2
A0 , upward fluctuations

in m2
γ can typically reach values of around ð1þ σbÞm2

A0 .
These two estimates and Eq. (10) show that the phase
difference between consecutive resonances is roughly

FIG. 1. The photon plasma mass as a function of redshift for
several values of the present-day photon energy ω0. The Gaussian
standard deviation of plasma mass fluctuations σmγ

, informed by
the linear baryon power spectrum for illustration, is shown as the
blue band. The equivalent middle-68% containment of fluctua-
tions assuming a log-normal description of the PDF is shown as
the red band [27].

2Corrections to the probability due to multiple conversions,
e.g., γ → A0 → γ, which is treated classically in Ref. [16], only
appear at higher order in ϵ.
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θðti; tiþ1Þ≳ 4 × 103

1þ zh

�
RJ

10 kpc

��
σbðzhÞ
1.0

�

×

�
mA0

10−13 eV

�
2
�

10

ω0=TCMB;0

�
; ð14Þ

where zh is the lowest redshift at which m2
γ ¼ m2

A0 , since all
of the resonances occur in a redshift window centered on zres,
and transitions are more adiabatic at lower redshifts. The
relative phase between A0s produced at any two resonance
points is thus many times larger than 2π throughout the
history of the Universe, so that cos θðti; tjÞ is expected to be
uncorrelated with the location of the resonances. We will
ultimately be interested in the mean value of Pγ→A0 across all
possible photon worldlines, such that uncorrelated interfer-
ence effects average out. We therefore do not expect the
second summation in Eq. (13) to contribute to the overall
probability of conversion, obtained by averaging over all
worldlines, each with a different distribution of resonance
points. The total probability of oscillations is thus obtained
by summing up the conversion probability of each reso-
nance, each given by the Landau-Zener expression,

Pγ→A0 ≃
X
i

πϵ2m2
A0

ωðtiÞ
���� d lnm2

γðtÞ
dt

����−1
t¼ti

: ð15Þ

We note that the Landau-Zener approximation holds for any
crossing encountered by the photon. For ϵ ≪ 1, since the
resonance time scale, τres ∼ ϵjd lnm2

γ=dtj−1, is much smaller
than the time scale over whichm2

γ changes, jd lnm2
γ=dtj−1, at

any crossing, allowing the use of the Landau-Zener approxi-
mation of taking the density profile over the resonance to be
linear. The suitability of the Landau-Zener approximation in
the context of neutrino oscillations, starting from a similar
Hamiltonian to Eq. (4), is derived in Ref. [37].

Following a similar derivation, we can show that
relativistic dark photons undergoing A0 → γ conversions
will also have a conversion probability that is identical to
Eq. (15), with ω now specifying the A0 energy. If A0 is the
dark matter, however, the assumption of relativistic par-
ticles assumed in Eq. (4) breaks down. Nevertheless, there
are several ways to see that the conversion probability
PA0→γ is identical to Pγ→A0 with ωðtiÞ → mA0 . First, it can be
derived in thermal field theory [4] by applying a narrow-
width approximation (see Appendix C). Second, the
probability of conversion PA0→γ, shown on the right-hand
side of Eq. (15), is Lorentz invariant, as all transition
probabilities should be. Evaluating the probability in the
rest frame of the dark matter A0 gives

PA0→γ ≃
X
i

πϵ2mA0

���� d lnm2
γðtÞ

dt

����−1
t¼ti

; ð16Þ

consistent with the result in Ref. [4]. Under standard
cosmology scenarios where the magnitude of δb grows
monotonically with redshift, each value of mA0 has at most
one resonance transition point; our formalism, however,
does not rely on this assumption.
The results in Eqs. (15) and (16) form the starting point

for understanding γ ↔ A0 conversions along a single
worldline, as well as for all of the results presented in
Paper I.

III. FORMALISM

In the presence of inhomogeneities, the resonance
condition can be met many times along a path, even at
times when the homogeneous plasma mass m̄γ is far from
mA0 and no resonance is present in the homogeneous limit.
Each worldline passes through a different series of pertur-
bations, leading to conversions that vary significantly in
number and in distance from the observer.

A. γ → A0 oscillations

We will now discuss how to determine the expected
probability of γ → A0 conversion, hPγ→A0 i. The derivation
of our results is closely related to the derivation of the mean
number of times a stationary process crosses a fixed level
per unit time [39,40].
To average over all worldlines, we first begin by

rewriting the probability of conversion along a worldline as

dPγ→A0

dt
¼ πm2

A0ϵ2

ωðtÞ δDðm2
γðtÞ −m2

A0 Þm2
γðtÞ; ð17Þ

where δD is the Dirac delta function. We can check that
Eq. (15) is recovered by performing the substitution

FIG. 2. Standard deviation of baryon fluctuations σb in linear
perturbation theory (red). The dashed line indicates where the
typical size of fluctuations becomes comparable to the mean
density [38].
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dt ¼
���� d lnm2

γ

dt

����−1 dm2
γ

m2
γ

ð18Þ

and integrating the delta function over the entire worldline.
The mean value of Pγ→A0 is then obtained by integrating
over all possible values of m2

γ at each point along the path,
weighted by the PDF fðm2

γ ; tÞ of m2
γ ,

dhPγ→A0 i
dz

¼ πm2
A0ϵ2

ωðtÞ
���� dtdz

����
×
Z

dm2
γfðm2

γ ; tÞδDðm2
γ −m2

A0 Þm2
γ : ð19Þ

Note that the PDF evolves with time since m2
γ tracks the

baryon density (in the limit of small fluctuations in the free
electron fraction), as shown in Eq. (2). We can now perform
the integral to give

dhPγ→A0 i
dz

¼ πm4
A0ϵ2

ωðtÞ
���� dtdz

����fðm2
γ ¼ m2

A0 ; tÞ: ð20Þ

The problem of determining the averaged probability
therefore reduces to finding the PDF of m2

γ , which we
discuss in detail in subsequent sections. Note that Eqs. (19)
and (20) both apply equally to relativistic A0 → γ oscil-
lations as well.
As an example, let us consider the homogeneous limit

where m2
γ ¼ m2

γ everywhere; in this case, the PDF is
trivially given by

fhðm2
γ ; tÞ ¼ δDðm2

γ −m2
γðtÞÞ: ð21Þ

We therefore see that the mean homogeneous conversion
probability is

hPγ→A0 ih ¼
Z

dt
πm4

A0ϵ2

ωðtÞ δDðm2
γ −m2

γðtÞÞ

¼
X
i

πm2
A0ϵ2

ωðtiÞ
���� d lnm2

γðtÞ
dt

����
−1

t¼ti

; ð22Þ

where i indexes times ti when m2
γðtiÞ ¼ m2

A0 , and we have
again made use of the substitution shown in Eq. (18). This
recovers the homogeneous limit expressions found in
Eq. (15) and Ref. [16].

B. A0 → γ oscillations

For A0 → γ conversions with A0 dark matter, in the range
of mA0 of interest, the converted photons are absorbed
quickly by electrons in the IGM via free-free absorption
[18], heating the IGM. The quantity of interest is therefore
the average energy injected into the plasma per baryon,
hEA0→γi. The derivation of hEA0→γi proceeds in a similar

fashion, except that the energy injected per volume along
the worldline is given by PA0→γðtÞρA0 ðtÞ, where ρA0 ðtÞ is the
mass density of A0 dark matter at the point on the worldline
t. The rate of energy injected per baryon along the world-
line of the massive dark photon is therefore

dEA0→γ

dt
¼ πmA0ϵ2

ρ̄A0

n̄b

ρA0 ðtÞ
ρ̄A0 ðtÞ δDðm

2
γðtÞ −m2

A0 Þm2
γðtÞ; ð23Þ

where n̄b is the homogeneous baryon number density, with
ρ̄A0=n̄b being a time-independent quantity.
To obtain the mean value, we technically need to perform

an integral over the joint distribution of both m2
γ and ρA0 .

However, two points make this unnecessary. First, if
fluctuations in the free electron fraction are small, then
as we argued in Eq. (2), m2

γ ∝ nb. This assumption is true
during the period of HeII reionization, the regime we study
in Paper I to obtain limits on ϵ in the case of A0 dark matter,
since the Universe is almost completely ionized at this time
except for HeII, while fluctuations in baryon density are
large compared to the mean. Second, we adopt the standard
assumption that baryon density fluctuations track matter
density fluctuations ρm with a bias b ∼Oð1Þ. This means
that

ρm
ρ̄mðtÞ

¼ 1

b
nb
n̄b

¼ 1

b

m2
γ

m2
γðtÞ

; ð24Þ

where in the case of A0 dark matter, ρm ≃ ρA0 . Note that in
Paper I, we assumed b ¼ 1 for simplicity, although
including a small bias consistent with values reported in
Ref. [41] does not change the result significantly. With this
relation, we find

dhEA0→γi
dz

¼ πmA0ϵ2
ρ̄A0

bn̄b

���� dtdz
����

×
Z

dm2
γ

m2
γ

m2
γðtÞ

fðm2
γ ; tÞδDðm2

γ −m2
A0 Þm2

γ ;

ð25Þ

and as before we can perform the integral to obtain

dhEA0→γi
dz

¼ πm5
A0ϵ2

m2
γðtÞ

ρ̄A0

bn̄b

���� dtdz
����fðm2

γ ¼ m2
A0 ; tÞ: ð26Þ

This treatment implicitly assumes that the conversion
probability of A0 → γ is small, which is required if A0 is
all of the dark matter. A more general treatment is possible
by allowing bðzÞ to vary as a function of the total
conversion up to z.
In deriving Eq. (25), we have assumed that the energy

deposited by the conversion is distributed uniformly across
all baryons, enabling us to characterize the entire plasma
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with a single temperature. This is in contrast to the
assumption made in Ref. [22], where energy deposition
is local. The corresponding expression under this
assumption can be obtained by replacing n̄b → nb inside
the integral,

dhEA0→γilocal
dz

¼ πmA0ϵ2
ρ̄A0

bn̄b

���� dtdz
����

×
Z

dm2
γfðm2

γ ; tÞδDðm2
γ −m2

A0 Þm2
γ ; ð27Þ

which we can integrate to obtain

dhEA0→γilocal
dz

¼ πm3
A0ϵ2

ρ̄A0

bn̄b

���� dtdz
����fðm2

γ ¼ m2
A0 ; tÞ: ð28Þ

These results agree with the analogous expression in
Ref. [22]. We leave a detailed comparison of our results
to Appendix A.
Equations (19) and (25) were presented in Paper I, and

with several different choices of the PDF, fðm2
γ ; tÞ, were

used to derive all of the relevant bounds on the existence on
A0. The rest of the paper will now focus on determining the
analytic form of fðm2

γ ; tÞ and checking these results with
simulation.

