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We study and estimate probabilistic predictions for the duration of the preinflationary and slow-roll
phases after the bounce in loop quantum cosmology, determining how the presence of radiation in the pre-
bounce phase affects these results. We present our analysis for different classes of inflationary potentials
that include the monomial power-law chaotic type of potentials, namely, for the quadratic, quartic, and
sextic potentials and also for a Higgs-like symmetry-breaking potential, considering different values for the
vacuum expectation value in the latter case. We obtain the probability density function for the number of
inflationary e-folds and for other relevant quantities for each model and produce probabilistic results drawn
from these distributions. This study allows us to discuss under which conditions each model could either
eventually lead to observable signatures in the spectrum of the cosmic microwave background, or be
excluded for not predicting a sufficient amount of accelerated expansion. The effect of radiation on the
predictions for each model is explicitly quantified. The obtained results indicate that the number of
inflationary e-folds in loop quantum cosmology is not a priori an arbitrary number, but can in principle be a
predictable quantity, even though the results are dependent on the model and the amount of radiation in the
Universe prior to the start of the inflationary regime.
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I. INTRODUCTION

Inflation is the current paradigm for the early Universe
cosmology.1 The inflationary scenario was developed
before a majority of current data was recorded. Inflation
is in good agreement with the predictions coming from the
cosmic microwave background (CMB) spectrum and
explains the origin of inhomogeneities present in the
primordial Universe, which led to the formation of large-
scale structures. Thus, although fine-tunings of the con-
stants are necessary and appropriate choices of potentials
have to bemade, this is a very predictive scenario. Inflation is
a good candidate for solving some of the puzzles in the
standard big bang cosmology, such as the horizon and
flatness problems[4–6]. Despite its success, the idea of
inflation alone does not address the important issue
of extending general relativity (GR) beyond its limit of

applicability, which is associated with the big bang singu-
larity problem.Apart from this problem, one should consider
in the space of classic solutions for GR those solutions that
exhibit sufficient inflation to account for the current obser-
vations [7–9]. This motivates an investigation of the prob-
ability of a sufficient amount of inflation in a cosmological
model. In this endeavor one is plagued with problems, such
as the difficulty in defining a measure to calculate proba-
bilities in GR and finding the starting point for counting e-
folds in the presence of a singularity [10,11]. These problems
have received a lot of attention in recent years [12]. In order to
better address these issues, we consider here a nonperturba-
tive quantum gravity theory independent of the GR back-
ground, that is, loop quantum gravity (LQG) [13–18].
Loop quantum cosmology (LQC) is the reduced version

of LQG [17], which uses the symmetries considered in
cosmology. It uses the so-called Ashtekar variables and its
quantization is obtained from holonomies of the connec-
tions and fluxes of the densitized triads. However, taking
into account such quantum geometric effects in cosmo-
logical models, while Einstein’s equations maintain an
excellent degree of approximation at low curvature, in the
Planck regime they undergo major changes. In LQC the big
bang singularity is naturally resolved and replaced by a
bounce due to repulsive quantum geometry effects [13,19].
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1Although inflation is the current paradigm for the early

Universe cosmology, it is worth mentioning that there are
alternative ideas [1–3], like several bouncing models, which
can agree with current cosmological observations as well as
inflation does.
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In LQC, for matter that satisfies the normal conditions of
energy, whenever a curvature invariant grows at the Planck
scale the effects of quantum geometry dilute it, thus
resolving the singularities of GR [13].
Within the community of LQC there is a lively debate on

the naturalness of the emergence of an inflationary phase
after the bounce, and following this line there is a search for
the most probable number of inflationary e-folds predicted
by a model [20]. First of all, in addressing this question the
measure problem is something that requires quite some
attention, given that there is no consensus on how to
establish the initial conditions necessary to obtain the
dynamics of the models and compute probabilities.
Since there is no direct observational information from
the initial conditions of the Universe, one has to consider all
possible initial conditions to draw conclusions about the
probability of an inflationary phase [21].
Beginning from the GR context, the possibility of using

the Liouville measure as a candidate to calculate the
probability was discussed by Gibbons et al. [7]. However,
in the flat Friedmann-Lemaître-Robertson-Walker model
this total Liouville measure is infinite, requiring a regulari-
zation scheme [10,11]. Besides that, there is a huge discrep-
ancy between the probability estimated by Gibbons and
Turok [11] and the results obtained, for example, by
Linde [5].
In LQC, since the singularity of the big bang is solved and

it is replaced by a (quantum) bounce [18,22,23], a regular
surface can be used to introduce the structure needed to
specify a Liouville measure (see also Refs. [21,24] for
extensions of this approach). The problem of making a
measurement present in GR [7] is naturally resolved in LQC
[25]. In the absence of the singularity, an a priori probability
for a sufficiently long slow-roll inflation phase can then be
obtained. However, also in the context of LQC, different
approaches have been advocated. Ashtekar and Sloan [26]
argued that a natural measure can be implemented in LQC
andproposed a Planck surface scale,withwhichprobabilities
can be calculated. The approach advocated in Ref. [26] does
not agree with the one suggested in Refs. [27–30]. Despite
the current debate, many works have consistently shown that
in LQC models with a kinetic-energy-dominated bounce an
inflationary phase almost inevitably sets in (see, e.g.,
Refs. [31–36]).
In addition to showing the naturalness of inflation, it is

important to investigate the most probable number of
inflationary e-folds predicted by these models. As it is
well known [4], the inflationary phase must last at least
around 60 or so e-folds in order to solve the main problems
that inflation is expected to. On the other hand, another
important question is whether the quantum bounce and
subsequent preinflationary phase can leave observational
signatures that can be observed in current and forthcoming
experiments [37,38]. As shown in Ref. [37], the bounce and
preinflationary dynamics leaves imprints on the spectrum

of the CMB. In Ref. [31] it was shown that in LQC models,
in order to be consistent with observations, the Universe
must have expanded at least around 141 e-folds from the
bounce until now. This is so because LQC can lead to scale-
dependent features in the CMB, and the fact that we do not
observe them today means that they must have been well
diluted by the post-bounce expansion of the Universe. By
comparing that total number of expansion of the Universe
to the minimum number of inflationary e-folds required
(added to the typical 60 e-folds from the end of inflation
until today), this implies an extra number of inflationary
e-folds in LQC, given by δN ∼ 21 [31]. On the other hand,
if the number of extra inflationary e-folds is much higher
than this value the features imprinted in the CMB spectrum
due to the LQC effects are too diluted, and in this case LQC
cannot be directly tested even by forthcoming experiments.
This motivates a deep investigation of the most probable
number of e-folds in models of LQC. The most probable
number of inflationary e-folds can be obtained with the
calculation of a probability density function (PDF) [27,30],
which can be performed with initial conditions defined
during the bounce [26] or even in a contraction phase
before the bounce [10]. In Refs. [32–36] different potentials
were investigated in the context of LQC, including power-
law potentials [32], monodromy potentials with a modu-
lation term [34], alpha-attractor potentials [36], and chaotic
and Starobinsky potentials in the framework of modified
LQC models [35]. The duration of inflation was analyzed
in all of these models by setting initial conditions at the
bounce surface, providing very interesting results.
In this paper we are interested in obtaining the PDF for

the number of inflationary e-folds in LQC by following the
perspective adopted in Refs. [27–30], which suggests a
natural quantity to which a flat prior can be assigned,
providing the means to define initial conditions in a
consistent way. Following this approach, we will define
the set of initial conditions in the remote past of the
contraction phase prior to the bounce, i.e., when the
Universe is classic and well understood. In Refs. [27–30]
studies were made of different forms of the inflationary
potential, with the initial conditions taken far back in the
contracting phase including only the energy density of the
inflaton as the main ingredient of the early Universe and at
the bounce.
The present paper extends the analysis performed in

