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Single-field inflaton models in the kinetic dominance period admit formal solutions given by generalized
asymptotic expansions called psi series. We present a method for computing psi series for the Hubble
parameter as a function of the inflaton field in the Hamilton-Jacobi formulation of inflaton models. Similar
psi series for the scale factor, the conformal time, and the Hubble radius are also derived. They are applied
to determine the value of the inflaton field when the inflation period starts and to estimate the contribution
of the kinetic dominance period to calculate the duration of inflation. These psi series are also used to obtain
explicit two-term truncated psi series near the singularity for the potentials of the Mukhanov-Sasaki
equation for curvature and tensor perturbations. The method is illustrated with wide families of inflaton
models determined by potential functions combining polynomial and exponential functions, as well as with

generalized Starobinsky models.
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I. INTRODUCTION

The theory of inflationary cosmology provides a frame-
work to study the early Universe [1-3] which solves several
central problems of the hot big bang model. In the present
work, we consider single-field inflaton models formulated
in terms of a time-dependent real field ¢(¢) in a spatially
flat universe [4-7]. For a homogeneous, spatially flat
Friedman-Lemaitre-Robertson-Walker (FLRW) spacetime
with scale factor a(r), these models are described by the
nonlinear ordinary second-order differential equation

. . dv
¢+3H¢+55w>=a (1)

where H = a/a is the Hubble parameter, which is related
to the inflaton field by

m—J—G#+W@) 2)

3m%,1
Here V =V(¢) is a given potential function, mp =
\/hc/8xG is the Planck mass, and dots indicate derivatives

with respect to the cosmic time ¢.
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We concentrate on the kinetic dominance (KD) period
[8—10] of inflaton models, when the kinetic energy of the
inflaton field dominates over its potential energy:

P> V(). (3)

It is a noninflationary or preinflationary stage that is
followed by a short fast-roll inflation phase [11] and
afterwards by the traditional slow-roll inflation stage
[5,12-19]. Recently, Handley et al. [9,10,20-22] have
shown the relevance of the KD period [Eq. (3)] for setting
initial conditions. In fact, as they prove in Ref. [9], under
mild conditions on the potential V, all solutions (except
perhaps a single one) evolve from a KD region. Our study is
devoted to the asymptotic series solutions of the inflaton
equations for the KD period and their applications.

The solutions of Eq. (1) manifest generically branch
point singularities of logarithmic type. This is the same type
of singularity exhibited by the solutions of the Lorentz
system [23], and their presence is associated with the so-
called psi-series [24] asymptotic solutions of ordinary
differential equations. Alternative different psi series con-
taining terms with irrational or even complex exponents
were found in the Hénon-Heiles system [25], the rigid body
problem, the Toda lattice equation, the Duffing oscillator
[26], and the fractional Ginzburg-Landau equation [27].
Logarithmic psi-series solutions of the inflaton equations
[Eq. (1)] have been also considered; see, for instance,
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Refs. [8,9,11]. Recently [10], a general method has been
formulated for computing psi-series expansions for the
solutions of the Eq. (1) and the generalization of Eq. (2) for
FLRW spacetimes with curvature. The method formulates
the inflaton equations as a four-dimensional first-order
system of ordinary differential equations and determines
solutions as series expansions involving powers of ¢ — t*
and log(r — r*). These series are termed logolinear series
in Ref. [10].

In the present work, we propose an alternative method
for determining formal asymptotic solutions of Egs. (1) and
(2) expressed as psi series. It uses the Hamilton-Jacobi
formalism of the inflaton models of Refs. [28,29], and [30],
in which the independent variable is the inflaton field
instead of the cosmic time. We generate psi series for
solutions of the Hamilton-Jacobi equations for the Hubble
function as functions of the rescaled inflaton field

Q= \/§¢/mpl. We apply our method to the following

classes of models:

6]

N

(@) = valg)e™™, 4)

n=0

where v,(¢) are polynomials in ¢, and N is a non-
negative integer.

(2) Models with generalized Starobinsky potential
functions,

o) =) v, (5)

n=0

where « is any irrational number and v,, are constant
coefficients.
In Egs. (4) and (5), v(¢p) stands for the rescaled poten-
tial v(p) = 3V(¢)/m}.

The paper is organized as follows: In Sec. II, we briefly
introduce the Hamilton-Jacobi formalism of inflation mod-
els. Section III describes our method for determining psi
series for the inflaton models with potential functions (4)
and (5). For the case of Eq. (4), we determine a one-
parameter family of logarithmic psi-series solutions in the
variable u := ¢™? with polynomial coefficients depending
on ¢, which could be termed expolinear series. In par-
ticular, the models with polynomial potentials (N = 0)
exhibit several interesting symmetry properties, which are
analyzed in detail. As illustrative explicit examples we
apply the method to the quadratic potential v(¢) = m’¢?
and to the Higgs potential v(p) = ¢*(¢* — 4%)%. For the
models with potential functions [Eq. (5)], we characterize a
one-parameter family of psi-series solutions of nonlogar-
ithmic type in the variable u := ¢~% with coefficients which
are polynomials in e™*”. Furthermore, a simple limit

operation shows that the results also apply to rational
exponents a. In particular, we apply the method to the
Starobinsky potential

o) = 41 = e

and check that our results with a = :I:% coincide with the
results in Ref. [10] for the corresponding inflaton model
with potential

V(g) = AX(1 — e V)2, (6)

At the end of Sec. III, we discuss how to derive from our psi
series in the inflaton field ¢ the logolinear series involving
powers of ¢ — ¢* and log(z — 1*).

Finally, Sec. IV presents several applications of the psi
series obtained in the previous section to calculate ana-
lytical approximations of several relevant quantities of
inflation models and to compare them with the correspond-
ing numerical approximations. Thus, we use the psi series
to determine the value of the inflaton field at the initial
moment of the inflation period. We also provide a formula
for the amount of inflation, which includes the contribution
of the part of the KD period which overlaps the inflation
region. Finally, we consider the potentials of the Mukanov-
Sasaki equation near the singularity for both curvature and
tensor perturbations. It is known [11] that as functions of
the conformal time, the dominant terms of these potentials
coincide with the critical central singular attractive poten-
tial, allowing the fall to the center of a quantum particle.
Then, we use the psi series previously obtained to provide
an explicit two-term truncated psi-series approximation to
these potentials.