IV. UNDERSTANDING THE FORMALISM

We are now in a position to evaluate Eqs. (19) and (25)
numerically. To gain some intuition regarding our formal-
ism and highlight some important physics, we begin our
discussion assuming Gaussian fluctuations, a valid
assumption at redshifts z ≫ 20, where density perturba-
tions are well described by linear perturbation theory. In
this limit, hPγ→A0 i and hEA0→γi have analytic solutions,
which serve as a useful pedagogical example for our full
treatment. We will first discuss the various inputs that
determine fðm2

γ ; tÞ, before discussing the analytics of the
result in the Gaussian regime.

A. PDF, variance of fluctuations, and power spectrum

We begin by taking the limit where we neglect fluctua-
tions in the free electron fraction, as in Eq. (2). The baryon
density fluctuation δbðx⃗Þ at each point in space is defined as

δbðx⃗Þ≡ ρbðx⃗Þ − ρ̄b
ρ̄b

; ð29Þ

where ρbðx⃗Þ is the baryon mass density at x⃗ and ρ̄b is the
mean, homogeneous baryon mass density. In the linear
regime, the fluctuations follow a Gaussian distribution,
given by the one-point PDF of baryon density fluctuations,

PGðδb; zÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2bðzÞ
p exp

�
−

δ2b
2σ2bðzÞ

�
; ð30Þ

with the variance of the distribution σ2b directly related to
the baryon (auto) power spectrum, Pbbðk; zÞ through

σ2bðzÞ ¼
Z

d3k⃗
ð2πÞ3 Pbbðk; zÞ: ð31Þ

In linear perturbation theory, Pbb is the linear baryon power
spectrum, Pbb;Lðk; zÞ. Figure 2 shows σbðzÞ, computed
using the value of Pbb;Lðk; zÞ produced by CLASS [42]. With
this function, we have fully specified the one-point PDF,

fðm2
γ ; tÞ ¼

dδb
dm2

γ
Pðδb; tÞ ¼

Pðδbðm2
γÞ; tÞ

m2
γðtÞ

; ð32Þ

directly relating the PDF for m2
γ to a cosmological

observable. We discuss the issue of perturbations in xe
in Sec. VI. The blue band in Fig. 1 shows the standard
deviation of plasma mass fluctuations induced by baryon
Gaussian fluctuations, for illustration.

B. Jeans scale and sensitivity to small scales

In linear perturbation theory, the linear matter power
spectrum Pmm;Lðk; zÞ scales as k−3 at large k, so that the
variance in matter fluctuations, calculated using Eq. (31)
with Pmm;Lðk; zÞ, theoretically exhibits a log k ultraviolet
divergence. This divergence is regulated by the fact that
measurements and simulations of matter density are always
averaged over some smoothing scale R; Pmm;Lðk; zÞ needs
to be convolved with a windowing function (e.g., a top-hat
function) with characteristic size R, giving a variance as a
function of R. For baryons in the linear regime, baryonic
structures have the Jeans length as a physical cutoff scale:
the formation of structures with size less than RJ is
suppressed due to gas pressure counteracting the gravita-
tional collapse, defined by

RJðzÞ ¼
2

ffiffiffi
2

p
πffiffiffi
3

p ð1þ zÞ
HðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γTbðzÞ
μmp

s
; ð33Þ

where γ ¼ 5=3 is the adiabatic index for an ideal mon-
atomic gas, μ ¼ 1.22 is the mean molecular weight of the
neutral IGM, mp is the proton mass, Tb is the baryon
temperature, csðzÞ is the baryon sound speed, and HðzÞ is
the Hubble parameter. Numerically, this is

RJðzÞ ∼ 1.4 Mpc
�

1.0
1þ z

�
1=2

�
Tb

104 K

�
1=2

; ð34Þ

with a minimum value of RJ;min ∼ 10−2 Mpc at z ∼ 20 with
Tb ∼ 10 K, before reionization heats baryons significantly.
In terms of wave number, the Jeans length ensures that
Pbb;Lðk; zÞ is suppressed above kJ ∼ 2π=RJ, which lies
between 102 and 103 Mpc−1 for z≳ 20.
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Once reionization begins, Eq. (34) shows that kJ
decreases rapidly due to the increase in baryon temperature.
Fluctuations also become increasingly nonlinear during this
epoch. On the other hand, Boltzmann codes like CLASS [42]
and CAMB [43] compute the linear baryon power spectrum
Pbb;Lðk; zÞ with a suppression at kJ without reionization
sources included when computing Tb, leading to a suppres-
sion scale of kJ ∼ 700 hMpc−1, instead of kJ ∼ 10hMpc−1

as estimated from Eq. (34). However, power above kJ ∼
10hMpc−1 is actually unsuppressed due to the increasingly
nonlinear behavior of baryons at late times; this lack of
suppression is confirmed by baryon power spectra extracted
from high-resolution hydrodynamic N-body simulations
with baryonic physics included [44]. In light of this, we
continue to adopt the linear power spectrum computed by
CLASS for Pbb;L with power suppressed above roughly
700 hMpc−1 and defer a complete discussion of this to
Sec. VI. We will also refer to the Jeans scale and corre-
sponding Jeans length as the value of k at which the linear
power spectrum of CLASS shows a suppression of power
relative to the matter power spectrum instead of Eq. (33).
Since the baryon power spectrum Pbb;L like Pmm;L also

scales as approximately k−3 at large k up to kJ, and nonlinear
effects usually lead to the baryon power spectrum Pbb

exceeding Pbb;L at large k, the value of σ2b and hence the
probability of conversion is sensitive to the smallest unsup-
pressed length scales in PbbðzÞ. This exhibits one of the key
peculiarities of dark photon oscillations in the presence of
inhomogeneities: the resulting physics is sensitive to small-
scale perturbations, depending on the details of the baryon
power spectrum at scales as small as 103 Mpc−1, providing a
rare example of a cosmological phenomenon that is ultra-
violet sensitive to perturbations. We will discuss our treat-
ment of the baryon power spectrumbeyond the linear regime
in significant detail in Sec. VI.
Finally, although the Gaussian distribution is well

motivated at high redshifts when fluctuations are small,
the Gaussian PDF shown in Eq. (30) breaks down once
σb ∼ 1, since large negative fluctuations which lead to an
overall negative density is assigned a sizable probability.
Figure 2 shows that the applicability of the Gaussian PDF
starts becoming questionable once z≲ 20.

C. Analytics

Substituting the expression for fðm2
γ ; tÞ in Eq. (32) into

Eq. (16) gives

dhPγ→A0 iG
dz

¼ πm4
A0ϵ2

m2
γðzÞωðzÞ

���� dtdz
����

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2bðzÞ
p exp

�
−
ðm2

A0=m2
γðzÞ − 1Þ2

2σ2bðzÞ
�
;

ð35Þ

where the subscript “G” stands for Gaussian. The corre-
sponding energy deposited per baryon is

dhEA0→γiG
dz

¼ πm3
A0ϵ2

m2
γðzÞ

m2
A0

m2
γðzÞ

ρ̄A0

bn̄b

���� dtdz
����

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2bðzÞ
p exp

�
−
ðm2

A0=m2
γðzÞ − 1Þ2

2σ2bðzÞ
�
:

ð36Þ

Given σbðzÞ and m2
γðzÞ from Eq. (1), these compact results

can now be integrated numerically to obtain hPγ→A0 i.
In the σ2b → 0 limit, the Gaussian narrows and can

eventually be approximated by a Dirac-delta function; this
expression then converges to the homogeneous result, as a
corollary of the discussion around Eq. (21). On the other
hand, for some finite value of σ2b, the characteristic redshift
width Δz over which transitions occur is given by

Δz ∼ σb

���� d lnm2
γ

dt
dt
dz

����
−1

; ð37Þ

which during periods when xe does not change significantly
(e.g., before recombination, during the dark ages, and after
reionization is complete) is approximately

Δz ∼ 3.3

�
1þ zh
100

��
σbðzhÞ
0.1

�
; ð38Þ

where zh is the redshift at which m2
γ ¼ m2

A0 . In the linear
regime, fluctuations grow linearly with the scale factor, and
thus σb ∝ 1=ð1þ zÞ; this implies that Δz stays relatively
constant throughout the dark ages. We can see that the
range of redshifts over which conversions can happen can
be very large, with Δz≳ z at low redshifts.
Similarly, a range of m2

A0 can now convert with signifi-
cant probability at any given redshift z. At a particular value
of zh, this range is roughly

Δm2
A0 ∼�σbm2

γðzhÞ: ð39Þ
We note that when σb exceeds one at z≲ 20, this range of
mA0 includes negative values, highlighting the fact that the
Gaussian PDF becomes unphysical in this range, as we
discussed above. However, the lesson here is clear: the
presence of under- and overdensities allows conversions

well above and below the homogeneous value m2
γðzhÞ,

allowing (i) conversions with mA0 ≲ 10−14 eV, i.e., below
the homogeneous plasma mass at any point in the history of
the Universe, and (ii) lower redshift conversions for
10−13 eV≲mA0 ≲ 10−12 eV, which have a higher proba-
bility of conversion.
In the Gaussian limit, we can derive the ratio of the

probability calculated under the homogeneous assumption
to the probability given a Gaussian PDF analytically. We
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begin by defining the variable Δ≡m2
A0=m2

