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We revisit the mechanism of primordial magnetogenesis during inflation by taking into account the
dynamics of the stochastic noises of the electromagnetic perturbations. We obtain the associated Langevin
and Fokker-Planck equations for the electromagnetic fields and solve them analytically. It is shown that
while the backreactions of the electric field energy density may spoil inflation too early, there are regions of
parameter space where the usual decaying behavior of the magnetic fields are replaced by a mean-reverting
process of stochastic dynamics. As a result the magnetic fields settle down into an equilibrium state with the
amplitude significantly larger than what is obtained in the absence of the stochastic noises. We show that
magnetic fields with present time amplitude ∼10−13 Gauss and correlation length Mpc can be generated
while the backreactions of the electric field perturbations are under control.
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I. INTRODUCTION

Magnetic fields are permeated through celestial bodies,
from planets and interstellar mediums to galaxies, galactic
clusters (with magnetic field ∼ micro-Gauss [1–3]), and
intergalactic medium (with magnetic field ∼ femto-Gauss
[4–13]). Particularly interesting cases are magnetic fields
with very large correlation length scale λB ≳ 1 Mpcdetected
in cosmic voids. Several studies [3–5,9,10,13–17] have
claimed that gamma-ray observations of distant TeV blazars
place lower bounds on the magnetic field strength on these
very large scales. Combining the corresponding results with
the CMB observations, POLARBEAR and NRAO VLA
Sky Survey [18–24], and the data from the ultra-high-energy
cosmic rays [25] constrain the strength of these fields to
be [26,27]

10−9G≳Bobs≳10−16G×

8<
:
1 λB≳1Mpcffiffiffiffiffiffiffiffiffi

1Mpc
λB

q
λB≲1Mpc:

ð1:1Þ

The upper and the lower bounds come from the CMB and
blazars data, respectively. The current blazar observations
[4,5,10,14] show that there is a degeneracy (expected to be
resolved in future observations, [28]) between the strength
and the correlation length of the magnetic field. Actually, it
is assumed that Bobs ¼ BnowðλBÞ has a peak at k ¼ λ−1B in
Fourier space with a peak width Δ ln k ¼ Oð1Þ.

On galactic and cluster scales, the observed magnetic
fields may be originated from either astrophysical or
primordial processes and both scenarios are currently under
active considerations [21,29–34]. A “seed” magnetic field
may be generated by astrophysical mechanisms and then
amplified by astrophysical process such as the galactic
dynamo mechanism. Although this kind of process can be
employed to generate the magnetic fields on galactic and
galactic cluster scales, the generation of magnetic fields
with very large correlation length, typically of ∼Mpc scales
or larger, is still a mystery in cosmology [1,2,30,31,35–38].
The above-mentioned lower bound and the large corre-

lation lengths may hint towards the primordial origin of the
cosmological magnetic fields. Indeed, cosmic inflation may
be invoked as a working mechanism to generate magnetic
fields with large correlation lengths. Inflation is believed to
generate the observed large scale structures in the Universe.
The quantum fluctuations associated with the inflaton field
are stretched on superhorizon scales which later source the
large scale perturbations. With the same mechanism, one
may imagine that quantum fluctuations of magnetic fields
are stretched beyond the horizon during inflation which
later seed the observed magnetic fields on cosmos with very
large correlation length scales [39,40].
Because of the conformal invariance, the electromag-

netic fluctuations can not be enhanced in simple Maxwell
theory in an expanding background [39–41]. One has to
break the conformal invariance in order to prevent the
dilution of electromagnetic field during inflation. A simple
way to break conformal invariance is to introduce an
interaction between the electromagnetic field and the scalar
or pseudoscalar inflaton (or a spectator) field or with the
curvature scalars [39,40,42,43]. One of the best-studied
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models of inflationary magnetogenesis is the so-called
Ratra model [40,44–57], in which the action contains
the nonminimal coupling f2ðϕÞFμνFμν, where ϕ is the
inflaton field and Fμν is the electromagnetic field strength.
However, this model of magnetogenesis suffers from
twomain problems, the strong coupling problem [44,46,49]
and the backreaction problem [46–50]. The strong coupling
problem states that the effective coupling constant fðϕÞ−1 is
very large at the early stage of inflation so the perturbative
analysis is not trusted. The backreaction problem states that
the quantum fluctuations of electric field grow rapidly
during inflation which would spoil inflation too early.
Furthermore, on top of these two problems, one should
also examine the consistency of the predictions of this setup
with the CMB observation [51–55,58]. However, there are
some phenomenological magnetogenesis models which do
not spoil the isotropy of CMB [59].
In this paper, we revisit the mechanism of primordial