II. HAMILTON-JACOBI FORMULATION
OF INFLATON MODELS

From Egs. (1) and (2), it follows that

= - (7)

5.2
2my,

As a consequence, the Hubble parameter H is a positive,
monotonically decreasing function of z. This property
implies that for smooth and positive potential functions
V, the solutions ¢(¢) of Eq. (1) with arbitrary finite initial
data do not have singularities forward in the cosmic time z.
Nevertheless, the function H(z) increases without bound
backwards in time, so that H(z) and ¢(r) may develop
singularities.

The presence of singularities backwards in time can be
expected from the following argument: If the KD condition
[Eq. (3)] holds, then we may neglect V and V, in the
inflaton equations, and from Eq. (1) we have
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. 31 .-
—— ~0. 8
¢+ \A o P19 (8)
Thus, we obtain two families of approximate solutions:
2
¢~ :t\/;mpl log(r—1*) + ¢, ast— ()

where * and ¢, are arbitrary constants. The corresponding
asymptotic form of the Hubble parameters is

30— 1) as t — ()", (10)

These approximate solutions of the inflaton equations are
the dominant terms of the psi-series expansions that we will
consider below.

A. The Hamilton-Jacobi equations

We use the rescaled variables

_ L _3 .
0=\ g @)=z V@), h=3H (1)

and rewrite Eqgs. (1) and (2) as

1
¢+h(p+§v’((p):0 (12)

and
h* = ¢* + v(p). (13)

respectively.

In order to discuss inflaton models in the Hamilton-
Jacobi formalism, we consider a reduced space of initial
conditions (¢, @) € R? for Egs. (12) and (13) such that

»=@p  ¢<0, (14)
where ¢, will be assumed to be a fixed value of ¢ such that
the potential v and its first derivative »' are smooth and
strictly positive for ¢ > ¢y. The map (¢, @) — (¢, h)
enables us to describe the dynamics of Egs. (12) and (13)
on the subset

R= {(ga,h) ER%:p > @y, \/v(p) < h < +oo} (15)

of the (¢, h) plane. The Hamilton-Jacobi formulation of
Egs. (1) and (2) is given by the couple of equations

W (9)* = h(g)* — v(e) (16)

and

i =1(p). (17)

Here, primes denote derivatives with respect to ¢, and the
Hubble function % is assumed to be the positive root

h=(* + v(p))'. (18)

The set R plays the role of the phase space of the formalism.
Each solution & = h(g) of Eq. (16) determines a corre-
sponding implicit solution ¢(7) of Eq. (17) given by

o) dg
= - . 19
/(,;(0) H (o) (19)

From the physical point of view, the early Universe is
assumed to emerge from a state with energy density 3m}%1H
of the same order of the Planck density mj,. Below that
density, the classical inflationary description of the
Universe is not valid. Hence, the only physical constraint
required for the initial data of a classical inflationary
universe is that its energy density 3m3 H should not be
larger than my, or, equivalently, A < m3,, which in Planck
units (G = ¢ = A = 1) means

1
h < h,:= s ~ 0.0398. (20)
b2

B. Inflation and kinetic dominance regions

The inflation period of the Universe evolution is char-
acterized by an accelerated Universe expansion d > 0.
From the identity

d 1 . 2

—=—(V(¢) — "), 21
o= V) =) 1)
it follows that this period is determined by the constraint

@ < V(). (22)

Then it follows at once that the inflation region [Eq. (22)] in
R is characterized by

\/5<h<\/?. (23)

For a successful solution to the horizon and flatness
cosmological problems, it is required that the amount of
inflation during the period of inflation,

(/)end H 1 Pin h
e d - = - d 5 24
¢in ¢ ¢ 3 /(,0 h/ ¢ ( )

be close to N ~ 60 [6,7,31,32]. Thus, given a solution
h = h(p) of Eq. (16), it is important to determine the

N:

end
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values ¢i,, @enq for which inflation starts and ends,
respectively. Due to Eq. (23), both values satisfy

ng) =222 (25)

For instance, in Fig. 1 we plot the reduced Hubble
parameter for the quadratic model v(¢p) = m?¢? together

with the functions \/v(¢) = mg and \/w = \/%mgo.

Figure 2 shows the same solution entering the inflation

region in a KD regime and leaving the inflation region.
The approximate solutions [Eq. (9)] of Eq. (1) corre-

spond to approximate solutions of Eq. (16) of the form

et
h NT as ¢ — :l:OO, (26)

where b is an arbitrary strictly positive parameter. Due to
the symmetry (v(p).h(p). (1)) = (v(=¢).h(=p).—0(1))
of Egs. (16) and (17), without loss of generality we restrict
our analysis to series expansions of solutions of Eq. (16)
such that

e?

h~? as ¢ — +oco. (27)

gokh(%’) /’/
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FIG. 1. Reduced Hubble parameter for the quadratic model
v(@) = m?¢?. The black line shows the rescaled numerical solution
h/m = h(¢)/m of Eq. (16) such that 2(60) = 10° m. The region
between the blue and red dotted lines is the inflation region.

Solutions & = h(¢) of Eq. (16) which have the asymptotic
form of Eq. (27) emerge from the KD region and blow up at
a finite time t = * given by

. _ [ do
"= /fp(O)h’(fﬂ)' 28)

III. PSI SERIES IN THE HAMILTON-JACOBI
FORMULATION

In this section, we determine a one-parameter family
of psi-series formal solutions of Eq. (16) for the models
with polynomial-exponential potentials [Eq. (4)] and
Starobinsky potentials [Eq. (5)].