γ − 1 and rewrite
the conversion probability with the Gaussian PDF shown in
Eq. (35) as

hPγ→A0 iG ¼
Z

Δ0

−1
dΔ

gðΔÞffiffiffiffiffiffiffiffiffiffi
2πσ2b

p exp

�
−
Δ2

2σ2b

�
; ð40Þ

where we have defined

gðΔÞ≡ πm2
A0 ðΔþ 1Þϵ2
ωðΔÞ

dt
dΔ

ð41Þ

and Δ0 ¼ m2
A0=m2

γðz ¼ 0Þ − 1, with ω now being a func-
tion of Δ. Observe that gð0Þ ¼ hPγ→A0 ih provided Δ0 ≥ 0,
where hPγ→A0 ih is the homogeneous conversion probability.
Since the contribution to the integral is centered at Δ ¼ 0,
we can set gðΔÞ ≈ gð0Þ þ g0ð0ÞΔ and take σb to be
constant, giving

hPγ→A0 iG
hPγ→A0 ih

≃
1

2

�
erf

�
1ffiffiffiffiffiffiffi
2σ2b

p �
þ erf

�
Δ0ffiffiffiffiffiffiffi
2σ2b

p ��

þ g0ð0Þ
gð0Þ

σbffiffiffiffiffiffi
2π

p
�
exp

�
−

1

2σ2b

�
− exp

�
−
Δ2

0

2σ2b

��
ð42Þ

for Δ0 > 0. In the limit of constant xe and a matter
dominated universe, g0ð0Þ=gð0Þ ¼ 5=6. The ratio of prob-
abilities would be greater than one if the homogeneous
assumption is conservative with respect to the Gaussian
result. Moreover, in the limit when σb → 0, this expression
tends to 1, as expected.
In Fig. 3, we plot the conversion probabilities ratio as a

function of mA0 . The analytic estimate in Eq. (42) is
evaluated with σb at the homogeneous resonance redshift
zh and is shown for homogeneous conversions that occur at
z < 6. We also include the exact probability ratio computed
numerically. Large values of the ratio of Gaussian to
homogeneous conversion probabilities occur for values
of mA0 where the homogeneous limit resonance is deep in
the dark ages, but overdensities allow for significant
conversions at z ∼ 6 with the Gaussian PDF (see Fig. 1).
At large values of mA0 , the Gaussian and homogeneous
conversion probabilities rapidly converge as the variance of
fluctuations decreases.
This ratio is significantly less than one for later con-

versions, i.e., lighter mA0. Qualitatively, the Gaussian PDF
spreads out the probability of conversion over a range Δz
given in Eq. (38) compared to the homogeneous
assumption; for small zh, this can mean that most of the
probability of conversion lies in the future, even though
zh > 0. For sufficiently large zh, however, the probability of
conversion in the future is negligible while the total
conversion probability in the Gaussian limit is larger, since

conversions happening below zh have higher values of
dP=dz, increasing the overall integrated probability.

D. Main takeaways

Having gone through the example of a Gaussian PDF, we
are now ready to understand how to arrive at a numerical
result for hPγ→A0 i and hEA0→γi in general. We need the
following two inputs, both of which need to be evaluated
correctly in the nonlinear regime:
(1) Functional form for baryon one-point PDF: In the

linear regime, the PDF has a Gaussian form, but
outside of the linear regime (z≲ 20), the Gaussian
PDF clearly fails to capture fluctuations (especially
underdensities) well, and better prescriptions are
required.

(2) The variance of baryon fluctuations: While the mean
of the PDF is fixed to be zero by the fact that the
average baryon density must be the homogeneous
baryon density, the variance is not determined.3 The
variance of baryon fluctuations will ultimately be
determined by the power spectrum of matter or
baryons as a function of redshift. Outside of the
linear regime, one can no longer rely on Boltzmann
codes to calculate these power spectra and must
instead make use of results informed by N-body
simulations to obtain this information. In all cases,
the variance is ultraviolet-sensitive to the power

FIG. 3. An analytic estimate for the ratio of the probability of
conversion with the Gaussian PDF vs that of the homogeneous
assumption (red) for conversions that happen at z < 6, with
agreement between the two approaches corresponding to a
conversion probability ratio of one (gray). The full numerical
result is shown for comparison (blue). There are no conversions
in the homogeneous limit for mA0 ≲ 2 × 10−14 eV [38].

3In this paper, we use only PDFs with functional forms that are
fully defined by the mean and variance. Higher order statistics
could play an important role in a full characterization of baryon
fluctuations.

CAPUTO, LIU, MISHRA-SHARMA, and RUDERMAN PHYS. REV. D 102, 103533 (2020)

103533-8



spectrum at small scales, but this UV sensitivity is
cut off by the Jeans scale, kJ, which we obtain from
the CLASS linear baryon power spectrum.

We will devote Sec. V to examining more realistic alter-
native one-point PDFs to the Gaussian and Sec. VI to a
discussion of how to obtain the variance of the PDF deep in
the nonlinear regime.

V. ONE-POINT PROBABILITY DENSITY
FUNCTIONS

Table I shows a summary of all of the baryon one-point
PDFs considered in this paper and in Paper I, and Fig. 4
shows a plot of these PDFs at a range of redshifts. Beyond

the linear regime, the log-normal PDF has been proposed as
a phenomenological fit to the total matter distribution
[45,46] for both observations [41,47–49] and N-body
simulations [50–52]. The introduction of a bias parameter
to the log-normal distribution has also been shown to
produce good fits phenomenologically [41,49]. There has
also been a significant effort to calculate the matter one-
point PDF from first principles [53,54] with the linear
regime as a starting point, especially using a path-integral
approach [55–58]. Finally, the study of cosmic voids has
shed some light on the underdense tail of the one-point PDF
[59–64], and simulation results can be turned into a
reasonable PDF at low densities.

TABLE I. Summary of the baryon one-point PDFs used in this paper and in Paper I, with their defining equations and input power
spectra used to determine the variance of these PDFs, where applicable.

PDF Equation Power spectrum Remarks

Log-normal
(fiducial) PLNðδb; zÞ

ð1þδbÞ−1ffiffiffiffiffiffiffiffiffiffiffiffi
2πΣ2ðzÞ

p exp ½− ½lnð1þδbÞþΣ2ðzÞ=2�2
2Σ2ðzÞ � Nonlinear baryon Σ2ðzÞ ¼ ln½1þ σ2bðzÞ�.

Analytic Panðδb; zÞ ĈðδbÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2RJ

ðzÞ
p exp ½− F2ðδbÞ

2σ2RJ
ðzÞ� Linear matter, smoothed

over baryon Jeans length RJ

ĈðδbÞ and FðδbÞ defined in Appendix B.

Log-normal with
bias Pb

LNðδb; zÞ
1
bPLNðδbb ; zÞ Nonlinear matter, with baryon

Jeans scale cutoff
We adopt b ¼ 1.5 following Ref. [41].

Voids Pvoidsðδb; zÞ ϕvoidsðzÞgvoidsð1þ δb; zÞ � � � ϕvoids is the fractional volume of the
simulation in a void, gvoids is the
PDF of the mean 1þ δb in voids
[64,66]. Only used for underdensities.

FIG. 4. One-point PDFs Pðδb; zÞ at six different redshifts. The fiducial log-normal PLN (red), analytic Pan (green) PDFs, the log-
normal PDF with bias b ¼ 1.5, P1.5

LN (blue), the PDF constructed from a model of voids Pvoid (purple) [64], and the Gaussian PDF PG

(orange). Also shown are the fiducial 10−2 < 1þ δ < 102 boundaries (dashed gray) [65].
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To understand γ ↔ A0 oscillations, we need a PDF that is
able to (i) capture baryonic effects and not just the overall
matter distribution; (ii) capture the distribution of large
overdensities and underdensities correctly, and (iii) capture
the behavior of baryonic fluctuations down to the Jeans
scale of k ∼ 102–103 Mpc−1. Existing studies of the one-
point PDF cannot meet all three of these criteria simulta-
neously: first-principle, analytic results only apply to cold
dark matter and do not account for baryonic effects, while
the log-normal phenomenological fits have only been
applied to simulations or data that have an effective
smoothing scale much larger than the Jeans scale.
Almost all results are validated with observations in a
small range of density fluctuations (10−1 ≲ 1þ δb ≲ 10),
or on one side of the PDF (e.g., voids). These uncertainties
surrounding the distribution of baryonic fluctuations make
it a challenge to arrive at a rigorous conclusion regarding
constraints on γ ↔ A0 oscillations.
Our approach is to adopt several independent models of

the baryonic one-point PDF in an attempt to capture the
systematic uncertainties discussed here. In our fiducial
approach, we adopt a log-normal functional form for the
one-point PDF, with the variance of this distribution
determined by baryonic power spectra obtained from a
combination of different hydrodynamic N-body simulation
results, which we detail in Sec. VI B. We truncate the PDF
to the range 10−2 ≤ 1þ δb ≤ 102 to avoid the large
uncertainties in the tails of the PDF. Our second approach
relies on analytic results described in Ref. [58], which takes
as input the linear matter power spectrum and computes the
one-point PDF for matter fluctuations as a function of
redshift due to spherical collapse, which we then take to be
equal to the baryon one-point PDF. We find that at low
redshifts, these two approaches lead to similar PDFs in the
range 10−2 ≲ 1þ δb ≲ 102 at z ¼ 0, as shown in Fig. 4;
this range decreases to 10−1 ≲ 1þ δb ≲ 10 at z ¼ 6.
Restricting the PDFs to the range 10−2 ≲ 1þ δb ≲ 102,
the constraints on ϵ derived from γ ↔ A0 in Paper I differ by
at most a factor of approximately 3 at mA0 ∼ 10−12 eV
between our two prescriptions, suggesting that we have
reasonable control over the uncertainties on the baryon PDF.
In addition to the log-normal PDF and the analytically

derived PDF, we also use two other PDFs as cross-checks
to our results. First, we use a log-normal distribution with a
bias parameter b, with the variance of the distribution given
by the nonlinear matter power spectrum. This approach
models the baryonic fluctuations as simply a factor b times
the overall matter fluctuations, giving us an estimate of how
reliant we are on baryonic physics modeled by the
simulations we used to obtain the baryonic power spectrum
for our fiducial log-normal PDF. Second, we use results
from Ref. [64] for the probability distribution of finding
voids of a certain volume with a certain underdensity in
their simulations, and construct a PDF of underdensities
to test the underdense tails of our PDFs. Both of these

cross-checks show that the constraints we derive in Paper I
are likely to be robust to differences in systematics in the
PDFs and may improve if we can trust these PDF distribu-
tions to much larger underdense and overdense fluctuations.

