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Single-field inflaton models in the kinetic dominance period admit formal solutions given by generalized
asymptotic expansions called psi series. We present a method for computing psi series for the Hubble
parameter as a function of the inflaton field in the Hamilton-Jacobi formulation of inflaton models. Similar
psi series for the scale factor, the conformal time, and the Hubble radius are also derived. They are applied
to determine the value of the inflaton field when the inflation period starts and to estimate the contribution
of the kinetic dominance period to calculate the duration of inflation. These psi series are also used to obtain
explicit two-term truncated psi series near the singularity for the potentials of the Mukhanov-Sasaki
equation for curvature and tensor perturbations. The method is illustrated with wide families of inflaton
models determined by potential functions combining polynomial and exponential functions, as well as with
generalized Starobinsky models.
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I. INTRODUCTION

The theory of inflationary cosmology provides a frame-
work to study the early Universe [1–3] which solves several
central problems of the hot big bang model. In the present
work, we consider single-field inflaton models formulated
in terms of a time-dependent real field ϕðtÞ in a spatially
flat universe [4–7]. For a homogeneous, spatially flat
Friedman-Lemaître-Robertson-Walker (FLRW) spacetime
with scale factor aðtÞ, these models are described by the
nonlinear ordinary second-order differential equation

ϕ̈þ 3H _ϕþ dV
dϕ

ðϕÞ ¼ 0; ð1Þ

where H ¼ _a=a is the Hubble parameter, which is related
to the inflaton field by

H2 ¼ 1

3m2
Pl

�
1

2
_ϕ2 þ VðϕÞ

�
: ð2Þ

Here V ¼ VðϕÞ is a given potential function, mPl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=8πG

p
is the Planck mass, and dots indicate derivatives

with respect to the cosmic time t.

We concentrate on the kinetic dominance (KD) period
[8–10] of inflaton models, when the kinetic energy of the
inflaton field dominates over its potential energy:

_ϕ2 ≫ VðϕÞ: ð3Þ

It is a noninflationary or preinflationary stage that is
followed by a short fast-roll inflation phase [11] and
afterwards by the traditional slow-roll inflation stage
[5,12–19]. Recently, Handley et al. [9,10,20–22] have
shown the relevance of the KD period [Eq. (3)] for setting
initial conditions. In fact, as they prove in Ref. [9], under
mild conditions on the potential V, all solutions (except
perhaps a single one) evolve from a KD region. Our study is
devoted to the asymptotic series solutions of the inflaton
equations for the KD period and their applications.
The solutions of Eq. (1) manifest generically branch

point singularities of logarithmic type. This is the same type
of singularity exhibited by the solutions of the Lorentz
system [23], and their presence is associated with the so-
called psi-series [24] asymptotic solutions of ordinary
differential equations. Alternative different psi series con-
taining terms with irrational or even complex exponents
were found in the Hénon-Heiles system [25], the rigid body
problem, the Toda lattice equation, the Duffing oscillator
[26], and the fractional Ginzburg-Landau equation [27].
Logarithmic psi-series solutions of the inflaton equations
[Eq. (1)] have been also considered; see, for instance,
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Refs. [8,9,11]. Recently [10], a general method has been
formulated for computing psi-series expansions for the
solutions of the Eq. (1) and the generalization of Eq. (2) for
FLRW spacetimes with curvature. The method formulates
the inflaton equations as a four-dimensional first-order
system of ordinary differential equations and determines
solutions as series expansions involving powers of t − t�
and logðt − t�Þ. These series are termed logolinear series
in Ref. [10].
In the present work, we propose an alternative method

for determining formal asymptotic solutions of Eqs. (1) and
(2) expressed as psi series. It uses the Hamilton-Jacobi
formalism of the inflaton models of Refs. [28,29], and [30],
in which the independent variable is the inflaton field
instead of the cosmic time. We generate psi series for
solutions of the Hamilton-Jacobi equations for the Hubble
function as functions of the rescaled inflaton field

φ≡
ffiffi
3
2

q
ϕ=mPl. We apply our method to the following

classes of models:
(1)

vðφÞ ¼
XN
n¼0

vnðφÞe−nφ; ð4Þ

where vnðφÞ are polynomials in φ, and N is a non-
negative integer.

(2) Models with generalized Starobinsky potential
functions,

vðφÞ ¼
XN
n¼0

vne−αnφ; ð5Þ

where α is any irrational number and vn are constant
coefficients.

In Eqs. (4) and (5), vðφÞ stands for the rescaled poten-
tial vðφÞ ¼ 3VðϕÞ=m2

Pl.
The paper is organized as follows: In Sec. II, we briefly

introduce the Hamilton-Jacobi formalism of inflation mod-
els. Section III describes our method for determining psi
series for the inflaton models with potential functions (4)
and (5). For the case of Eq. (4), we determine a one-
parameter family of logarithmic psi-series solutions in the
variable u ≔ e−φ with polynomial coefficients depending
on φ, which could be termed expolinear series. In par-
ticular, the models with polynomial potentials (N ¼ 0)
exhibit several interesting symmetry properties, which are
analyzed in detail. As illustrative explicit examples we
apply the method to the quadratic potential vðφÞ ¼ m2φ2

and to the Higgs potential vðφÞ ¼ g2ðφ2 − λ2Þ2. For the
models with potential functions [Eq. (5)], we characterize a
one-parameter family of psi-series solutions of nonlogar-
ithmic type in the variable u ≔ e−φ with coefficients which
are polynomials in e−αφ. Furthermore, a simple limit

operation shows that the results also apply to rational
exponents α. In particular, we apply the method to the
Starobinsky potential

vðφÞ ¼ λð1 − e−αφÞ2

and check that our results with α ¼ � 2
3
coincide with the

results in Ref. [10] for the corresponding inflaton model
with potential

VðϕÞ ¼ Λ2ð1 − e−
ffiffi
2
3

p
ϕÞ2: ð6Þ

At the end of Sec. III, we discuss how to derive from our psi
series in the inflaton field φ the logolinear series involving
powers of t − t� and logðt − t�Þ.
Finally, Sec. IV presents several applications of the psi

series obtained in the previous section to calculate ana-
lytical approximations of several relevant quantities of
inflation models and to compare them with the correspond-
ing numerical approximations. Thus, we use the psi series
to determine the value of the inflaton field at the initial
moment of the inflation period. We also provide a formula
for the amount of inflation, which includes the contribution
of the part of the KD period which overlaps the inflation
region. Finally, we consider the potentials of the Mukanov-
Sasaki equation near the singularity for both curvature and
tensor perturbations. It is known [11] that as functions of
the conformal time, the dominant terms of these potentials
coincide with the critical central singular attractive poten-
tial, allowing the fall to the center of a quantum particle.
Then, we use the psi series previously obtained to provide
an explicit two-term truncated psi-series approximation to
these potentials.

II. HAMILTON-JACOBI FORMULATION
OF INFLATON MODELS

From Eqs. (1) and (2), it follows that

_H ¼ −
1

2m2
Pl

_ϕ2: ð7Þ

As a consequence, the Hubble parameter H is a positive,
monotonically decreasing function of t. This property
implies that for smooth and positive potential functions
V, the solutions ϕðtÞ of Eq. (1) with arbitrary finite initial
data do not have singularities forward in the cosmic time t.
Nevertheless, the function HðtÞ increases without bound
backwards in time, so that HðtÞ and ϕðtÞ may develop
singularities.
The presence of singularities backwards in time can be

expected from the following argument: If the KD condition
[Eq. (3)] holds, then we may neglect V and Vϕ in the
inflaton equations, and from Eq. (1) we have
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ϕ̈þ
ffiffiffi
3

2

r
1

mPl
j _ϕj _ϕ ∼ 0: ð8Þ

Thus, we obtain two families of approximate solutions:

ϕ ∼�
ffiffiffi
2

3

r
mPl logðt − t�Þ þ ϕp as t → ðt�Þþ; ð9Þ

where t� and ϕp are arbitrary constants. The corresponding
asymptotic form of the Hubble parameters is

H ∼
1

3ðt − t�Þ as t → ðt�Þþ: ð10Þ

These approximate solutions of the inflaton equations are
the dominant terms of the psi-series expansions that we will
consider below.