Refs. [27,29,30,32–36] by considering higher powers of
the monomial potential and analyzing the duration of
inflation with a Higgs-like potential as a function of the
vacuum expectation value (VEV). These analyses provided
us with a great comparison tool for the second part of our
work, where we consider radiation as an additional ingre-
dient of the energy density budget around the bounce,
which is done for the first time. There are many good
reasons for including radiation in these studies. First, it is
not excluded at all that prior to inflation the Universe could
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have been radiation dominated. In fact, radiation has been
claimed to be an important ingredient in setting appropriate
initial conditions for inflation [39]. Dissipative effects are
naturally expected in the early Universe, where radiation
can be produced either by decaying processes involving the
inflaton field through its coupling to other fields or through
other fields not directly coupled to the inflaton. These
processes—which can also lead to reheating at the end
of cold inflation as the inflaton oscillates around its
minimum—are similarly expected to occur in the pre-
bounce phase, deep in the contracting phase, where
the inflaton also displays oscillations. In fact, initial
conditions in the contracting phase with inflaton oscilla-
tions are exactly the initial conditions advocated in
Refs. [27,29,30]. In addition, radiation production may
not even need strong breaking of adiabaticity caused by the
inflaton oscillations but can also happen under quasiadia-
batic conditions. An outstanding example of this is radi-
ation production processes happening in the warm inflation
picture [40] (for earlier studies of warm inflation in the
context of LQC see, for example, Refs. [24,41–44]). There
are also many other possible sources of radiation, including
gravitational particle production mechanisms [45,46]. In
particular, gravitational particle production has been shown
to be very efficient in the bounce phase of several models
[47–53] and we also expect the same to happen in LQC, as
recently shown in Ref. [54]. The presence of radiation may
adversely affect the predictions for inflation in LQC, and
this provides the main motivation for the present work.
This paper is organized as follows. In Sec. II we briefly

review the theoretical background about LQC and explain
how radiation can be included in the system. In Sec. III we
describe the different dynamic regimes expected in LQC,
from the deep contracting phase prior to the bounce, up to
the slow-roll phase in the expanding regime. In Sec. IV we
describe the method used in our analysis and give the
results obtained therein. In Sec. V we discuss additional
effects neglected in our analysis that could contribute to the
results. Finally, in Sec. VI we give our conclusions.

II. THEORETICAL BACKGROUND

In this section we briefly review the background dynam-
ics of LQC. We also discuss the generality of the infla-
tionary phase that can be generated in LQC and how to
obtain the most likely number of inflationary e-folds of a
given model.
In LQC cosmological models are described using LQG

principles. As discussed in Ref. [26], in LQC the spatial
geometry is encoded in a variable v proportional to the
physical volume of a fixed, fiducial, cubic cell, in place of
the scale factor a, i.e.,

v ¼ −
4V0a3M2

Pl

γ
; ð2:1Þ

where V0 is the comoving volume of the fiducial cell, γ is
the Barbero-Immirzi parameter obtained from the calcu-
lation of the black hole entropy in LQG (the typically value
adopted in LQC is γ ≃ 0.2375 [55]), and MPl ≡
1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.4 × 1018 GeV is the reduced Planck mass.
The conjugate momentum to v is denoted by b and it is
given by

b ¼ −
γPðaÞ

6a2V0M2
Pl

; ð2:2Þ

where PðaÞ is the conjugate momentum to the scale factor.
Therefore, the pair ðv; bÞ is used in place of ða; PðaÞÞ. These
variables are related by the Poisson bracket fv; bg ¼ −2.
After solving the Einstein equations, b is related to the
Hubble parameter via b ¼ γH.
We are interested in the Friedmann equation modified in

LQC. Hence, let us consider the equation of motion for v,
which is given by [13]

_v ¼ 3

γλ
v sinðλbÞ cosðλbÞ; ð2:3Þ

with λ given by

λ2 ¼
ffiffiffi
3

p
γ

2M2
Pl

: ð2:4Þ

LQC modifies the dynamics of the Einstein equations and,
in terms of effective LQC solutions, the Hubble parameter
can be written as

H ¼ 1

2γλ
sinð2λbÞ; ð2:5Þ

where b ranges over ð0; π=λÞ, and in the limit λ → 0 GR is
recovered. The energy density ρ is related to the LQC
variable b through

sin2ðλbÞ
γ2λ2

¼ ρ

3M2
Pl

: ð2:6Þ

Thus, by combining Eqs. (2.6) and (2.5) the Friedmann
equation in LQC assumes the form [26]

1

9

�
_v
v

�
2 ≡H2 ¼ ρ

3M2
Pl

�
1 −

ρ

ρcr

�
; ð2:7Þ

where ρcr ¼ 2
ffiffiffi
3

p
M4

Pl=γ
3.

Through the modified Friedmann equation (2.7) we can
explicitly see the underlying quantum geometric effects
[13], with the singularity replaced by a quantum bounce
when ρ ¼ ρcr. For ρ ≪ ρcr we recover GR, as expected.
The above expression holds independently of the particular
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characteristics of the inflationary parameters when initial
conditions for the Universe are assumed.
In a cosmological scenario where the Universe is

dominated by the energy density of a scalar field ϕ—the
inflaton—the equation of motion for ϕ is simply

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0; ð2:8Þ

where V;ϕ ≡ dVðϕÞ=dϕ is the field derivative of the
inflaton’s potential. In the present work, we also include
radiation as a main ingredient of the energy density.
Radiation can be included by considering decaying proc-
esses involving the inflaton field, where part of its energy
density is converted into radiation and parametrized
through a dissipation term in Eq. (2.8), with dissipation
coefficient Γ,

ϕ̈þ 3H _ϕþ Γ _ϕþ V;ϕ ¼ 0; ð2:9Þ

and supplemented by the equation for the evolution of the
radiation energy density,2

_ρR þ 4HρR ¼ Γ _ϕ2: ð2:10Þ

Note that by multiplying Eq. (2.9) by _ϕ, adding it to
Eq. (2.10), and using that ρϕ ¼ _ϕ2=2þ VðϕÞ, pϕ ¼
_ϕ2=2 − VðϕÞ and pR ¼ ρR=3, we obtain

_ρtotal þ 3Hðρtotal þ ptotalÞ ¼ 0; ð2:11Þ

which is the usual fluid equation for the total energy
density, ρtotal ¼ ρϕ þ ρR. This shows explicitly that
Eqs. (2.9) and (2.10) are conservative with respect to the
total energy density, as expected.
Alternatively to the approach adopted in Eqs. (2.9) and

(2.10), we could also assume radiation to be already present
in the system, at some early time, independent of explicitly
relying on modifying the dynamical equations by the
introduction of decay processes, e.g., directly affecting
the inflaton field in Eq. (2.9). Radiation in this case could
be due, for example, to the decay of other fields at some
earlier times, or even through gravitational particle pro-
duction mechanisms. In this case, at the time we set the
initial conditions for the inflaton, there already can also
be some nonvanishing early radiation energy density.
In this work we consider both situations and show that
our results remain unaltered and independent of the
details of the radiation production mechanisms that might
be at play. In either case, the total energy density is then

given by ρ ¼ _ϕ2=2þ VðϕÞ þ ρR, implying the modified
Friedmann equation

H2 ¼
_ϕ2=2þVðϕÞ þ ρR

3M2
Pl

�
1−

_ϕ2=2þVðϕÞ þ ρR
ρcr

�
ð2:12Þ

and its time derivative

_H ¼ −
3 _ϕ2 þ 4ρR

6M2
Pl

�
1 − 2

_ϕ2=2þ VðϕÞ þ ρR
ρcr

�
: ð2:13Þ

III. PHASES OF LQC

Let us divide the dynamics of the Universe in LQC into
that prior to and after the bounce.