A. Log-normal PDF

Our fiducial choice for the PDF in this paper is the log-
normal PDF PLNðδb; zÞ, given by

PLNðδb; zÞ ¼
ð1þ δbÞ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΣ2ðzÞ

p
× exp

�
−
½lnð1þ δbÞ þ Σ2ðzÞ=2�2

2Σ2ðzÞ
�
; ð43Þ

with Σ2ðzÞ ¼ ln½1þ σ2bðzÞ� as defined in Eq. (31). The
variable lnð1þ δbÞ has a Gaussian distribution with mean
−Σ2=2 and time-dependent variance Σ2. As an immediate
consequence, unphysical fluctuations of δb < −1 are for-
bidden, unlike the Gaussian PDF for δb. With this choice of
Σ, PLN satisfies Z

∞

−1
dδbPLNðδb; zÞ ¼ 1; ð44Þ

Z
∞

−1
dδbδbPLNðδb; zÞ ¼ 0; ð45Þ

Z
∞

−1
dδbδ2bPLNðδb; zÞ ¼ σ2bðzÞ; ð46Þ

i.e., PLN is correctly normalized, with hδbi ¼ 0 and
hδ2bi ¼ σ2b, as required. These normalization conditions
mean that as a function of lnð1þ δbÞ, the log-distribution
is symmetric about lnð1þ δbÞ ¼ −Σ2=2 and not zero. In
the limit that σ2b ≪ 1 and δb ≪ 1, the log-normal PDF in
Eq. (43) reduces to the Gaussian PDF to OðδbÞ and Oðσ2bÞ;
in the linear regime, with σ2b ≪ 1 and δb having an
extremely low probability of approaching one, the fluctua-
tions drawn from both the Gaussian and log-normal PDFs
are virtually identical. The red band in Fig. 1 illustrates the
middle-68% containment of the inhomogeneous photon
plasma mass assuming a log-normal PDF for the perturba-
tions. Unlike in the case of a Gaussian PDF description
(illustrated by the blue band), unphysically negative fluc-
tuations are forbidden in this case. For our fiducial PDF, we
limit the range of the PDF to 10−2 ≤ 1þ δb ≤ 102, remov-
ing the highly uncertain PDF tails.

B. Analytic PDF

Computing the PDF of matter fluctuations from first
principles has been effectively studied in the language of
path integrals, giving expressions that have been shown to
be reliable in the nonlinear regime, even at large
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overdensities [55–58]. Here, we provide only a brief outline
of the derivation of such an analytic PDF, and refer the
reader to Ref. [58] for the details of the calculation.
Consider a spherical volume of radius r� at some redshift

z containing some density fluctuation δ� obtained by
integrating the spherical volume over a top-hat function.4

This fluctuation was formed from some field configuration
δiðx⃗Þ deep in the linear regime undergoing gravitational
collapse, where δiðx⃗Þ can be described as a Gaussian
random field. If the evolution of fluctuations is purely
linear, then the size of linear fluctuations at the same
redshift z is δL ¼ ð1þ ziÞδi=ð1þ zÞ, since linear fluctua-
tions grow in proportion to the scale factor of the Universe
during matter domination. The statistical properties of a
Gaussian random field are governed entirely by the two-
point correlation function ξðx⃗ − y⃗Þ≡ hδLðx⃗ÞδLðy⃗Þi, which
is related by the Fourier transform to the linear matter
power spectrum Pmm;LðkÞ.5 If the mapping between over-
densities δ� in a cell of size r� and field configurations in
the linear regime δL is well understood, then the PDF of
finding such an overdensity can be mapped onto the
statistical properties of the Gaussian random field.
Concretely, let us define the functional δ̄W ½δL�

which takes a given Gaussian field configuration δL
expected by linear evolution to redshift z of an initial
(Gaussian) field configuration δi and maps it to the actual
density contrast δ� averaged over some spherical volume
of radius r�, produced by the actual gravitational evolu-
tion of δi. Then the PDF of δ� is given by a path integral
over all Gaussian field configurations δL with a Gaussian
weight [55],

Pðδ�Þ ¼ N −1
Z

DδLe−SG½δL�δDðδ� − δ̄W ½δL�Þ; ð47Þ

where

SG½δL�≡ 1

2

Z
d3x⃗

Z
d3y⃗δLðx⃗Þξ−1ðx⃗ − y⃗ÞδLðy⃗Þ; ð48Þ

with ξ−1 defined as the functional inverse of ξ,

Z
d3z⃗ξ−1ðx⃗ − z⃗Þξðz⃗ − y⃗Þ ¼ δð3ÞD ðx⃗ − y⃗Þ: ð49Þ

The overall normalization factor is simply

N ¼
Z

DδLe−SG½δL�: ð50Þ

Taking the Fourier transform of the integrand in Eq. (48)
gives [55]

SG½δL� ¼
1

2

Z
d3k⃗
ð2πÞ3

jδ̃Lðk⃗Þj2
Pmm;Lðk; zÞ

; ð51Þ

where δ̃Lðk⃗Þ is the Fourier transform of the field configu-
ration δL.
Reference [58] showed that Eq. (47) can be integrated

using the saddle point approximation, by showing that the
saddle point configuration is spherically symmetric, and
by making use of the fact that the spherical collapse
model provides a mapping F between δ� and δ̄LðR�Þ,
where δ̄LðR�Þ is the mean density of the configuration δL
smoothed over a radius R� ≡ r�ð1þ δ�Þ1=3, with

Fðδ�Þ≡ δ̄LðR�Þ: ð52Þ
With this, they were able to show that taking into account
only spherically symmetric fluctuations, the probability
distribution function is

Pðδ�; zÞ ¼
Ĉðδ�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2R�ðzÞ

q exp

�
−

F2ðδ�Þ
2σ2R� ðzÞ

�
; ð53Þ

where σ2R� is the variance of linear matter fluctuations
smoothed with a top hat of radius R�,

σ2R� ðzÞ ¼
Z

d3k⃗
ð2πÞ3 Pmm;Lðk; zÞjWthðkR�Þj2; ð54Þ

with Wth being the Fourier transform of the top
hat, WthðxÞ≡ 3j1ðxÞ=x.
The intuition behind this result is clear: a density

fluctuation δ� within a sphere of radius r� at redshift z
is formed through spherical collapse of some initial linear
density fluctuation, which under linear evolution corre-
sponds to a linear density fluctuation of size Fðδ�Þ in a
sphere of radius R� at the same redshift z. Since the linear
density fluctuations follow a Gaussian distribution with
variance σ2R�ðzÞ, Pðδ�; zÞ is also Gaussian with respect
to Fðδ�Þ.
Several further comments are in order before we are

ready to use this PDF in our analysis.
(1) Although Ref. [58] introduces an Oð1Þ aspherical

factor that includes the effects of aspherical fluctua-
tions, this factor was not computed for the small
scales of interest to this work. Since we are mostly
interested in understanding the systematics associ-
ated with the use of different PDFs, for simplicity,
we neglect this aspherical factor throughout. In
principle, this prefactor can be computed from
theory, allowing an improvement to the PDF. Never-
theless, this will be a small correction compared to

4We will only consider an averaging procedure using a top-hat
windowing function, although more general arguments can be
made for any arbitrary windowing function [58].

5Translational and rotational invariance means that ξ ulti-
mately only depends on the magnitude jx⃗ − y⃗j.
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the baryonic bias with respect to the matter fluctua-
tions, which is not included in the analytic calcu-
lation at the moment. We neglect all other baryonic
effects that may cause a difference between
Pbb;Lðk; zÞ and Pmm;Lðk; zÞ, and take δ� ¼ δb.

(2) The PDF as defined in Eq. (53) for δ� is defined with
respect to a sphere of size r�. This is critical in light
of the UV divergence exhibited by Pmm;Lðk; zÞ, as
discussed in Sec. IV, which leads to a divergence in
σ2R� as R� → 0. As we argued in Sec. IV, baryons
naturally have a cutoff length scale given by the
Jeans length RJ, below which the power spectrum is
suppressed. We therefore set the smoothing scale
R� ¼ RJ to approximately reproduce this suppres-
sion of power and take the result to be the PDF for
baryon density fluctuations.

In summary, the analytic PDF for baryon fluctuations
that we adopt in this paper is

Panðδb; zÞ≡ ĈðδbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2RJ

ðzÞ
q exp

�
−
F2ðδbÞ
2σ2RJ

ðzÞ
�
: ð55Þ

We show the full expression for the terms Ĉ and F in
Appendix B.

C. Log-normal PDF with bias

The log-normal PDF can be generalized to include an
additional parameter b, known as the bias [67]. This
distribution is given by

Pb
LNðδb; zÞ≡ 1

b
PLN

�
δb
b
; z

�
; ð56Þ

where the choice of b ¼ 1 gives us the log-normal PDF
discussed in Sec. VA. For this distribution, however, we
choose Σ2 ¼ ln½1þ σ2mðzÞ� where

σ2mðzÞ ¼
Z

d3k⃗
ð2πÞ3 Pmmðk; zÞ ð57Þ

is the variance of the matter power spectrum. The bias
parameter is a constant factor relating matter density
fluctuations δm to baryonic density fluctuations δb, i.e.,
δb ¼ bδm. With this in mind, the normalization conditions
are now Z

∞

−b
dδbPb

LNðδb; zÞ ¼ 1; ð58ÞZ
∞

−b
dδbδbPb

LNðδb; zÞ ¼ 0; ð59ÞZ
∞

−b
dδ2bδ

2
bP

b
LNðδb; zÞ ¼ b2σ2m: ð60Þ

These normalization conditions follow naturally from
having matter fluctuations −1 ≤ δm < ∞ and the fact that

δb ¼ bδm implies σ2b ¼ b2σ2m. For b > 1, δb can have
downward fluctuations of up to −b, which are clearly
unphysical; however, Pb

LN has been shown to be a reason-
able fit to data [41,49], and we are once again using the
PDF only as a way of capturing systematic uncertainties. In
particular, Pb

LN relies on the distribution of matter and not
baryons, allowing us to arrive at a log-normal-like PDF
without relying on N-body simulations with baryonic
feedback included, using instead Pmm from N-body sim-
ulations with cold dark matter only. We again use the Jeans
scale as a UV cutoff for Pmm to regulate the power
spectrum. We will adopt the value of b ¼ 1.5 below,
consistent with Ref. [41].