A. The Hamilton-Jacobi equations

We use the rescaled variables

φ ¼
ffiffiffi
3

2

r
ϕ

mPl
; vðφÞ ¼ 3

m2
Pl

VðϕÞ; h ¼ 3H ð11Þ

and rewrite Eqs. (1) and (2) as

φ̈þ h _φþ 1

2
v0ðφÞ ¼ 0 ð12Þ

and

h2 ¼ _φ2 þ vðφÞ; ð13Þ

respectively.
In order to discuss inflaton models in the Hamilton-

Jacobi formalism, we consider a reduced space of initial
conditions ðφ; _φÞ ∈ R2 for Eqs. (12) and (13) such that

φ ≥ φ0; _φ < 0; ð14Þ

where φ0 will be assumed to be a fixed value of φ such that
the potential v and its first derivative v0 are smooth and
strictly positive for φ ≥ φ0. The map ðφ; _φÞ ↦ ðφ; hÞ
enables us to describe the dynamics of Eqs. (12) and (13)
on the subset

R ¼
n
ðφ; hÞ ∈ R2∶φ ≥ φ0;

ffiffiffiffiffiffiffiffiffiffi
vðφÞ

p
< h < þ∞

o
ð15Þ

of the ðφ; hÞ plane. The Hamilton-Jacobi formulation of
Eqs. (1) and (2) is given by the couple of equations

h0ðφÞ2 ¼ hðφÞ2 − vðφÞ ð16Þ

and

_φ ¼ −h0ðφÞ: ð17Þ

Here, primes denote derivatives with respect to φ, and the
Hubble function h is assumed to be the positive root

h ¼ ð _φ2 þ vðφÞÞ1=2: ð18Þ

The set R plays the role of the phase space of the formalism.
Each solution h ¼ hðφÞ of Eq. (16) determines a corre-
sponding implicit solution φðtÞ of Eq. (17) given by

t ¼ −
Z

φðtÞ

φð0Þ

dφ
h0ðφÞ : ð19Þ

From the physical point of view, the early Universe is
assumed to emerge from a state with energy density 3m2

PlH
of the same order of the Planck density m4

Pl. Below that
density, the classical inflationary description of the
Universe is not valid. Hence, the only physical constraint
required for the initial data of a classical inflationary
universe is that its energy density 3m2

PlH should not be
larger than m4

Pl or, equivalently, h ≤ m2
Pl, which in Planck

units (G ¼ c ¼ ℏ ¼ 1Þ means

h < hp ≔
1

8π
≈ 0.0398: ð20Þ

B. Inflation and kinetic dominance regions

The inflation period of the Universe evolution is char-
acterized by an accelerated Universe expansion ä > 0.
From the identity

ä
a
¼ 1

3m2
Pl

ðVðϕÞ − _ϕ2Þ; ð21Þ

it follows that this period is determined by the constraint

_ϕ2 < VðϕÞ: ð22Þ

Then it follows at once that the inflation region [Eq. (22)] in
R is characterized by

ffiffiffi
v

p
< h <

ffiffiffiffiffi
3v
2

r
: ð23Þ

For a successful solution to the horizon and flatness
cosmological problems, it is required that the amount of
inflation during the period of inflation,

N ¼
Z

ϕend

ϕin

H
_ϕ
dϕ ¼ 1

3

Z
φin

φend

h
h0
dφ; ð24Þ

be close to N ∼ 60 [6,7,31,32]. Thus, given a solution
h ¼ hðφÞ of Eq. (16), it is important to determine the
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values φin, φend for which inflation starts and ends,
respectively. Due to Eq. (23), both values satisfy

hðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3vðφÞ
2

r
: ð25Þ

For instance, in Fig. 1 we plot the reduced Hubble
parameter for the quadratic model vðφÞ ¼ m2φ2 together

with the functions
ffiffiffiffiffiffiffiffiffiffi
vðφÞp ¼ mφ and

ffiffiffiffiffiffiffiffiffi
3vðφÞ
2

q
¼

ffiffi
3
2

q
mφ.

Figure 2 shows the same solution entering the inflation
region in a KD regime and leaving the inflation region.
The approximate solutions [Eq. (9)] of Eq. (1) corre-

spond to approximate solutions of Eq. (16) of the form

h ∼
e�φ

b
as φ → �∞; ð26Þ

where b is an arbitrary strictly positive parameter. Due to
the symmetry ðvðφÞ;hðφÞ;φðtÞÞ→ ðvð−φÞ;hð−φÞ;−φðtÞÞ
of Eqs. (16) and (17), without loss of generality we restrict
our analysis to series expansions of solutions of Eq. (16)
such that

h ∼
eφ

b
as φ → þ∞: ð27Þ

Solutions h ¼ hðφÞ of Eq. (16) which have the asymptotic
form of Eq. (27) emerge from the KD region and blow up at
a finite time t ¼ t� given by

t� ¼ −
Z

∞

φð0Þ

dφ
h0ðφÞ : ð28Þ

III. PSI SERIES IN THE HAMILTON-JACOBI
FORMULATION

In this section, we determine a one-parameter family
of psi-series formal solutions of Eq. (16) for the models
with polynomial-exponential potentials [Eq. (4)] and
Starobinsky potentials [Eq. (5)].

A. Psi series for polynomial-exponential potentials

Let us consider the differential equation (16) for a
potential vðφÞ of the family in Eq. (4). We look for psi-
series solutions of the form

hðφÞ ¼ eφ

b
þ
X∞
n¼1

hnðφÞe−ðn−1Þφ; ð29Þ

where the coefficients hnðφÞ are polynomial functions of φ,
and b is a nonzero positive real parameter.
By substituting Eq. (29) into Eq. (16), we obtain

2

b

X∞
n¼1

ðh0n − nhnÞe−ðn−2Þφ þ
XN
n¼0

vnðφÞe−nφ

¼ −
X∞
n¼2

� X
jþk¼n

ðh0j − ðj − 1ÞhjÞðh0k − ðk − 1ÞhkÞ

− hjhk

�
e−ðn−2Þφ: ð30Þ

Then, identifying the coefficients of eφ in Eq. (30), we have
that h1 must satisfy the equation h01 − h1 ¼ 0, whose
polynomial solution is

h1ðφÞ ¼ 0: ð31Þ

h
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FIG. 2. The left figure shows the solution of Fig. 1 entering the inflation region in a KD regime and approaching the slow-roll regime
(blue dotted line). The right figure shows the same solution leaving the inflation region.
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FIG. 1. Reduced Hubble parameter for the quadratic model
vðφÞ ¼ m2φ2. The black line shows the rescaled numerical solution
h=m ¼ hðφÞ=m of Eq. (16) such that hð60Þ ¼ 103 m. The region
between the blue and red dotted lines is the inflation region.
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From Eq. (30) and using Eq. (31), it follows that identifying the coefficients of e−nφ for n ¼ 0; 1;…; N implies the recursion
relation

h0nþ2 − ðnþ 2Þhnþ2 ¼ −
b
2

�
vn þ

X
jþk¼nþ2;j;k≥2

ððh0j − ðj − 1ÞhjÞðh0k − ðk − 1ÞhkÞ − hjhkÞ
�
: ð32Þ

Furthermore, identifying the coefficients of e−nφ for n > N leads to the recursion relation