A. Pre-bounce regime

Let us consider a sufficient time back in the contracting
phase where the inflaton is in an oscillatory regime. In this
pre-bounce regime, where H < 0, ϕ and _ϕ are oscillating
with increasing amplitudes or have damped oscillations,
depending on whether the decay processes given by Γ in
Eq. (2.9) are present or absent (Γ ¼ 0). Either way, we can
characterize this regime by the conditions

ρ ≪ ρcr; H < 0; H2 ≪ jV;ϕϕj; ð3:1Þ

and when including Γ, with also the condition
Γ < 2

ffiffiffiffiffiffiffiffiffiffiffiffijV;ϕϕj
p

such that the inflaton is still oscillating,
albeit in an underdamped way. Following the proposal of
Refs. [27,30], we define initial conditions for the Universe
in this phase of an oscillating inflaton field in the
contracting phase. In Ref. [27] it was suggested as a
natural variable to assign initial conditions in this regime
the phase δ of the field oscillations. Though this is a natural
choice for the simple case of the quadratic inflaton
potential, where both ϕ and _ϕ have simple oscillating
(or, in the presence of Γ, underdamped) solutions in the
regime of Eq. (3.1), for other types of potentials the
expression for the field and its derivative in the contracting
phase may not be that simple. Therefore, in our numerical
analysis (which we describe below) we will assign initial
conditions directly to the scalar field and its derivative by
choosing appropriate values for the initial density ratio
defined by α ¼ ρ=ρcr, with α sufficiently small such that the
conditions of Eq. (3.1) hold. Note that in the case where
Γ ¼ 0, but still including some initial radiation energy
density, this will also entail some upper bound for the initial
radiation energy density.
As we approach the bounce, starting from the point given

by Eq. (3.1), there might be a phase of slow-roll deflation.
This phase is the opposite of what happens in slow-roll
inflation, as it is still in the contraction phase. This phase is

2Note that in the oscillating regime for the inflaton, we can also
replace the term _ϕ2 in Eq. (2.10) by its average over an oscillation
cycle [56], h _ϕ2icycle ¼ 2ρϕ, which for Eq. (2.10) gives the more
standard form used, e.g., in reheating studies.
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characterized by an almost constant _ϕ and a linearly
growing jϕj. The conditions for slow-roll deflation are

ρ≪ ρcr; H < 0; H2 ≫ jV;ϕϕj; VðϕÞ≫ _ϕ2=2;ρR:

ð3:2Þ

However, the probability that this phase will occur is small
since almost none of the possible paths that start at low
energy in the contraction phase have an exponential
contraction phase in the pre-bounce. Thus, the fraction
of trajectories that have a significant contraction phase is
very small, implying that the dynamics of these trajectories
(for a high energy density) are strongly dominated by
kinetic energy [30]. In the presence of radiation the
probability of this phase gets even slimmer since, as one
gets close to the bounce, the radiation energy density
(which grows faster than the potential energy density in the
contracting regime) will tend to dominate over VðϕÞ.
Finally, just prior to the bounce, there is a phase of

superdeflation. This phase, which occurs just before the
bounce and thus still in the contracting phase when H < 0,
lasts from the time when _H ¼ 0 untilH ¼ 0 (i.e., already in
the bounce). In this phase, we then have

H2 ≫ jV;ϕϕj; _ϕ2=2 ≫ VðϕÞ; ρR: ð3:3Þ

We typically find that this phase of superdeflation happens
very quickly, typically lasting less than a Planck time [31].
The presence of radiation can make it even shorter, as the
radiation will tend to take a large portion of the energy
density prior to the bounce.

B. Post-bounce regime

Immediately after the bounce, if the energy density is
mostly dominated by kinetic energy, we have a phase of
superinflation. This phase, already at the beginning of the
expansion, goes from just after the bounce (when H ¼ 0,
i.e., ρ ¼ ρcr) until the point where _H ¼ 0. The conditions
for superinflation are again the same as in Eq. (3.3),
however, at the commencement of the expanding phase.
This is also a very short phase, just like the superdeflation
one, and radiation also tends to make it shorter.
After the bounce phase, the kinetic energy quickly

decreases as _ϕ2 ∝ 1=a6 and the radiation decreases as
ρR ∝ 1=a4, while the potential energy density VðϕÞ only
changes slowly. The inflaton dynamics after the bounce and
throughout the preinflationary phase is just monotonic,
with no oscillations [31]; thus, we expect no significant
radiation production in this phase. By also neglecting other
possible sources of radiation in this phase, the potential
energy of the inflaton will eventually dominate the energy
content of the Universe and the standard slow-roll infla-
tionary phase will set in, but with a duration that can be

strongly affected by the radiation present already in the
earlier phases, as we will see in the next section.
At the beginning of slow roll we have that ρ ≪ ρcr, the

quantum corrections to the Friedmann equation are negli-
gible, and the cosmological equations reduce to the usual
ones of GR. Let us estimate the number of e-folds of
expansion from the bounce to the beginning of slow-roll
inflation. In the absence of radiation, the transition from the
stiff matter kinetic-energy-dominated regime after the
bounce to the slow-roll phase happens rather quickly, with
the equation of state changing from w ≈ 1 to w ≈ −1
typically in less than one e-fold [31]. Depending on the
amount of radiation present, we can have an intermediate
radiation-dominated regime [24,54] where the equation of
state at the bounce w ≃ 1 changes to w ≃ 1=3, before
assuming the value w ≃ −1 at the start of inflation (which
occurs when the equation of state becomes smaller than
−1=3).
The number of e-folds during the preinflationary phase

Npreinfl, from the bounce to the start of slow roll, can be
approximately estimated in the absence of radiation by
assuming that around the start of slow roll, at time tsr,
ρkinðtsrÞ≡ _ϕ2ðtsrÞ=2 ∼ ρVðtsrÞ, where ρV ≡ VðϕÞ. By also
recalling that the bounce is dominated by the kinetic
energy, ρkinðtbounceÞ ≃ ρcr, we have that

ρkineticðtsrÞ ≃
ρcr

a6ðtsrÞ
∼ ρVðtsrÞ: ð3:4Þ

As an estimate for ρVðtsrÞ we can use the upper
bound obtained by the Planck data on the scale of inflation
when the pivot scale exits the Hubble radius [57],
V� < ð1.6 × 1016 GeVÞ4. Using this result in Eq. (3.4),
we obtain

Npreinfl ¼ ln

�
aðtsrÞ

aðtbounceÞ
�
∼
1

6
ln

�
ρcr
V�

�
∼ 4.3: ð3:5Þ

Note that the estimate given by Eq. (3.5) is based on the
value for the scale of inflation at around the time that the
relevant wavelengths cross the Hubble radius during
inflation, which happens at around 60 or so e-folds before
the end of inflation. For inflation lasting much longer than
the minimum, we do not expect a much higher value for the
potential at the beginning of inflation as a consequence of
the slow-roll conditions. As we will explicitly see for the
different inflation models studied in the next section,
despite the fact that each model predicts rather different
values for the total number of e-folds of inflation, we
always find that Npreinf ∼ 4. This shows that the estimate
given by Eq. (3.5) is quite satisfactory when in the absence
of radiation. The effect of radiation on the above estimate
can be understood by the fact that it removes part of the
energy density of the inflaton that would otherwise be
available. Thus, it delays the start of inflation and Npreinfl
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increases when compared to the cases when radiation is
absent. This effect will be explicitly seen in our numerical
results. This result can also be understood analogously in
terms of the scale of inflation in Eq. (3.5). Radiation not
only delays the start of inflation, but also decreases V�, thus
increasing the estimate for Npreinfl.

