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Black hole metamorphosis and stabilization by memory burden
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Systems of enhanced memory capacity are subjected to a universal effect of memory burden, which

suppresses their decay. In this paper, we study a prototype model to show that memory burden can be

overcome by rewriting stored quantum information from one set of degrees of freedom to another one.

However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the
initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from
Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the
fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new
classical instability into gravitational lumps. The first option would open up a new window for small
primordial black holes as viable dark matter candidates.

DOI: 10.1103/PhysRevD.102.103523

I. INTRODUCTION
A. Big picture

This paper is about understanding a very general
phenomenon [1,2], called memory burden, exhibited by
systems that achieve a high capacity of memory storage and
its potential applications to black holes. The essence of the
story is that a high load of quantum information carried by
such a system stabilizes it. This means that, in order to
decay, the system must offload the memory pattern from
one set of modes into another one. Our studies show that
this becomes harder and harder with larger size. As a result,
the quantum information stored in the memory backreacts
and stabilizes the system at the latest after its half-decay.
The universality of the phenomenon suggests its natural
application to black holes (BHs).

The present paper is a part of a general program, initiated
some time ago, which consists of two main directions. One
is the development of a microscopic theory describing a
black hole as a bound state of soft gravitons, a so-called

: georgi.dvali @physik.uni-muenchen.de
"lukas.eisemann @ physik.uni-muenchen.de
Tmarco.michel@physik.uni-muenchen.de
Ssebastian.zell@epfl.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020/102(10)/103523(24)

103523-1

quantum N portrait [3]. The occupation number N_. of
gravitons is critical in the sense that it is the inverse of their
(dimensionless) gravitational interaction. The softness of
gravitons here refers to wavelengths comparable to the
gravitational radius of a black hole. This criticality has
been identified [4] as the key reason for understanding the
maximal information storage capacity of a black hole
quantified by its Bekenstein-Hawking entropy. Due to
extremely weak interactions among the constituent grav-
itons, this framework allows us to perform computations
within the validity domain of effective field theory exploit-
ing the power of 1/N_. expansions.

The second direction [1,2,4-14] is to instead use the
enhanced capacity of memory storage as a guiding prin-
ciple. That is, we study generic systems which possess
states with a high capacity of memory storage and try to
identify universal phenomena that take place near such
states. The idea then is to come back and apply this
knowledge to black holes and look for analogous phenom-
ena there. The advantage of this approach is that a unique
knowledge about black holes can be gained by studying
systems that are much easier solvable both analytically and
numerically. The present paper is about the detailed study
of one such universal phenomenon identified in [1,2],
namely the above mentioned memory burden.

Before continuing we wish to make a clarifying remark,
in order not to confuse the reader with our terminology. We
shall often use the term enhanced capacity of the memory
storage as opposed to, for example, maximal entropy. This
is because the former term covers a wider class of systems:
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a state can have a sharply enhanced memory storage
capacity even if the corresponding microstate entropy is
not necessarily maximal. The above studies show that
systems that possess such states still exhibit some black
hole like properties. Of course, the converse is in general
true: a state of maximal microstate entropy does possess a
maximal memory storage capacity. In particular, all such
states must share the memory burden effect.

B. Main finding

Let us start with setting the framework. Physical systems
are characterized by a set of degrees of freedom (modes)
and interactions between them. It is convenient and custom-
ary to describe the degrees of freedom as quantum
oscillators. The basic quantum states of the system then
can be labeled by a sequence of their occupation numbers
|ny, ..., ng). Such a sequence stores quantum information
which we can refer to as the memory pattern. The efficiency
of memory storage is then measured by the number of
patterns that can be stored within a certain microscopic
energy gap [9,11]. When this number is high, we shall say
that the system has an enhanced capacity of memory
storage. The above notion is closely related to microstate
entropy but is much more general. If the states describing
different patterns share the same macroscopic character-
istics (e.g., the total mass or angular momentum), the
microstate entropy can be defined in the usual way
S =In(ng), where ng is the number of distinct basic
microstates |ny, ..., ng).

Naturally, we are interested in systems that dynamically
attain a high capacity of memory storage. This can be
achieved if the system reaches a critical state in which a
large number of gapless modes emerge. Then information
can be encoded in the occupation numbers of the gapless
modes without energy cost. This generic mechanism has
already been investigated in a series of papers [1,2,4,5,8—
11]. Originally, it was introduced for understanding the
origin of Bekenstein-Hawking entropy in a microscopic
theory of black hole’s quantum N portrait [3]. However, it
was soon realized in the above papers that this mechanism
is universally operative in systems with high capacity of
memory storage. Interestingly, it has been repeatedly
observed that the information storage in such systems
exhibits some BH-like properties.

This universality suggests that by understanding general
phenomena and applying this understanding to black holes,
we can gain new knowledge that until now has been
completely blurred by technical difficulties in quantum
gravity computations. Such terra incognita is the black
hole evolution beyond its half evaporation. The reason is
that the standard semiclassical computations are unable to
account for quantum back reaction. Therefore, they are no
longer applicable once back reaction becomes important,
i.e., the latest by half evaporation. Instead, for resolving

such questions a microscopic theory is needed such as
quantum N portrait [3].

As mentioned above, in this microscopic theory the
black hole is described as a saturated critical state of soft
gravitons of wavelengths given by the gravitational radius
of a black hole, r,. Since the occupation number is critical,
i.e., equal to the inverse of their gravitational coupling, the
kinetic energy of individual gravitons just saturates the
collective attraction from the rest. As a result, the gravitons
form a long-lived bound state, a black hole. However, the
bound state is not eternal. Instead, due to their quantum
rescattering, the soft bound-state slowly loses its constitu-
ents and depletes. On average, it emits a quantum of
wavelength r,, per time r . At the same time, the emissions
of quanta that are either much harder or softer are sup-
pressed. In total, this process reproduces Hawking’s evapo-
ration up to 1/N, corrections. It is these 1/N, corrections
that are responsible for new effects that were invisible in the
standard semiclassical treatment. Note that the latter
corresponds to the N, = oo limit of the microscopic theory.

The computations performed in the microscopic theory
[15-19] unambiguously indicate that the classical descrip-
tion breaks down after the black hole has lost on the order
of half of its mass, which corresponds to on the order of
N,/2 emissions. At this point, the back reaction (i.e., 1/N,
effects integrated over time) become so important that the
true quantum evolution completely departs from the naive
semiclassical one. In this light, the two immediate tasks are
these: (1) better quantify the quantum back reaction effects
that lead to this breakdown; and (2) predict what happens
beyond this point.

In order to address these questions, we shall try to
understand very general aspects of time evolution of
systems of enhanced memory capacity. We shall use the
simplest possible prototype model with this property. Then
we try to extend the obtained knowledge to black holes and
cosmology and speculate about the possible consequences.
The above strategy is the continuation of the one adopted in
the previous papers [1,2,4-14]. The persistent pattern
emerging from this work is that systems of enhanced
capacity of memory storage exhibit striking similarities
with certain black hole properties. For example, they share
a slow initial decay via the emission of the soft quanta
without releasing the stored information for a very long
time. In short, it appears to be a promising strategy to try to
make progress in understanding black holes by abstracting
from the geometry and instead viewing their information
storage capacity as the key characteristic.

In order to avoid any misunderstanding, we wish to
clearly separate solid results from speculations. In the
present paper, we shall focus on a very precise source of
quantum back reaction. Following [1,2], we shall refer to it
as the phenomenon of memory burden. The essence of it, as
described above, is that the high load of quantum infor-
mation stored in a memory pattern tends to stabilize the
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system in the state of enhanced memory capacity. We shall
show that the strength of the effect maximizes at the latest
by the time the system emits half of its energy. At the same
time, the information stored in the memory becomes
accessible. Because of very transparent physical mecha-
nism behind these findings, it is almost obvious that it must
be shared by generic systems of enhanced memory capac-
ity, including black holes and de Sitter Hubble patch. This
means that the tendency of a growing back reaction from
the memory burden must be applicable to such objects. It is
therefore expected that the back reaction from a stored
quantum information must drastically modify the semi-
classical picture by half-decay.

Note that this statement is in no conflict with any known
black hole property derived in semiclassical theory. The
reason, as already predicted both by calculations in
gravitational microscopic theory [15-19] as well as by
analysis of the prototype models [1,2,4-14] including the
present paper, is that after losing half of the mass the
semiclassical description is no longer applicable. Namely:

An old black hole that lost half of its mass is by no means
equivalent to a young classical black hole of the equal mass.

In other words, the quantum effects such as the memory
burden provide a universal quantum clock that breaks the
self-similarity of black hole evaporation and suppresses its
quantum decay. This is the key result of the present paper.

Some applications of this phenomenon to inflationary
cosmology were already discussed in [2]. It was pointed out
there that the memory burden of the primordial information
carried by degrees of freedom responsible for Gibbons-
Hawking entropy [20] can provide a new type of the cosmic
quantum hair. This hair imprints a primordial quantum
information from the early stages of inflation past last the
60 e-foldings.

Now, the speculative part of our paper concerns the
extrapolation of the stabilization tendency for a black hole
beyond its half-decay. At the present level of understand-
ing, such an extrapolation is a pure speculation since
strictly speaking there is no guarantee that universality
of the phenomenon holds on such long timescales. In
particular, it remains a viable option that after losing on the
order of half of its mass via quantum emission, a new
classical instability can set in. The black hole then can fall
apart via a highly nonlinear classical process.

Our precautions can be explained in the following way.
The state of maximal memory capacity represents a type of
criticality. The behavior of the system is then fully con-
trolled by the gapless spectrum that emerges in this state.
This explains the universal behavior of very different
systems that exist in such a state. However, after half-
decay the departure from the critical state is significant and
it is conceivable that different systems behave differently
after this point. So, despite the fact that our prototype model
gets stabilized, a real black hole could follow a differ-
ent path.

In summary, the following two natural possibilities
emerge:

(1) The black hole continues its quantum decay but with

an extremely suppressed emission rate.

(2) A classical instability sets in and the black hole
decays into highly nonlinear graviton lumps, a sort
of a gravitational burst.