h0nþ2 − ðnþ 2Þhnþ2 ¼ −
b
2

X
jþk¼nþ2;j;k≥2

ððh0j − ðj − 1ÞhjÞðh0k − ðk − 1ÞhkÞ − hjhkÞ: ð33Þ

The Eqs. (32) and (33) are nonhomogeneous linear ordinary differential equations with constant coefficients for hnþ2.
The nonhomogeneous terms depend on the coefficients hj with j ¼ 2;…; n and on the polynomial coefficients vnðφÞ with
n ¼ 0;…; N of the potential function in Eq. (4). Therefore, it follows that the coefficients hn of the series in Eq. (29) can be
recursively determined as polynomials in φ. The recursion relations can be formally solved, and they provide us with the
polynomial solutions

hnþ2ðφÞ ¼
b
2
eðnþ2Þφ

Z
∞

φ
e−ðnþ2ÞsvnðsÞ

þ b
2
eðnþ2Þφ

Z
∞

φ
e−ðnþ2Þs X

jþk¼nþ2;j;k≥2
ððh0jðsÞ − ðj − 1ÞhjðsÞÞðh0kðsÞ − ðk − 1ÞhkðsÞÞ − hjðsÞhkðsÞÞds ð34Þ

for n ¼ 0; 1;…; N and

hnþ2ðφÞ ¼
b
2
eðnþ2Þφ X

jþk¼nþ2;j;k≥2

Z
∞

φ
e−ðnþ2Þsððh0jðsÞ − ðj − 1ÞhjðsÞÞðh0kðsÞ − ðk − 1ÞhkðsÞÞ − hjðsÞhkðsÞÞds ð35Þ

for n > N.
In this way, we have proved that the differential

equation (16) for potentials vðφÞ of the form in Eq. (4)
admits a (formal) one-parameter family of psi-series
solutions of the form

hðφÞ ¼ eφ

b
þ
X∞
n¼2

hnðφÞe−ðn−1Þφ: ð36Þ

The first few equations [Eq. (32)] for N ≥ 2 are

h02 − 2h2 ¼ −
b
2
v0;

h03 − 3h3 ¼ −
b
2
v1;

h04 − 4h4 ¼ −
b
2
½v2 þ ðh02Þ2 − 2h2h02�: ð37Þ

The corresponding solutions [Eq. (34)] are

h2ðφÞ¼
b
2
e2φ

Z
∞

φ
v0ðsÞe−2sds;

h3ðφÞ¼
b
2
e3φ

Z
∞

φ
v1ðsÞe−3sds;

h4ðφÞ¼
b
2
e4φ

Z
∞

φ
v2ðsÞe−4sdsþ

b3

8
e4φ

Z
∞

φ
v0ðsÞ2e−4sds

−
b3

4
e4φ

Z
∞

φ
e−2s1v0ðs1Þ

�Z
∞

s1

e−2s2v0ðs2Þds2
�
ds1:

ð38Þ

B. Polynomial potentials

In the polynomial case of Eq. (4), vðφÞ ¼ v0ðφÞ, with
v0ðφÞ being a polynomial of degree d, the family of psi
series [Eq. (36)] reduces to the form

hðφÞ ¼ eφ

b
þ
X∞
n¼1

b2n−1γnðφÞe−ð2n−1Þφ; ð39Þ
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where γ1 is the unique polynomial of degree d which
satisfies the equation

γ01 − 2γ1 ¼ −
1

2
v0; ð40Þ

and the coefficients γnðφÞ (n ≥ 2) are polynomials of
degree nd − 1, independent of the parameter b, which
can be recursively determined by

γ0nþ1 − 2ðnþ 1Þγnþ1

¼ −
1

2

X
jþk¼nþ1;j;k≥1

ððγ0j − ð2j − 1ÞγjÞðγ0k − ð2k − 1Þ

× γkÞ − γjγkÞ: ð41Þ

Indeed, if we set n ¼ 2m − 1 (m ≥ 1) in Eq. (33), we
have that

h02mþ1 − ð2mþ 1Þh2mþ1

¼ −
b
2

X
jþk¼2mþ1;j;k≥2

ððh0j − ðj − 1ÞhjÞ

× ðh0k − ðk − 1ÞhkÞ − hjhkÞ:

Now, taking into account Eq. (31) and applying induction
in m, it is clear that

h2mþ1 ≡ 0 for all m ≥ 0: ð42Þ

In order to make explicit the dependence of hðφÞ on
the arbitrary parameter b, we introduce the functions
γnðφÞ ≔ h2nðφÞ=b2n−1. Thus, for n ¼ 0, Eq. (32) reduces
to Eq. (40), and Eq. (33) becomes the recursion relation
[Eq. (41)]. We notice that the coefficients γnðφÞ are
independent of b. The first few equations [Eq. (41)] are

γ02 − 4γ2 ¼ −
1

2
½ðγ01Þ2 − 2γ1γ

0
1�; ð43Þ

γ03 − 6γ3 ¼ −½γ01γ02 − γ1γ
0
2 − 3γ01γ2 þ 2γ1γ2�; ð44Þ

γ04 − 8γ4 ¼ −
1

2
½2γ01γ03 þ ðγ02Þ2 − 2γ1γ

0
3 − 6γ2γ

0
2

− 10γ01γ3 þ 8γ1γ3 þ 8γ22�: ð45Þ

In particular, Eqs. (40) and (43) imply the following
explicit relations for general polynomial potentials v0ðφÞ:

γ1ðφÞ ¼
1

2
e2φ

Z
∞

φ
e−2sv0ðsÞds; ð46Þ

γ2ðφÞ ¼ −
1

4
e4φ

Z
∞

φ
e−2s1v0ðs1Þ

�Z
∞

s1

e−2s2v0ðs2Þds2
�
ds1

þ 1

8
e4φ

Z
∞

φ
e−4s1v0ðs1Þ2ds1: ð47Þ

From Eq. (40), we have that γ1 is a polynomial of the same
degree d as v0ðφÞ. Consequently, the right-hand side of
Eq. (43) is a polynomial of degree 2d − 1, and so is γ2.
Now, since the coefficient of γnγ1 on the right-hand side of
Eq. (41) is given by −2ðn − 1Þ, which is nonzero for n ≥ 2,
by using induction in n, it follows that for n ≥ 2, the
coefficient γnðφÞ is a polynomial in φ of degree nd − 1.
Next, we discuss two illustrative examples.

1. The quadratic potential

For the quadratic potential

vðφÞ ¼ m2φ2; ð48Þ

we have an expansion for h of the form of Eq. (39) with γ1
satisfying Eq. (40):

γ01 − 2γ1 ¼ −
1

2
m2φ2:

Hence, we obtain

γ1ðφÞ ¼
m2

8
ð1þ 2φþ 2φ2Þ; ð49Þ

so that the first two terms of the psi series of h are

hðφÞ ¼ eφ

b
þ bm2

8
ð1þ 2φþ 2φ2Þe−φ þ � � � : ð50Þ

The coefficients γn (n ≥ 2) in Eq. (39) are determined by
Eq. (41). For example, we obtain

γ2ðφÞ ¼ −
m4

1024
ð5þ 20φþ 40φ2 þ 32φ3Þ;

γ3ðφÞ ¼
m6

1990656
ð703þ 4218φþ 12654φ2

þ 18504φ3 þ 7344φ4 − 5184φ5Þ:

2. The Higgs potential

The KD period for the inflaton model with a Higgs
potential

vðφÞ ¼ g2ðφ2 − λ2Þ2 ð51Þ
has been studied in Ref. [11], where approximate expres-
sions for the inflaton field and the Hubble parameter as
functions of t have been obtained. According to our general
result for models with polynomial potentials, the Higgs
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model admits a psi series of the form in Eq. (39). In particular, one easily finds that the first coefficients of this psi series are
given by