A. Psi series for polynomial-exponential potentials

Let us consider the differential equation (16) for a
potential v(¢@) of the family in Eq. (4). We look for psi-
series solutions of the form

h(g) ==+ hy(p)e V7, (29)

where the coefficients /,,(¢) are polynomial functions of ¢,
and b is a nonzero positive real parameter.
By substituting Eq. (29) into Eq. (16), we obtain

N

Y (B = nhy)e™ =20 1% "y, (p)e
n=1

n=0

SN

=3 X = = )= (= )
n=2 Ljt+k=n

- hjhk] e~ (129 (30)

Then, identifying the coefficients of ¢ in Eq. (30), we have

that #; must satisfy the equation i} —h; =0, whose
polynomial solution is

hi(g) = 0. (31)

50 55 60

FIG. 2. The left figure shows the solution of Fig. 1 entering the inflation region in a KD regime and approaching the slow-roll regime
(blue dotted line). The right figure shows the same solution leaving the inflation region.
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From Eq. (30) and using Eq. (31), it follows that identifying the coefficients of e forn = 0, 1, ..., N implies the recursion
relation

b .
Hhi = (0 Dz == 0,4 (= G = D), = (k= 1)) = hjh) | (32)
Jk=n+2,jk>2

Furthermore, identifying the coefficients of ¢™ for n > N leads to the recursion relation

b .
My = (n+ 2y = =5 ((h = (j = Dhj)(hy = (k = Dhy) = hjhy). (33)
jk=n+2.j.k>2

The Eqgs. (32) and (33) are nonhomogeneous linear ordinary differential equations with constant coefficients for 4, ,,.
The nonhomogeneous terms depend on the coefficients ; with j = 2, ..., n and on the polynomial coefficients v,(¢) with
n =0, ..., N of the potential function in Eq. (4). Therefore, it follows that the coefficients 4, of the series in Eq. (29) can be
recursively determined as polynomials in ¢. The recursion relations can be formally solved, and they provide us with the
polynomial solutions

e—(n+2)s v, (S)

b 0
hyiar(@) = ze("+2){” /

el [T e ST (1) = (= D)) = (k= Die(s)) = hy(s))ds (34)
¢ Jrk=n+2,j.k>2
forn=0,1,...,N and

hn+z(rp)=§e<”+z)‘” > / " e AR (5) = (= Dby () (i (s) = (k= Di(s)) = hy(s)hi(s))ds ~ (35)
jrk=n42,j,k>2 ¢

for n > N.

In this way, we have proved that the differential
equation (16) for potentials v(¢) of the form in Eq. (4)
admits a (formal) one-parameter family of psi-series
solutions of the form

The first few equations [Eq. (32)] for N > 2 are

b

h/2 —2]12 = —5110,
b

Wy —3h; = —501,

b
hy —4hy = ) (03 + (M) = 2hyh)). (37)

The corresponding solutions [Eq. (34)] are

b )
hy (@) —Eez"’/ vo(s)e 2 ds,
®

b 0
hs (@) —§€3¢/ v, (s)e 3ds,
»

b © b3 ©
hy (o) 2564["/ va(s)e™ds +§e4"’/ vo(s)?e M ds
@ @

b3 0 00
—4e4(”/ e‘z“'lvo(sl)</ e‘z“'zvo(sz)ds2> ds;.
@ S

(38)

B. Polynomial potentials
In the polynomial case of Eq. (4), v(¢) = vo(¢), with

vo(@) being a polynomial of degree d, the family of psi
series [Eq. (36)] reduces to the form

by, (p)e=Cn=Ve - (39)

n=1

h er
() = ?‘F
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where y; is the unique polynomial of degree d which
satisfies the equation

1
}’/1 -2y = —Evov (40)

and the coefficients y,(¢) (n >2) are polynomials of
degree nd — 1, independent of the parameter b, which
can be recursively determined by

7;1+1 - 2(” + 1>7n+1

:_% Yo (- @i=r)r - (2k=1)
Jtk=n+1,jk>1
I (41)

Indeed, if we set n =2m —1 (m > 1) in Eq. (33), we
have that

Ry — (2m+ 1)hyy 4
b .
=—> ). ((W-(-Dh)
Jk=2m11,j k2
X (hy = (k= 1)hy) = hjhy).

Now, taking into account Eq. (31) and applying induction
in m, it is clear that

hypsr =0 for all m > 0. (42)

In order to make explicit the dependence of h(¢) on
the arbitrary parameter b, we introduce the functions
Yu(@) = ho,(9)/b?"~1. Thus, for n = 0, Eq. (32) reduces
to Eq. (40), and Eq. (33) becomes the recursion relation
[Eq. (41)]. We notice that the coefficients y,(¢) are
independent of b. The first few equations [Eq. (41)] are

|
Vr=dn=—5 [(7))* = 2r17})s (43)

Yy —6y3 = =[Y\vh = rivh = 3vir2 + 2riva].  (44)

1
) =[2/475 + () = 2r1vh — 6yarh

— 107173 + 8173 + 83]. (45)

vy —8ys =

In particular, Eqs. (40) and (43) imply the following
explicit relations for general polynomial potentials vy(¢):

1 ©
no) =y [Terutas @
@

[Se]

e 1p(s))%ds;. (47)

1 0 ©
7( Ze“‘/’/ e~ 21y (s, </ e‘zszvo(SQ)ds2>ds1
@ 5
< |
8 ¢

From Eq. (40), we have that y, is a polynomial of the same
degree d as vy(¢p). Consequently, the right-hand side of
Eq. (43) is a polynomial of degree 2d — 1, and so is y,.
Now, since the coefficient of ¥,y on the right-hand side of
Eq. (41) is given by —2(n — 1), which is nonzero for n > 2,
by using induction in n, it follows that for n > 2, the
coefficient y,(¢) is a polynomial in ¢ of degree nd — 1.
Next, we discuss two illustrative examples.