While both outcomes would obviously have spectacular
consequences, in the present paper we shall speculate more
on the first option. That is, we can take the stabilization
exhibited by the prototype model as a circumstantial
evidence indicating that large black holes (i.e., N.> 1,
meaning much heavier than the Planck mass) behave in a
similar manner, at least qualitatively. Therefore, the decay
rate of macroscopic black holes could fall drastically after
they lose half of their mass. Not surprisingly, the conse-
quences of such stabilization would be dramatic. One
obvious application that shall be discussed later is for
primordial black holes as dark matter candidates.

C. Outline

We shall now briefly outline our analysis in more
technical terms. The first ingredient is to explain the
essence of the universal mechanism which allows the
system to reach the state of enhanced memory storage.
This mechanism is at work in large class of systems [1,2,
4-11]. Following [11], we shall refer to it as assisted
gaplessness. The essence of this mechanism is most
transparently explained by a simple model discussed in
[1,2,8-10], which we shall adopt as the prototype system in
our analysis. The idea is that a high occupation of a
particular low-frequency mode to a certain critical level,
renders a large set of other would-be-high-frequency modes
gapless. Namely, the highly occupied master mode inter-
acts attractively with a set of other modes. We shall call the
latter degrees of freedom the memory modes. Near the
vacuum, the memory modes would have high energy gaps
and would be useless (i.e., energetically costly) for storing
information. However, coupling to the master mode lowers
their energy gaps when the latter is highly occupied. That
is, the attractive coupling with the master mode translates as
a negative contribution to the energy of the memory modes.
As soon as the occupation number of the master mode
reaches a critical level N, it can balance their positive
kinetic energies. In this way, the memory modes become
effectively gapless. Consequently, the states that corre-
spond to different occupation numbers of these modes,
|ni,...,ng), are degenerate in energy and contribute into
the microstate entropy S.

So far, we have discussed how the master mode
influences the memory modes by making them effectively
gapless. However, the memory modes also backreact on the
master mode via the effect of memory burden [1,2]. Since
the memory modes are gapless exclusively for a critical
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occupation N, of the master mode, any evolution of the
latter away from such a state would cost a lot of energy.
Therefore, the system backreacts on the master mode and
resists to the change of its occupation number N,.

The next step in this line of research is to study to what
extent the memory burden can be avoided. Namely, it has
been proposed in [1] that it can be alleviated if the system
has a possibility of rewriting the stored information from
one set of modes to another. This could happen if another
set of memory modes exists, which becomes gapless at a
different occupation number N, of the master mode. Then,
itis in principle conceivable that the occupation N . changes
in time, provided this change is accompanied by rewriting
of the stored information from the first set of the memory
modes to the second one. However, it has not yet been
studied if such a rewriting is dynamically possible.

In order to attack the issue, we can split this question in
two parts.

(1) Does rewriting take place at all and under what

conditions?

(2) If the answer to the first question is positive, what is

the timescale of this process?
Answering these questions is the goal of the present work.

In Sec. II, we will summarize some of the findings of
[1,2,4-11] and develop a concrete prototype model that
possesses states of enhanced memory capacity. Moreover,
we discuss how it can be mapped on a black hole. In
Sec. III, we investigate the prototype model numerically
and in particular study rewriting between two different sets
of memory modes. In short, we confirm that such a
possibility can be realized dynamically, However, we
discover that the speed of transition decreases as the size
of the system increases. Applied to black holes, this
indicates that evaporation has to slow down at the latest
after they have lost half of their mass. In Sec. IV, we briefly
discuss systems that do not conserve particle number and
point out that our conclusions also apply to them. Section V
is dedicated to studying consequences of our findings for
primordial black holes as dark matter candidates. We give
an outlook in Sec. VI and the Appendix contains details as
to how the speed of rewriting depends on the various
parameters of the system.

II. ENHANCED MEMORY STORAGE: A
PROTOTYPE MODEL

A. Assisted gaplessness

Following [9-11], we shall construct a simple prototype
model that dynamically achieves a state with many gapless
modes and correspondingly a high microstate entropy S.
We consider K bosonic modes, which we describe by the
usual creation and annihilation operators &,t, ay, where
k=1,...K. They satisfy standard commutation relations
(here and throughout 7 = 1):

[aj.af) = 6. [a;.a,] = [a}. &) =0, (1)
and the corresponding number operators are given as
= Elz&k. We denote its eigenstates by |n;), where ny
is the eigenvalue. Moreover, we label the energy gap of 7,
by €.

Using the modes 71;, one can form the states

|n1,...,nK>E|n1>®|n2> ®,...,®|7’l1{>, (2)

where ny,...ng can take arbitrary values. Clearly, the
number of such states scales exponentially with K, so
for K 2 S, their number reaches the required number of
microstates. However, it is important to consider the energy
of the states (2). Namely, two different states |n, ...ng) and
|}, ...n%) differ by the energy AE = > K_ ¢ (n; — n}). So
unless the ¢; are extremely small, the states corresponding
to different occupation numbers of the modes 7; are not
degenerate in energy. Therefore, they cannot contribute to a
microstate entropy.

We can change this situation by introducing another
mode i, with creation and annihilation operators &g, ag
and commutation relations analogous to Eq. (1). The key
point is that we add an attractive interaction between the
mode 7 and all other modes:

A K
H = €0flo + (1 - @> ekﬁk’ (3)
Nc k=1

where we parametrize the strength of the interaction by
1/N. with N, > 1. As long as i, is not occupied, the gaps
of the 7; modes are still given by ¢;. As soon as we
populate 715, however, the effective gaps &; of the 71; modes
are lowered:

& = (1 —]’z,—(i)ek. (4)

Once a critical occupation ny = N,. is reached, all modes 71,
become effectively gapless, &, = 0.
Therefore, all states of the form

| No ,ny,....,ng) (5)
-~

o

are degenerate in energy for arbitrary values of ny, ..., ng. In
this situation, 71 is the master mode, which assists the
memory modes iy, ..., g in becoming gapless. We note,
however, that one has to invest the energy ¢y, to achieve
gaplessness. If each of the memory modes can have
a maximal occupation of d, this leads to a number of
(d + 1)X distinct states that possess the same energy, i.e.,
an entropy
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S=Kln(d+1). (6)

In this way, a large number K =~ S of nearly gapless modes
leads to the entropy S.

B. Memory burden

Following [1,2], we next investigate the effect of
memory burden, i.e., how the memory modes backreact
on the master mode. To this end, we add another mode with
which 715 can exchange occupation number. We denote its
creation and annihilation operators by Bg, by with commu-
tation relations analogous to Eq. (1) and 1y = 132;]30 is the
corresponding number operator. Then the Hamiltonian
becomes

~ K

A~ n A N

H:€0ﬁ0+€0ﬁ10+ <1 —N—O) Gkﬁk+C0(€lgb0+bgflo),
k

¢/ k=1
(7)

where C,, parametrizes the strength of interaction between
ny and 71y. We choose the gap of 71, and 71 to be equal in
order to facilitate the oscillations between them.

Now we consider the initial state

|in1>=|NC,\q_/,n1,...,nK>. (8)
ny Mo

Since the occupation number of each of the memory modes is
conserved in time, it is possible to solve the system
analytically. For the expectation value of 71, one obtains [1]:

4C2
1) =N, 1-—5"2sin?(/C3+u2/4t) ), (9
()= Ve (1= gtz (/G vwar) ). 9

K
ﬂ:—Zﬂc”k/Nc' (10)
k=1

This quantity characterizes the strength of memory burden,
as we shall demonstrate. It is related to the effective energy
gaps (4) as

K
/i:znka—no- (11)

Equation (9) shows that the memory modes drastically
influence the time evolution of 7. First, we consider the
special situation in which all memory modes are unoccu-
pied. This implies 4 = 0 so that ny(z) performs oscillation
with maximal amplitude on a timescale of Cg'. This
behavior, which is depicted in Fig. 1(a), is identical to
the case in which the memory modes do not exist. For
n, #0, this situation changes as soon as either the
occupation of the memory modes is high enough or their
free gaps €, are sufficiently big. In both cases, one gets
C3/u* < 1 so that the amplitude of oscillations is sup-
pressed by this ratio. This is shown in Fig. 1(b) for
exemplary values of the parameters. Thus, the stored
information ties 71 to its initial state. This is the essence
of memory burden.

Consequently, the crucial question arises to what extent
memory burden can be avoided. Following [2], a first way
consists in modifying the Hamiltonian (7) as follows:

A K

N no \? s At

H:€0f10+€0ﬁ10+ <1—N—0> Gkﬁk+C0<a6b0+bg)a0)
k=1

c

(12)
where we defined In this case, the effective energy gaps read
o ng Mo
N NfAAAAAn~nAn~An~Aan~An~~A~~ss~nns N
0 to t 0 + g
0 ~Cy™! 0 ~Cy! 0 ~Co'/2 ~Co!

(a) p = 0: absence of memory
burden. The expectation value ng
oscillates freely with full amplitude.

FIG. 1.
solution of the system (12).

(b) |p| =2.5 (and p =1): early
backreaction due to memory burden
ties no to its initial value.

(¢) || =2.5 and p = 8: memory
burden can be delayed up to a
timescale on the order of half decay.
Backreaction sets in at the latest at
that point and stabilizes the system.

Plots of the time evolution of n, for N. = 25 and Cy = ¢3/+/N. = 1/5. (a) and (b) follow from (9). (c) is an approximate
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~ n p
& = (1 —N—°> €x (13)
Consequently, the memory burden becomes
NC — Ny p-1
fi=p|l— , 14
I p( N ) Iz (14)

where we expressed it in terms of Eq. (10). We see that it
gets suppressed by powers of (N, — ng)/N,. The larger p
is, the more the backreaction gets delayed. However, it sets
in at the latest when /i assumes the critical value C:

C \ 1/(p-1)
N.—ny=N., (—(’) . (15)
plul

For y > C,, it is clear that memory burden can no longer be
avoided as soon as N, — ng is of the order of N,.. Thus,
backreaction becomes important and the system stabilizes

H = ey + egrng + Co(ahby + bjag) + (1 -

at the latest after a timescale on the order of half decay, as is
exemplified in Fig. 1(c).