γ1ðφÞ ¼
g2

8
½3þ 6φþ 6φ2 þ 4φ3 þ 2φ4 − 2λ2ð1þ 2φþ 2φ2Þ þ 2λ4�; ð52Þ

γ2ðφÞ ¼
g4

16384
½λ6ð1024φþ 768Þ þ λ4ð−3072φ3 − 4864φ2 − 3968φ − 1760Þ

þ λ2ð3072φ5 þ 7424φ4 þ 10496φ3 þ 9408φ2 þ 4704φþ 1176Þ
− ð1024φ7 þ 3328φ6 þ 6528φ5 þ 8928φ4 þ 8928φ3 þ 6696φ2 þ 3348φþ 837Þ�: ð53Þ

C. Starobinsky’s potentials

We now consider the class of potentials of the form in
Eq. (5). It includes as a particular case the Starobinsky
model [1,33,34]

vðφÞ ¼ λð1 − e−αφÞ2: ð54Þ
It can be proved [30] that the existence of approximate
solutions [Eq. (27)] of Eq. (16) is only possible if

Nα > −2; ð55Þ
so that we will henceforth assume that Eq. (55) is satisfied.
We look for psi-series solutions of Eq. (16) of the form

hðφÞ ¼ eφ

b
þ
X∞
n¼1

hnðuÞe−ðn−1Þφ; ð56Þ

where the coefficients hn are polynomials in

u ≔ e−αφ: ð57Þ
If we substitute the series in Eq. (56) into Eq. (16), we get

2

b

X∞
n¼1

ðαuh0n þ nhnÞe−ðn−2Þφ

¼ wðuÞ þ
X∞
n¼2

� X
jþk¼n

ðαuh0j þ ðj − 1ÞhjÞ

× ðαuh0k þ ðk − 1ÞhkÞ − hjhk

�
e−ðn−2Þφ; ð58Þ

where

wðuÞ ≔
XN
n¼0

vnun: ð59Þ

Since we assume that α is an irrational number, the
powers of u ¼ e−αφ and the powers of eφ are linearly
independent functions; consequently, the coefficients of
e−kφ for k ≥ −1 on both sides of Eq. (58) must be equal.
Then, for k ¼ −1 we obtain αuh01 þ h1 ¼ 0, and since h1 is
a polynomial in u, we have that

h1 ≡ 0: ð60Þ

Using Eq. (60) for k ¼ 0, we get

αuh02 þ 2h2 ¼
b
2
wðuÞ: ð61Þ

Equation (61) has a polynomial solution of degree N.
Proceeding in the same way, vanishing the coefficients of
e−nφ in Eq. (58) with n ≥ 1, we obtain the recurrence
relation

αuh0nþ2 þ ðnþ 2Þhnþ2

¼ b
2

X
jþk¼nþ2;j;k≥2

ððαuh0j þ ðj − 1ÞhjÞ

× ðαuh0k þ ðk − 1ÞhkÞ − hjhkÞ: ð62Þ

From Eqs. (60)–(62), we conclude that all the coefficients
hnðuÞ in Eq. (56) are recursively determined by Eqs. (61)
and (62) as polynomials in u. Moreover, if we set
n ¼ 2m − 1 in Eq. (62), then from Eq. (60) and applying
induction in m, it follows immediately that

h2mþ1 ≡ 0; m ¼ 0; 1; 2;…:

To make explicit the dependence of hðφÞ on the arbitrary
parameter b, we introduce the functions

γnðuÞ ≔
h2nðuÞ
b2n−1

: ð63Þ

Thus, Eqs. (61) and (62) reduce to

αuγ01 þ 2γ1 ¼
1

2
wðuÞ ð64Þ

and

αuγ0nþ1 þ 2ðnþ 1Þγnþ1

¼ 1

2

X
jþk¼nþ1;j;k≥1

ððαuγ0j þ ð2j − 1ÞγjÞ

× ðαuγ0k þ ð2k − 1ÞγkÞ − γjγkÞ; ð65Þ
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respectively. Here, primes indicate derivatives with respect
to u.
Applying induction with respect to n in Eq. (65), we

easily conclude that γnðuÞ is a polynomial in u of degree at
most nN (in particular, γ1 is a polynomial of degree N).
Therefore, we have proved the existence of a psi-series
expansion of the form

hðφÞ ¼ eφ

b

�
1þ

X∞
n¼1

b2nγnðe−αφÞe−2nφ
�
: ð66Þ

For example, we get the following explicit relations for
α > 0:

γ1ðuÞ ¼
1

2α
u−2=α

Z
u

0

s2=α−1wðsÞds; ð67Þ

γ2ðuÞ ¼ −
1

4α2
u−4=α

Z
u

0

s2=α−11 wðs1Þ

×

�Z
s1

0

s2=α−12 wðs2Þds2
�
ds1

þ 1

8α
u−4=α

Z
u

0

s4=α−11 wðs1Þ2ds1; ð68Þ

For α < 0, the same expressions hold with the lower limits
of the integrals substituted by ∞.

1. The Starobinsky model

The potential function of the Starobinsky model is
given by

vðφÞ ¼ λð1 − e−αφÞ2; α > −1: ð69Þ

Then the corresponding Eq. (64) reduces to

αuγ01 þ 2γ1 ¼
λ

2
ð1 − uÞ2; ð70Þ

and the first two equations [Eq. (65)] are

αuγ02 þ 4γ2 ¼
ðαuÞ2
2

ðγ01Þ2 þ αuγ1γ01;

αuγ03 þ 6γ3 ¼ ðαuÞ2γ01γ02 þ 3αuγ01γ2 þ αuγ1γ02 þ 2γ1γ2:

Therefore, the first polynomial coefficients of the expan-
sion in Eq. (56) turn out to be given by

γ1ðuÞ
λ

¼ u2

4ðαþ 1Þ−
u

αþ 2
þ 1

4
;

γ2ðuÞ
λ2

¼ αu4

32ðαþ 1Þ2−
αð2αþ 3Þu3

4ðαþ 1Þðαþ 2Þð3αþ 4Þ

þ αð5αþ 6Þu2
16ðαþ 1Þðαþ 2Þ2−

αu
4ðαþ 2Þðαþ 4Þ ;

γ3ðuÞ
λ3

¼ αð4αþ 1Þu6
384ðαþ 1Þ3 −

αð4αþ 5Þð9α2þ 16αþ 4Þu5
32ðαþ 1Þ2ðαþ 2Þð3αþ 4Þð5αþ 6Þ

þαð162α4þ 739α3þ 1190α2þ 776αþ 160Þu4
128ðαþ 1Þ2ðαþ 2Þ2ð2αþ 3Þð3αþ 4Þ

−
αð42α4þ 301α3þ 674α2þ 584αþ 160Þu3

48ðαþ 1Þðαþ 2Þ3ðαþ 4Þð3αþ 4Þ

þ αð13α2þ 58αþ 40Þu2
64ðαþ 2Þ2ðαþ 3Þðαþ 4Þ−

αu
16ðαþ 4Þðαþ 6Þ :

ð71Þ

D. Logolinear series

Once we have determined the psi series [Eqs. (36), (39),
and (66)] for hðφÞ, then from Eq. (17), a psi series of
logolinear type depending on the variable t [8–11] for the
inflaton field φ and the reduced Hubble parameter h can be
derived. Thus, for polynomial potentials, if we insert
Eq. (39) into Eq. (17), we get

_φ ¼ −
eφ

b
−
X∞
n¼1

b2n−1ðγ0nðφÞ − ð2n − 1ÞγnðφÞÞe−ð2n−1Þφ:

ð72Þ

It can be easily checked that Eq. (72) admits a family of
formal psi-series solutions of the form