1. The quadratic potential

For the quadratic potential

v(p) = m?¢?, (48)

we have an expansion for 4 of the form of Eq. (39) with y,
satisfying Eq. (40):

Hence, we obtain

m2
o) == + 20 + 2¢?), (49)

so that the first two terms of the psi series of 4 are

e’  bm?
h(p) = ?+T<1 +2¢ +2¢*) e +---. (50)
The coefficients y,, (n > 2) in Eq. (39) are determined by
Eq. (41). For example, we obtain

72(@) = (5 +20¢ + 40¢? + 32¢°),

1024
6

. m
1990656
+ 18504¢° + 7344¢* — 5184¢°).

r3() (703 + 42189 + 126542

2. The Higgs potential

The KD period for the inflaton model with a Higgs
potential

v(p) = ¢*(¢* = 2%)? (51)

has been studied in Ref. [11], where approximate expres-
sions for the inflaton field and the Hubble parameter as
functions of # have been obtained. According to our general
result for models with polynomial potentials, the Higgs

103517-6
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model admits a psi series of the form in Eq. (39). In particular, one easily finds that the first coefficients of this psi series are

given by

2
ri(p) = % [3+ 60 + 69> + 49> + 29" —222(1 + 2¢ + 2¢*) + 24, (52)

4

16384

72(p) =

[26(1024¢ + 768) + A4(~3072¢° — 48644 — 3968¢ — 1760)

+ 22(3072¢° + 7424¢* + 10496¢° + 9408¢> + 4704¢ + 1176)
— (102497 + 3328¢° + 6528¢° + 8928 + 8928¢° + 6696¢> + 3348¢ + 837)]. (53)

C. Starobinsky’s potentials

We now consider the class of potentials of the form in
Eq. (5). It includes as a particular case the Starobinsky
model [1,33,34]

v(@) = A1 — e™)2, (54)

It can be proved [30] that the existence of approximate
solutions [Eq. (27)] of Eq. (16) is only possible if

Na > -2, (55)

so that we will henceforth assume that Eq. (55) is satisfied.
We look for psi-series solutions of Eq. (16) of the form

W) =4 > (e, (56)

where the coefficients £, are polynomials in
u=e . (57)
If we substitute the series in Eq. (56) into Eq. (16), we get

Z (auhl, 4+ nh,)e="=2)¢

= w(u) +Z< > (auh;+ (j = 1)h;)

Jj+k=n
x (auhl, + (k= 1)h;) —h hk) (n=2)e (58)

where

= Z vu". (59)

n=0

Since we assume that « is an irrational number, the
powers of u = e™* and the powers of e” are linearly
independent functions; consequently, the coefficients of
e~ for k > —1 on both sides of Eq. (58) must be equal.
Then, for k = —1 we obtain auh)| + h; = 0, and since £, is
a polynomial in u#, we have that

[
Using Eq. (60) for k = 0, we get

b
auh, + 2h, = Ew(u). (61)

Equation (61) has a polynomial solution of degree N.
Proceeding in the same way, vanishing the coefficients of
e in Eq. (58) with n > 1, we obtain the recurrence
relation

auly, ., + (n+2)h, o

b
P>
JHk=n+2.j.k>2
(k= 1)hy)

(aul} + (= 1)hy)

X (auh), + — hihy). (62)
From Egs. (60)—(62), we conclude that all the coefficients
h,(u) in Eq. (56) are recursively determined by Egs. (61)
and (62) as polynomials in u. Moreover, if we set
n =2m —1 in Eq. (62), then from Eq. (60) and applying
induction in m, it follows immediately that
h2m+150’ m:0,1,2,....
To make explicit the dependence of i(¢) on the arbitrary
parameter b, we introduce the functions

Ya(u) =
Thus, Egs. (61) and (62) reduce to
auy| + 2y, = %W(u) (64)
and

a“)’/nH + 2(” + 1)7n+1

1 .
=5 > ((awyi+ (25 = 1)y))
JHk=n+1,jk>1
x (auy) + (2k = V)yi) = vi70)s (65)

103517-7
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respectively. Here, primes indicate derivatives with respect
to u.

Applying induction with respect to n in Eq. (65), we
easily conclude that y,,(u) is a polynomial in u of degree at
most nN (in particular, y; is a polynomial of degree N).
Therefore, we have proved the existence of a psi-series
expansion of the form

h(p) = %(p <1 + i bz”yn(e‘“‘/’)e‘zn‘/’). (66)

For example, we get the following explicit relations for
a>0:

1 u
— _— ,2/a 2/a—1 d 7
() = o [" sy (o)

1 u _
yau) = =yl A 2/ (s,)

sl
X (/ sg/a_lw(sz)d%)dsl
0

1 u
2 —4/a 4/a-1 24
+ 80:” /0 577 w(sy)*dsy, (68)

For a < 0, the same expressions hold with the lower limits
of the integrals substituted by oo.

1. The Starobinsky model

The potential function of the Starobinsky model is
given by
v(p) = A1 — e )2, a>—1. (69)

Then the corresponding Eq. (64) reduces to
/ A 2
aurl + 2 =5 (1= up, (70

and the first two equations [Eq. (65)] are

au)?
2
auyl + 6y3 = (au)*yiyrh + 3auy ys + auyiyh + 27175.

auyy + 4y, = ( (7})?* 4 auy v,

Therefore, the first polynomial coefficients of the expan-
sion in Eq. (56) turn out to be given by

yi(w) u 1

2 _4(a+1)_a+2+4_1’

va(u)  aut B a(2a+3)u?

2 32a+1)? dla+1)(a+2)(3a+4)
a(Sa+6)u? au
16(a+1)(a+2)? 4(a+2)(a+4)

y3(w) _a(da+u®  a(da+5)(9a +16a+4)u’
2 384(a+ 1) 32(a+1)*(a+2)(3a+4)(5a+6)
a(162a* + 7390 + 1190a% + 7762 + 160)u*
128(a+1)*(a+2)*(2a+3)(3a+4)
B a(42a* +301a® + 6740 + 584a + 160)u?
48(a+1)(a+2)*(a+4)(3a+4)
N a(13a® +58a +40)u*> au
64(a+2)*(a+3)(a+4) 16(a+4)(a+6)
(71)

D. Logolinear series

Once we have determined the psi series [Eqgs. (36), (39),
and (66)] for h(g), then from Eq. (17), a psi series of
logolinear type depending on the variable ¢ [8—11] for the
inflaton field ¢ and the reduced Hubble parameter 4 can be
derived. Thus, for polynomial potentials, if we insert
Eq. (39) into Eq. (17), we get

v= _% - i b (@) = (2n = Dya(g))er=1e.
(72)

It can be easily checked that Eq. (72) admits a family of
formal psi-series solutions of the form