C. Avoiding memory burden by rewriting

In [1], another way of alleviating memory burden was
proposed. The idea is to introduce a second sector of
memory modes, which are not occupied in the beginning,
but which can exchange occupation number with the first
sector. If the coupling of the second sector to the master
mode is such that it becomes gapless for a smaller value

= N,— AN, then a final state in which n, has
diminished by AN_. and all excitations have been trans-
ferred from the first to the second memory sector becomes
energetically available.

We denote the creation and annihilation operators of the

second memory sector by &Z, a,,, the number operator by

A;{/ = a,:, ;C, and assume the usual commutation relations

(1), where k' =1, ..., K. Then the Hamiltonian becomes:

K K K K K K
+ZZC}<]€/ akak,+Hc)+ZZCkl(€z a]+HC +chklll ak/al’+HC) (16)
=1 K= k=1 -1 k=1 1=
Here the parameters C; determine the strength of K K’
coupling between the two memory sectors. For complete- N, = Z ng + Z N (19)
ness, we have moreover introduced interactions within each k=1 k=1

memory sector, the strength of which is set by Cy.;. In order
to maximize the effect of memory burden, we have
set p=1.

We consider an initial state in which the first memory
sector is gapless and only the first sector is occupied:

i) = [ No\ 0 npsengs O s 0 ). (17)
no mgy n| n;(,

As explained, a final state is energetically available in
which the second memory sector is gapless and only the
second sector is occupied:

jout) = [N. = AN., AN, 0 ... 0 _n,....nl)
ny my m ng

(18)

The total occupation in the two memory sectors,

is conserved.

Within our setup, we require that, near the initial state
(17), the second memory sector is not gapless. The mildest
possible constraint that realizes this is [see also Eq. (22)
shortly below]

€l > (20)

€o
VN,
Alternatively, we can also impose the stronger bound
|EL| > €. (21)

Throughout, we assume that at least the milder constraint
(20) is fulfilled.

Once the state (18) exists in the spectrum, it is no longer
a priori excluded that the system evolves away from the
initial state. So in principle, it becomes possible to avoid
memory burden by simultaneously rewriting information
from the &};, a; modes to the 21?,, &;(, ones. However, by no
means does this imply that the system will dynamically
evolve from |in) to |out) on a reasonable timescale.
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Therefore, we shall study if and under what conditions this
transition actually takes place.

D. Bounds on couplings

Before we investigate the time evolution, we study how
large the couplings of the memory modes can be. Namely,
they must fulfill the condition that the effective gap E.¢ of
the memory modes stays close to zero in the presence of
couplings. In order to obtain the mildest possible bound, we
can consider a situation in which the gaps can equally be
offset to positive or negative values. Consequently, occu-
pying N,, modes typically only gives an energy disturbance
of v/N,,Ei- Imposing that it is smaller than the elementary
gap, we obtain the constraint'

€0

e (22)

Eett <

First, we will turn to the coupling C‘k,, within one
memory sector, where we assume that all C‘k‘, are of the
same order. If we only consider two modes for a moment,
they are described by the effective coupling matrix

<0 Ck,,) (23)
Coy 0/

Thus, disturbing the gap by at most €¢,/+/N,, implies
Cr1 < €9/v/N,,. However, we need to take into account
that it couples to many modes. When we view the couplings
within one memory sector as samples from identical
independent distributions with zero mean and unit variance,
then the corresponding matrix, i.e., the generalization of
Eq. (23) to many modes, belongs to a Wigner Hermitian
matrix ensemble. In this situation, Wigner’s semicircle law
states that the spectral distribution converges, and in
particular becomes independent of the dimension K, if
the entries of the matrix are rescaled by 1/vK (see e.g.,
[21]). Thus, we need to suppress the coupling constants
with this factor to maintain approximate gaplessness for the
majority of modes:

€0

K

We can also arrive at the same conclusion by studying
the expectation value of the off-diagonal elements in the
Hamiltonian, as was done in [22]. This energy scales as
N,,,Ck,,, where we took into account that N2, nonzero
entries only give a contribution on the order of N,, as long
as there are both positive and negative summands.
Requiring this energy to be smaller than ¢, yields

Cii S (24)

'Note that without assuming contributions with random signs
the constraint is g < 1>

Crr S (25)

For a typical occupation N,, ~ K, this bound is identical
to Eq. (24).

Next, we study the coupling C;, of modes from
different memory sectors, where we assume again that
all C;p are of the same order. In this case, we get the
effective coupling matrix

0 Ck k/
’ . (26)
Ciw €xAN /N,

We estimate Eqp ~ K Cik,N /(exAN.). This gives the con-
straint

Cpp < YolkANe (27)
S VRN(N,)'T

which is milder than the bound (24) since ¢; > €.

E. Application to black holes

We now wish to apply our results to black holes.
Naturally, we shall work under the assumption that the
above quantum system of enhanced memory capacity
captures some very general properties of black hole
information storage. Ideally, we would like not to be
confined to any particular microscopic theory but rather
to make use of certain universal properties that any such
theory must incorporate. For example, existence of modes
that become gapless around a macrostate corresponding to
a black hole is expected to be such universal property.
Indeed, without gapless excitations, it would be impossible
to account for the black hole microstate entropy. Also, an
important fact is that the Bekenstein-Hawking entropy [23]
depends on the black hole mass M,

S = 472Gy M2, (28)

where Gy is Newton’s constant. Correspondingly, the
number of the gapless modes that a black hole supports
depends on its mass. This makes it obvious that any
evolution that deceases the black hole mass must affect
the energy gaps of the memory modes. That is, when a
black hole evaporates, some of the modes that were
previously gapless now must acquire the energy gaps.
But then, this process must result into a memory burden
effect that resists against the decrease of M. This is the main
lesson that we learn about black holes from our analysis.
For more quantitative understanding, we shall try to choose
the parameters of the above toy model to be maximally
close to the corresponding black hole characteristics.

For a crude guideline, it will be useful to keep in mind a
particular microscopic theory of black hole quantum N
portrait [3]. Although we wish to keep our analysis
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maximally general, having a microscopic theory helps in
establishing a precise dictionary between parameters of a
black hole and the presented simple Hamiltonian. It also
shows how well the seemingly toy model captures the
essence of the phenomenon.

According to quantum N portrait, a black hole of
Schwarzschild radius r, = 2GyM represents a saturated
bound state of soft gravitons. The characteristic wavelength
of gravitons contributing into the gravitational self-energy
is given by r,. These constituent gravitons play the role of
the master mode. Namely, their occupation number is
critical and this renders a set of other modes gapless.
The latter modes play the role of the memory modes.
Without the presence of a critical occupation number of the
master mode, the memory modes would represent free
gravitons of very high frequencies and respectively would
possess very high energy gaps. That is, it would be very
costly in energy to excite those modes if the occupation
number of the master mode were not critical. Now, the idea
is that these gapless modes account for the Bekenstein-
Hawking entropy (28). In the above toy model, the role of
the master mode is played by &, with occupation num-
ber ng.

In this picture, the Hawking radiation [24] is a result of
quantum depletion. Consequently, some of the particles of
the master mode get converted into free quanta and the
occupation number of the master mode decreases. These
free Hawking quanta are impersonated by the quanta of
mode 130 and they have the occupation number m,. Initially,
mqy = 0. However, during the conversion the occupation
number m, increases while n, decreases and moves away
from the critical value. This is expected to create a memory
burden effect. Of course, unlike a black hole, the model
(16) performs oscillations; i.e., 71y again loses quanta after
a certain timescale. Thus, we can map our model on a black
hole only up to this point, but this fully suffices for our
conclusions.” Another reason why the timescale of validity
of our model is limited is that black holes can exist for all
values of the mass M. Therefore, a tower of sets of
momentum modes has to exist so that one of them becomes
gapless for each value of M. In contrast, we only consider
two sets of momentum modes in our model. For this reason,
our model can no longer be mapped on a black hole as soon
as a third set of momentum modes would start to be
populated. Finally, particle number in gravity is not
conserved, unlike in our prototype model. We shall discuss
in Sec. IV why this does not change our conclusions.

’The bilinear coupling between modes is motivated as the
simplest possible coupling that is able to effectively describe
energy transfer between degrees of freedom. In order to model a
decay more precisely, one could instead consider a coupling to
many species, %Z}Ll &013; + H.c. (all with the same gap
€; = €p), which could, e.g., represent momentum modes of a
field-theoretic system. In the limit of large F, one can achieve
strict decay with the same rate as in (16).

We can now choose the parameters in such a way that
Hamiltonian (16) reproduces the generic information-
theoretic properties of a black hole. First, we set the
elementary gap as €, = rg‘1 to make sure that Hawking
quanta have the correct typical energy r;l. Next, we need
K =S to obtain the desired entropy. Consequently, a
typical pattern has N,, = S/2, since for large black holes
S> 1 and the number of patterns with different N,, is
insignificant. We can also estimate the gap of the memory
modes. Since the system is spherically symmetric, we can
label states by the quantum numbers (/,m) of angular
harmonics. Assuming no significant part of the energy of
the modes is in radial motion, we need to occupy states at

least until / ~ /K in order to obtain a number of K modes,
since the degeneracy of each level scales as /. In this case,

the highest mode has an energy of €, = v/Ke,. We use this
scale to estimate the free gap of the memory modes because
the relative split in energy among the levels is inessential
for our discussion. We remark that this means that those
modes are Planckian, ¢; ~ 1/1/Gy. Finally, we have free-
dom in choosing the critical occupation number N,. For
concreteness, we set N, =S, as is motivated by the
quantum N-portrait. In this way, the total energy of the
system reproduces the mass of the black hole: M = N .¢.
In summary, we can express all quantities in terms of the
entropy and the Schwarzschild radius:

e=r'. N,=S. K=S.  N,=52
e = VSry. (29)

Since gravitational coupling is universal, all Cy p and all
C‘M need to be of the same order. So Eq. (24) gives the
strongest constraint, which reads

~ €
Cew ~Cur s (30)

As stated before, this bound is the softest possible one. In
real black holes constraints may be stronger.