IV. METHOD, NUMERICAL STRATEGY, AND
RESULTS

As already mentioned, in this work we closely follow the
procedure suggested in Refs. [27,30] to obtain the appro-
priate PDFs for the expected number of e-folds of infla-
tionary expansion for the different models that we will
analyze. The procedure can be summarized by the follow-
ing steps:
(1) We consider an appropriate initial time deep in the

contracting regime prior to the bounce. The initial
energy density ρ0 is such that ρ0 ¼ αρcr is small
enough (α ≪ 1) so as to start the evolution early in
the contracting phase with the inflaton field in the
oscillatory regime defined in Eq. (3.1). For all of our
numerical studies we consider in particular that
α < 8 × 10−17, while checking the consistency of
the results for each potential as α was varied.

(2) For the considered initial energy density ρ0 at the
initial time t0, we take random samples of initial
values for the scalar field, which will be localized
around the minimum of its potential with some
dispersion Δϕ, such that −ϕ0 − Δϕ ≤ ϕðt0Þ ≤ ϕ0þ
Δϕ, where ϕ0 is the value of the inflaton field at the
bottom of its potential. The radiation energy density
can either be introduced through dissipative processes
like in Eqs. (2.9) and (2.10), starting with ρRðt0Þ ¼ 0
with a fixed dissipation coefficient Γ, or we can
set an initial radiation energy density ρRðt0Þ ≠ 0
and vanishing dissipation coefficient, as explained
in the previous section. Finally, the time derivative
of the inflaton field is then set as _ϕðt0Þ ¼
� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0 − Vðϕðt0ÞÞ − ρRðt0Þ
p

, with a randomly
chosen sign.

(3) We solve the dynamics with the produced initial
conditions from the contracting branch to the end of
slow-roll inflation in the expanding branch using the
dynamical equations of motion given by Eqs. (2.9),
(2.10), and (2.13), which are solved for the different
inflationary models described by the potential VðϕÞ.
In the cases studied with radiation being produced in
the contracting phase due to the inflaton’s oscilla-
tions, we assume perturbative decay analogously to
what can happen in the reheating phase after
inflation [58,59], setting Γ ¼ 0 when the inflaton
stops oscillating, which happens right after the
bounce. Due to the very short duration of the bounce
phase (Δt ∼ tPl), we neglect any source of particle

production during the bounce. Therefore, we can set
Γ ¼ 0 just after the bounce in the expanding phase.
In a second approach, for comparison, we simply
consider the presence of an already present initial
amount of radiation energy density in the contracting
phase at the beginning of our simulations and set
Γ ¼ 0 in Eqs. (2.9) and (2.10), and then evolve the
system from the initial time t0 to the end of inflation
with the resulting equations.

(4) For each initial condition sampled we obtain the
corresponding number of e-folds and produce the
associated PDF, from which the appropriate statis-
tical analysis can be performed. We work with
samples ranging from 1000 to 5000 points for each
model analyzed, which we find to be enough to
obtain satisfactory statistics.

A. Models

In this work we study two classes of inflation models
with primordial potentials as given below.

1. Power-law monomial potentials

In this class of models, we have VðϕÞ given by

V ¼ V0

2n

�
ϕ

MPl

�
2n
; ð4:1Þ

and we explicitly analyze the cases for the quadratic,
quartic, and sextic forms of the potential (corresponding
to the powers n ¼ 1, 2, and 3, respectively). The model
given by Eq. (4.1) covers the class of inflationary models
corresponding to large-field models [60].

2. The Higgs-like symmetry-breaking potential

The Higgs-like symmetry-breaking potential is given by
the following expression:

V ¼ V0

�
1 −

�
ϕ

v

�
2
�
2

; ð4:2Þ

where v denotes the VEV of the field. The Higgs-like
symmetry-breaking potential can represent either a small-
field inflation model if inflation starts (and ends) at the
plateau part of the potential (i.e., for jϕj < jvj), or a large-
field model, for which inflation ends in the chaotic part of
the potential (jϕj > jvj). Throughout our analysis with this
potential, we explicitly distinguish these two possibilities
and produce results for both.
In all of the above potentials the constant V0 is obtained

from the normalization of the CMB spectrum, and this is
how we define V0 for each of the above potentials. For
definiteness, we have fixed V0 for each model as V0=M4

Pl ≃
3.41 × 10−11 for the quadratic monomial potential,
V0=M4

Pl ≃ 1.37 × 10−13 for the quartic monomial potential,
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and V0=M4
Pl ≃ 1.82 × 10−16 for the sextic monomial poten-

tial. Note that for the Higgs-like symmetry-breaking poten-
tial (4.2), the normalization of the spectrum implies that the
value of V0 will also have a dependence on the VEVof the
inflaton, but for theVEVswe consider, 14MPl ≤ v ≤ 25MPl,
V0 has values ranging from V0=M4

Pl ≃ 1.72 × 10−14 to
3.82 × 10−14.3

Note that the monomial potentials like the ones we
consider here are already ruled out in the simple scenarios
of cold inflation, according to the Planck results [57]. The
Higgs-like potential, on the other hand, can still be
compatible with the observations for some ranges of the
VEV. However, when radiation processes are present (most
notably as is the case for these models when studied in the
warm inflation context) all of these potentials can be shown
to agree with the observations (see, e.g., Refs. [44,61–65]).
Looking ahead at the possibility of extending the analysis
presented here to warm inflation, this is why we consider
the above potentials in particular, besides, of course, the
fact that they are well motivated in the context of particle
physics models in general.

B. Results

Having explained the numerical strategy that we employ
in our analysis, we now give the corresponding results
obtained by using each of the primordial inflaton potential
models defined by Eqs. (4.1) and (4.2). For comparative
purposes, we first consider the case where radiation is
absent throughout the evolution, from the contracting phase
at the initial time t0 to the end of inflation, and then
consider explicitly how radiation influences these results.

1. Results in the absence of radiation

In Fig. 1 we show the PDFs obtained for the total number
of inflationary e-folds for the three cases considered for the
monomial power-law potential (4.1), i.e., for the quadratic
(n ¼ 1), quartic (n ¼ 2), and sextic (n ¼ 3) potentials.
As we see from Fig. 1, as we increase the power n of the

potential the number of e-folds decreases. The PDFs for
the three cases considered have a dispersion of around 20
e-folds from the peak of the distribution, and quickly
vanish at the extrema. In particular, we obtain no more than
about a total of 80 e-folds of inflationary expansion for the
sextic potential. One recalls that from the results for the
perturbation spectra in LQC, one typically requires at least
around 80 e-folds of total expansion from the bounce in
LQC to the end of inflation, such that the quantum effects

on the primordial power spectra are sufficiently diluted
[31]. On the contrary, if the total expansion lasts less than
this minimum, the LQC effects on the spectra would
already be visible. As the preinflationary expansion that
starts from the bounce until the beginning of inflation does
not last more than about 4 e-folds (see discussion at the end
of Sec. III and also the explicit results on this given below),
this already puts the sextic potential in strong tension with
the observations and excludes all other higher-power
monomial potentials (n > 3) when considering the pre-
dicted number of e-folds alone in LQC, even when these
models are implemented in the warm inflation picture.4 On
the other hand, the quartic potential (and all other cases
with n < 3) can most easily satisfy the required minimum
amount of expansion from the bounce to the end of the
inflationary phase. Finally, we note that the result we have
obtained for the quadratic potential, which gives a Ninfl of
around 140, is in agreement with the previous results
already obtained in Ref. [27] for this specific form of the
inflationary potential. The results for the quartic and sextic
forms of the potential are new.
To complete our analysis for the monomials power-law

potentials, in Fig. 2 we also show the results for the PDFs
for the number of preinflationary e-folds, which considers
the expansion from the bounce to the beginning of the
slow-roll inflation. We note from the results shown in Fig. 2
that, despite the differences in the PDFs, the expected
number of preinflationary e-folds is Npreinfl ∼ 4 for all three
models, which agrees with the estimate given by Eq. (3.5).
For the Higgs-like symmetry-breaking potential (4.2) we

analyze cases for different values of the VEV v. The results
for the total number of e-folds of inflation as a function of v
are summarized in Fig. 3(a). Note that we have explicitly
separated the cases of inflation happening in the plateau
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40 60 80 100 120 140 160
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Ninfl
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FIG. 1. PDF for the total number of inflationary e-folds for the
monomial power-law potentials in LQC obtained when radiation
is neglected throughout the evolution.