magnetogenesis in f2F2 model taking into account the
stochastic effects of electric and magnetic fields perturba-
tions during inflation. Stochastic formalism is a powerful
approach to study the quantum fluctuations during inflation
[60–86]. Stochastic formalism is an effective theory for the
long wavelength parts of the quantum perturbations which
are coarse grained on sub-Hubble scales during inflation. In
this approach, the quantum fields are decomposed into the
long and short wavelength modes. As the short modes are
stretched and leave the Hubble horizon during inflation,
they act as classical noises for superhorizon modes with the
amplitude H=2π in which H is the Hubble expansion rate
during inflation. These quantum kicks can be translated
into stochastic forces acting on the classical evolution of the
coarse grained fields. Therefore, the coarse grained fields
are treated as the classical fields subject to stochastic noises
imposed by the short modes.
The stochastic formalism has been employed in [87], see

also [88], to study the gauge fields perturbations in f2F2

model of anisotropic inflation. It was pointed out that
stochastic effects of gauge fields perturbations can have
nontrivial contributions on statistical anisotropies and cur-
vature perturbations. Motivated by these results, one may
expect that stochastic effects play important roles in the
magnetogenesismechanism inf2F2model aswell.We show
that indeed stochastic effects can significantly modify the
previous results formagnetogenesis in some parameter space
of the model. In addition, we provide new insights for the
backreaction effects in the context of stochastic formalism.
Note that we assume that the electric conductivity is

negligible during reheating which we assume to happen
instantaneously. It is well known that the magnetic fields
generated on large scales are protected from the possible
chiral and turbulence effects [89,90]. Hence these effects
can be ignored on super horizon scales in our stochastic
analysis so the magnetic field decays adiabatically after
generation.

The rest of the paper is organized as follows. In Sec. II,
the magnetogenesis mechanism in f2F2 setup is reviewed.
In Sec. III the Langevin equations of the electric and
magnetic fields are derived and the parameters of the
evolution of these fields are investigated. In Sec. IV, by
solving the stochastic differential equations discussed in the
preceding section, we search the parameter space of the
model and calculate the amplitude of the magnetic field at
present time. In Sec. V, a probabilistic interpretation for the
amplitude of the magnetic fields based on the Fokker-
Planck equation is presented. Finally Sec. VI is devoted to
the discussion and a summary of our results. The deriva-
tions of the correlation functions of the stochastic noises are
presented in the Appendix.

II. THE MODEL

The model we consider for magnetogenesis is given by
the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
gμν∂μϕ∂νϕ

− VðϕÞ − f2ðϕÞ
4

FμνFμν

�
; ð2:1Þ

in which ϕ is the inflaton field, Fμν is the electromagnetic
field tensor associated with the U(1) gauge field Aμ, MP is
the reduced Planck mass, and R is the Ricci scalar. As
discussed before, we allow the coupling fðϕÞ between the
gauge field and the inflaton field. This coupling is added in
order to break the conformal invariance such that the
electromagnetic fields survive the exponential expansion
during inflation. The specific form of fðϕÞ will be given in
the following analysis.
We assume that the electromagnetic fields have no

background components. This means that the electromag-
netic fields do not contribute to the background energy and
they are excited quantum mechanically. The background is
given by a spatially flat, Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe, described by the line element

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2:2Þ
where aðtÞ is the scale factor and t is the cosmic time.
Thanks to the Uð1Þ gauge invariance, we can choose to

work in theCoulomb-radiation gaugewhereinA0¼∂iAi¼0.
Varying the action with respect to the matter fields and
neglecting the gravitational backreactions which are sub-
leading, we obtain the Klein-Gordon and the Maxwell
equations,