When applying our analysis to real black holes, some
additional facts must be taken into account. Namely,
together with the 130 mode, which impersonates the out-
going free quanta of Hawking radiation, there are also the
free modes of higher momenta. In particular, there will of
course exist the free modes of the same momenta k as the
memory modes 4. These modes are denoted by b;. Now,
unlike the memory &; modes, the IA)k modes are not
subjected to the assisted gaplessness. Correspondingly,
they satisfy the dispersion relations of free quanta. That
is, the frequencies ¢ of 13k modes are of order of their
momenta and, therefore, are much higher than the frequen-
cies of the corresponding @; modes. The essence of the
situation is described by the following Hamiltonian
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K K
Hyigher = Z exbiby + Z Cilayby + bjay)
k=1 k=1
K/
+ Y Cplafby + bjal,). (31)
P

As before, we have ¢, = \/Se.

Now, the values of the couplings C; can be deduced from
the consistency requirement that they do not disturb the
gaplessness of the a; modes. The corresponding coupling
matrix is (for ny = N,)

(é’ Cﬁ> (32)

From the condition that the vanishing gap is offset by at

most €y/+/S, it follows that C7/(eoV/S) <e€y/VS, ie.,
Cy < €. Thus, due to enormous level splitting, the mixing
between the a; and l;k is highly suppressed. Cor-
respondingly, the free modes (b;) of the same momenta
as the memory modes (&;) stay unoccupied during the time
evolution. In other words, the information encoded in the
memory modes cannot be transferred to the outgoing
radiation since the mixing between the two sets of modes
is highly suppressed.

This finding has important implications as it explains
microscopically [1] why a black hole at the earliest stages
of its evolution releases energy but almost no information.
This fact is often considered as one of the mysteries of
black hole physics. What we are observing is that this is a
universal property shared by systems that are in a state of
enhanced memory capacity due to assisted gaplessness.
The “secret” lies in a large level splitting between the
memory modes subjected to the assisted gaplessness and
their free counterparts.

Since due to the above reason the 13k modes will largely
stay unoccupied, we do not include them in the numerical
simulations. Finally, since the gravitational interaction
scales with energy, we get a bound on the coupling Cy:

Co < 705 (33)

III. NUMERICAL TIME EVOLUTION

For the numerical study, we need to specialize to a
particular realization of the system (16). In doing so, we
keep in mind the special case of black holes, although our
choice of parameters stays much more general. First, we
choose the free gaps of all memory modes in both sectors to
be equal, ¢, = ey =:¢,,. Moreover, we assume that all
couplings C; v and C «. are of the same order. Therefore,
we can represent them as C,,f;(k, k'), where f;(k,[) take
values of order one. It is important that the f;(k,[) are

nontrivial to break the exchange symmetry a; <> a;.
We choose them so that they essentially take random
values in |f;(k,1)| € [0.5; 1], with both plus and minus
sign.” Finally, we note that €o(fg + ry) corresponds to a
conserved quantity. Since as initial states we only consider
eigenstates of this operator, it only leads to a trivial global
phase and we can leave it out. In turn, we will use ¢, as
basic energy unit. We arrive at the Hamiltonian

H CO A €m flo K
—(a bo—l—b'&o)—i-—(l—— iy,
€ €0 €o N, ;

€m
+€—0<1 N AN)an/
+—{22f1kk’ )(ajal, +H.c.)
k=1 k'=

P3O Stk @+ He)
=15
+ Z Zf3 k/ l’

i/
11,’ K

(aa, + H.c. )} (34)

where we set €, = 1 from here on.

As a final simplification for the numerical study, we
truncate all memory modes to qubits. Correspondingly, we
consider the initial state

in) = [N,,0,1,....1,0,....0), 35
[in) = [N, ) (35)

N"’l

i.e., i1y is populated with N . particles, 771, is empty and there
is one particle in each of the first NV,, memory modes.

Unless otherwise stated, the values for the parameters we
use are

¢, =Vv20, N,=20, AN,=12, K=K =4,
C,=001, N, =2. (36)

These parameters define both the Hamiltonian and the
initial state, up to a choice of the coupling C,,. We note that
we chose N,, = K/2 since this corresponds to the most
probable state in the limit of large K.*

For the numerical time evolution, we use the approach
and software developed in [25]. It is based on a Krylov
subspace method and has the strength that it provides a

3Concretely, we choose f;(k,l) = {I;’l((]]ill))_l igi Iii; 8;
where F;(k.1)=(v2(k+Ak;)>4++/7(1+ Al;)?)mod 1. Moreover,
we set Ak =Aky =1, Aky =K+ 1, Aly =Al; =K +1 as
well as Al, = 1.

“Since K will be mapped onto the entropy of a BH, this
reasoning only applies to macroscopic BHs with M > M.
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rigorous upper bound on the numerical error, i.e., the norm
of the difference between the exact time-evolved state and
its numerical approximation. Throughout we set it to be
1076, with the exception of systems with K = 8, for which
we use 107,

A. Possibility of rewriting

The time evolution of the initial state (35) for different
values of C,, is displayed in Fig. 2, where we show the
expectation value n of the occupation number of the
np-mode as well as the expectation value of the total
occupation of the first critical sector Y X _ 7;. For C,, =0
[see Fig. 2(a)], we can replace Y K A, - N, and
ZkK’: , ), = 0 and the system has the analytic solution
(9). We observe that the critical sector does not move and
the amplitude of oscillations of 7 is strongly suppressed.
This is the effect of memory burden [1] discussed before in
Sec. II B.

For many nonzero values of C,,, the system behaves
similarly [see Fig. 2(b)]. Although the time evolution of the
system becomes more involved, the amplitude of oscil-
lations of n is still small and the critical sectors remains
effectively frozen.

However, there are certain values of C,, for which the
system behaves qualitatively differently and the amplitude
of oscillations of n, increases distinctly, albeit on a
significantly longer timescale [see Figs. 2(c) and 2(d)].
As expected, this behavior is accompanied by a change of
the occupation numbers in the critical sector. This can
either happen via an instantaneous jump [as in Fig. 2(c)]
or via oscillations that are synchronous with ny [as in
Fig. 2(d)]. Although the second scenario is more intuitive
than the first one, both are in line with our statement that n,
can only change significantly if also rewriting in the critical
sector takes place. Moreover, we note that the occupation
transfer and thus the rewriting of information is not
complete. We expect that complete rewriting into the
second sector of memory modes can be achieved only
after including further sectors, to which the a;, modes can
transfer occupation number.

We shall call the values of C,, for which partial rewriting
takes place rewriting values. For the present values of the
remaining parameters (36), such values are rare. In order to
illustrate this point, we plot the maximal amplitude of
oscillations as a function of C,, in Fig. 3(a). We remark,
however, that for other parameter choices, we have
observed much more abundant rewriting values.

Finally, we also study how the system behaves when we
choose p =2 [see Eq. (12)], i.e., we replace 1 — 7/
Nc - (1 _ﬁO/Nc‘)z and 1_ﬁO/(Ivc _ANC) - (1 _ﬁO/
(N.—AN,))?. As is evident from Eq. (14), this reduces
the memory burden by a factor of approximately 0.03 [we
used that N, — n can get as large as 0.3 in the case p = 1;
see Fig. 3(a)]. In order to keep the amplitude of oscillation

in the absence of rewriting [see Eq. (9)] on the same order
of magnitude as for p =1, we reduce C, by the same
factor, i.e., set Cy = 0.0003. Apart from this change, we
use the values displayed in Eq. (36). As in the case p = 1,
we time evolve the system for different values of C,,.
The resulting maximal amplitude as a function of C,, in
displayed Fig. 3(b). Qualitatively, we observe the same
behavior as for p = 1.

B. Dependence on system size

After having seen that rewriting does indeed take place,
we now wish to answer the question how this changes as
the size of the system increases. In order to answer it, we
investigate how the rewriting values of C,, change as we
vary the parameters of the Hamiltonian (34). Moreover, it is
possible to determine a rate I" of rewriting as the ratio of the
maximal amplitude of n, and the timescale on which this
maximal value is attained. If we map our system on a decay
process, as we have, e.g., done in Sec. Il E, we can identify
this rate with the decay rate. We shall also study how the
rate I changes as we vary the parameters. In the following,
we restrict ourselves to the case p = 1.

As presented in the Appendix, the observed scalings for
C,, and IT" are as follows:

(1) The initial occupation number N, of 71, (which is

also the critical occupation at which the first memory
sector is gapless):

C, ~NZ', '~N;L (37)

(2) The free gap ¢,, of the memory modes:

C,, ~¢€l, [ ~ €Y, (independent).  (38)

(3) The coupling C, of &, and by:

C,, ~ C} (independent), r~ci* (39
(4) The difference AN, between the critical occupations
of a, making either of the two memory sectors
gapless:
Cp~ (ANL‘/NC)O.2’ I'~ (1 _ANC/NC)‘ (40)
With regard to the K and K’, we can unfortunately only
study three values due to numerical limitations, namely
K = K’ =4, 6, 8. The results are displayed in Fig. 4, where
we take N,, = K/2. Since we cannot make a precise state-
ment about the dependence on K, we will parametrize it as

C,~KPe, T ~KPr (41)

Still, we can try to constrain rewriting, i.e., give a lower
bound on C,, and an upper bound on I'. To this end, we
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FIG. 2. Time evolution of the initial state (35) for different values of C,,. Oscillations on a timescale of order 1 cannot be resolved
graphically any more since we show very long timescales. n is the expectation value of the occupation of the mode a, and >, n; that of
the total occupation in the first critical sector. Time is plotted in units of ej'7.