φðtÞ ¼ −xþ
X∞
n¼1

αnðxÞðt − t�Þ2n; ð73Þ

where

x ≔ log

�
t − t�

b

�
; ð74Þ

and αnðxÞ can be recursively determined as polynomials
in x. Next, we sketch the main ideas of the proof. First, we
introduce the polynomials θnðφÞ and their coefficients θn;j,
j ¼ 0;…; nd through

θnðφÞ ≔ γ0nðφÞ − ð2n − 1ÞγnðφÞ ¼
Xnd
j¼0

θn;jφ
j;
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and then we rewrite Eq. (72) as

_φ ¼ −
eφ

b
−
X∞
n¼1

Xnd
j¼0

θn;jφ
jb2n−1e−ð2n−1Þφ ð75Þ

and substitute Eq. (73) into Eq. (75). For the left-hand side,
we have

_φ ¼ −
1

t − t�
þ
X∞
n¼1

½α0nðxÞ þ 2nαnðxÞ�ðt − t�Þ2n−1: ð76Þ

In order to expand the right-hand side of Eq. (75) in odd
powers of ðt − t�Þ, we introduce the Bell’s polynomials
[35] defined through

exp

�X∞
n¼1

xnzn
�

¼
X∞
n¼0

Cnðx1;…; xnÞzn: ð77Þ

Then we have that

b2n−1e−ð2n−1Þφ ¼ ðt − t�Þ2n−1
X∞
m¼0

CmðAm;nðxÞÞðt − t�Þ2m;

ð78Þ

where we are introducing the vectorial functions

Am;nðxÞ ≔ −ð2n − 1Þðα1ðxÞ;…; αmðxÞÞ:

Thus, by substituting Eqs. (76) and (78) into Eq. (75)
and equating the coefficients of ðt − t�Þ2n−1, we obtain the
equations

α0n þ ð2nþ 1Þαn

¼ αn − CnðAn;0Þ − coeff
�Xn
m¼1

Xmd

j¼0

Xn−m
l¼0

θm;jClðAl;mÞ

×

�
−xþ

Xn−1
k¼1

αkτ
2k

�j

; τ2ðn−m−lÞ
�
: ð79Þ

The first Eq. (79) takes the form

α01 þ 3α1 ¼ −θ1ð−xÞ;

so that α1 can be determined as a polynomial of degree d.
Then, since Eq. (79) is an ordinary linear differential
equation for αn with nonhomogeneous terms depending
only on α1;…; αn−1, using induction in n, it follows that the
coefficients αnðxÞ can be recursively determined as poly-
nomials of degree at most nd. For instance, Eq. (79) for
n ¼ 2 is

α2
0 þ 5α2 ¼ −

α1ðxÞ2
2

þ α1ðxÞ½θ1ð−xÞ− θ1
0ð−xÞ�− θ2ð−xÞ:

Furthermore, by substituting Eq. (73) into Eq. (39), we find
an expansion

hðtÞ ¼ 1

t − t�
þ
X∞
n¼1

βnðxÞðt − t�Þ2n−1; ð80Þ

where βnðxÞ are polynomials in x that can be written in
terms of αk, γk, k ¼ 1;…; n. For example, we have that

β1ðxÞ¼α1ðxÞþγ1ð−xÞ;

β2ðxÞ¼α2ðxÞþ
α1ðxÞ2

2
þα1ðxÞ½γ01ð−xÞ−γ1ð−xÞ�þγ2ð−xÞ:

The psi series in Eqs. (73) and (80) are the logolinear
expansions derived in Ref. [10] for inflaton models with
polynomial potentials in a flat universe.
Analogously, for the Starobinsky potentials [Eq. (5)], the

replacement of Eq. (66) into Eq. (17) leads us to

_φ ¼ −
eφ

b
þ
X∞
n¼1

b2n−1ðαe−αφγ0nðe−αφÞ

þ ð2n − 1Þγnðe−αφÞÞe−ð2n−1Þφ: ð81Þ

It can be proved that Eq. (81) admits a family of psi-series
solutions of the form

φðtÞ ¼ − log

�
t − t�

b

�
þ
X∞
n¼1

αnðσÞðt − t�Þ2n; ð82Þ

where

σ ≔
�
t − t�

b

�
α

; ð83Þ

and αnðσÞ can be recursively determined as polynomials
in σ. We outline the main ideas of the proof. By intro-
ducing the polynomials θnðuÞ and their coefficients θn;j,
j ¼ 0;…; nN through

θnðuÞ ≔ αuγ0nðuÞ þ ð2n − 1ÞγnðuÞ ¼
XnN
j¼0

θn;juj;

the Eq. (81) takes the form

_φ ¼ −
eφ

b
þ
X∞
n¼1

θn;jb2n−1e−ð2n−1þjαÞφ: ð84Þ

The left-hand side of Eq. (84) is expanded in odd powers
of ðt − t�Þ as
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_φ¼ −
1

t− t�
þ
X∞
n¼1

ðασα0nðσÞ þ 2nαnðσÞÞðt− t�Þ2n−1: ð85Þ

By using the Bell polynomials [Eq. (77)], we can also
expand the terms in the series of the right-hand side of
Eq. (84) as

b2n−1e−ð2n−1þjαÞφ

¼ ðt − t�Þ2n−1σj
X∞
m¼0

CmðAm;n;jðσÞÞðt − t�Þ2m; ð86Þ

where the vectorial polynomials Am;n;j have been defined as

Am;n;jðσÞ ≔ −ðαjþ 2n − 1Þðα1ðσÞ;…; αnðσÞÞ:

Thus, by substituting Eqs. (85) and (86) into Eq. (84), taking
into account that as α is an irrational number, the powers
of σ and the powers of ðt − t�Þ are linearly independent, then
equating the coefficients of ðt − t�Þ2n−1 in both sides of the
equations, we obtain that αn satisfies the differential equation

aσα0nþð2nþ1Þαn

¼ αn−CnðAn;0;0Þþ
X

kþm¼n;k≥1;m≥0

XkN
j¼0

θk;jσ
jCmðAm;k;jðσÞÞ:

ð87Þ

As the right-hand side of Eq. (87) depends only on αj,
j ¼ 1;…; n − 1, this equation shows that the coefficients
αnðσÞ can be recursively obtained as polynomials of degree
at most nN. Thus, for instance, we have that the first two
equations [Eq. (87)] are

ασα01 þ 3α1 ¼ θ1ðσÞ;

ασα02 þ 5α2 ¼ −
α21ðσÞ
2

− α1ðσÞ½ασθ01ðσÞ þ θ1ðσÞ� þ θ2ðσÞ:

Furthermore, the replacement of Eq. (82) into Eq. (66)
provides us with the formal psi series for the reduced Hubble
parameter,

hðtÞ ¼ 1

t − t�
þ
X∞
n¼1

βnðσÞðt − t�Þ2n−1; ð88Þ

where βnðσÞ are polynomials in σ that can be determined
in terms of αk, γk, k ¼ 1;…; n. Thus, for example, we
have that

β1ðσÞ ¼ α1ðσÞ þ γ1ðσÞ;

β2ðσÞ ¼ α2ðσÞ þ
α1ðσÞ2

2
þ γ2ðσÞ− ½ασγ01ðσÞ þ γ1ðσÞ�α1ðσÞ:

We notice that for the Starobinsky model [Eq. (69)], the
psi series [Eqs. (82) and (88)] correspond to the logolinear
expansions for the inflaton model determined in Ref. [10]
for a flat universe, λ ¼ Λ4 and α ¼ � 2

3
.

The determination of logolinear series for the general
class of polynomial exponential potentials [Eq. (4)] is more
involved, and together with the logolinear series for some
generalizations of the class of Starobinsky potentials
[Eq. (5)], will be the subject of a future work.