D. PDF from voids

In Refs. [64,66], a ΛCDM N-body simulation was
performed in a box of volume Vsim ¼ 5003 h−3 Mpc3 over
the redshift range 0 ≤ z ≤ 12. The number of voids
NvoidsðzÞ, the PDF fvoidsðV; zÞ of the volume V of voids,
and the PDF gvoidsðρ=ρ̄; zÞ of the ratio of the mean matter
density in voids to the mean cosmological matter density
ρ=ρ̄ are all reported. We can now construct a PDF for
baryonic fluctuations by making the following simplifying
assumptions: (i) all underdensities are found in voids that
are successfully detected by the simulation; (ii) the density
in the void is constant, and is given by the mean matter
density in the void; and (iii) no conversions happen outside
of voids. First, we can work out the fractional volume of the
simulation that is in a void, given by

ϕvoidsðzÞ ¼
NvoidsðzÞ
Vsim

Z
dVVfvoidsðV; zÞ: ð61Þ

ϕvoids ∼ 0.1 across the entire redshift range simulated.
Under the simplifying assumptions outlined above, we
can now write

Pvoidsðδb; zÞ≡ ϕvoidsðzÞgvoidsð1þ δb; zÞ: ð62Þ

The normalization of Pvoids is ϕvoids < 1; in obtaining the
ensemble average in Eqs. (19) and (25), this is equivalent to
discarding all worldlines at redshift z that are not in voids.
This PDF therefore is, by construction, aimed at modeling
only underdensities. The assumptions made here can
certainly be improved: not all underdensities are found
in voids, which necessarily must have a local minimum in
density in three-dimensional (3D) space, and the void
density profile should also be taken into account.
However, the main purpose of constructing this PDF is
less about getting an accurate model for the density
fluctuations and more to provide a sanity check on our
modeling of underdensities using the log-normal or ana-
lytic PDFs.
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VI. VARIANCE OF FLUCTUATIONS

A key input to calculating the photon-to-dark photon
oscillation probability in the presence of inhomogeneities is
a description of the spectrum of fluctuations of the photon
plasma. A particular challenge at late times is posed by
nonlinear effects, which can be quantified using input from
N-body simulations. At early times after recombination, on
the other hand, spatial fluctuations in the fraction of free
electrons come into play and have to be accounted for. We
now describe in turn the calculation of the variance of
fluctuations and relevant inputs in each regime.

A. Free electron fraction perturbations

Equation (1) shows that there are two sources of
fluctuations for m2

γðtÞ: fluctuations in the baryon density,
as well as fluctuations in the free electron fraction, which
we define as xe ≡ ne=nH, where nH is the number density
of both neutral and ionized hydrogen atoms. So far, we
have neglected fluctuations in xe; we will now show how
fluctuations in m2

γ are related to fluctuations in both baryon
density and xe, and discuss the conditions under which xe
can be neglected.
Consider a point t along a worldline of a photon with

some HI density nHIðtÞ and free electron density neðtÞ, each
with a fluctuation from the mean values n̄HI and n̄e given by
δHI and δe, respectively, so that

nHI ¼ ð1þ δHIÞn̄HI; ne ¼ ð1þ δeÞn̄e: ð63Þ

We can further rewrite δe in terms of baryon density
fluctuations δb and free electron density fluctuations,

δχ ≡ xe
x̄e

− 1: ð64Þ

Writing n̄eð1þ δeÞ ¼ x̄eð1þ δχÞn̄Hð1þ δbÞ,

δe ¼ δb þ δχ þ δχδb: ð65Þ

We can see that as long as δχ ≪ δb and δχ ≪ 1, we have
δe ¼ δb to leading order, i.e., perturbations in the free
electron density are given entirely by fluctuations in the
baryon density when free electron fraction perturbations are
small, even in the nonlinear regime. On the other hand, if
δχ ∼ δb ≪ 1, then

δe ¼ δχ þ δb: ð66Þ

With this new notation, we can rewrite the plasma mass
fluctuation δm2

γ
as

δm2
γ
m2

γ ≡m2
γ −m2

γ ¼ Aδen̄e − Bω2δHIn̄HI; ð67Þ

where we have defined for convenience the constants

A≡1.4×10−21 eV2 cm3; B≡8.4×10−24 cm3: ð68Þ

In the linear regime, with δe and δHI being small and
Gaussian, m2

γ is also Gaussian,

fðm2
γ ; zÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2m2

γ

q exp

�
−
ð1 −m2

γ=m2
γÞ2

2σ2m2
γ

�
; ð69Þ

where

σ2m2
γ
≡ hδm2

γ
δm2

γ
i: ð70Þ

We can now make use of Eq. (67) to obtain an expression
for this variance. For simplicity, we consider the redshift
range 20≲ z≲ 1600, during which helium was almost
completely neutral, so that we can write nHI ¼ ð1 − xeÞnH.6
We find

m2
γ
2σ2m2

γ
¼ ðAþ Bω2Þ2n̄2ehδeδei þ B2ω4n̄2Hhδbδbi
− 2ðAþ Bω2ÞBω2n̄en̄Hhδeδbi; ð71Þ

where

hδiδji ¼
Z

d3k⃗
ð2πÞ3 Pij;LðkÞ; ð72Þ

where Pij;L is the linear (auto) power spectrum of i for
i ¼ j, and the cross-power spectrum for i and j for i ≠ j,
with i; j ¼ b or e.
A more mathematically transparent form of Eq. (71) is

obtained by rewriting δe in terms of δχ and δb, which in the
linear regime is simply given by Eq. (66). This immediately
leads to the following relation between auto- and cross-
power spectra:

Pee ¼ Pχχ þ Pbb þ 2Pχb; ð73Þ

Peb ¼ Pχb þ Pbb: ð74Þ

Putting together these results, we find

m2
γ
2σ2m2

γ
¼ m2

γ
2hδbδbi þ ðAþ Bω2Þ2n̄2ehδχδχi

þ 2n̄em2
γðAþ Bω2Þhδχδbi: ð75Þ

The power spectra that enter into Eq. (75) are all
calculable in the linear regime after photons decouple from

6Outside of this range, one must take into account that x̄e can
exceed one, which would require a simple modification to the
results shown here; we omit these modifications since fluctua-
tions in xe are not important outside the specified redshift range.
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baryons at z ∼ 1089 using the theory of perturbed recom-
bination [43].
We can also see immediately that neglecting perturba-

tions in xe leads to the previous result, σ2m2
γ
¼ σ2b. The

coefficients for the terms on the right-hand side of Eq. (75),
however, are of comparable size, and hence the simplifi-
cation of taking δχ → 0 is only a good approximation if
δχ ≪ δb. To get a sense of how important these terms are,
we plot the power spectra required to compute the two-
point correlations shown in Eq. (75) in Fig. 5 at z ¼ 200.
Since the baryon δb and free electron δχ fluctuations are
anticorrelated,7 the presence of free electron fluctuations
causes a reduced variance in electron fluctuations hδeδei at
higher redshifts. We see that at z ∼ 200, we have
Pχχ < jPχbj < Pbb, with the spectra becoming more com-
parable in magnitude for z > 200, and less so at z < 200.
We use a slightly modified version of CLASS8 to extract the
transfer functions associated with perturbations in the free
electron fraction.
With this, we can now discuss the importance of δχ on

our results at the following redshifts:
(1) z≳ 1089. The Universe is completely ionized prior

to recombination, and there are no significant
perturbations in xe. We may neglect δχ .

(2) 200≲ z≲ 1089. At this time, δχ ∼ δb, both pertur-
bations are small, and aside from differences in the
functional form of dhPγ→A0 i=dz, this redshift range is
well approximated by the homogeneous limit.

(3) 20≲ z≲ 200. During this period, δχ ≪ δb, and we
may once again neglect δχ to a good approximation.

(4) 6≲ z≲ 20. This is the period of reionization, an
increasingly nonlinear regime where the behavior of
δχ depends on the details of reionization, and can
have potentially large effects on the PDF of plasma
mass fluctuations. In principle, δχ can be calculated
from reionization codes like 21 cmFAST [69,70],
but to avoid this complication, we neglect any γ ↔
A0 transitions in this epoch throughout our work.

(5) z≲ 6. Reionization is complete, and once again
there are no significant perturbations in xe. We may
once again neglect δχ , even though baryon density
fluctuations are highly nonlinear.

In summary, we avoid the redshift regime during which
reliably predicting the effect of xe perturbations is non-
trivial, staying in regimes where the effect is either absent,
or has a minimal and calculable effect on the total
conversion probability. This latter regime, 200≲ z≲
1089, is well characterized by small Gaussian fluctuations,
justifying our linear treatment above. The effect on the
conversion probability width or the redshift dependence of
the conversion probability during the dark ages will be
quantified in Sec. VIII.

FIG. 5. Baryon (red), electron (green), and free electron fraction
(blue) power spectra; and negative of the baryon-free electron
fraction cross-power spectrum (purple) at z ¼ 200. The electron
fluctuations are reduced compared to the baryon ones due to
the baryon and free electron fraction densities being anticorre-
lated [68].

FIG. 6. Illustration of the scheme used to construct an envelope
of the nonlinear baryon power spectra at low redshifts, 0 ≲ z≲ 6,
in different redshift z and scale k regimes. We use as input the
CLASS linear baryon power spectrum Pbb;L as well as the envelope
of simulation data from Refs. [44,71], and linearly extrapolate the
bias Pbb=Pmm into regions without data (red arrows). For
k ≤ 0.1 hMpc−1, we use the CLASS linear baryon power spectrum
(red). In the range 0.1 hMpc−1 < k < 80 hMpc−1 and 0 ≤ z ≤ 3,
a 2D interpolation over available data is performed (blue).
We then extrapolate into the region 3 < z ≤ 6, multiplying the
resulting envelope by a factor of 3 (green). For k > 80 hMpc−1,
we extrapolate the power spectra using the CLASS linear baryon
power spectrum as a guide. We then perform a 2D interpolation in
the range 0 ≤ z ≤ 3, taking as an envelope a factor of 3 above and
below the central value of the interpolated bias (purple), and then
extrapolate this into 3 < z ≤ 6 (orange). See the text for more
details [76].

7The anticorrelation is due to the fact that recombination is
more efficient when there are more hydrogen atoms present [43].