3Note that, depending on the decay processes and the amount
of radiation at the time that the CMB scales leave the Hubble
radius during inflation, the normalization V0 can change with
respect to the vacuum values, as in, e.g., the case of warm
inflation [61]. However, we do not consider these processes that
can change the primordial power spectrum in the present study
when fixing the value of V0.

4Also, in standard cold inflation scenarios the monomial
power-law potentials are strongly disfavored based on the values
for the tensor-to-scalar ratio and/or the spectral tilt predicted by
them [57].
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part of the potential (jϕj < jvj) from the cases of inflation
happening in the chaotic part (jϕj > jvj). We observe that
the number of e-folds in the chaotic part of the potential is
consistently slightly above 100 e-folds for the cases shown

in Fig. 3(a). But we have also verified that when jvj≲ 8MPl
(not shown in Fig. 3) the expected Ninfl starts to approach
the one seen for the quartic potential in the monomial case,
as expected. We have also analyzed whether there would
be any preference for inflation happening in either part
of the potential. However, the results of our simulations do
not show a significant preference for inflation to occur in
the plateau or chaotic part of the potential. The probability
for a given initial condition to end up leading to inflation in
the plateau or chaotic region of the potential is always
around 50%, with a slight oscillation around this value as v
is changed. But the results do show that for jvj≲ 14MPl
there are essentially no more initial conditions leading
to inflation starting and ending in the plateau region.
Furthermore, for jvj≲ 19MPl the expected number of
e-folds in the plateau part of the potential is already smaller
than around 80 e-folds, and the discussion given above
regarding the monomial potentials with n≳ 3 applies here
as well.
We note that inflation in the plateau region is subject to

the well-known initial condition problem (see, e.g.,
Ref. [39] and references therein). In particular, the smaller
the VEV in the Higgs-like potential, the less of an attractor
the slow-roll trajectory becomes. Interestingly enough, in
our results this initial condition problem for inflation in
the plateau does not manifest in the number of initial
conditions ending up in the plateau region, but instead in a
reduction of the total number of inflationary e-folds as v
decreases. On the other hand, the larger the VEV, the
larger the number of e-folds in the plateau region, which
here is a manifestation of the increase of the attractor
nature for the slow-roll trajectories on the plateau and as
the plateau gets flatter as v increases, hence leading to
potentially more e-folds. In Fig. 3(b) we give the results
for the predicted number of preinflationary e-folds for the
Higgs-like potential. Once again, we have explicitly
separated the cases of initial conditions leading to infla-
tion in the plateau or in the chaotic parts of the potential.
The results show that Npreinfl decreases with v for the case
of inflation occurring in the plateau and tends to converge
towards Npreinfl ∼ 4.3 for jvj > 24MPl. On the other hand,
for inflation occurring in the chaotic part of the potential,
we obtain that Npreinfl is almost independent of v, though
the data shows a slow increase as jvj increases and Npreinfl

is slightly below 4, but still consistent with the estimate
given by Eq. (3.5).
As a complement and example case extracted from the

above results for the Higgs-like symmetry-breaking poten-
tial, in Fig. 4(a) we explicitly show the PDF for the number
of inflationary e-folds, taking as an example the vacuum
expectation value of the Higgs-like symmetry-breaking
potential to be v ¼ 19MPl. Likewise, in Fig. 4(b) we also
show the PDF for the number of preinflationary e-folds
from the bounce to the beginning of the slow-roll inflation
obtained for the same VEV.
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FIG. 2. Number of preinflationary e-folds for the power-law
potentials in LQC.
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FIG. 3. (a) Number of total inflationary e-folds and (b) number
of preinflationary e-folds for the Higgs-like symmetry-breaking
potential in LQC as a function of the VEV. The errors bars in the
plots indicate the 1σ standard deviation of the results from the
median obtained from the respective PDFs. All cases were
analyzed without radiation in the evolution.
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Finally, for completeness we summarize our main results
that can be extracted from all of the PDFs in the Table I,
where we give the results for the median and standard
deviation forNinfl andNpreinfl for each of the models studied
when neglecting radiation effects. For the Higgs-like
symmetry-breaking potential, we only give results obtained

from the specific example shown in Fig. 4. For the other
VEVs studied, see Fig. 3.

2. Results in the presence of radiation

Let us now study how the inclusion of radiation affects
the above results. We start by considering Eqs. (2.9), (2.10),
and (2.13) with the dissipation coefficient Γ. One notes that
here Γ parametrizes a radiation production process where
part of the energy density of the inflaton is converted to
radiation. As already pointed out in the previous section,
there can be many other different processes at play
generating radiation that are not directly related to the
inflaton (e.g., the decay of spectator fields, gravitational
particle production, etc.). Parametrizing radiation produc-
tion like the perturbative decay of the inflaton might
represent only one such process. However, as explained
below, our results are only dependent on the amount of
radiation prior to the bounce and much less on which
particular process (or processes) might lead to it. This
significantly simplifies our study, in addition to showing
that our results should not be sensitive to the details of the
dynamics of radiation production in the contracting phase.
These are rather strong claims, and we justify them by
considering as an example the case of the monomial
quadratic inflaton potential.
In Fig. 5(a) we show the effect of the radiation

production through Γ on the expected number of e-folds
of inflation for the monomial quadratic model. The larger
the Γ, the smaller the number of e-folds expected for
inflation later in the expanding region post-bounce. This
result can also be correlated with the expected value for the
inflaton field at the bounce time tB, ϕðtBÞ, as shown in
Fig. 5(b). As seen in Fig. 5(b), the larger the Γ, the smaller
the amplitude of the inflaton field at the bounce, and the
smaller the resulting number of e-folds. Note that the
smaller resulting potential energy density of the inflaton at
the bounce cannot be compensated by a larger kinetic
energy, since now part of the total energy density at the
bounce comprising the critical density ρc will be in the
form of radiation energy density at the bounce ρRðtBÞ, as
can be seen in Fig. 5(c).
As explained in the previous section, these results are

obtained from the PDFs that were generated for different
values of Γ. In Fig. 5 we show the median and 1σ standard
deviation (shown as error bars) derived from these PDFs.
In this specific example, we consider in particular the
fraction of total energy density at the initial time t0 in the
contracting phase as α≡ ρðt0Þ=ρc ¼ 10−19. We have added
a subindex α to Γ to explicitly point out that these results,
when expressed in terms of the decay coefficient, should be
interpreted as α dependent. This is understandable, since α
specifies how far back in the contracting phase we initiate
our simulations, and hence determines how many oscil-
lations the inflaton will undergo during its evolution. Of
course, the radiation energy density produced will be
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FIG. 4. (a) PDF for the number of inflationary e-folds for the
chaotic and plateau parts of the Higgs-like symmetry-breaking
potential in LQC considering the value v ¼ 19MPl. (b) PDF for
the number of preinflationary e-folds for the chaotic and plateau
parts of the Higgs-like potential in LQC considering the same
VEV. As in the previous figures, radiation is absent throughout
the evolution.