103523-11



DVALI, EISEMANN, MICHEL, and ZELL

PHYS. REV. D 102, 103523 (2020)

M?X(No —no(t))

0.35}
0.30f
0.25F
0.20f
0.15}
0.10F ‘
0.05E |1 1
| ‘ ) - C
s 1.0 1.5 20"
(a) p:l, Co:OOl
FIG. 3.
Cn
1.0r s
: !
0.8 . '
[ ]
A
0.6 '
]
[ ]
0.4
........ e
.
‘ K
3 4 5 o ! ’ i

(a) Rewriting values of Cp,

MtaX(No —no(t))

0.7¢
0.6¢
0.5f
0.4
0.3F
0.2F
0.1¢

0.0 015 110 1.5 2.0
(b) p=2, Co=0.0003

Maximal amplitude of the expectation value of 71, for different values of C,, [with initial state (35)].

r
2.x10°%
-
-
[ ] /”
-,
-,
-
-
/’,’
-~
. /”’
1.x107% L
-
»”’ Y
el
-
"
,,,,,, i :
‘ ‘
1 1 1 K
3 4 5 6 7 8 9

(b) Rates I'' at those rewriting values

FIG. 4. Available data (blue dots) for the rewriting values of C,, and the rates I as function of K = K’, where we take N,, = K/2. The
dashed curves are the constraints (57) and (58), that apply to a black hole. We see clear indications that for large black holes, rewriting is

not fast enough to reproduce the semiclassical rate of evaporation.

calculate the mean value of C,, for the 11 data points at
K = 6. In order to obtain a maximally conservative bound,
we moreover choose among the results for K = 8 the 11 data
points with the lowest values of C,, and compute their mean.
Performing a fit with the two resulting mean values, we get

Pc 2 —0.7. (42)

We have not included the value at K = 4 since doing so
would increase . For I', we compute the mean value for the
11 data points at K = 6. At K = 8, we choose the 11 data
points with the highest rates and calculate their mean. Fitting
the resulting two means together with the rate of the single
rewriting value at K = 4, we arrive at

pr S =07, (43)

In this case, we have not excluded the value at K = 4 because
this would decrease fr. Even though we have tried to be

conservative in our estimates, we must stress that we have far
too little data to make any reliable statement. Thus, the true
values of f- and fr might not respect the bounds (42)
and (43).

In summary, we observe that the rate I decreases as the
system size increases, i.e., as N. or K gets bigger [see
Egs. (37) and (43)]. Whereas C; can vary independently in
a generic system, Eq. (33) shows that it decreases with
system size in the black hole case. Therefore, the observed
scaling (39) reinforces the tendency of lowering I'. Thus,
we see clear indications that rewriting becomes more
difficult for larger systems.

C. Understanding our results

In this section, we shall provide some analytic under-
standing of our findings. For simplicity we take K = K’,
and assume each memory set to be diagonal with the equal
gaps. Thus, we take (i‘k‘, = Ck/‘,r =0 and ¢, and ¢y to be
universal, i.e., for all k, k', e, = ey =+/N.€y. Then,
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without any loss of generality, the matrix C; ;- can be set
diagonal since we can always achieve this by an unitary
transformation. The Hamiltonian (16) then becomes,

A

H = €0flo + €0ﬁ’lo + CO(&Z)EO + BS&O)

+EY M+ EY iy

+ ick,k(a,ta;c : H.c.), (44)
k
where
. ﬁv;<1 —%)eg, (45)
and

’ e
&= \/NC<1 NC—ANC>€0’ (46)

Now, in the initial state (17), no = N, and we have

AN,
VN,
Since the second gap is negative, there exist states with

much lower energy than the initial one (17). In particular,
such is the state

E=0, E ~—

€ < 0. (47)

[low) =|N., 0 ,0,...0, n; ,..., ng ). (48)
ng Mo n n,

K

This is the state obtained from (17) by exchanging the
occupation numbers of the two memory sectors,
n, «<— nj, without touching ny and m. This state has a
macroscopically large negative energy difference with
respect to (17). Expressing this energy difference in
terms of the memory burden, which in this case implies

€0 > i Ny = —\/N,, we have

(low|H[low) — (in|Hlin) = &> ng~AN.p. (49
k

Since p < 0, the energy of (48) is much lower than the
energy of the initial state (17).

The above makes it clear that we should be able to take
intermediate deformations of the initial state (17) in which
the exchange of the occupation number between the sets 7,
and n}, is balanced by the exchange between ny and my in
such a way that the obtained state is nearly degenerate with
the initial one.

It therefore looks plausible that the system can use such a
path for overcoming the memory burden. This was our

original expectation as well as the proposal in [1,2]. Yet,
this is not what we are finding.

Instead we discover that the system cannot evolve
efficiently. The reason for this is the following. The
maintenance of the zero energy balance along the current
trajectory requires a synchronous evolution of the two sets
of degrees of freedom, ay, by and a,a), respectively.
These sets have to produce opposite contributions into the
energy that cancel each other. Basically, one set has to
“climb up” the energy stairs while the other is com-
ing down.

However, each evolution has a highly suppressed ampli-
tude due to the huge gap differences among the proper
modes. This breaks the process.

In order to see this, let us consider the time evolution
near the initial state (17). This time evolution can be
described as set of coupled 2 x 2 problems, with the
following Hamiltonians,

ag by

( 0 Ck,k) + a, (60—1—/4 CO).
Cer €& b| Co ¢

(50)

a,

-

A=Y aj

ko
ay

(=,

The systems are coupled because &£ is a function of n,
whereas y is a function of >, n;.

The qualitative behavior can be understood by solving
the system iteratively, i.e., in the zeroth order approxima-
tion, we evolve the system by treating £ and u as constants.
We then evolve them in the first order by taking into
account the variations of the occupation numbers obtained
in the zeroth order.

It is immediately clear that the amplitudes of both
transitions are highly suppressed because of the huge
eigenvalue-splittings in the corresponding 2 x 2 matrices.
Namely, we have

C3 c?,
= d ény~——2. 51
ﬂZ an N &n ( )

51’10 ~ —NC

The resulting variations of £ and u are so small that they
cannot affect the picture in the next iteration. For example,
we can assume K = N. = >, n; and take into account the
bound C, < ¢y/+/N,, which arises in the black hole case
[see Eq. (33)], as well as condition (22),5

2
Ck,k < %o

Then we get

>We note that the stronger condition Eq. (30) does not apply in
the present case since the memory modes only couple pairwise.
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M o1 (53)
u ~\NE g AN/N,

Finally, we take into account that there is a lower bound on
|€'| [Egs. (20) or (21)]. Even the mildest bound (20)
suffices to conclude that the iteration series rapidly con-
verge towards the result that the system is essentially
trapped in the initial state. Moreover, we note that (52)
acquires an additional factor 1//N, if the effective gaps do
not come with both positive and negative signs (see
footnote 1).

D. Application to black hole

Now we adapt the parameter choice (29) that corre-
sponds to the case of a black hole. In this situation, only the
couplings Cy and C,, as well as AN . remain independent of
S. However, C is related to S through the bound (33),
which is specific to black holes. Likewise, Eq. (20) leads to
a bound on AN_, namely

AN, > 1. (54)

Using the observed scalings stated in Egs. (37)—(39), we get
for C,,

Cip ~ SOSE(AN /) 2 §07He,(55)
as well as®
[~ S§- 17, (56)

Equation (55) shows that in order to satisfy the bound (30)
on the S dependence of C,,, the scaling of C,, with K would
be constrained as

Be < —03. (57)

Analogously, it follows from Eq. (56) that the require-
ment of reproducing the semiclassical value of the rate,
I' ~ 1, leads to

Br =17, (58)

Now we would like to investigate the compatibility of the
numerical results for K variation with the bounds in
Eqgs. (57) and (58). First, we compare the actual results
for K = 6, 8 with the expectation for K = 6, 8 based on the
result for K =4 and a scaling saturating the bounds
Egs. (57) and (58). The resulting functions are plotted in
Fig. 4. We observe that although many more rewriting

®Since AN,/S — 0, the rate I" becomes independent of AN,.

values exist at higher K, none of them satisfies both the
constraints (57) and (58).7

As a different method of analysis, we can compare the
bounds (57) and (58) with the estimates (42) and (43). We
observe that - might be small enough, but S is vastly
different. These are clear indications that for large black
holes rewriting of information from one memory sector to
another one cannot be efficient enough to reproduce the
semiclassical rate of particle creation, I' ~ 1. As far as we
can numerically access the system, we therefore conclude
that even if rewriting takes place, the semiclassical descrip-
tion breaks down as soon as memory burden sets in.

We expect the semiclassical approximation to be valid as
long as a newly created black hole has not lost a sizable
fraction of its mass. In the absence of sufficiently fast
rewriting, the model (34), which we have studied here, does
not fulfill this requirement because it would lead to an
immediate deviation from the semiclassical rate of particle
production. Therefore, an effective description of black
hole evolution must realize an appropriate delay of the
onset of the memory burden effect. As reviewed in II B, the
model (12) (with a parameter choice p > 1) achieves such
a delay. It can do so at most until the master mode has lost
on the order of half of its initial occupation, and, corre-
spondingly, until the black hole has lost on the order of half
of its mass.

We can give a quantitative estimate of how strong the
slowdown is at that point, assuming that the rewriting rate
after the onset of backreaction in the system (12) (with a
parameter value p > 1 and including the coupling to another
set of memory modes) behaves analogously to the system
investigated here. To this end, we first note that C, ~ 1/S is
required in order to reproduce the semiclassical rate of
Hawking evaporation, I' ~ 1, during the initial evolution
before the onset of memory burden. Consequently, Eq. (56)
gets modified:

[~ S22, (59)

As explained, we cannot determine S due to numerical
limitations. Still, we can try to give a bound on it. Since we
clearly see no indications that the rates increase with K [see
Eq. (43)], we can conservatively estimate that - < 0. Then
we obtain

1
rsg (60)

Thus, evaporation has to slow down drastically at the latest

after the black hole lost on the order of half of its
initial mass.

In fact, none of them fulfills either condition, except for one
data point at K = 6. It has a sufficiently high rate, but its coupling
strength C,, = 0.74 is far too big to satisfy the bound (57).
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E. Regime after metamorphosis

In the following, we will discuss scenarios of BH
evolution beyond half-decay that are consistent with the
above finding. In the standard semiclassical treatment, the
evaporation process of a black hole is taken to be self-
similar, i.e., it is assumed to be well described simply by a
time-dependent mass M (¢) which in each moment of time
determines the Schwarzschild radius and the temperature as
ry =2GyM(t) and T = (8zGyM(t))™", respectively. This
leads to the picture of a thermal emission spectrum shifting
with the growing temperature as the evaporation proceeds.
Thus, the assumption is that a classical black hole with
each quantum emission evolves into a classical black hole
of a lower mass. This picture is widely accepted, despite the
fact that there exist no self-consistent semiclassical calcu-
lation giving such a time evolution.