(1) = —x+ Y ay(x)(1 = 1), (73)

where

x = log <t _[)t*) , (74)

and a,(x) can be recursively determined as polynomials
in x. Next, we sketch the main ideas of the proof. First, we
introduce the polynomials 6, (¢) and their coefficients 6, ;,
j=20,..., nd through

nd
0,(9) = 7a(w) = 2n = D)r,(9) = Y _ 0,00,
f=
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and then we rewrite Eq. (72) as

___i:ZHn (pijn 1 —2n 1o (75)

n=1 j=0

and substitute Eq. (73) into Eq. (75). For the left-hand side,
we have

L S+ 2ma, W (76)

n=1

p=-

In order to expand the right-hand side of Eq. (75) in odd
powers of (7—t*), we introduce the Bell’s polynomials
[35] defined through

exp (Z xnz”> = Z C,(x1y.oeyx,)2". (77)
n=1 n=0

Then we have that

(o8]
b2n—1e—(2n—1)(p t*)Zn—l Z Cm (Am ; (l _ t*)Zm’
m=0
(78)
where we are introducing the vectorial functions

—2n=1)(ay(x), ..., @, (x)).

Thus, by substituting Egs. (76) and (78) into Eq. (75)
and equating the coefficients of (t — #*)>"~!, we obtain the
equations

Apn(X) =

a,+ 2n+ 1)a,

= aﬂ - Cn (Any()) - COCff[ am

The first Eq. (79) takes the form

o + 3oy = =0, (—x),

so that a; can be determined as a polynomial of degree d.
Then, since Eq. (79) is an ordinary linear differential
equation for @, with nonhomogeneous terms depending
onlyonay, ..., a,_;, using induction in n, it follows that the
coefficients a,(x) can be recursively determined as poly-
nomials of degree at most nd. For instance, Eq. (79) for
n=21is

al(x)z
2

@' +5a, = - + a1 (x)[01 (=x) = 0y (=x)] = 02 (—x).
Furthermore, by substituting Eq. (73) into Eq. (39), we find

an expansion

2n 1 (80)

where f3,(x) are polynomials in x that can be written in
terms of ai, yi, k =1, ..., n. For example, we have that

Br(x) =a; (x) +71(=x),
Ba()=s(x) + 1, () ()11 (=] 7).

The psi series in Egs. (73) and (80) are the logolinear
expansions derived in Ref. [10] for inflaton models with
polynomial potentials in a flat universe.

Analogously, for the Starobinsky potentials [Eq. (5)], the
replacement of Eq. (66) into Eq. (17) leads us to

[oe]
b2n—l (ae—a(/;yg (e—a(p)
n=1

) e?
60——Z+

+ (2n = Dy, (e=))e~>=No, (81)

It can be proved that Eq. (81) admits a family of psi-series
solutions of the form

#(1) = ~log (’ ‘b’*) 3w (2)

where

(57 ®

and a,(c) can be recursively determined as polynomials
in 0. We outline the main ideas of the proof. By intro-
ducing the polynomials 6, () and their coefficients 6, ;,

j=0,...,nN through
nN
0, (1) = auyy, (u) + 2n = )y, (u) =Y 0, u
j=0
the Eq. (81) takes the form
('p:__+29n]b2n 1 o=(Q2n=1+ja)p_ (84)

The left-hand side of Eq. (84) is expanded in odd powers
of (t—1") as
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! -+ i(aaa;(a) +2na,(c))(t—1 )"l (85)

n=1

By using the Bell polynomials [Eq. (77)], we can also
expand the terms in the series of the right-hand side of
Eq. (84) as

pn—1 e—(2n—1+ja)q)

(=S CulAs(o) (1= 1), (56)
m=0

where the vectorial polynomials A,, ,, ; have been defined as

Ay j(0) =—(aj+2n—1)(a(6),....a,(0)).

Thus, by substituting Eqs. (85) and (86) into Eq. (84), taking
into account that as « is an irrational number, the powers
of o and the powers of (¢ — *) are linearly independent, then
equating the coefficients of (# — ¢*)?"~! in both sides of the
equations, we obtain that e, satisfies the differential equation

acal, + (2n+1)a,
kN

=0, — Cn (An,O.O) + Z

k+m=n,k>1,m>0 j=

(87)

As the right-hand side of Eq. (87) depends only on «;,
j=1,...,n—1, this equation shows that the coefficients
a, (o) can be recursively obtained as polynomials of degree
at most nN. Thus, for instance, we have that the first two
equations [Eq. (87)] are

acd| + 3a; = 6,(0),

ai(o)

2

aods + 5a, = 2% _ 4, (0)[act! (0) + 0,(0)] + 0s(0).

Furthermore, the replacement of Eq. (82) into Eq. (66)
provides us with the formal psi series for the reduced Hubble
parameter,

where f3,(c) are polynomials in ¢ that can be determined
in terms of ay, y;, Kk =1,...,n. Thus, for example, we
have that

ek,jojcm (Am.k,j (6) ) .
0

2
p2(0) = ax(0) + O 1 13(0) ~ a0y (0) + 11 () o).

We notice that for the Starobinsky model [Eq. (69)], the
psi series [Egs. (82) and (88)] correspond to the logolinear
expansions for the inflaton model determined in Ref. [10]
for a flat universe, A = A* and a = j:%.

The determination of logolinear series for the general
class of polynomial exponential potentials [Eq. (4)] is more
involved, and together with the logolinear series for some
generalizations of the class of Starobinsky potentials
[Eqg. (5)], will be the subject of a future work.

IV. APPLICATIONS

Many analytical calculations for inflation models assume
the slow-roll approximation of Eqs. (1) and (2):

1 . 1 dv

HZN—V, ¢N—3—Hd—¢, (89)

2
3mgp,

which in terms of the reduced Hubble function 4(¢) can be
expressed as

h~vo, W~ (V). (90)

However, for calculations involving contributions of
the KD period, it is more appropriate to use truncations
of psi series.