TABLE I. Values for the median and standard deviation (1σ) for
the number of preinflationary and inflationary e-folds for the
power-law and Higgs-like symmetry-breaking potentials in LQC
in the absence of radiation effects.

Median and Standard Deviation

Model Npreinf Ninfl

Quadratic 4.115� 0.010 144� 8
Quartic 4.038� 0.030 84� 7
Sextic 4.10� 0.06 59� 7
Higgs (v ¼ 19MPl) plateau 4.426� 0.009 65� 13
Higgs (v ¼ 19MPl) chaotic 3.923� 0.014 111� 6
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dependent on this evolution. Thus, for other values of α we
will have a similar behavior as that shown in Fig. 5, though
at different values of Γ. The important point to notice is that
the Hubble parameter during the contracting phase
increases in modulus (becoming more and more negative)
before the bounce is approached. Therefore, even if we start

the evolution with a Γ > jHj, at some point before the
bounce we will necessarily have Γ < jHj. At this point the
inflaton dynamics stops being damped with decreasing
oscillations due to the presence of the dissipation term in
Eq. (2.9) and starts to have oscillations with increasing
amplitudes. In other words, the effect of Γ on the dynamics
is no longer relevant. In particular, note that radiation
production is only efficient when Γ > jHj, similarly to
what happens in perturbative reheating, and when Γ < jHj
radiation production becomes essentially ineffective. The
radiation produced until that time will then evolve with the
metric like ρR ∝ 1=a4 and increase towards the bounce
time, while the inflaton still oscillates strongly.5 Note that
as we approach the bounce the modification of the
Friedmann equation in LQC becomes important, and at
some point we will again satisfy the condition jHj < mϕ.
However, the time interval of the bounce phase (when the
correction to the Friedmann equation is important) is very
short, typically of the order of a Planck time, such that the
production of radiation due to Γ is negligible during this
short period. For this reason, we do not need to consider
dissipation during the bounce phase. In Fig. 6(a) we
explicitly show these expectations for the evolution of
the inflaton field. The evolution of the Hubble parameter in
the contracting phase is shown in Fig. 6(b). Note that when
Γ drops below 3jHj [which in the figure corresponds to the
region where the red dashed line (−Γ=mϕ) is above the
black solid line] is exactly the time when the damped
oscillations of the inflaton turn into oscillations with
increasing amplitudes, just as expected from Eq. (2.9)
for the dynamics of the inflaton field in the contracting
phase when Γ ¼ 0. The resulting radiation energy density
evolution times a4ðtÞ is shown in Fig. 6(c). Once again, we
see that at the same time that Γ drops below jHj, i.e., the
inflaton decouples from the radiation, the radiation pro-
duction essentially stops and ρRa4 ∼ cte, i.e., the radiation
evolves as expected had we started the evolution at that
instant of decoupling tdec, with Γ ¼ 0 and with the given
radiation energy density at that instant ρRðtdecÞ taken as its
initial value. This is why both approaches—i.e., starting
evolving the system of equation in the contracting phase
with an explicit dissipation term in the equations at t ¼ t0
and with ρRðt0Þ ¼ 0, or simply assuming the evolution
starting at tdec > t0 with an initial nonvanishing radiation
energy density, ρR;i ≡ ρRðtdecÞ at tdec, but with Γ ¼ 0—turn
out to be completely equivalent.
In our systematic analysis of how radiation affects the

predictions for inflation in the models analyzed we still
produce the PDFs starting with initial conditions in the
contracting phase with either radiation being produced
through a dissipation term in the evolution equations, or

(a)

(b)

(c)

FIG. 5. (a) Number of total inflationary e-folds, (b) modulus of
the amplitude of the inflaton at the bounce, and (c) radiation
energy density fraction at the bounce as a function of the
dissipation rate Γ, for the case of the monomial quadratic inflaton
potential. The inflaton mass here is given by mϕ ¼ V1=2

0 =MPl.
The errors bars in the plots indicate the 1σ standard deviation of
the results from the median obtained from the respective PDFs.

5Recall that jHj < mϕ is the condition for the inflaton
oscillations, while perturbative decay of the inflaton also requires
Γ ≪ mϕ [66].
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just assuming an initial radiation energy density but setting
Γ ¼ 0, as explained above. We have explicitly checked that
the results post-bounce are independent of the approach
used. In fact, we found that the results are better presented
in a transparent way when they are expressed in terms of
the fraction of the radiation energy density that will be

present at the time of the bounce, ρRðtBÞ=ρc. This way, the
results are also expressed in a more general form, inde-
pendent of the way the radiation production mechanisms
are specified in the contracting phase.
Returning to the results for each of the inflaton potentials

considered in this work and following the procedure
explained above, in Figs. 7(a)–7(c) we show the results

(a)

(b)

(c)

FIG. 6. One example of evolutions in the contracting phase, up to
close to (but still below) the bounce instant tB, for (a) the inflaton
field, (b) the Hubble parameter, and (c) the radiation energy density
times the fourth power of the scale factor at the bounce, a4ρR, for
the case of themonomial quadratic inflaton potential. These results
were obtained for a dissipation rateΓ=mϕ ¼ 0.01 and a total energy
density ratio at the initial time given by α≡ ρðt0Þ=ρc ¼ 10−19.
Here, the bounce instant is tB ≃ 1018=mϕ.

(a)

(b)

(c)

FIG. 7. (a) Duration of inflation, (b) duration of the preinfla-
tionary phase, and (c) the amplitude for the inflaton at the bounce
as a function of the fraction of the radiation energy density at the
bounce. All results refer to the medians extracted from the
respective PDFs for each of the models studied. The results
shown for the Higgs-like symmetry-breaking potential refer to the
case with a VEV v ¼ 21MPl.
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for the predicted number of e-folds of inflation, the number
of preinflationary e-folds, and the value for the inflaton
field amplitude at the bounce, respectively. To avoid
crowding the figures, we do not show the 1σ standard
deviation error bars for each of the data points (obtained
from the medians of the respective PDFs for each model).
Analyzing the results shown in Fig. 7(a), a number of

important features emerge as a result of including the
effects of radiation. For the monomial potential we see the
expected effect of radiation suppressing inflation according
to the fraction of radiation that end up present at the bounce
instant tB and that comes from the earlier evolution in the
contracting phase. In particular, the larger the power n in
the monomial potential, the smaller the required fraction of
radiation for the number of e-folds of inflation to drop to
unsuitable values to account for the observations. For
example, for the quadratic potential the number of e-folds
drops below 50 when the fraction of radiation at the bounce
is around 2%, for the quartic potential this fraction is
around 0.13%, and for the sextic potential it is as small as
0.0073%. In the case of the symmetry-breaking Higgs-like
potential, we have once again explicitly identified the
regimes of inflation happening in the plateau region of
the potential, with the inflaton amplitude at the beginning
and end of inflation satisfying jϕj < v, and the regime of
inflation happening in the chaotic part of the potential,
jϕj > v. For the example shown in Fig. 7, we have chosen
the case with a VEV v ¼ 21MPl, which in the absence
of radiation produces approximately the same number of
e-folds in the plateau and chaotic parts of the potential (see,
e.g., Fig. 3), which gives Ninfl ¼ 118� 21 and 118� 6 for
the expected number of e-folds for the plateau and chaotic
parts of the potential, respectively. Thus, this particular
VEV is better suited for comparative purposes to see the
effects of radiation on the inflation dynamics when happen-
ing in one of the two branches of the potential. The
behavior of Ninfl as a function of radiation for the chaotic
part of the potential exhibits a similar trend as the
monomial potentials. It monotonically decreases with the
amount of radiation that permeates the bounce and
becomes less than 50 e-folds when the fraction of radiation
at the bounce is around 1%. However, the behavior for the
number of e-folds when inflation happens in the plateau
region is quite peculiar. It instead shows a growing
behavior with the increase of radiation up to a maximum
value, and then decreases. This peculiar behavior can be
explained by the fact that radiation takes up not only
potential energy of the inflaton that it would otherwise have
at the bounce instant, but also kinetic energy. There is then
an increased chance for the initial conditions at the start of
the slow-roll inflation to land close to the top of the
potential, thus increasing the number of e-folds. However,
as the radiation increases further beyond some value, the
decrease in kinetic energy of the inflaton leads to less and
less initial conditions reaching the top of the potential