IV. APPLICATIONS

Many analytical calculations for inflation models assume
the slow-roll approximation of Eqs. (1) and (2):

H2 ∼
1

3m2
Pl

V; _ϕ ∼ −
1

3H
dV
dϕ

; ð89Þ

which in terms of the reduced Hubble function hðφÞ can be
expressed as

h ∼
ffiffiffi
v

p
; h0 ∼ ð ffiffiffi

v
p Þ0: ð90Þ

However, for calculations involving contributions of
the KD period, it is more appropriate to use truncations
of psi series.

A. The inflation region

From Eq. (20), it follows that we may estimate the value
φclassðbÞ of the inflaton field at the beginning of the
classical period as a function of b by means of the equation

hðφclass; bÞ ¼ hp ¼ 1

8π
: ð91Þ

In particular, since the approximation in Eq. (27) is model
independent, we obtain the general estimation

φclass ≈ log

�
b
8π

�
: ð92Þ

A standard procedure [6,7] to calculate the boundary
values φin and φend of the inflation period proceeds as
follows: we first determine φend by imposing ϵV ¼ 1, where

ϵV ¼ m2
Pl

2

�
Vϕ

V

�
2

ð93Þ

is the potential slow-roll parameter. It leads to the equation
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v0ðφendÞ ¼
2ffiffiffi
3

p vðφendÞ: ð94Þ

Then φin is calculated by using the slow-roll approximation
during the whole period of inflation and by adjusting the
amount of inflation

N ≈
1

3

Z
φin

φend

ffiffiffiffiffiffiffiffiffiffi
vðφÞp

ð ffiffiffiffiffiffiffiffiffiffi
vðφÞp Þ0 dφ ð95Þ

to N ∼ 60. This method leads to the same inflation period
for all the solutions of the inflaton model, since Eqs. (94)
and (95) depend only on the potential vðφÞ. Nevertheless,
in general, the inflation period depends on the solution
used, since each solution has a different kinetically domi-
nated fraction of its inflation region.
In order to include the effect of the KD part of the

inflation period, we may proceed as follows. We first
calculate the function φinðbÞ by means of the Eq. (25):

hðφin; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vðφinÞ

2

r
; ð96Þ

where h is approximated by a truncation with a given
number nþ 1 of terms of the psi series [Eq. (36), (39), or
(66)] corresponding to the model. Then, to calculate NðbÞ,
we look for a value φ�ðbÞ such that the KD approximation
holds for the interval φ ∈ ðφ�ðbÞ;φinðbÞÞ, while the slow-
roll approximation holds for the remaining part of the
inflation period. Thus, we estimate the amount of inflation
NðbÞ for the psi series corresponding to b by

NðbÞ ≈ 1

3

Z
φ�ðbÞ

φend

ffiffiffiffiffiffiffiffiffiffi
vðφÞp

ð ffiffiffiffiffiffiffiffiffiffi
vðφÞp Þ0 dφþ 1

3

Z
φinðbÞ

φ�ðbÞ

hðφ; bÞ
hφðφ; bÞ

dφ:

ð97Þ

The point now is how to get an appropriate value for φ�ðbÞ.
To this end, we observe that the KD approximation means
that h0 ∼ h and h ≫

ffiffiffi
v

p
, and that it does not hold as h0ðφÞ

gets close to zero. Thus, from Eq. (16) we have that the
truncated psi series cannot provide a good approximation
when hφðφ; bÞ2 becomes small. Consequently, we take
φðnÞðbÞ [φðnÞðbÞ < φinðbÞ] as the local minimum of
hφðφ; bÞ2 closest to φinðbÞ. Numerical evidence shows
that the KD approximation is not acceptable for φ very
close to φðnÞðbÞ, so then φ�ðbÞ must be strictly larger than
φðnÞðbÞ. In order to introduce this correction, we use for
φ�ðbÞ an expression of the form

φ�ðbÞ ¼ αφðnÞðbÞ þ βφinðbÞ;

with two real positive parameters α and β such that
αþ β ¼ 1. For example, we have taken α ¼ 0.9 and
β ¼ 0.1 in the examples of Figs. 3–7.
The approximation (97) can be used to select the

appropriate value of the parameter b, and consequently
the initial conditions, corresponding to a solution of
Eq. (16) with a previously fixed value of NðbÞ.
Figures 3 and 4 show the application of this method to

the quadratic model vðφÞ ¼ m2φ2. We use the truncated psi
series with seven terms. It is worthy to point out that
very good approximations are also obtained when fewer
terms—four, five, or six—are used. We illustrate this fact in
Fig. 3 (right), where we use also truncated series with four,

2 107 4 10 7 6 10 7 8 107 108
mb

in

end

KD approximation

SR approximation

2 107 4 107 6 107 8 107 108
mb

N

45

50

55

60

65

70

5

10

15

20

FIG. 3. The left figure shows the lines φinðbÞ (black line), φ�ðbÞ (blue line), and φend (red line) for the quadratic model vðφÞ ¼ m2φ2.
It also shows the regions in the ðmb;φÞ plane corresponding to the KD approximation (gray region) and the SR approximation (blue
region). The right figure shows the amount of inflation NðbÞ corresponding to the approximations with 4 (brown line), 5 (green line),
6 (red line) and 7 (black line) terms in the truncated series [Eq. (39)] provided by Eq. (97). The lines are almost completely overlapped,
which shows that a very good approximation is obtained with only a few terms of the truncated series. The blue dots indicate the values
N ¼ 50, 60, and 70.
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five, or six terms. It means that the KD approximation is
rather reliable.

In particular, for NðbÞ ¼ 60, we obtain b60 ¼ b̂60
m , b̂60≈

1.79104 × 107. In Fig. 4, we plot the numerical solution
hðφÞ of Eq. (16) with initial conditions φ0 ¼ 22,
h0 ¼ hðφ0; b60Þ. Numerical computation of the amount
of inflation for this solution leads to Nnum ≈ 60.86. This
figure shows how the KD approximation fits accurately the
numerical approximation for φ ∈ ðφ�ðbÞ;φinðbÞÞ.
We may also consider φin as a function of N, and

compare it with the SR approximation for φin, which
derives from Eq. (95)—i.e.,

φ̃inðNÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6N

p
: ð98Þ

Figure 5 shows the graphs of both approximations to
φinðNÞ. It can be observed that the result of taking into
account the effect of the KD stage leads to greater values
of φinðNÞ.
We apply the same scheme to the Starobinsky model

vðφÞ ¼ λð1 − e−
φffiffi
3

p Þ2, and exhibit the corresponding graph-
ics in Figs. 6 and 7. We use the truncated psi series with
seven terms, although we exhibit also in Fig. 6 (right) how
the difference with the results corresponding to truncated

series with four, five, or six terms is almost imperceptible.
In this case, a solution with NðbÞ ¼ 60 corresponds to a
value b60 ¼ b̂60=

ffiffiffi
λ

p
, b̂60 ≈ 2649.03, and the numerical

solution with initial condition φ0 ¼ 12, h0 ¼ hðφ0; b60Þ
gives the number of e-folds, NnumðbÞ ≈ 59.5. Figure 7
shows how the KD approximation fits accurately the
numerical approximation for φ ∈ ðφ�ðbÞ;φinðbÞÞ.

B. The KD period and the Mukhanov-Sasaki equation

As was shown in Refs. [9–11], truncations of logolinear
series expansions involving powers of t − t� and logðt − t�Þ
are useful to determine the effect of the KD period on the
power spectrum of the primordial curvature and tensor
perturbations. These perturbations are characterized by the
Mukhanov-Sasaki equation [29]�
d2

dη2
þ k2 −WαðηÞ

�
Sαðk; ηÞ ¼ 0; α ¼ R; T; ð99Þ

where the potential WαðηÞ felt by the perturbations is

WαðηÞ ¼
(

Zηη

Z for curvature perturbations;
aηη
a for tensor perturbations:

ð100Þ

Here Z ¼ a _ϕ=H, and η is the conformal time defined, up to
a constant, by dt ¼ adη.
We now apply the psi series depending on φ obtained

above and several of their consequences to determine
approximate expressions for the potentials WαðηÞ.