A. The inflation region

From Eq. (20), it follows that we may estimate the value
@etass (D) of the inflaton field at the beginning of the
classical period as a function of b by means of the equation

h(§0class’ b) = hp =3 (91)

In particular, since the approximation in Eq. (27) is model
independent, we obtain the general estimation

b
Jass 1 — . 92
Pclass og (87[) ( )

A standard procedure [6,7] to calculate the boundary
values ¢;, and @.,q of the inflation period proceeds as
follows: we first determine ¢.,q by imposing ¢, = 1, where

m% (V4 \2
e =" (%) ©3)

is the potential slow-roll parameter. It leads to the equation

103517-10



KINETIC DOMINANCE AND PSI SERIES IN THE HAMILTON- ...

PHYS. REV. D 102, 103517 (2020)

Ul((pend) = % v((pend)' (94)

Then ¢, is calculated by using the slow-roll approximation
during the whole period of inflation and by adjusting the
amount of inflation

1 [on +/v(@)
N~ VI 95
3/¢m< o) )

to N ~ 60. This method leads to the same inflation period
for all the solutions of the inflaton model, since Eqs. (94)
and (95) depend only on the potential v(¢). Nevertheless,
in general, the inflation period depends on the solution
used, since each solution has a different kinetically domi-
nated fraction of its inflation region.

In order to include the effect of the KD part of the
inflation period, we may proceed as follows. We first
calculate the function ¢;,(b) by means of the Eq. (25):

3U((pin)
2 9

h((ﬂin, b) = (96)

where h is approximated by a truncation with a given
number 7 4 1 of terms of the psi series [Eq. (36), (39), or
(66)] corresponding to the model. Then, to calculate N(b),
we look for a value ¢*(b) such that the KD approximation
holds for the interval ¢ € (¢*(b). ¢;,(b)), while the slow-
roll approximation holds for the remaining part of the
inflation period. Thus, we estimate the amount of inflation
N(b) for the psi series corresponding to b by

KD approximation

20 (pm
%

15+

L [0 (e 1 foul®) h(e,D)
N(b)~3/¢ 7(W>/d(p+3/w d

7
‘) hy(@.b)
(97)

end

The point now is how to get an appropriate value for ¢*(b).
To this end, we observe that the KD approximation means
that i’ ~ h and h > /v, and that it does not hold as /' (¢)
gets close to zero. Thus, from Eq. (16) we have that the
truncated psi series cannot provide a good approximation
when £, (¢, b)? becomes small. Consequently, we take
P (b) [p"(b) < @in(b)] as the local minimum of
h,(®.b)* closest to @;,(b). Numerical evidence shows
that the KD approximation is not acceptable for ¢ very
close to ¢ (b), so then ¢*(b) must be strictly larger than
@™ (b). In order to introduce this correction, we use for
¢*(Db) an expression of the form

@ (b) = ap"" () + iy (D).

with two real positive parameters a and B such that
a+f =1. For example, we have taken a = 0.9 and
f = 0.1 in the examples of Figs. 3—7.

The approximation (97) can be used to select the
appropriate value of the parameter b, and consequently
the initial conditions, corresponding to a solution of
Eq. (16) with a previously fixed value of N(b).

Figures 3 and 4 show the application of this method to
the quadratic model v(p) = m?@?*. We use the truncated psi
series with seven terms. It is worthy to point out that
very good approximations are also obtained when fewer
terms—four, five, or six—are used. We illustrate this fact in
Fig. 3 (right), where we use also truncated series with four,

10 SR approximation
5+
Pend
1 1 1 1 mb 1 1 1 1 II‘lbl
2x107 4x107 6x107 8x107 108 2x107 4x107 6x107 8x107 108
FIG. 3. The left figure shows the lines @, (b) (black line), ¢*(b) (blue line), and @nq (red line) for the quadratic model v(¢) = m?¢?.

It also shows the regions in the (mb, ) plane corresponding to the KD approximation (gray region) and the SR approximation (blue
region). The right figure shows the amount of inflation N(b) corresponding to the approximations with 4 (brown line), 5 (green line),
6 (red line) and 7 (black line) terms in the truncated series [Eq. (39)] provided by Eq. (97). The lines are almost completely overlapped,
which shows that a very good approximation is obtained with only a few terms of the truncated series. The blue dots indicate the values

N =50, 60, and 70.
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70 -

m
60 -
50+
40
30+ Piide
/”’ -
PR ””
-~ ,a’
20+ e -
-
/”
10+ //’
r”’
= ¥
1 1 1 1 J
0 5 10 15 20 25

FIG. 4. The green line shows the rescaled numerical solution
h/m = h(p)/m of Eq. (16) with initial conditions [¢p, =
22, hg = h(@g. bgy) ~#200.79 m] for the quadratic model
v(@) = m?¢p?. The black line shows the KD approximation.
The region between blue and red dotted lines is the inflation
region. The gray dots correspond (from right to left) to ¢;,, ¢*,
and ¢@.,q. We notice that the black line (KD approximation)
overlaps the green line (numerical approximation) for
¢ € (¢*, ¢;n), while the red dashed line (SR approximation)
overlaps the green line for ¢ € (@eq, @)

five, or six terms. It means that the KD approximation is
rather reliable.

In particular, for N(b) = 60, we obtain bgy = %, beo~
1.79104 x 107. In Fig. 4, we plot the numerical solution
h(p) of Eq. (16) with initial conditions ¢y =22,
ho = h(@q, bey). Numerical computation of the amount
of inflation for this solution leads to N, ~ 60.86. This
figure shows how the KD approximation fits accurately the
numerical approximation for ¢ € (¢*(b), ¢;,(b)).

We may also consider ¢;, as a function of N, and
compare it with the SR approximation for ¢;,, which
derives from Eq. (95)—i.e.,

Pin(N) = V3 + 6N. (98)

Figure 5 shows the graphs of both approximations to
@in(N). It can be observed that the result of taking into
account the effect of the KD stage leads to greater values
of Pin (N ) .