It is quite contrary [26]: this picture has a built-in measure
of its validity since the above equation, together with
M ~ r;2, leads to T/T* ~ 1/S. This quantity sets the lower
bound on the deviation from thermality. It vanishes only in
strict semiclassical limit Gy — 0, M — oo, rg = finite. It is
important to note that in this limit S — co. Therefore, the
standard Hawking result is exact. However, for finite mass
black holes and nonzero Gy, the deviations from thermal
spectrum are set by 1/8.

Already this fact tells us that it is unjustified to use the
self-similar approximation over timescales comparable
with black hole half-decay, 7 ~ Srg. Indeed, without know-
ing the microscopic quantum theory, one can never be sure
that the semiclassical approximation is not invalidated due
to a buildup of quantum backreaction over the span of
many emissions.

As microscopic theory tells us [3,15-17], this is exactly
what is happening: at the latest by the time a black hole
loses of order of half of its mass, the backreaction is so
strong that the semiclassical treatment can no longer
be used.® In particular, the remaining black hole state is
fully entangled after losing on the order of half of its
constituents.

The present study reveals a new microscopic meaning of
the quantum backreaction. Namely, being states of maxi-
mal memory capacity, the black holes are expected to share
the universal property of memory burden. Due to this
phenomenon, the black hole evaporation rate must change
drastically after losing half of its mass. What happens
beyond this point can only be a subject to a guess work.
However, given the tendency that the memory burden resist
the quantum evaporation, the two possible outcomes are
these: (1) a partial stabilization by slowing down the
evaporation; (2) classical disintegration into some highly
nonlinear gravitational waves. The second option becomes

8Self—similarity is only recovered in the semiclassical limit
N, — oo [27,28].

possible because, after the breakdown of the description in
terms of a classical black hole, we cannot exclude any more
that the system exhibits a classical instability. Obviously,
there could be a combination of the two options, where a
prolonged period of slow evaporation transits into a
classical instability. In the following, we shall focus on
the first option as being the most interesting for the dark
matter studies.

Thus, motivated from our analysis of the prototype
model, we shall adopt that the increased lifetime due to
the slowdown is

T2 Sk, (61)

where k indicates the power of additional entropy sup-
pression of the decay rate as compared to the semiclassical
rate, [ ~ r;'. Although the spectrum is no longer thermal,
we shall assume that the mean wavelength of quanta
emitted during this stage is still on the order of the initial
Schwarzschild radius ~r, as long as the mass is still on the
order of the initial mass. We must stress, however, that we
cannot exclude that the black hole starts emitting much
harder quanta after memory burden has set in. In particular,
as the gap increases, the memory modes become easier-
convertible into their free counterparts. This conversion is
likely a part of the mechanism by which the information
starts getting released after the black hole’s half-decay.

IV. ROLE OF NUMBER NONCONSERVATION

In our previous analysis we have explained the essence
of the memory burden phenomenon and studied its man-
ifestations on prototype systems numerically. In these
prototype systems we have limited ourselves to particle
number conserving interactions. One may wonder how
important the role of particle number conservation is. In
this section we wish to explain that it is not.

In order to understand this, let us first briefly recount the
essence of the phenomenon which is the following. A set of
memory modes, which we have denoted by a;s, becomes
gapless when the occupation number of the master mode,
ag, reaches a certain critical value ny = N_. This allows us
to populate the memory modes—and therefore store the
memory patterns of the form (5)—without any expense in
energy. This memory pattern creates a backreaction on a
master mode by generating a high energy gap for it. We call
this gap a memory burden and denote it by the symbol .

The net effect of this backreaction is that it resists to any
departure of the master mode away from criticality. This is
because the information pattern stored in the memory
modes (5) becomes costly in energy as soon as the master
mode moves away from the critical value. The change of
energy, resulting from the variation An, of the master
mode, is
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AEpz:\ttern = /’LAnO‘ (62)

As a result, a force is created that prevents the occupation
number of the master mode from changing.

In order to allow for such a change, the system must get
rid of the memory burden u by somehow decreasing the
occupation number of the memory modes. The pattern
stored in these modes then must be rewritten in some other
set of modes which we have denoted by &j,. Our simu-
lations indicate that for the reasonable choice of the
parameter values, in particular motivated by scalings in
black hole analogs, the rewriting process is not nearly
efficient for avoiding the memory burden, i.e., the process
of offloading the memory modes from the &, sector into &),
cannot be synchronized with the decay of the a, mode.

So far, in our examples, both processes were modeled by
interactions that conserve the total number of particles; i.e.,
the destruction of an a; mode was accompanied by a
creation of a particle from another sector. Likewise, the
destruction of an excitation of the master mode @, was
accompanied by a creation of a BO quantum.

Our analysis showed that the memory burden effect was
so strong that it killed the decay process before the extra
sectors (&), by) had any chance to be significantly popu-
lated. Correspondingly, the inverse transition processes
played no role in the time evolution of the system.

In these circumstances, it is clear that the role of particle
number conservation is insignificant. Namely, the transi-
tions generated by the particle number nonconserving
interactions of similar strengths would be equally power-
less against the memory burden effect. Let us estimate this
explicitly.

A. Number nonconserving decay of the master mode

We shall first consider the effect of number nonconserv-
ing decays of the master mode. We take the fixed memory
burden u and replace the number conserving mixing
between a, and l;o modes in (7) by the following number-
nonconserving one,

H = (e + p)agag + egbby + Colaoby + agb).  (63)

where we have taken the parameter C to be real and of the
same strength as in the number-conserving version (7).
This strength, Cy ~ ¢y/N,, is dictated by the requirement
that for 4 = O the half-decay time of the a, mode is # ~
N_./¢y as it is clear from (9). This choice imitates, at the
level of our toy model, the scaling of the black hole half-
decay time in units of the energy of the Hawking quanta.

The Hamiltonian (63) is diagonalized by the following
Bogoliubov transformation:

ag = ud — v’ by = upp — vé, (64)

where & and ﬁ are the eigenmodes and

v? = L P 1], (65)
2 i
T Qeotu)?
u? = LY P +11. (66)
2 4ct
 (eotu)

For the full memory burden, we have y ~ —ey+/N .. Taking
into account that Cy ~ €y/N,., Eq. (65) gives,

2~C(2) ! 2=14+0(1/N? 67
U—FNN—S, M—+(/c)’ ()

Thus, the depletion coefficient »? is minuscule due to an extra
1/N, suppression by the memory burden factor ‘70 We note
that the amplitude in the case of a number conserving mixing
is suppressed by the same factor C3/u? [see Eq. (9)].

The similarity between the two cases in the present
situation, in which the occupation number of the Eo-mode
never becomes high whereas the occupation number of
is macroscopic, can also be understood in the Bogoliubov
approximation, in which we replace number operators of
the a, mode by ¢ numbers, ay = /N, &(T) = /N,.. After
disregarding terms smaller than 1/y/N,,” the number
nonconserving Hamiltonian (63) becomes

I:] = 602830 + C()\/ NL(Bz—) + B()) (68)

This is easily brought to a diagonal form by a canonical
transformation

by = p— Co\/N./e. (69)

which shows that the occupation number of the 130 mode in
the # vacuum is,

(bibo) = —%=. (70)

Thus, depletion is still suppressed by C,. The above
argument is another way of understanding why—as long
as the occupation number of Z;O is small and therefore
the inverses processes are not effective—the number
conserving versus number nonconserving nature of the
mixing is not important. Thus, it is clear that number

This is justified (self-consistently) as long as the departure of
ag from /N, is small.
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nonconservation does not allow to circumnavigate the
memory burden effect.

Further notice that the relative effect of possible decays
of the a, mode into several [30 quanta is negligible. In the

interaction vertex each extra b, brings an additional factor

of 1/y/N,. So, the coefficient of the term aob}y scales
12

as ¢y/N/".

B. Number nonconserving decay of memory modes

Let us now ask whether a number nonconserving decay
of the memory modes could ease the memory burden effect
more rapidly as compared to a number conserving one. In
order to answer this question, we shall allow for a depletion
of the memory modes due to a number nonconserving
mixing with another sector.

Before doing so we wish to clarify the following point.
Notice that for odd values of p the effective gap of the
second layer of the memory modes becomes negative. For a
number conserving Hamiltonian, this makes no difference
in the memory burden effect. Therefore we can use the
simplest version of p = 1 [see (13)] in our discussions.

However, once we allow for number nonconservation
among memory modes, the negative gap can lead to
“tachyonic” type instabilities that can populate the memory
modes by creating them out of the vacuum. This increase of
the occupation number has nothing to do with easing a
memory burden on the first sector but rather is a manifes-
tation of instability. Still, such instability blurs the question
that we are after. So we shall assume that the gap is always
positive. This assumption is equivalent to the statement that
there are no intrinsic tachyonic instabilities in the initial
state of the system. This imposes a constraint on the
structure of the Hamiltonian, which we will take into
account below.

Let us consider the following Hamiltonian that mixes the
memory modes,

ﬁ] = gkﬁk + Ek/l,’\l;{/ + Ck,k’(&ka;a + HC) (71)

For simplicity of illustration, we paired-up the modes from
the two sets, effectively reducing the evolution to a 2 x 2
problem. Making a more complicated mixing matrix does
not change the qualitative picture.