plateau, thus decreasing the number of e-folds. However,
compared to the other cases we do see that inflation on the
plateau is more resilient to an increase in radiation. The
number of e-folds of inflation, for this particular VEV, only
drops below 50 when the fraction of radiation at the bounce
is larger than around 5%.
In Fig. 7(b) we see that the number of e-folds for the

preinflationary phase increases with the fraction of radia-
tion energy density. This behavior was already observed in
Refs. [24,54] in the case of the quartic potential. Here we
confirm that this is also a generic expectation for other
forms of primordial inflaton potentials and it can be
explained through the estimate for Npreinfl given in the
previous section [Eq. (3.5)]. The presence of radiation will
tend to lower the scale of inflation and, consequently,
increase Npreinfl. Furthermore, we see from the results in
Fig. 7(b) that there is a certain universality of the results for
the different potentials. The data points for the monomial
potentials, along also the Higgs-like potential with inflation
in the chaotic part of the potential, they all group together,
thus having very similar behavior on how Npreinfl depends
on the radiation energy density fraction at the bounce
instant. In the case of the Higgs-like potential for the
inflaton and with inflation happening along the plateau of
the potential the behavior is similar, though shifted with
respect to the other cases. This is also expected [and
should also hold for other VEVs, as seen, for example,
in Fig. 3(b)], given the different energy scales for inflation
happening on the plateau or chaotic side of the potential.
Finally, a similar universality as that seen in Fig. 7(b) is

also seen in Fig. 7(c), where we show how the (modulus of
the) inflaton field amplitude at the bounce instant tB varies
with the fraction of the radiation energy density. Note that
all monomial potentials have data grouping together. The
case of the Higgs-like inflation in the chaotic part of the
potential is shifted from the monomial potentials by exactly
the value of the VEV. Had we shifted the potential zero
to the VEV point, ϕ → ϕ − v, it would also be grouped
with the results for the monomial potentials. Note that
jϕðtBÞj decreases as the amount of radiation increases, thus
leading to a smaller number of e-folds of inflation,
consistent with what we see in Fig. 7(a). jϕðtBÞj on the
plateau part of the potential can only increase towards the
VEV, thus also decreasing the number of e-folds.
As a final remark concerning the results obtained for the

Higgs-like potential, similarly to the case studied in the
vacuum, we have found that the presence of radiation does
not favor inflation happening either in the plateau (small-
field) or chaotic (large-field) regions of the potential. We
have essentially a 50=50 chance for some initial condition
taken deep in the contracting phase to land in either part of
the potential during the inflationary slow-roll phase. This is
quite surprising in view of the fact that for inflation along
the large-field part of the potential, like with any chaotic
type of inflation, the slow-roll trajectory is a local attractor
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in the field phase space of initial conditions [67,68]. On the
other hand, plateau inflaton potentials are known to suffer
from the initial condition problem and have to be severely
fine-tuned [69]. Though large VEVs for a Higgs-like
symmetry-breaking potential can strongly alleviate this
issue of the initial conditions, we have explicitly verified
that the same trend also holds at small VEVs, though we are
also led to a smaller number of e-folds, as seen in Fig. 3(a).
It appears that this issue with small-field potentials in LQC
turns out to manifest in the most likely (and sufficient)
amount of inflation to happen than in a probability of a
certain initial condition to land on either side of the
potential. Surprisingly, as discussed in the case of the
results shown in Fig. 7(a), there are also regimes where
radiation ends up favoring a larger number of e-folds along
the plateau part of the potential. (This is somewhat along
the lines of the study done in Ref. [39] showing how a
preinflationary phase dominated by radiation might end up
favoring inflation by helping to localize the inflaton close to
the plateau region of the potential.)

V. ADDITIONAL EFFECTS AND FUTURE
DIRECTIONS

It is important to discuss some issues that were not
considered explicitly in this work but could lead to
interesting effects. First, in order to make the analysis as
general as possible, we did not consider any specific
mechanism for the radiation production.
As discussed in the previous sections, we had simply

assumed some a priori a particle decay process that leads to
radiation production and acts in the contracting phase. That
the dissipation term is added in the classical regime in the
contracting phase is in particular quite convenient from a
quantum field theory perspective in deriving these dis-
sipation terms. In the classical regime, quantum gravity
effects are negligible and a standard quantum field theory
derivation for dissipation coefficients would apply. The
quantum gravity effects would be important closer to the
bounce. However, as explained in the previous section, the
dissipation coefficient Γ will in general become smaller
than the (modulus of the) Hubble rate before the bounce is
approached in the contracting phase, and from that point on
the radiationproductionbecomes inefficient.Thus,wedonot
have to deal with the details of how the quantum gravity
effects would affect the radiation production (at least as far as
a quantum field theory derivation for the inflaton dissipation
coefficient to light fields is concerned). We could then think
of decay rate terms involving, for instance, explicit inter-
actions of the inflaton with some light fields, which can be
either bosons or fermions, with interaction Lagrangian
densities terms like, e.g., Lint ¼ −gσϕχ2, with the inflaton
coupled to some other scalar field χ, or Lint ¼ −hϕψ̄ψ, for
the case of couplings to fermions. Then,Γ refers simply to the
decay processes [70] (for mϕ > 2mχ ; 2mψ ) Γϕ→χχ ¼
g2σ2=ð8πmϕÞ andΓϕ→ψ̄ψ ¼ h2mϕ=ð8πÞ, respectively,where

g andh are two constants.Couplingother fields directly to the
inflaton imposes constraints on the values for the respective
couplings such that quantum corrections coming from these
other fields do not spoil the required flatness of the inflaton
potential. This typically requires small coupling constants, g,
h ≪ 1, thus leading to very small decay rates. This in turn
would require a long evolution in the contracting phase such
that sufficient radiation can be produced. However, there are
other ways of having light fields (radiation) coupled to the
inflaton and at the same time allowing for large couplings,
provided the inflaton sector is protected by symmetries, like a
shift symmetry in the case where the inflaton is a pseudo-
Nambu-Goldstone boson, as in axionic inflation, or in the
recent constructions involving the inflaton coupled directly
to radiation fields, like inRefs. [63,65] in the context ofwarm
inflation. These processes could also lead to strong dissipa-
tion mechanisms in the contracting phase and possibly be
applicable in the context of the present paper. Additionally,
we could also think in terms of gravitational particle
production. However, these are in general very inefficient
processes during the oscillatory regime of the inflaton in the
pre-bounce phase. In this work, we have also not considered
particle production from parametric resonance, similarly to
what might happen in preheating after inflation [66], trig-
gered by the oscillations of the inflaton. Parametric reso-
nance is a very efficient particle production mechanism that
can cause the energy density of the inflaton to quickly
decrease. It would be interesting to investigate how para-
metric resonance could manifest itself due to the strong
oscillations of the inflaton in the pre-bounce contraction
phase. As we approach the bounce and the energy density
approaches the Planck scale, we might also expect the
opposite behavior to what we would see in the expansion
regime post-inflation, probably with particle fusion happen-
ing efficiently, counterbalancing the evaporation of the
inflaton condensate due to its decay during parametric
resonance. In the high-energy regime close to the bounce,
the energy transfer could then also target the inflaton field.
Though quite interesting, a full study of the effects would
certainly require a quantum kinetic study of bouncing
cosmology in LQC, something beyond the scope of the
present paper.
We have also neglected in our analysis the possible