We apply the same scheme to the Starobinsky model
v(p) = A(1 - e_%)z, and exhibit the corresponding graph-
ics in Figs. 6 and 7. We use the truncated psi series with
seven terms, although we exhibit also in Fig. 6 (right) how
the difference with the results corresponding to truncated

Pin
20
18+
V3+6N

161
14F
12+

1 1 1 1 1 1

45 50 55 60 65 70

FIG.5. The black line shows ¢;, as a function of N, where ¢;, is
obtained from Eq. (96) and N from the formula in Eq. (97), which
takes into account the contributions of both the KD stage and the
SR stage. The blue line shows ¢;, as a function of N as given by
the SR approximation [Eq. (98)].

series with four, five, or six terms is almost imperceptible.
In this case, a solution with N(b) = 60 corresponds to a
value bgy = 1360/ VA, 1360 ~2649.03, and the numerical
solution with initial condition @y = 12, hg = h(@g, beo)
gives the number of e-folds, N,,,(b)~59.5. Figure 7
shows how the KD approximation fits accurately the
numerical approximation for ¢ € (¢*(b), ¢;,(D)).

B. The KD period and the Mukhanov-Sasaki equation

As was shown in Refs. [9-11], truncations of logolinear
series expansions involving powers of r — t* and log (¢ — 1*)
are useful to determine the effect of the KD period on the
power spectrum of the primordial curvature and tensor
perturbations. These perturbations are characterized by the
Mukhanov-Sasaki equation [29]

&

(d_'72 - Wa(n)> Salkin) =0;  a=RT, (99

where the potential W, (5) felt by the perturbations is

%for curvature perturbations,
Wo(n) = (100)

a, .
~Zfor tensor perturbations.

Here Z = ag}ﬁ /H, and 7 is the conformal time defined, up to
a constant, by dt = adp.

We now apply the psi series depending on ¢ obtained
above and several of their consequences to determine
approximate expressions for the potentials W (7).

1. Polynomial-exponential potentials

For models with a potential v(¢) of the form in Eq. (4),
we consider the two-term approximation

h(p) ~ e <%+ hz((p)e_z‘/’> (101)

of the psi series in Eq. (36). The polynomial coefficient
hy (@) satisfies
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sk KD approximation

oF @

4t SR approximation

Pend

Vab,

1 1
2x103 3x103 4x103

70

50+

401

Vb,

1 1
2x103 3x10° 4x103

FIG. 6. The left figure shows the lines ¢;,(b) (black line), ¢*(b) (blue line), and ¢,q (red line), as well as the regions in the (v/Ab, ¢)
plane corresponding to the KD approximation (gray region) and the SR approximation (blue region) for the Starobinsky model
v(@) = A(1 — ¢"¥3)2. The right figure shows the amount of inflation N(b) determined by the approximations [Eq. (97)] with 4 (brown
line), 5 (green line), 6 (red line), and 7 (black line) terms in the truncated series [Eq. (66)] provided by Eq. (97). The lines are almost
completely overlapped, which shows that a very good approximation is obtained with only a few terms in the truncated series. The blue

dots correspond to N = 50, 60, and 70.

b
h/2—2h2 = —EUO (102)

so that it is given by

7

e
va

6+

FIG. 7. The green line shows the numerical solution //v/4 =
h(p)/v/A of Eq. (16) with initial conditions [p, = 12,
ho = h(@y. bey) ~ 61.4435+/2] for the Starobinsky model

v(p) =A(1 - e_%)z. The black line shows the KD approxima-
tion. The region between the blue and red dotted lines is the
inflation region. The gray dots correspond (from right to left) to
Pins @, and @.q- It has to be noticed that the black line (KD
approximation) overlaps the green line (numerical approxima-
tion) for ¢ € (¢*, ¢;,), while the red dashed line (SR approxi-
mation) overlaps the green line for ¢ € (¢eng, @*)-

b +oo
hy(p) = Eez‘/’/ vo(x)e™ > dx. (103)
»
We show below several psi series of the form
flo) = e (/f +Y fa (¢)e-"¢>, (104)
n=2

with polynomial coefficients f,(¢), which are conse-
quences of Eq. (36) and are required for our calculations:
(1) The scale factor admits the expansion

a(p) = ce”s (1 + iz a,,(go)e‘”"’), (105)

where ¢ is an arbitrary nonzero positive constant and

b

a(p) = §h2(¢)- (106)

(2) The conformal time #, considered as a function of ¢,
satisfies the differential equation

a1

do="aw" (107)

and then it can be expanded as a psi series

2

- (%bJFiﬂn((p)e‘""’), (108)

n(p) =
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with

®
m(p) = bze§¢/

(s

<h’2(x) - ihz(x)> e ¥dx.
(109)

(3) The Hubble radius 1/aH = 3/ah can be expanded
as

1 3b o B
WH - ¢ ¢<1+;"n((ﬂ)e q’) (110)
where
4ph
r(9) = =5 ha(9). (111)

(4) The function Z = a¢/H is proportional to 2(p) =
—ah'/h, which has the psi-series expansion

o) = —ce™t ( +zz,, )

where

(112)

o0 = b(mo) - 3mle)). (1)

1

We(n) = —2{ 4+f7(~”(logf7)+6 (logn)+922(10gn))],

z 7

Let us now consider the potentials W,(n) [Eq. (100)].
From Eq. (108), we get the following approximation

for ():
o102
= 3 g 3[9’1 .

Inserting this result into Eq. (108), we get an approximation
with two terms for ¢(5) given by

§1O 2\ 1(2 N (3 (2
or=log| )+ 5,1 m| —5loel 5,

(115)

(114)

Then, using Eq. (112), we obtain the two-term approxi-
mation

Z(rl)”“’(_")l/z(l+Zz(10gn)f13), n—0, (116

e () (o
1 3
~5m(3w

Thus, we get that

E)

Gl o

A completely similar calculation starting from Eqgs. (105) and (106) leads to

171
Wor(n) m— |——
r(n) }72|: 4+77(

with

g = (2 [o Do

n— 0. (118)
5 (logn) + 6a,(logn) + 9a,(log n))} n—0, (119)
R EES)

For example, for the quadratic model in Eq. (48), from Egs. (49), (106), (109), (113), and (117)-(120) we obtain

1 m3

472 1985
1 2.3

2¢ 2¢ \?
131 1 4log | —
[ 31 +7561og (317 ) + 504 log <3b’7> }

m°c 2c 2¢ \2
Woln) ~ —— —1 441 241
r(1) a2 eab { talog <3b > +aalog <3b ) ]