8Available at https://github.com/smsharma/class_public.
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B. Low-redshift power spectra

As described in the last section, at late times z≲ 6 after
reionization is complete, fluctuations in the electron plasma
mass track fluctuations in the number density of baryons,
which is characterized by the baryonic power spectrum.
Description of baryon density fluctuations at these late
times is challenging, however, due to the highly nonlinear
evolution of perturbations. Furthermore, even though non-
linear matter fluctuations have been extensively studied in
the literature, the distinction between baryonic and total
matter fluctuations must be taken into account as the two
components (baryons and dark matter) evolve separately
and baryonic effects become increasingly important at late
times, especially at the smaller scales of interest here. In
this subsection, we describe our approach for constructing
the nonlinear baryonic power spectra at low redshifts z < 6
using input from hydrodynamic simulations as well as the
Boltzmann code CLASS.
Reference [71] provides baryonic power spectra from

different configurations of the hydrodynamic simulation
suites IllustrisTNG [72], Illustris [73], EAGLE [74], and
BAHAMAS [75] up to k ∼ 80 hMpc−1 at the discrete
redshifts z ¼ 0, 1, 2, and 3, with Ref. [44] further providing
baryonic spectra from the BAHAMAS simulation at red-
shift z ¼ 0 up to k ¼ 500 hMpc−1. We use the following
algorithmic procedure for constructing the nonlinear

baryonic power spectra from these. We first construct
lower and upper envelopes encoding the uncertainty on
the power spectra extracted from simulations. Where fewer
than three simulations are available, we obtain the median
spectra over the available simulations and multiply and
divide these by a factor of 3 to obtain upper and lower
uncertainty envelopes, respectively, motivated by the mag-
nitude of the typical spread in the regime where the full
suite of simulations is available. Where three or more
simulations are available, we use the extremal values over
those simulations to construct the envelopes. At large scales
≲0.1 hMpc−1 where simulations are not available, we use
the well-constrained linear power spectrum from CLASS. At
smaller scales and redshifts 0 < z < 6 where simulations
are not available, we linearly interpolate the nonlinear
baryon bias (defined as the ratio of the nonlinear baryon
power spectrum to the nonlinear matter spectrum), further
applying a suppression due to the baryonic Jeans scale at
small scales (see Sec. IV B). Above z > 3, we linearly
extrapolate the nonlinear baryonic bias, multiplying and
dividing the resulting power spectra by a factor of 3 to
obtain the uncertainty envelope. In the regime above
z > 20, we simply use the linear baryonic power spectrum
from CLASS.
An illustration of this algorithmic procedure is provided

in Fig. 6, showing how the nonlinear baryon power spectra

FIG. 7. Simulation-informed baryon power spectra at low redshifts, bracketed with the green band and obtained using the method
outlined in Sec. VI B, shown at redshifts z ¼ 0, 1, and 3. Solid green lines correspond to baryon power spectra from individual
hydrodynamic simulations as obtained in Ref. [71]. Also shown for comparison are the linear matter and baryon power spectra as the
solid red and blue lines, respectively, also at z ¼ 50. Suppression due to the baryonic Jeans scale can clearly be seen [77].
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are estimated at different redshifts z and scales k. The
resulting baryon power spectra at several different redshifts
obtained using this procedure are shown in Fig. 7 (green
envelopes), with the power spectra from individual simu-
lations shown as green lines for reference.
The inferred variance of fluctuations as a function of

redshift is shown in Fig. 8. At late times z < 6, the variance
is informed by the nonlinear baryon power spectrum
extracted from hydrodynamic simulations and is shown
bracketed by the green band. The variance from the linear
baryon power spectrum in this regime is shown as the blue
line for comparison. Pre-reionization, the variance of
photon plasma mass fluctuations is given by Eq. (75)
and involves the (linear) baryon and free electron pertur-
bations, shown as the red line. The variance due to just
baryon perturbations, ignoring the effects of free electron
perturbations, is shown as the dashed blue line for
comparison.

VII. SIMULATION STUDIES

We use Gaussian and log-normal simulations, which are
relatively cheap to generate, to validate key aspects of the
analytic approach presented in this paper. In particular, we
verify the following:
(1) The width of the oscillation probability is described

by Eq. (20), even when the fluctuations in the plasma
are non-Gaussian.

(2) Averaged over a large number of photon paths, the
differential transition probability depends only on
the one-point PDF of the underlying plasma density

field, and not higher-order moments such as two-
point correlations.

We note that the simulations we generate in this section
are fundamentally different from the N-body simulations
used to inform the baryon power spectra in the previous
section—these simulations simply produce a Gaussian or
log-normal random field with statistics consistent with a
given input power spectrum.
We create realizations of the perturbed plasma mass by

creating instances of baryon density fluctuations 1þ δb,
described either as a Gaussian or log-normal field, and then

obtaining the perturbed plasma mass as m2
γ ¼ m2

γð1þ δbÞ,
where m2

γ is the homogeneous plasma mass. Gaussian
random fields consistent with the baryon power spectrum
described in the last section are generated using NBODYKIT

[79], and log-normal fields as described in Sec. VA are
generated by rescaling these as

lnð1þ δLNb Þ ¼ −
Σ2

2
þ δb

σ
× Σ; ð76Þ

where δb are the Gaussian overdensities and δLNb the
corresponding log-normal overdensities. This transforma-
tion ensures that the resulting log-normal field has the same
mean and variance as the initial Gaussian field, as in
Eqs. (58) and (60).
We choose a benchmark dark photon mass of

mA0 ¼ 10−13 eV, which would correspond to a broad
resonance around z ∼ 5 in the regime where the underlying
fields are highly non-Gaussian. We generate boxes of
Gaussian random field realizations between 4 < z < 6,
going up to scales of kmax ¼ 20hMpc−1 and up to
n points¼100 points in each of the simulated boxes.
Several boxes are created within the specified redshift
range for computational efficiency and also to capture the
redshift dependence of the power spectrum of fluctuations.
While this does not capture the full spectrum of fluctuations
relevant to oscillations (since kmax < kJ), the realized fields
have large enough fluctuations (δ < −1) so as to not be
physically describable as Gaussian. We additionally impose
a top-hat filter of 4 times the grid size in order to mitigate
against the effects of finite gridding at the smallest
simulated scales.
An example 2D section through a Gaussian random field

box generated with this procedure is shown in the middle
panel of Fig. 9, with the corresponding section through a
log-normally transformed field in the right panel. Blue and
red patches correspond to positive and negative (unphys-
ical) values of the resulting field. The left panel shows the
PDF of fluctuations in both boxes. The Gaussian random
field description leads to frequent unphysical, negative
fluctuations in this case.
The perturbed squared plasma mass over the considered

redshift range for one particular sequence of boxes is shown
in the left panel of Fig. 10, for the Gaussian (blue) and

FIG. 8. Variance of fluctuations as a function of redshift for the
various power spectra configurations considered in this work.
The photon plasma mass variance is informed by the nonlinear
baryon power spectrum from simulations at late times z < 6 and
is shown bracketed by the green band, while at late times z > 20
it is informed by the linear baryon and free electron fraction
perturbation spectra. The variance of linear baryon fluctuations is
shown as the dashed blue line, for comparison [78].
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log-normal (red) descriptions. The homogeneous plasma
mass is shown as the dashed black line. Again, frequent
unphysically negative values of the squared plasma mass
can be seen in the Gaussian description. We obtain the
averaged conversion probability by creating a large number
of such simulations, drawing photon paths separated by at
least twice the size of the top-hat filter (to ensure they are
sufficiently uncorrelated) through them, and numerically
calculating transition probabilities at each crossing using
Eq. (15). Probabilities over a large number of photon paths
are then histogrammed to obtain the numerical estimates
for dhPγ→A0 i=dz, shown in the right panel of Fig. 10 as the
dashed red line for the log-normal case. The analytically
computed differential conversion probability for this con-
figuration is shown in solid red and provides a good match
to the numerical results. The analytic Gaussian description,

shown in blue, does not accurately described the conversion
probability in this regime.
At higher redshifts and in the linear regime, on the other

hand, the Gaussian PDF is an excellent description of the
plasma mass fluctuations. Figure 11 shows a comparison of
the analytically computed differential conversion and the
probability derived by considering photon paths through
Gaussian random field simulations of the plasma mass,
showing once again good agreement between the two.

VIII. SYSTEMATICS OF CONVERSION
PROBABILITY AND ENERGY INJECTION

Given a PDF of density fluctuations and a description of
the fluctuations through the power spectra, the differential
conversion probability dhPγ→A0 i=d ln z at a given redshift,

FIG. 9. 2D section through a Gaussian random field simulated at z ∼ 4 (middle panel) and the corresponding log-normal-transformed
field section (right panel). The left panel shows the histogrammed pixel count for both boxes, illustrating the skewed distribution of
overdensities in the log-normal case restricted to positive values [80].

FIG. 10. Left: 1D sections through realizations of Gaussian (blue) and log-normal (red) perturbations in the squared plasma mass. The
homogeneous plasma mass is shown in dashed gray. Right: the log-normal differential oscillation probability averaged over a large
number of photon paths drawn through simulations (dashed red) and derived analytically (solid red), with good agreement between the
two. The analytic Gaussian description in shown in solid blue [80].
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for a given dark photon mass, can be computed. This is the
main deliverable of this paper and is plotted in the top rows
of Figs. 12 and 13 for various PDF descriptions and
benchmark masses mA0 ¼ 4 × 10−15 eV (red), 10−13 eV
(blue), and 10−12 eV (green). The cumulative probabilities
above (below) a given redshift are plotted in the middle

(bottom) panels of these figures. Figure 12 shows various
log-normal PDFs—including all overdensities and under-
densities (dashed lines), imposing 10−2 ≲ 1þ δb ≲ 102

(solid lines), and additionally with a bias b ¼ 1.5 (dotted
lines) as described in Sec. V C. Figure 13 shows these for
the analytic PDF (dashed lines), additionally imposing
10−2 ≲ 1þ δb ≲ 102 (solid lines), and the voids PDF
(dotted lines). For ease of comparison, these are normalized
such that the cumulative probabilities for the fiducial
10−2 ≲ 1þ δb ≲ 102-bounded log-normal PDF cases are
unity. The primary focus here is on dark photons of masses
≲10−12 eV, where the conversion probability is dominated
by a broad efficiency of conversions at late times z≲ 6. The
lower uncertainty envelope of the simulation-informed
power spectrum described in Sec. VI B was used to inform
the variance for the PDFs in these plots; using the power
spectrum corresponding to the upper uncertainty envelope
produces qualitatively similar results.
In order to illustrate how the total γ → A0 conversion

probability is affected by various PDFs for different dark
photon masses, the total conversion probability per squared
kinetic mixing parameter ϵ is shown in the left panel of
Fig. 14 for the different PDFs we have considered. Log-
normal (dashed red), log-normal imposing 10−2 ≲ 1þ
δb ≲ 102 (solid red), log-normal with bias b ¼ 1.5 (blue),
analytic (green), voids (purple), and Gaussian (orange
dotted) PDFs are illustrated. Similarly, the total energy

FIG. 11. Differential conversion probability obtained by draw-
ing photon paths through Gaussian random field simulations
(dashed red) and computed analytically (solid red), for a
resonance around z ¼ 100. Good agreement between simulations
and the analytic description can be seen [80].