The quantities £ and & are effective gaps that are
functions of n,. The only requirement that we need to
specify is that they alternatively reach zeros for two critical
values ny = N, and ny = N, — AN, respectively, and are
semipositive definite everywhere in between. Moreover, at
the critical points the level splitting is macroscopic:

gk = O,gk/ > €, for ny = Nc’

gk/ =0, (C/‘k > €, for nyg = Nc — A]Vc (72)

For example, we can choose

fo=(1-70 e (73)

N,

as before, and for £ assume one of many possible shapes,
e.g.,

7 2
b= (1 ‘N_°AN> 2 (74)

or

£ ﬁO
/= 1 ! 75
g (NC — AN, >€k ’ (75)

and so on." Finally, as in the number conserving case, to
which we wish to compare the evolution of the present
system, the parameter C,,  cannot be too big since otherwise
the gaplessness of a;-modes at the critical point ny = N,
would be destroyed. This leads to the condition (52).

Now, let us recall that the reason why the depletion of the
gapless memory modes in the particle number-conserving
case (16) was not efficient is as follows:

(1) Relatively large level splitting: AE = Epy — &,

(2) Suppressed mixing coefficient Cy .
As long as these conditions are maintained, allowing the
particle number nonconservation in the mixing term does
not improve the situation. Indeed, we diagonalize the
Hamiltonian via the Bogoliubov transformation,

ay = upy —va;,  (76)

where
1 1
u? =1+ 12 V= —-1]. (77)
2 4c? |
1= kK
(Ext+Ep)?

Next, taking into account Egs. (52) and (72), we have near
ny = N ¢

2
) Ck,k’ €0

~N L 21, 78
(gk/)z \/Ngk/ u ( )

v

which gives a highly suppressed rate of offloading the
memory pattern. This rate is negligible and of no help for
liberating the master mode a, from the memory burden
effect on any reasonable timescale.

"Even a gap function such as, e.g., & = (1 —N‘%DAN")ekr
would be admissible since here we are not restricted by
renormalizability and only interested in the regime of ng > 1.
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Finally, as in the previous example, the higher order
operators, €.g., &k&kzl ro. &k; ', (Whether number conserving
or not) cannot improve the decay rate due to the extra
suppression by powers of 1/N..

C. Summing up

We are now ready to summarize the discussion about the
role of number (non)conservation in easing the memory
burden. The memory burden phenomenon is a relative
effect that amounts to a delay of the time evolution of the
system due to a backreaction of the memory pattern. In
order to measure its effect, we must do so by comparing the
time evolution of the same system with and without the
initial memory pattern.

Motivated by the black hole analogy, we have normal-
ized (in units of an elementary gap ¢,) the half-decay time
of the system with g = 0 (an empty memory pattern) to V.
This timescale fixes the strengths of the leading operators
that can reduce the number of the master mode.

We then study the system, with maximal memory burden
u (fully loaded memory pattern), assuming the strict
conservation of the occupation number of the memory
modes a,. In this case, we see that the memory burden stops
the leakage of the master mode at the latest after half-decay.

The next question we have analyzed was what happens if
the memory pattern—initially loaded in memory modes
a;—can be offloaded to another sector aj,. We call this
process rewriting. Can the rewriting be so timely as to free
the master mode from the memory burden? The answer to
this question turned out to be negative.

The point is that the gaplessness of the memory modes at
the critical point restricts the strengths of operators that
change their occupation. This restriction is independent of
the conservation of the total particle number. As a result,
the particle number nonconserving interactions are not any
more efficient than the number conserving ones.

Another physical way of understanding this is the
following. In the initial state, the sectors a, and a; are
fully loaded, whereas all the other sectors (130,&;(,) are
empty. Now the task is to offload the a; modes by using an
interaction that can reduce their number, irrespective of the
total particle number conservation. The only difference is
that the particle number-conserving operators would
create exactly equal number of quanta in the empty
sectors, whereas the nonconserving ones would not.
However, what we observe is that with the allowed
strength of the operators, the empty sectors are never
populated efficiently on the timescale of interest. So, on
average, no inverse process plays any role. In this situation
the total number conservation is irrelevant. For an observer
in the a;, sector, there is simply no difference between how
the memory modes decay, since the inverse processes are
never seen.

V. SMALL PRIMORDIAL BLACK HOLES AS
DARK MATTER

The possible stabilization of black holes by the burden of
memory could have interesting consequences for the
proposal that primordial black holes (PBHs) constitute
dark matter [29-32]. Of course, the full investigation of this
parameter space requires more precise information about
the behavior of black holes past their naive half life. Below,
we first give a short qualitative discussion of how some of
the bounds on primordial black holes change in this case.
Subsequently, we provide a few quantitative considerations
for one exemplary black hole mass.

A. Effects on bounds

There exist many different kinds of constraints on the
possible abundance of PBHs (see [33,34] for a review).
However, the strength and/or the range of many of those
constraints are based on the semiclassical approximation
for BH evaporation, i.e., Hawking evaporation is assumed
throughout the decay. Therefore, a slowdown due to the
backreaction in form of memory burden, which sets in after
the half-decay, affects the landscape of constraints quite
dramatically.

If the validity of the semiclassical approximation is
assumed throughout the whole decay process, all PBH
with masses M < M, =5 x 10'*g would have completely
evaporated by the present epoch [34]. In contrast, such
small PBHs can survive until today if evaporation slows
down after half-decay. Thus, many of the constraints on the
initial abundance of PBHs with masses M < M, are altered.
In particular, a new window for PBHs as dark matter (DM)
is opened up for some values of the mass below M..

For example, we can consider constraints from the
galactic gamma-ray background, following [35]. Since
the spectrum of photons observed due to PBHs clustering
in the halo of our galaxy is dominated by their instanta-
neous emission, the range of the related constraints in the
semiclassical picture applies to black holes with mass
M Z M., with the strongest constraints coming from M
close to M, (since they would be in their final, high-
energetic stage of evaporation today). On the one hand, a
slowdown significantly alleviates the constraint around M,
since such black holes would now be in their second, slow
phase of evaporation. On the other hand, because black
holes with masses below M, could survive until today, the
galactic gamma-ray background would lead to new con-
straints on their abundance. At the same time, the fact that
these black holes emit energetic quanta opens up a
possibility to search for them via very high-energetic
cosmic rays. Below we discuss this point in more detail.

As a different example, we consider constraints from big
bang nucleosynthesis (BBN), as were studied in [36]. In the
semiclassical picture, PBHs of mass smaller than about
My = 10'° g would have evaporated until then. Therefore,
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such black holes are typically considered to be uncon-
strained by BBN. In contrast, a slowdown would cause
some PBHs with M < M, to still exist at that epoch.
Therefore, BBN in principle leads to new constraints on
such PBHs. However, the constraints are expected to be
mild, since PBHs would already be in their second, slow
phase of evaporation. On the other hand, the strong
constraints on M ~ M, associated with the final stage of
evaporation in the Hawking picture is alleviated. Finally,
the bound due to BBN on PBHs of masses M > M, is the
same in the semiclassical and our picture because those
black holes are in the early stages of evaporation dur-
ing BBN.

B. Specific example

In the following, we consider an exemplary scenario, in
which small PBHs of mass below M, appear to be able to
constitute all of dark matter. It should be clear that we make
no attempt to cover the whole spectrum of constraints or the
whole range of masses, and content ourselves with rough
estimates. We consider a monochromatic PBH mass
spectrum with M ~ 108g. Moreover, we need to specify
how strong the slowdown is after half decay. Based on our
numerical finding (60), we assume that the rate [ is
suppressed by two powers of the entropy: '~ r;!/S2.
Correspondingly, we have k=2 in Eq. (61); i.e., the
lifetime 7 is prolonged as 7 > S2z, where 7 is the standard
estimate based on extrapolation of Hawking’s result. This
leads to 7 > 10% s (see [34] for 7), which is longer than the
age of the Universe by many orders of magnitude.

There are two kinds of constraints on the PBHs that we
consider. Bounds of the first type are independent of the
fact that the PBHs evaporate, i.e., they are identical to the
ones for massive compact halo objects (MACHOS) of the
same mass. We are not aware of relevant constraints for
masses as low as M ~ 103g (see e.g., [34,37]).11 The second
kind of bounds is due to the fact that, although with a
suppressed rate, the PBHs still evaporate.

As explained above, the energy of emitted particles is
expected to be around the initial black hole temperature,
Tgy = M3/(87M) ~ 10° GeV. Assuming that the galactic
halo is dominated by the PBHs, the diffuse galactic photon
flux due to the PBHs can be roughly estimated as

® ~ R ~ 1074/ (cm?s), (79)

where R ~2x 10** cm is the typical radius of the
Milky Way halo and ngy is the galactic number density
of PBHs. We can estimate the latter in terms of the mass
of our galaxy My ~ 2 x 10*? kg as ngy ~ Myw/(MR?).

"'Constraints would be similar to the ones on so-called N-
MACHOs [38].

This corresponds to one particle hitting the surface of
the earth approximately every 10® years. Clearly, it is
impossible to observationally exclude such a low flux."
Moreover, one can wonder if the secondary flux, which
predominantly comes from the decay of pions, can change
the above conclusion. The answer is negative since the
corresponding rate I'g is only slightly higher than the one
for primary emission, I's ~ 10" (see [35]).

Moreover, we can turn to constraints from the extra-
galactic gamma-ray background. Assuming that cold DM
is dominated by PBHs of mass M, one can roughly estimate
for the flux due to secondary photons13 (see [36]):

O ~ p'%fto ~ 10731 /(cm?ss), (80)

where ppy ~ 2 x 10730 g/cm? is the present energy den-
sity of dark matter in the Universe and 7, ~ 4 x 10'7 s is the
age of the Universe. Again, this flux is unobservably small.

Finally, the contribution from the considered PBHs to
cosmic rays other than photons can be expected not to
exceed significantly the photonic flux, in which case no
bound would result from direct detection of other particles,
either.

In conclusion, from the exemplary constraints consid-
ered above, the numerical example of PBHs of mass M ~
108¢ passes an immediate test to be able to account for all
DM. As stated above, a more complete analysis remains to
be done.

We finish the section by making a general remark. The
stabilized black holes can be detected via their emission but
also via a direct encounter with earth, through gravitational
or seismic disturbance. The latter possibility for standard
PBH has been discussed in [41]. In the present context,
the encounter becomes much more frequent and for certain
masses the detection through a direct encounter could
in principle become more probable than by emission
spectrum.