ϕ̈−
∇2

a2
ϕþ3H _ϕþV;ϕðϕÞ−

f;ϕðϕÞ
fðϕÞ ðE2þB2Þ¼ 0; ð2:3Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
f2FμνÞ ¼ 0: ð2:4Þ
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Here H represents the Hubble expansion rate, H ¼ _a=a, in
which a dot denotes the derivative with respect to cosmic
time while the electric and magnetic fields, appearing in
Eq. (2.3), are defined as

Ei ≡ −
f
a
∂tAi; Bi ≡ f

a2
ϵijk∂jAk: ð2:5Þ

With above definitions, one can obtain the equations of
motion for the electric and magnetic fields as

Ëi−
∇2

a2
Eiþ5H _Eiþ

�
6H2

�
1−

1

3
ϵH

�
þ f̈þH _f

f
−2

_f2

f2

�
Ei

¼ 0: ð2:6Þ

B̈i−
∇2

a2
Biþ5H _Biþ

�
6H2

�
1−

1

3
ϵH

�
−
f̈þH _f

f

�
Bi¼ 0;

ð2:7Þ

where the slow-roll parameter ϵH is defined as

ϵH ≡ −
_H
H2

≪ 1: ð2:8Þ

At the background level the expansion rate in the slow-roll
limit is given by

3M2
PH

2 ≃ VðϕÞ; ð2:9Þ

where we have assumed that VðϕÞ ≫ _ϕ2=2 in order to have
a long period of slow-roll inflation.
The conformal coupling is a function of the inflaton field

ϕ so as the field rolls over the potential, f changes with
time. We consider the following phenomenological ansatz
for the conformal coupling:

f ¼ fend

�
η

ηend

�
n
; η ∈ ð−∞; 0Þ; ð2:10Þ

where η represents the conformal time dη ¼ dt=a, ηend and
fend are the values of the conformal time and f at the end of
inflation, respectively. The assumption is that the inflaton
field decays to radiation at the end of inflation and the
conformal factor stabilizes to a fixed value so we take
fend ¼ 1. The effective gauge coupling is f−1 so in order
for the perturbative field theory to be applicable we require
n > 0 while the case n < 0 corresponds to the strong
coupling regime.
At the perturbation level the quantum fluctuations

of scalar field δϕ source the curvature perturbation
ζ ¼ −Hδϕ= _ϕ, generating the following power spectrum
for ζ:

Pζ ¼
H2

8π2M2
PϵH

: ð2:11Þ

Also, the power spectrum of the tensor modes is given by

Pt ¼
2H2

π2M2
P
: ð2:12Þ

The ratio of tensor to scaler power spectrum is denoted by
rt ≡ Pt=Pζ which is related to the slow-roll parameter via

rt ¼ 16ϵH: ð2:13Þ

From the CMB observations [91,92] we find that

Pζ ≃ 2.1 × 10−9; rt ≲ 0.056: ð2:14Þ

Equivalently, these results imply an upper bound on the
Hubble parameter during inflation as

H ¼ 2.4 × 10−5MP

�
rt

0.056

�1
2

: ð2:15Þ

Remember that for the GUT scale inflation we have
H≃10−6MP (rt ≃ 10−4). We will occasionally use rt ≃ 0.01
and ϵH ≃ 10−3 throughout the paper, except mentioned
otherwise.
The quantum fluctuations of gauge field Ai are the seeds

of large-scale magnetic fields. Going to Fourier space, these
fluctuations are expanded as

Aðη;xÞ¼
X
λ¼�

Z
d3k
ð2πÞ3 e

ik:xeλðk̂Þ½Aλðη;kÞâλkþA�
λðη;kÞâλ†−k�;