FIG. 12. The differential conversion probability dhPγ→A0 i=d ln z (top row), cumulative conversion probability above a given redshift z
(middle row), and cumulative conversion probability below a given redshift z, shown for a log-normal PDF (dashed lines), our fiducial
log-normal PDF with 10−2 ≲ 1þ δb ≲ 102 (solid lines), and additionally with a bias b ¼ 1.5 (dotted lines). MassesmA0 ¼ 4 × 10−15 eV
(red), 10−13 eV (blue), and 10−12 eV (green) are shown. Lines are normalized such that the cumulative probabilities for the
10−2 ≲ 1þ δb ≲ 102-bounded log-normal PDF cases are unity [81].
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deposited per baryon when a nonzero ambient density of
dark photons is present (e.g., in the case of dark photon
dark matter) is shown in the right panel of Fig. 14. In each
case, the corresponding quantities under the assumption of
a homogeneous photon plasma are shown in dotted gray. It
can be seen that inhomogeneities have a significant effect
on the nature of photon-to-dark photon oscillations, either
underestimating or overestimating the total conversion
probability and energy deposition depending on the dark
photon mass point considered. Variation is also observed

across the different PDFs considered; however, after
restricting to fluctuations of size 10−2 ≲ 1þ δb ≲ 102,
the log-normal and analytic PDFs show quantitatively
similar behavior, with the log-normal PDF being somewhat
more conservative. For this reason, henceforth in this paper
and in Paper I, we use the log-normal PDF with variance
informed by hydrodynamic simulations as the benchmark
for computing the effects of γ ↔ A0 conversions. In the
absence of dedicated PDFs capturing baryonic effects and
their uncertainties to the smallest relevant scales, we

FIG. 13. The same as Fig. 12, shown for the analytic PDF (dashed lines), additionally imposing 10−2 ≲ 1þ δb ≲ 102 (solid lines), and
the voids PDF (dotted lines) [81].

FIG. 14. Left: the total γ ↔ A0 conversion probability as a function of dark photon mass. Right: the A0 → γ dark photon dark matter
energy deposited per baryon as a function of dark photon mass, shown for different choices of PDFs explored in this work: log-normal
(red dashed), the fiducial log-normal with 10−2 ≲ 1þ δb ≲ 102 (red solid), log-normal with a bias b ¼ 1.5 (blue solid), analytic (green
solid), voids (purple solid), and Gaussian (orange dotted) [81,82].
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advocate for its use in applications beyond those considered
in these papers where the effects of inhomogeneities in the
nonlinear regime on γ ↔ A0 conversions may be important.
Conversions at earlier times z≳ 100 can be well

described by a Gaussian in redshift with a weakly red-
shift-dependent variance, described in Eq. (35). Example
differential conversion probabilities are shown in the left
panel of Fig. 15 for resonance redshifts spanning
100 ≤ zres ≤ 600, centered on the resonance redshift and
normalized to unity. The approximate relative width of the
resonance is shown in the right panel of Fig. 15, with
(without) accounting for perturbations in the free electron
fraction in red (blue). Thewidth is numerically computed as
the interval Δz between redshifts where the squared plasma

mass is �σm2
γ
=2 of its central value, approximately corre-

sponding to amiddle 1-σ containment interval. The presence
of spatial perturbations in the free electron fraction becomes
increasingly important closer to the redshift of recombina-
tion, although the relative width of the conversion feature is
already less than one part in 10−3 by zres ¼ 600.
Due to the sensitive dependence of the conversion

probability on small-scale physics as discussed in
Sec. IV, it is illustrative to see how the total conversion
probability depends on the maximum scale kmax consid-
ered. This is illustrated in Fig. 16 for our benchmark
masses, shown as the ratio of the total probability consid-
ering scales up to kmax to the asymptotic probability. We see
that the total probability approaches the asymptotic value
around the characteristic baryon Jeans scale at late times,
kJ ∼ 500 h Mpc−1. Note that neglecting the effect of small
scales is not necessarily conservative and may significantly
underestimate or overestimate the conversion probability.
Finally, although we advocate restricting to fluctuations

in the range 10−2 ≲ 1þ δb ≲ 102 where the different PDF
descriptions considered show qualitative agreement, it is
instructive to ask how expanding this range and including
larger underdensities and overdensities in the tails of the
PDFs can affect the oscillation physics. In Fig. 17, we show
the total conversion probability as a function of dark photon
mass varying the range of fluctuations from 10−1 ≲ 1þ
δb ≲ 10 to 10−4 ≲ 1þ δb ≲ 104 for the log-normal (solid
red lines) and analytic (dashed blue lines) PDFs. Although
the two descriptions disagree for fluctuations beyond
10−2 ≲ 1þ δb ≲ 102, in either case larger conversion
probabilities over a much wider range of dark photon
masses can be seen when including conversions from
fluctuations deeper in the tails of the PDFs. This motivates
the need for a better understanding of the nonlinear baryon
PDF at late times. A similar conclusion can be drawn for

FIG. 15. Left: the differential conversion probability dhPγ→A0 i=dz for resonant conversion at higher redshifts zres ¼ 100 to 600, shown
centered on the resonant redshift zres. Right: relative width of the resonance as a function of resonance redshift zres. Shown with (red) and
without (blue) accounting for perturbations in the electron ionization fraction xe. The dotted green line shows the approximate width as
given by Eq. (37), showing good agreement with the numerical estimate without accounting for xe perturbations [78].

FIG. 16. For the fiducial log-normal PDF, the ratio of the total
conversion probability using fluctuations only up to a given scale
kmax and its asymptotic value, shown for masses mA0 ¼ 4 ×
10−15 eV (red), 10−13 eV (blue), and 10−12 eV (green) [81].
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A0 → γ dark-photon dark matter conversions, also shown
in Fig. 17.

IX. CONCLUSIONS

In this paper, we have studied photon-dark photon
oscillations in the early Universe, deriving a formalism
for computing the averaged probability of conversions in
both directions, taking into account the effect of inhomo-
geneities in the photon plasma. We found that the average
probability of γ ↔ A0 and the average energy injected per
baryon for A0 → γ for dark photon dark matter are
completely specified given the standard ΛCDM parameters
as well as three inputs: (i) a description of the one-point
PDF of baryon fluctuations, (ii) the baryon power spectrum
which, to a good approximation in the low-redshift
Universe, provides the variance of plasma mass fluctua-
tions, and (iii) fluctuations in the free electron fraction,
which contributes to the variance of plasma mass fluctua-
tions at high redshift. To understand the systematic uncer-
tainties associated with the PDF and the variance of
fluctuations, we studied several independent choices of
the one-point PDF. We also constructed a nonlinear baryon
power spectrum that is informed by high-resolution hydro-
dynamic N-body simulations, allowing us to characterize
the behavior of baryons at small scales. Finally, we also
performed a series of Gaussian and log-normal random
field simulations in order to validate our analytic results,
finding agreement between theory and simulations.
In our companion work Paper I, we have applied this

formalism in order to derive constraints on the dark photon
kinetic mixing parameter ϵ by through the effect of γ → A0
conversions on the CMB spectrum as measured by COBE/
FIRAS in the general case, as well as dedicated constraints
for the case of dark photon dark matter obtained by
computing the amount of IGM heating due to A0 → γ

conversions. We found that previous constraints assuming
a homogeneous plasma were not conservative and were
able to expand the mass range over which resonant
oscillations are possible due to conversions in plasma
underdensities and overdensities. We also found good
agreement between constraints obtained using different
PDFs and power spectra, showing that we have a suffi-
ciently good understanding of baryon fluctuations to set
reliable constraints.
The formalism that we have developed across both

papers has additional applications. For example, perturba-
tions in the photon plasma mass will also modify resonant
oscillations of photons into axionlike particles, which can
occur in the presence of primordial magnetic fields [83].
Moreover, relativistic dark photons can also resonantly
inject photons, which can be tested by 21-cm observations
[13,14,84]. Photon-to-dark photon oscillations in an inho-
mogeneous background will also imprint anisotropies in
the CMB that may be testable by Planck [23] or future
CMB probes [85], as also explored in Ref. [21].
A comparison with our results and methodology with

those presented in related recent studies, auxillary infor-
mation about the analytic PDF employed in this work, and
a complementary derivation of the Landau-Zener formula
for resonant conversions in the language of thermal field
theory is provided in the Appendices. The code used to
obtain the results in both papers is available at https://github
.com/smsharma/dark-photons-perturbations.

ACKNOWLEDGMENTS

We thank Yacine Ali-Haïmoud, Masha Baryakhtar,
Asher Berlin, Julien Lesgourgues, Sam McDermott,
Alessandro Mirizzi, Julian Muñoz, Stephen Parke,
Maxim Pospelov, Josef Pradler, Javier Redondo, Roman
Scoccimarro, Alfredo Urbano, Edoardo Vitagliano,

FIG. 17. Dependence of (left) the total γ ↔ A0 conversion probability and (right) the energy injected by A0 → γ dark-photon dark
matter on the tails of the plasma mass PDF, shown for the log-normal (blue) and analytic (dashed red) PDFs. The total homogeneous
probability is shown as dotted gray, for comparison [81,82].

MODELING DARK PHOTON OSCILLATIONS IN OUR … PHYS. REV. D 102, 103533 (2020)

103533-21

https://github.com/smsharma/dark-photons-perturbations
https://github.com/smsharma/dark-photons-perturbations


Sam Witte, and Chih-Liang Wu for helpful conversations.
We thank Marcel van Daalen for providing baryonic power
spectra from high-resolution BAHAMAS simulations. We
are especially grateful to Misha Ivanov for many enlight-
ening discussions regarding the analytic PDF of density
fluctuations utilized in this work. A. C. acknowledges
support from the “Generalitat Valenciana” (Spain) through
the “plan GenT” program (CIDEGENT/2018/019), as
well as national Grants No. FPA2014-57816-P and
No. FPA2017-85985-P, and the European projects
H2020-MSCA-ITN-2015//674896-ELUSIVES. The work
of H. L. was supported by the DOE under Contract
No. DESC0007968. The work of S. M. and J. T. R. are
supported by the NSF CAREER Grants No. PHY-1554858
and NSF Grant No. PHY-1915409. The work of S. M. was
additionally supported by NSF Grant No. PHY-1620727
and the Simons Foundation. J.,T. R. acknowledges hospi-
tality from the Aspen Center for Physics, which is
supported by the NSF Grant No. PHY-1607611. This work
made use of the NYU IT High Performance Computing
resources, services, and staff expertise. The authors are
pleased to acknowledge that the work reported on in this
paper was substantially performed using the Princeton
Research Computing resources at Princeton University
which is a consortium of groups including the Princeton
Institute for Computational Science and Engineering
and the Princeton University Office of Information
Technology’s Research Computing department. This
research has made use of NASA’s Astrophysics Data
System. We acknowledge the use of the Legacy Archive
for Microwave Background Data Analysis (LAMBDA),
part of the High Energy Astrophysics Science Archive
Center (HEASARC). HEASARC/LAMBDA is a service of
the Astrophysics Science Division at the NASA Goddard
Space Flight Center. This researchmade use of the ASTROPY
[86,87], CAMB [88,89], CLASS [42], HYREC [90], IPYTHON
[91], JUPYTER [92], MATPLOTLIB [93], NBODYKIT [79],
NUMPY [94], SEABORN [95], PANDAS [96], SCIPY [97], and
TQDM [98] software packages.