1. Polynomial-exponential potentials

For models with a potential vðφÞ of the form in Eq. (4),
we consider the two-term approximation

hðφÞ ≈ eφ
�
1

b
þ h2ðφÞe−2φ

�
ð101Þ

of the psi series in Eq. (36). The polynomial coefficient
h2ðφÞ satisfies

45 50 55 60 65 70

in

3 6 N

12

14

16

18

20

FIG. 5. The black line shows φin as a function ofN, where φin is
obtained from Eq. (96) and N from the formula in Eq. (97), which
takes into account the contributions of both the KD stage and the
SR stage. The blue line shows φin as a function of N as given by
the SR approximation [Eq. (98)].

h

m
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FIG. 4. The green line shows the rescaled numerical solution
h=m ¼ hðφÞ=m of Eq. (16) with initial conditions ½φ0 ¼
22; h0 ¼ hðφ0; b60Þ ≈ 200.79 m� for the quadratic model
vðφÞ ¼ m2φ2. The black line shows the KD approximation.
The region between blue and red dotted lines is the inflation
region. The gray dots correspond (from right to left) to φin, φ�,
and φend. We notice that the black line (KD approximation)
overlaps the green line (numerical approximation) for
φ ∈ ðφ�;φinÞ, while the red dashed line (SR approximation)
overlaps the green line for φ ∈ ðφend;φ�Þ.
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h02 − 2h2 ¼ −
b
2
v0 ð102Þ

so that it is given by

h2ðφÞ ¼
b
2
e2φ

Z þ∞

φ
v0ðxÞe−2xdx: ð103Þ

We show below several psi series of the form

fðφÞ ¼ eαφ
�
β þ

X∞
n¼2

fnðφÞe−nφ
�
; ð104Þ

with polynomial coefficients fnðφÞ, which are conse-
quences of Eq. (36) and are required for our calculations:
(1) The scale factor admits the expansion

aðφÞ ¼ ce−
φ
3

�
1þ

X∞
n¼2

anðφÞe−nφ
�
; ð105Þ

where c is an arbitrary nonzero positive constant and

a2ðφÞ ¼
b
3
h2ðφÞ: ð106Þ

(2) The conformal time η, considered as a function of φ,
satisfies the differential equation

dη
dφ

¼ −
1

ah0
; ð107Þ

and then it can be expanded as a psi series

ηðφÞ ¼ e−
2φ
3

c

�
3

2
bþ

X∞
n¼2

ηnðφÞe−nφ
�
; ð108Þ
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FIG. 6. The left figure shows the lines φinðbÞ (black line), φ�ðbÞ (blue line), and φend (red line), as well as the regions in the ð ffiffiffi
λ

p
b;φÞ

plane corresponding to the KD approximation (gray region) and the SR approximation (blue region) for the Starobinsky model
vðφÞ ¼ λð1 − e−

φffiffi
3

p Þ2. The right figure shows the amount of inflation NðbÞ determined by the approximations [Eq. (97)] with 4 (brown
line), 5 (green line), 6 (red line), and 7 (black line) terms in the truncated series [Eq. (66)] provided by Eq. (97). The lines are almost
completely overlapped, which shows that a very good approximation is obtained with only a few terms in the truncated series. The blue
dots correspond to N ¼ 50, 60, and 70.
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FIG. 7. The green line shows the numerical solution h=
ffiffiffi
λ

p ¼
hðφÞ= ffiffiffi

λ
p

of Eq. (16) with initial conditions ½φ0 ¼ 12;
h0 ¼ hðφ0; b60Þ ≈ 61.4435

ffiffiffi
λ

p � for the Starobinsky model

vðφÞ ¼ λð1 − e−
φffiffi
3

p Þ2. The black line shows the KD approxima-
tion. The region between the blue and red dotted lines is the
inflation region. The gray dots correspond (from right to left) to
φin, φ�, and φend. It has to be noticed that the black line (KD
approximation) overlaps the green line (numerical approxima-
tion) for φ ∈ ðφ�;φinÞ, while the red dashed line (SR approxi-
mation) overlaps the green line for φ ∈ ðφend;φ�Þ.
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with

η2ðφÞ ¼ b2e
8
3
φ

Z
φ

∞

�
h02ðxÞ −

2

3
h2ðxÞ

�
e−

8
3
xdx:

ð109Þ

(3) The Hubble radius 1=aH ¼ 3=ah can be expanded
as

1

aH
¼ 3b

c
e−

2
3
φ

�
1þ

X∞
n¼2

rnðφÞe−nφ
�
; ð110Þ

where

r2ðφÞ ¼ −
4b
3
h2ðφÞ: ð111Þ

(4) The function Z ¼ a _ϕ=H is proportional to zðφÞ≡
−ah0=h, which has the psi-series expansion

zðφÞ ¼ −ce−
φ
3

�
1þ

X∞
n¼2

znðφÞe−nφ
�
; ð112Þ

where

z2ðφÞ ¼ b

�
h02ðφÞ −

5

3
h2ðφÞ

�
: ð113Þ

Let us now consider the potentials WαðηÞ [Eq. (100)].
From Eq. (108), we get the following approximation
for φðηÞ:

φ ≈ −
3

2
log

�
2c
3b

η

�
: ð114Þ

Inserting this result into Eq. (108), we get an approximation
with two terms for φðηÞ given by

φ ≈ −
3

2
log

�
2c
3b

η

�
þ 1

b

�
2c
3b

η

�
3

η2

�
−
3

2
log

�
2c
3b

η

��
:

ð115Þ

Then, using Eq. (112), we obtain the two-term approxi-
mation

zðηÞ ≈ −c
�
2c
3b

η

�
1=2

ð1þ z̃2ðlog ηÞη3Þ; η → 0; ð116Þ

where

z̃2ðlog ηÞ≡
�
2c
3b

�
3
�
z2

�
−
3

2
log

�
2c
3b

η

��

−
1

3b
η2

�
−
3

2
log

�
2c
3b

η

���
: ð117Þ

Thus, we get that

WRðηÞ ¼
zηη
z

≈
1

η2

�
−
1

4
þ η3ðz̃002ðlog ηÞ þ 6z̃02ðlog ηÞ þ 9z̃2ðlog ηÞÞ

�
; η → 0: ð118Þ

A completely similar calculation starting from Eqs. (105) and (106) leads to

WTðηÞ ≈
1

η2

�
−
1

4
þ η3ðã002ðlog ηÞ þ 6ã02ðlog ηÞ þ 9ã2ðlog ηÞÞ

�
; η → 0; ð119Þ

with

ã2ðlog ηÞ≡
�
2c
3b

�
3
�
a2

�
−
3

2
log

�
2c
3b

η

��
−

1

3b
η2

�
−
3

2
log

�
2c
3b

η

���
: ð120Þ

For example, for the quadratic model in Eq. (48), from Eqs. (49), (106), (109), (113), and (117)–(120) we obtain

WRðηÞ ≈ −
1

4η2
−
m2c3

198b
η

�
131þ 756 log

�
2c
3b

η

�
þ 504 log

�
2c
3b

η

�
2
�
;

WTðηÞ ≈ −
1

4η2
þm2c3

64b
η

�
−1þ 4 log

�
2c
3b

η

�
þ 24 log

�
2c
3b

η

�
2
�
: ð121Þ

These potentials are plotted in Fig. 8, where b ¼ b60 is the value obtained in Sec. IVA for the quadratic model and c is taken
such that aðφinÞ ¼ 1.
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2. Starobinsky potentials