(121)

These potentials are plotted in Fig. 8, where b = by is the value obtained in Sec. IV A for the quadratic model and c is taken

such that a(¢;,) = 1.
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. 002 0.03 002 0.03
m mn

~10000 - ~10000 -

Wr Wr
~20000} — ~20000 —

m? m?
-30000 - ~30000f
-40000 - ~40000}
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FIG. 8. Potentials Wg(y) (left) and Wy (i) (right) for the quadratic model v(@) = m?¢?. The black lines show the numerical
approximations, while the blue lines show the psi-series approximation [Eq. (121)]. Here we have used the rescaled variables

my, mm~2Wg, m™2Wy, the value b = bgy = bgy/m, bgy ~ 1.79104 x 107 obtained in Sec. IV A for the quadratic model, and ¢ is such
that a(¢@;,) = 1. We have taken a value 5(7*) = 0 of the conformal time in agreement with Eq. (108).

2. Starobinsky potentials with a, (u) being polynomials in «. In particular,

For models with a potential v(¢) of the form in Eq. (5),
we consider the psi series in Eq. (66) for h(¢p) and its

truncation to two terms: a(u) = %yl(u). (124)
e
hp) m - (14 b2 (e70)e™), (122)
(2) The conformal time
where y; is given by Eq. (67) for @ > 0 and by setting the
lower integration index as oo for a € (—%,0). From 3 -
Eq. (66), we derive the psi series which follow: n(p) = e <1 + b*y, (u e—2m/)>, 125
(1) The scale factor @) 2¢ ; “ 129
a(p) = ce %< + Z b*a, ‘2”‘/’> (123) where 7, (u) are polynomials in u. For example, we
have that

(126)

(4) The variable z(¢) = —ah'/h
(3) The Hubble radius

aH c

where r,(u) are polynomials in u. For instance, with z,(u) being polynomials in u. In particular,

) =~ (). (128) 21() = =@ ) + 31 @) (130
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FIG. 9. Potentials Wg(5) (left) and W (5) (right) for the Starobinsky potential v(¢) = A(1 — e_%)z. The black lines show the
numerical approximations, while the blue lines show the psi-series approximation [Eq. (138)]. Here we have used the rescaled variables

VR, A7 W e, A-'W, and the value b = bgy/\/A, bgy ~ 2649.03 obtained in Sec. IVA; ¢ is taken so that a(gy,) = Land 7(r*) = 0in
agreement with Eq. (125).

From Eq. (125), we can derive the approximation Similarly, from Egs. (123), (124), and (131), we
have that
3 2cn 3b% (2cn)\3 2en\ %
~——log| — — = — . 131
¢ 20g<3b)+2 (317 T\ \3p (131) 2\

al e (5 ) e a0l (3

By substituting Eq. (131) into Eq. (129), it is found that

2¢\1 _ with
= —c(55 ) L Pa0L (32

where _ 8c3 [1 2en\ 7\ 1 2en\ ¥
X)) —— | — - — . 1
a(n*) 27h [371((% 2’71 3D (135)

8¢3 2en\ %\ 1 2en\ %
! 276 | '\ \ 3p 2"\ \3p Thus, Eq. (132) leads to

1 1 = = (4 = (2
Wr(n) ~ 7 [_Z + (P2 (1) + ala + 6)n°Z) (n”) + 921 (n ))] ., n—0. (136)

Analogously, from Eq. (134) one gets

171 ) 3 )
Wr(n) = 7 [— il  (eal (n*) + ala + 6)n*a, (n*) + 9a, (n“))} . n—0. (137)

For example, for the Starobinsky model [Eq. (69)], from the first equation of Eq. (71), and Egs. (124), (126), (130), (133),
and (135)—(137), it is found that

Weln) ~ 1 A [2(a+1)(6a* + 14a+7T) (2en\3*  2(a+2)(3a® + 14a + 14) (2cn 37“+7
RS =2 " 3p 1 3a+4 3b 30+ 8 ) T2
1A 2(a+1) (2en\3  4(a+2) (2en\F 1
Wi(n) m——s + oy | S22 (2217 S (2 2 138
rn) 4;72+3b’7{3a+4 3b 3018 \3b) T2 (138)
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The potentials (138) are plotted in Fig. 9, where a = %,
b = bgy is the value obtained in Sec. IV A for the
Starobinsky potential and ¢ is taken such that a(¢;,) = 1.

We notice that, as was found in Ref. [11], the common
dominant term near the singularity # = O of the potentials
(118), (119), (136), and (137) coincides with the critical
central singular attractive potential, allowing the fall to the
center of a quantum particle.

Finally, we point out that we may also use our psi series
in the variable ¢ starting from the Mukhanov-Sasaki
equation (99) with the potential W, expressed as a function
of . However, as is shown in Eq. (2.27) of Ref. [11], the
function W,(¢) is rather involved, so we do not find any
advantage in using our psi series in that way.

V. CONCLUSIONS

In this paper, we have developed a method to determine
psi-series formal solutions of single-field inflation models
[Egs. (1) and (2)] during the kinetic dominance period. The
scheme is based on the Hamilton-Jacobi formalism of
inflaton models [28-30] and provides psi series depending
on the inflaton field. The method has been applied to
models with polynomial-exponential potential functions
[Eq. (4)] (two particularly important examples are the

quadratic potential [Eq. (48)] and the Higgs potential
[Eq. (51)]) and to models with generalized Starobinsky
potential functions Eq. (5) (including the standard
Starobinsky potential [Eq. (69)]). We have also proved
that there exist psi series near the singularity for several
physically relevant quantities such as the scale factor, the
conformal time, and the Hubble radius. The explicit form of
the first two terms of these expansions has been given.
We have found that truncations of these psi series can be
used to determine the value of the inflaton field at the initial
moment of the inflation period, and to include the effect of
the KD period to estimate the amount of inflation.
Furthermore, we have shown that psi series can be applied
to determine explicit corrections depending on the inflaton
field to the dominant term of the potentials of the Mukanov-
Sasaki equation for both curvature and tensor perturbations.
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