APPENDIX A: COMPARISON WITH
OTHER WORK

In this section, we present a comparison of the formalism
and results described in this work and in Paper I with those
presented in several recent studies which also attempt to
model inhomogeneous γ ↔ A0 oscillations and their obser-
vational consequences.
In Refs. [20,21], the conversion probability as photons

pass through inhomogeneities was determined through the
use of the EAGLE simulation [74] with baryons. Lines
were drawn at random for each redshift snapshot in the
simulation, and one hundred continuous lines of sight in the
range 0 < z < 6 were constructed. These lines of sight are
then used to compute the probability of γ → A0 conversion
with the inhomogeneities encountered in the simulation and

used to set limits on the kinetic mixing parameter ϵ.
Reference [21] found good agreement between their results
and those presented in Paper I. They also use a similar
approach to obtain CMB power spectrum constraints by
comparing the fluctuation in conversion probability between
lines of sight, finding a weaker limit than that obtained from
the COBE/FIRAS energy spectrum measurement.
We note that while we also use input from the same

EAGLE simulation [74], we only rely on the baryon power
spectrum from this and other simulations, rather than the
full spatial information. This significantly simplifies the
process of understanding γ ↔ A0 oscillations and allows us
to do two things: (i) avoid the need to smooth the
simulation excessively and (ii) capture the uncertainty
associated with different choices of the one-point PDF.
We will now discuss each of the following points in turn:
(1) Smoothing: N-body simulations have a finite reso-

lution, and it is often the case that some smoothing
of the data needs to be done prior to analysis. Finite
resolution effects and smoothing ultimately intro-
duce an effective cutoff kres. In Ref. [20], the lines of
sight are smoothed over a comoving width of
250 kpc, while in Ref. [21], this is reduced to
25 kpc, and the authors find no difference in the
conversion probability between the two smoothing
scales. We disagree with their conclusion and find
instead that the conversion probability does have a
strong dependence on kres as shown in Fig. 16,
because the variance of fluctuations is ultraviolet
divergent, as discussed in Secs. IV B and VIII.
Larger smoothing scales in simulation may lead to
very different and incorrect (not necessarily
conservative) outcomes: it is important to use high
resolution results and smooth as little as possible.

(2) Capturing uncertainties: As we showed in Sec. VII,
the full simulation data are not necessary to deter-
mine the γ → A0 conversion probability in the
presence of inhomogeneities; knowledge of the
one-point PDF alone is sufficient for that. Our work
therefore represents a significant simplification com-
pared to constructing lines of sight through simu-
lation results. In particular, we do not need to rely on
the outcome of a single simulation to extract our
results, as was done in Refs. [20,21]; we have shown
how our results change depending on our choice of
one-point PDFs and baryon power spectra, allowing
us to study the uncertainty associated with these
inputs based a large array of theoretical and simu-
lation results. This is particularly important for
conversions in large under- and overdensities, where
the PDFs are highly uncertain.

The authors of Ref. [22] on the other hand reconsidered
the bounds on dark photon dark matter A0 → γ conversions,
obtained from Ly-α observations of the IGM temperature,
in the presence of inhomogeneities. Their overall approach
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to the problem is similar to ours, although they do not
generalize their results to treat γ → A0 as we do in our work,
where a CMB photon passes through multiple level cross-
ings along its path at which m2

γ ¼ m2
A0 . Our results,

however, differ from Ref. [22] for the following reasons:
(1) Value of the Jeans scale: The authors of Ref. [22]

adopt a value of the Jeans scale close to RJ ∼ 1 Mpc
after reionization, which derives from Eq. (34) with a
baryon temperature of approximately Tb ∼ 104 K.
However, as we discussed in Sec. IV B, a suppression
at these scales is not seen in any of the N-body
simulations (with baryonic physics included) we
used to infer our cutoff scale kJ, which is then smaller
by roughly 2 orders of magnitude. This is due to the
increasingly nonlinear behavior of baryons at late
times, which makes difficult to analytically predict
the scale at which structure formation is suppressed.
Their choice of the Jeans scale is therefore an
underestimate, leading to overly narrow dP=dz as
a function of redshift. This can have a large effect on
the derived constraints, as we show in Fig. 16.

(2) Ly-α observations sensitivity: The authors of
Ref. [22] note that IGM temperature measurements
from Ly-α observations are not sensitive to large
under- or overdensities, which is of particular
importance if the energy injection is deposited
locally (see the following point). Too large values
of δb lead to a large optical depth of the IGM
medium, leading to near-total absorption of Ly-α
photons, preventing us from learning anything about
optically thick regions; on the other hand, too low δb
would mean no absorption lines at all, which is
required to deduce the IGM temperature [99].
Reference [22] proposed two heuristic ways of
correcting for this; their fiducial method, e.g.,
rescales the energy deposited by a factor propor-
tional to the derivative of the Ly-α absorption
probability, while their alternative method simply
assumes that no temperature measurements are
possible outside of some optical depth range. Both
prescriptions adopted in Ref. [22] are reasonable, but
nevertheless only heuristic, and have many caveats.
They depend, for example, on the IGM temperature-
density relation, assumed to be T ∝ ð1þ δbÞγ−1
where γ ∼ 1.5; it is unclear if this power-law relation
is valid at low densities [100,101].

(3) Energy injection: We worked under the assumption
that energy injection is a global phenomenon, i.e.,
energy injected from A0 → γ conversions is shared
evenly among all baryons. The authors of Ref. [22],
on the other hand, assume local energy injection,
where the energy is deposited only into baryons at
the point where conversions occur. For complete-
ness, we have also derived the energy deposition per
baryon under the local assumptions, shown in

Eq. (27). This expression agrees with the expression
derived in Ref. [22], although we show that it
reduces to a much simpler form shown in
Eq. (28) within our framework, as compared to
the results shown in Ref. [22]. The authors of
Ref. [22] justify the local assumption by noting that
the electrons that absorb this energy are nonrelativ-
istic, and so the energy transport time scale has to be
much longer than the age of the Universe.
We expect the transport of energy from A0 → γ

conversions to lie somewhere in between both
regimes. The argument in Ref. [22] about non-
relativistic electrons applied to reionization, e.g.,
would seem to preclude the possibility of complete
reionization across the entire Universe. Instead, as in
the process of reionization, we expect photons with
energy above the ionization threshold of HI to play a
large role in energy transport. During HeII reioniza-
tion, the epoch in which we derive our constraints in
Paper I, the IGM is already at Tb ∼ 104 K and will
be heated beyond that due to the A0 conversion. The
blackbody spectrum of the IGM contains ionizing
photons, which have a long interaction path length,
potentially comparable to the size of the Universe at
redshifts 2≲ z≲ 6. This may allow for energy
transport over large distances.

Whether or not the energy injection is local is a nontrivial
problem which requires a more involved treatment of the
complete transport equations describing the system under
consideration; we defer such an effort to future work. To
account for general uncertainties regarding large under- and
overdensities, especially with regard to uncertainties in the
tails of the baryon one-point PDFs, we presented our limits
on ϵ as a function of the expected range in δb in Paper I. In
addition, we show the A0 → γ dark photon dark matter
constraints derived from Ly-α temperature measurements
of the IGM during HeII reionization in Paper I, neglecting
densities which lead to an optical depth for Ly-α photons
that satisfy expð−τÞ < 0.05 or expð−τÞ > 0.95, the “alter-
nate” method adopted by Ref. [22]. Our results broadly
agree with those obtained in Ref. [22].

APPENDIX B: FUNCTIONS
FOR THE ANALYTIC PDF

Following Ref. [58], the function Fðδ�Þ is defined as the
composition of two functions,

F≡ G∘F−1; ðB1Þ

where

GðθÞ≡ 3

20
ð6½θ − sðθÞ�Þ2=3 ðB2Þ

and
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F ðθÞ≡ 9½sðθÞ − θ�2
2½cðθÞ − 1�3 − 1; ðB3Þ

with

sðθÞ≡
�
sin θ; δ� > 0;

sinh θ; δ� ≤ 0;
cðθÞ≡

�
cos θ; δ� > 0;

cosh θ; δ� ≤ 0:

ðB4Þ

Ĉðδ�Þ is then defined as

Ĉðδ�Þ≡ F0ðδ�Þ þ
Fðδ�Þ
1þ δ�

�
1 −

ξR�

σ2R�

�
ðB5Þ

and

ξR� ≡
1

2π2

Z
dkk2

sinðkR�Þ
kR�

WthðkR�ÞPm;LðkÞ; ðB6Þ

where Wth is the Fourier transform of the top-hat function
defined in Sec. V B, and Pm;L is the linear matter power
spectrum.

APPENDIX C: THERMAL FIELD THEORY
DERIVATION OF LANDAU-ZENER

PROBABILITY

Here we give a brief derivation of the Landau-Zener
formula using thermal field theory techniques. Indeed, the
conversion of CMB photons to dark photons can be seen as
the production of dark photons from a thermal bath of
photons following a blackbody spectrum. Following
Refs. [4,32,33], we can write the production rate of dark
photons as

Γprod ¼
�

1

eω=T − 1

�
ϵ2m4

A0Γ
ω2Γ2 þ ðm2

γ −m2
A0 Þ2

≡ fγðω; TÞ
ϵ2m4

A0Γ
ω2Γ2 þ ðm2

γ −m2
A0 Þ2 ; ðC1Þ

where Γ is the damping rate of the plasmon quanta, mγ is
the plasma mass acquired by the photons in the plasma. The
first factor fγðω; TÞ is the photon occupation number, with
T being the CMB temperature. The second factor is the
probability of conversion per unit time. In the limit of the
narrow width approximation, assuming that the plasmons
are weakly damped, the probability of conversion reduces
to

Γprod

fγðω; TÞ
→

ϵ2m4
A0

ω2
δD

�
m2

γ −m2
A0

ω

�
; ðC2Þ

where we used the definition of the Dirac δD-function,

lim
α→0

α

α2 þ x2
¼ δDðxÞ: ðC3Þ

We can then integrate it over time along the photon path
to find

Pγ→A0 ¼
Z

dt
ϵ2m4

A0

ω2
δD

�
m2

γ −m2
A0

ω

�

¼
X
i

ϵ2m2
A0

ωðtiÞ
���� d lnm2

γ

dt

����−1
t¼ti

; ðC4Þ

which is indeed in agreement with Eq. (15).
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