For models with a potential vðφÞ of the form in Eq. (5),
we consider the psi series in Eq. (66) for hðφÞ and its
truncation to two terms:

hðφÞ ≈ eφ

b
ð1þ b2γ1ðe−αφÞe−2φÞ; ð122Þ

where γ1 is given by Eq. (67) for α > 0 and by setting the
lower integration index as ∞ for α ∈ ð− 2

N ; 0Þ. From
Eq. (66), we derive the psi series which follow:
(1) The scale factor

aðφÞ ¼ ce−
φ
3

�
1þ

X∞
n¼1

b2nanðuÞe−2nφ
�
; ð123Þ

with anðuÞ being polynomials in u. In particular,

a1ðuÞ ¼
1

3
γ1ðuÞ: ð124Þ

(2) The conformal time

ηðφÞ ¼ 3b
2c

e−
2φ
3

�
1þ

X∞
n¼1

b2nηnðuÞe−2nφ
�
; ð125Þ

where ηnðuÞ are polynomials in u. For example, we
have that

η1ðuÞ ¼

8>><
>>:

2
3

R
u
0

�
γ01ðμÞ þ 2

3αμ γ1ðμÞ
�
ðμuÞ

8
3αdμ; α > 0;

− 2
3

R∞
u

�
γ01ðμÞ þ 2

3αμ γ1ðμÞ
�
ðμuÞ

8
3αdμ; α ∈ ð− 2

N ; 0Þ:
ð126Þ

(3) The Hubble radius

1

aH
¼ 3b

c
e−

2φ
3

�
1þ

X∞
n¼1

b2nrnðuÞe−2nφ
�
; ð127Þ

where rnðuÞ are polynomials in u. For instance,

r1ðuÞ ¼ −
4

3
γ1ðuÞ: ð128Þ

(4) The variable zðφÞ≡ −ah0=h

zðφÞ ¼ −ce−
φ
3

�
1þ

X∞
n¼1

b2nznðuÞe−2nφ
�
; ð129Þ

with znðuÞ being polynomials in u. In particular,

z1ðuÞ ¼ −
�
αuγ01ðuÞ þ

5

3
γ1ðuÞ

�
: ð130Þ
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FIG. 8. Potentials WRðηÞ (left) and WTðηÞ (right) for the quadratic model vðφÞ ¼ m2φ2. The black lines show the numerical
approximations, while the blue lines show the psi-series approximation [Eq. (121)]. Here we have used the rescaled variables
mη, mm−2WR, m−2WT , the value b ¼ b60 ¼ b̂60=m, b̂60 ≈ 1.79104 × 107 obtained in Sec. IVA for the quadratic model, and c is such
that aðφinÞ ¼ 1. We have taken a value ηðt�Þ ¼ 0 of the conformal time in agreement with Eq. (108).
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From Eq. (125), we can derive the approximation

φ ≈ −
3

2
log

�
2cη
3b

�
þ 3b2

2

�
2cη
3b

�
3

η1

��
2cη
3b

�3α
2

�
: ð131Þ

By substituting Eq. (131) into Eq. (129), it is found that

zðηÞ ≈ −c
�
2c
3b

�1
2

η
1
2½1þ η3z̃1ðηαÞ�; ð132Þ

where

z̃1ðηαÞ ¼
8c3

27b

�
z1

��
2cη
3b

�3α
2

�
−
1

2
η1

��
2cη
3b

�3α
2

��
: ð133Þ

Similarly, from Eqs. (123), (124), and (131), we
have that

aðηÞ ≈ c
�
2c
3b

�1
2

η
1
2½1þ η3ã1ðηαÞ�; ð134Þ

with

ã1ðηαÞ¼
8c3

27b

�
1

3
γ1

��
2cη
3b

�3α
2

�
−
1

2
η1

��
2cη
3b

�3α
2

��
: ð135Þ

Thus, Eq. (132) leads to

WRðηÞ ≈
1

η2

�
−
1

4
þ η3ðα2η2αz̃001ðηαÞ þ αðαþ 6Þηαz̃01ðηαÞ þ 9z̃1ðηαÞÞ

�
; η → 0: ð136Þ

Analogously, from Eq. (134) one gets

WTðηÞ ≈
1

η2

�
−
1

4
þ η3ðα2η2αã001ðηαÞ þ αðαþ 6Þηαã01ðηαÞ þ 9ã1ðηαÞÞ

�
; η → 0: ð137Þ

For example, for the Starobinsky model [Eq. (69)], from the first equation of Eq. (71), and Eqs. (124), (126), (130), (133),
and (135)–(137), it is found that

WRðηÞ ≈ −
1

4η2
−
λc3

3b
η

�
2ðαþ 1Þð6α2 þ 14αþ 7Þ

3αþ 4

�
2cη
3b

�
3α

−
2ðαþ 2Þð3α2 þ 14αþ 14Þ

3αþ 8

�
2cη
3b

�3α
2 þ 7

2

�
;

WTðηÞ ≈ −
1

4η2
þ λc3

3b
η

�
2ðαþ 1Þ
3αþ 4

�
2cη
3b

�
3α

−
4ðαþ 2Þ
3αþ 8

�
2cη
3b

�3α
2 þ 1

2

�
: ð138Þ
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FIG. 9. Potentials WRðηÞ (left) and WTðηÞ (right) for the Starobinsky potential vðφÞ ¼ λð1 − e−
φffiffi
3

p Þ2. The black lines show the
numerical approximations, while the blue lines show the psi-series approximation [Eq. (138)]. Here we have used the rescaled variablesffiffiffi
λ

p
η, λ−1WR, λ−1WT , and the value b ¼ b̂60=

ffiffiffi
λ

p
, b̂60 ≈ 2649.03 obtained in Sec. IVA; c is taken so that aðφinÞ ¼ 1 and ηðt�Þ ¼ 0 in

agreement with Eq. (125).
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The potentials (138) are plotted in Fig. 9, where α ¼ 1ffiffi
3

p ,
b ¼ b60 is the value obtained in Sec. IV A for the
Starobinsky potential and c is taken such that aðφinÞ ¼ 1.
We notice that, as was found in Ref. [11], the common

dominant term near the singularity η ¼ 0 of the potentials
(118), (119), (136), and (137) coincides with the critical
central singular attractive potential, allowing the fall to the
center of a quantum particle.
Finally, we point out that we may also use our psi series

in the variable φ starting from the Mukhanov-Sasaki
equation (99) with the potentialWα expressed as a function
of φ. However, as is shown in Eq. (2.27) of Ref. [11], the
function WαðφÞ is rather involved, so we do not find any
advantage in using our psi series in that way.

V. CONCLUSIONS

In this paper, we have developed a method to determine
psi-series formal solutions of single-field inflation models
[Eqs. (1) and (2)] during the kinetic dominance period. The
scheme is based on the Hamilton-Jacobi formalism of
inflaton models [28–30] and provides psi series depending
on the inflaton field. The method has been applied to
models with polynomial-exponential potential functions
[Eq. (4)] (two particularly important examples are the

quadratic potential [Eq. (48)] and the Higgs potential
[Eq. (51)]) and to models with generalized Starobinsky
potential functions Eq. (5) (including the standard
Starobinsky potential [Eq. (69)]). We have also proved
that there exist psi series near the singularity for several
physically relevant quantities such as the scale factor, the
conformal time, and the Hubble radius. The explicit form of
the first two terms of these expansions has been given.
We have found that truncations of these psi series can be

used to determine the value of the inflaton field at the initial
moment of the inflation period, and to include the effect of
the KD period to estimate the amount of inflation.
Furthermore, we have shown that psi series can be applied
to determine explicit corrections depending on the inflaton
field to the dominant term of the potentials of the Mukanov-
Sasaki equation for both curvature and tensor perturbations.
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