contribution of inhomogeneities encoded in the gradient
terms, which could be important during the contraction.
Even though one should not expect these terms to signifi-
cantly change the PDFs we obtained, it could be important
to study how these terms could affect the dynamics of the
bounce phase in these models. In addition, although we
have only studied the case of isotropic LQC, the presence
of anisotropies could lead to important effects. In this
context, the analysis made by the authors of Ref. [29] has
shown that considering anisotropic effects the PDFs can be
strongly affected, though we can still draw predictions from
them, like for the number of e-folds of inflation. (In fact,
the effects of anisotropies as studied in Ref. [29] have some
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similarities to the effects we have seen here due to radiation.
By decreasing the energy density of the inflaton, we also
expect a smaller number of e-folds for larger anisotropies.)
Our results can also affect the predictions for each model

with respect to the changes radiation can impose on the
power spectrum. The presence of radiation means that the
initial state for which the primordial scalar curvature
perturbations are evaluated is not the Bunch-Davis vacuum,
but likely an excited state for the inflaton. In addition, if the
radiation bath thermalizes, which in general requires that
sufficient scattering happens among the radiation particles,
then the formed thermal bath will be carried over into the
preinflationary phase as well. Note that in general we
require the condition that Γ be larger than the expansion
(contraction) rate of the Universe as a condition for
thermalization [56]. As seen in the example discussed in
the previous section and shown in Fig. 6(b), this condition
is very likely to be satisfied during some time in the
contracting phase. Even though the formed thermal bath
can drop out of equilibrium after Γ goes below jHj before
the bounce, the temperature of the thermal bath will simply
evolve with the scale factor as T ∝ 1=a from that time
onwards and be carried over into the post-bounce phase,
even if no further particle/entropy production happens later
on and before inflation. The presence of a thermal bath will
lead to an enhancement of the power spectrum [71] and,
consequently, to an enhancement of the power at the largest
scales, i.e., for the smallest wave numbers. At the same
time, the modification of mode functions due to the
presence of radiation leads to a lowering of the quadrupole
moment [72–74]. In LQC, the primordial scalar curvature
power spectrum has also been shown to be modified
[31,37], also causing an enhancement of the power at
low multipoles. A recent study of these issues in the context
of warm inflation [44] has shown how these different
effects might counterbalance, easing the lower bound on
the duration of inflation determined, e.g., in Ref. [31]. The
results we have obtained in the present paper certainly call
for a more detailed computation of the power spectrum in
LQC whenever radiation might be present in the preinfla-
tionary phase.

VI. CONCLUSIONS

Based on the proposal introduced by the authors of
Ref. [27] on how some well-defined predictions can be
made concerning the probability and duration of inflation in
LQC, we have extended their analysis for other power-law
monomial potentials, like the quadratic, quartic, and sextic
potentials, and for the Higgs-like potential for the inflaton.
In the latter model, we also investigated the results obtained
for different values of the vacuum expectation value. While
in the context of cold inflation the three power-law
potentials are disadvantaged by the Planck data [57], warm
inflation can rehabilitate them again due to the radiation
production effects and this justifies using these potentials in

the present study. Besides, as simple potential models, it is
important to consider them for comparison purposes in
general. Motivated by the warm inflation picture, where
radiation can be present throughout the inflationary regime,
in this work we investigated the effects of radiation on the
predictions for inflation in LQC for all of the above-
mentioned primordial inflation potential models.
Following the procedure detailed in Refs. [27,30], we

obtained different PDFs for different relevant quantities
including, for example, the number of e-folds of inflation,
the number of preinflationary e-folds from the LQC bounce
to the start of the slow-roll inflation, and the fraction of
radiation energy density at the bounce, and drew statistical
conclusions from them for each of the models studied here.
We assumed initial conditions for the energy density in the
remote past, well before the bounce, and evolved them
considering also the radiation. For the cases studied and for
the analysis performed for each of the resulting PDFs, we
found that the number of e-folds of the preinflationary phase
is approximately 4 e-folds in all of the models analyzed, and
increases with the radiation energy density. On the other
hand, the number of inflationary e-folds changes a lot
between the models and also strongly depends on the
radiation energy density present at the bounce time.
As already explained in previous studies (see, e.g.,

Refs. [29,30]), the approach of taking the initial conditions
in the classical regime in the contracting phase leads to very
different results than the other approach usually considered
in the literature, i.e., taking the initial conditions at the
bounce time. The reason for this difference can be under-
stood as follows. In general, taking the initial conditions at
the bounce time leads to a much larger number of e-folds,
and a prediction for the duration of inflation is harder to
obtain. This is understandable, since if we consider initial
conditions at the bounce, i.e., where ρtotal ¼ ρcr, we are
allowed in principle to consider any value for the inflaton
field amplitude up to the value for which VðϕÞ ¼ ρcr, thus
potentially leading to a very large number of e-folds.
However, by taking initial conditions in the classical regime
in the contracting phase, the amplitude of the inflaton at the
bounce is always constrained and the bounce is essentially
kinetic energy dominated, thus leading to a much smaller
number of e-folds and allowing us to make predictions
about the duration of the inflation. As explained, e.g., in
Ref. [29], this is because a long deflation regime in the
contracting regime (and before the bounce is reached) is
strongly suppressed. (In fact, in all of our numerical
simulations and for the different models we have consid-
ered, none reached such a regime of a long deflation.) This
then prevents the inflaton from reaching large amplitudes
and, consequently, the number of e-folds cannot be too
large and remains constrained. We have seen this explicitly
in all of our results.
We obtained that, among the power-law potentials

analyzed, the sextic model in LQC is the one that predicts
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the lowest value for the number of inflationary e-foldsNinfl,
implying a small probability of being consistent with the
CMB data. The quartic potential, on the other hand,
predicts the most likely Ninfl to be around 80, in the
absence of radiation, which suggests a very good possibil-
ity of leading to observable signatures from LQC in the
CMB spectrum [31]. For the quadratic model, the most
likely Ninfl is around 140, in the absence of radiation, in
agreement with the results obtained in Ref. [27]. With such
high values of Ninfl, the effects from the quantum regime
would probably be diluted to an unobservable level when-
ever there is no radiation present to affect the dynamics of
expansion and the inflaton. For the Higgs-like symmetry-
breaking potential we have shown that Ninfl grows with the
vacuum expectation value (v) for the case of inflation
occurring in the plateau (small-field) region, while for
inflation occurring in the chaotic (large-field) part of the
potential Ninfl is almost independent of v, being always
around Ninfl ∼ 100 in the absence of radiation effects.
However, radiation has a strong influence on the number
of e-folds in the plateau region of the potential. Instead of
tending to suppress the duration of inflation in the plateau,
it initially favors an increase of Ninfl, which can be by a
large factor depending on the VEV and the available

radiation energy density. This effect has been identified
as a result of the fact that radiation production decreases the
energy that would otherwise be available for the inflaton
(both potential and kinetic energy). By having a smaller
kinetic energy, the inflaton can then be better localized
along the plateau and, hence, increase the duration of
inflation.
We have also discussed the possible effects that the

presence of a radiation bath might have on the primordial
scalar curvature power spectrum in LQC, which also
motivates further study in that direction.
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