VI. SUMMARY AND CONCLUSIONS

A. Stabilization by memory burden

A state around which gapless modes exist possesses an
enhanced capacity of memory storage since information
patterns can be recorded in the excitations of the gapless
degrees of freedom at a very low energy cost. However, the
stored information backreacts on the evolution of the
system and ties it to its initial state. This is the effect of
memory burden [1].

’We are not aware of an observational lower bound on
the diffuse galactic gamma-ray flux at photon energies E,~
10° GeV. For E, ~10° GeV, the observed flux is of order
10719/(cm?s) [39].

BThe primary photons would effectively be screened by a
cosmic gamma-ray horizon (see e.g., [40]).
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In this paper, we have investigated if memory burden can
be avoided once another set of degrees of freedom exists,
which becomes gapless for a different state of the system
and to which the stored information can be transferred. We
refer to this process as rewriting. In a prototype model, we
have found a positive answer. For certain values of the
parameters, a non-trivial evolution in the form of rewriting
is indeed possible. It turns out that the timescale of this
process is very long and we have studied how it depends on
the various parameters of the system.

We can choose the parameters of our prototype model in
such a way that it reproduces the information-theoretic
properties of a black hole, in particular its entropy. In this
case, we have concluded that as far as we can numerically
access the system, rewriting happens significantly too
slowly to match the semiclassical rate of particle produc-
tion. This strongly indicates that evaporation has to slow
down drastically at the latest after the black hole has lost on
the order of half its initial mass.

This could open up a new parameter space for primor-
dial black holes as dark matter candidates. For sufficiently
low masses, those black holes would evaporate on a
timescale shorter than the age of the Universe if
Hawking’s semiclassical calculation were valid through-
out their lifetime. It is often assumed that this is the case so
that the corresponding mass ranges are considered as
excluded.

By contrast, a significant slowdown of the rate of energy
loss, as is, e.g., displayed in Eq. (60), allows the lifetimes of
such PBHs to be much longer so that they can still exist
today. In this case, small PBHs become viable dark matter
candidates. We have qualitatively discussed how some of
the constraints change and studied a concrete example. A
full investigation of parameter space remains to be done.

Our findings also have interesting implications for de
Sitter space. In [2], we have already discussed the role of
memory burden for this system and how it leads to
primordial quantum memories that are sensitive to the
whole inflationary history and not only the last 60
e-foldings. Since the information-theoretic properties of
de Sitter are fully analogous to those of black holes, our
results imply that avoiding memory burden by rewriting the
stored information cannot be efficient for de Sitter, either.
This further supports the conclusions of [2].

B. Black hole metamorphosis after half-decay

Finally, our analysis adds paint to the quantum picture of
black holes. It has been standard to assume that black hole
evaporation is self-similar all the way until the black hole
reaches the size of the cutoff scale. For example, after a
solar mass black hole loses, say, 90% of its initial mass, the
resulting black hole is commonly believed to be indistin-
guishable from a young black hole with 0.1 solar mass. In
other words, the standard assumption is that a black hole at
any stage of its existence has no memory about its prior

history. This assumption is based on naive extrapolation of
Hawking’s exact semiclassical computation towards arbi-
trary late stages of black hole evaporation. However, this
extrapolation unjustly neglects the quantum backreaction
that alters the state of a black hole. The lower bound on the
strength of the backreaction effect can be derived using
solely the self-consistency of Hawking formula and is
~1/S per each emission [26]. This fact already gives a
strong warning sign that we cannot extrapolate the semi-
classical result over timescales of order S emissions.

However, only in a microscopic theory such as the
quantum N portrait [3] it is in principle possible to account
for backreaction properly and to understand its physical
meaning. This theory predicts [15-19] that semiclassical
treatment cannot be extrapolated beyond the point when the
black hole loses half of its mass. The physical meaning of
this effect is very transparent. Indeed, at this point the black
hole loses half of its graviton constituents that leave the
bound state in form of the Hawking quanta. The quantum
state of the remaining ~N,./2 gravitons is fully entangled
and is no longer representable as approximately classical
coherent state.

In the present paper, we have identified another very
explicit source of backreaction in form of the memory burden
effect described earlier in [1,2]. This effect shows that black
hole evaporation cannot be self-similar and that old black
holes are drastically different from the younger siblings of
equal mass. That is, the memory burden results in a quantum
hair that exerts a strong influence at later stages. This
provides a concrete mechanism for the release of information
after Page’s time [42]. Note, such a quantum hair is not
constrained by the classical no-hair theorems [43—49].

While it is evident that the memory burden resists to
quantum decay of a black hole, the further evolution
requires a more detailed study. In particular, it is not
excluded that some sort of a classical instability can set
in after half-decay. Our prototype models are not powerful
enough for either capturing such instabilities or excluding
them. However, they clearly indicate the tendency of
dramatic slowdown of the quantum decay. Our speculations
about the small black holes as dark matter candidates are
based on this evidence. Nevertheless, the possibility of
developing a classical instability after the suppression of
the quantum emission remains feasible and must be
investigated seriously. An interesting avenue in this direc-
tion would be an experimental simulation of the effect in
laboratory, since the states of enhanced memory capacity
can be achieved in simple setups with cold bosons (see [11]
and references therein).

Another promising approach could be to use the recently
established connection between the saturation of the
information storage capacity and unitarity of scattering
amplitudes in generic quantum field theories [12—-14]. All
studied saturated objects exhibit close similarities with
black holes and are also subjected to the effect of memory
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burden. So the question about the classical instability
versus stabilization can be addressed by studying the latest
stages of their time evolution.

In conclusion, the memory burden backreaction opposes
the quantum decay and the resistance becomes maximal by
the time the black hole loses half of its mass. This behavior
and whatever happens after is very different from the
standard semiclassical picture and changes our understand-
ing of black holes.
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APPENDIX: FINDING PARAMETER SCALINGS

In order to determine how the rewriting values of C,, and
the corresponding rates I' scale with the parameter
X e{N,¢,,Cy,AN., K}, the system has been time
evolved with different X, with the remaining parameters
fixed at the values given in (36). For each X value, the time
evolutions have been done for many couplings C,, € [0, 1]
(or a larger interval), where we used a sampling step of
6C,, = 1073 or smaller.

We have defined a rewriting value of C,, as a value of C,,
for which the amplitude of n, exceeds the amplitude of n,
in the free case, i.e., the case of C,, = 0, by a factor of at
least 1.2. For neighboring rewriting values (i.e., separated
only by the increment 6C,,), we only considered the one
with the highest value of I'. Around this value, we again
performed time evolutions with a smaller sampling step of

Ch
1.0¢ o
0.8¢
0.6
° [ ]
0.4f N
° -
0.2¢ °
0. ‘ ‘ : : : : : N,
14 16 18 20 22 24 26
(a) Rewriting values of Ch,.
FIG. 5.

8.x107°t

8C,, = 5 x 107>, The reason why we did so is that the rate
depends on C,, very sensitively. Finally, we always selected
the point with the highest rate.

In the following, we show the plots containing the data as
well as fits for the individual scalings and further elaborate
on our procedure.

A. N, scaling

The data used to determine the scaling of (C,,,T") with
N, are shown in Fig. 5. The N, variation has been done
varying also AN, s.t. N./AN, stays fixed. The function
fitted to the rewriting values is f(N,) = a(55)™, with the
fitresult a = 0.275 and b = 0.911. The function fitted to the
rates is fr(N.) = A(55)7%, with the fit result A ~4.46 x
10~ and B~ 1.14.

B. €, scaling

The data used to determine the scaling of (C,,T")
with €,, is shown in Fig. 6. The function fitted to the
rewriting values is f¢(e,,) = ae,,, with the fit result
a =~ 0.300. We observe that the scaling of the rate I with
€, 1s negligible compared to its scaling with other
parameters.

C. C scaling

The data used to determine the scaling of (C,,,T") with
C, is shown in Fig. 7. For the scaling of the rewriting values
with C,, we observe that it is negligible compared to the
scaling with other parameters. The function fitted to the
rates is f1-(Cy) = ACB, with the fit result A ~ 2.85 x 1072
and B ~ 1.38.

D. AN, scaling

The data used to determine the scaling of (C,,,T") with
AN, are shown in Fig. 8. The function fitted to the

r

14 16 18 20 22 24 26 €

(b) Rates I' at those rewriting values.

Data and fits for the rewriting values of C,, and the rates I" as function of N.. AN, has been varied to keep N./AN,. fixed.
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FIG. 6. Data and fit for the rewriting values of C,, and the rates I" as function of ¢,,.
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FIG. 8. Data and fits for the rewriting values of C,, and the rates I" as function of AN,.

rewriting values is f-(AN.) = a(Ag")b, with the fit result  is fr(AN,) = A(1 - B Azlg"), with the fit result A ~ 1.38 x

a~0.300 and b ~ 0.207."* The function fitted to the rates  10~* and B ~ 1.07.

E. K scaling

14 . . . .
A second scaling behavior seems to exist with b =~ —0.130. . .
Since AN_./N. — 0 in the limit of a large system, this scaling When investigating how the system depends on K, the

would be even less favorable for rewriting and we consequently ~ problem is that the size of the Hilbert space grows
do not consider it. exponentially with the number of modes. Therefore, only
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values up to K = 8 are numerically accessible. In order to
be insensitive to effects of changing the relative occupation
of the memory modes, we moreover restrict ourselves to
N,, = K/2. Since the system appears to behave in a
nongeneric way for K =2, we are only left with three
datasets corresponding to K = 4, 6, 8.

An additional difficulty arises from the fact that time
evolutions for K = 8 are already very time consuming.
Since many rewriting values exist at K =8, it is not
feasible to perform fine scans, which are required for a

precise determination of the rate, around each of them. To
overcome this problem, we have selected a particular subset
of rewriting values and only used them for the subsequent
analysis. Namely, only those rewriting values of C,, have
been taken into account which have at least one neighboring
rewriting value, i.e., a rewriting value separated solely by the
increment 5C,, = 1073. Of course, we have applied the same
selection procedure for K = 4 and K = 6. Only the selected
rewriting values are displayed in Fig. 4, and only for those the
rate has been determined by means of a finer scan.
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