ð2:16Þ

where eλ are the circular polarization vectors satisfying the
relations

eλðk̂Þ:eλ0 ðk̂Þ ¼ δλλ
0
; ð2:17Þ

k̂:eλðk̂Þ ¼ 0; ð2:18Þ

ik̂ × eλ ¼ λeλ; ð2:19Þ

eλðk̂Þ ¼ e�λð−k̂Þ; ð2:20Þ
X
λ¼�

eλi ðk̂Þeλjðk̂Þ ¼ δij − k̂ik̂j: ð2:21Þ

Also âλk and âλ†−k represent the annihilation and creation
operators, respectively, satisfying the commutation relation,
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½âλk; âλ
0†
k0 � ¼ ð2πÞ3δλλ0δðk − k0Þ: ð2:22Þ

Defining the canonically normalized field vλ as

vλðη; kÞ≡ fðηÞAλðη; kÞ; ð2:23Þ

the evolution of vλ is given by

v00λ þ
�
k2 −

f00

f

�
vλ ¼ 0; ð2:24Þ

where a prime denotes the derivative with respect
to the conformal time η. Imposing the Bunch-Davies
(Minkowski) initial condition for the modes deep inside
the horizon,

lim
η→−∞

vλðη; kÞ ≃
1ffiffiffiffiffi
2k

p e−ikη; ð2:25Þ

and using the form of fðηÞ given in Eq. (2.10), the solution
is given by

vλ ¼
ffiffiffiffiffiffiffiffiffi−πηp
2

Hð1Þ
n−1

2

ð−kηÞ; ð2:26Þ

where Hð1Þ
ν ðxÞ is the Hankel function of the first kind.

Inserting Eqs. (2.26) and (2.23) into Eq. (2.5), the electric
and magnetic mode functions are given by

Eλ ¼ i
ffiffiffi
π

p
2

kH2η5=2Hð1Þ
nþ1

2

ð−kηÞ; ð2:27Þ

Bλ ¼ i
ffiffiffi
π

p
2

kH2η5=2Hð1Þ
n−1

2

ð−kηÞ: ð2:28Þ

The correlation function of the gauge field fluctuations is
given by

A2 ≡ h0jAiðη; xÞAiðη; xÞj0i ¼
Z

PAðη; kÞd ln k; ð2:29Þ

in which PAðη; kÞ is the dimensionless power spectrum

PAðη; kÞ≡ k3

4π2a2f2
X
λ≡�

jvλðη; kÞj2: ð2:30Þ

Correspondingly, the power spectra of electric and mag-
netic fields are given by

PEðη; kÞ ¼
k3

4π2a4f2
X
λ¼�

jv0λðη; kÞj2; ð2:31Þ

PBðη; kÞ ¼
k5

4π2a4f2
X
λ¼�

jvλðη; kÞj2: ð2:32Þ

Since the electromagnetic field is considered as a test
field at the background, the energy density associated with
its quantum fluctuations should remain subdominant

during inflation. The energy momentum tensor associated
with gauge field is given by

TðAÞ
μν ¼ f2ðϕÞ

�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ð2:33Þ

Calculating the expectation value of the energy density,
hTðAÞ0

0i, we obtain

ρem ¼ h0jTðAÞ0
0j0i

¼ 1

4π2a4
X
λ¼�

Z
k3f2ðjA0

λj2 þ k2jAλj2Þd ln k ð2:34Þ

¼ 1

4π2a4
X
λ¼�

Z
k3
�
jv0λj2−

f0

f
jvλj20þ

�
k2þf02

f2

�
jvλj2

�
dlnk

ð2:35Þ

¼ 1

2
ðE2 þ B2Þ; ð2:36Þ

in which E2 and B2 are defined the same as in Eq. (2.29). To
control the backreaction of the generated electromagnetic
fields on the background, we demand that the ratio of the
energy density of electromagnetic fields ρem to inflaton
energy ρϕ ≃ VðϕÞ remains small during inflation,

R≡ E2 þ B2

6M2
PH

2
≪ 1; ð2:37Þ

where we have used the Friedmann equation (2.9).

A. Magnetic field in the absence of stochastic effects

Now we estimate the amplitude of magnetic field today
which is generated in this setup in the absence of the
stochastic effects.
Suppose the amplitude of magnetic field at the end of

inflation with an instant reheating to beBend. Neglecting the
Faraday’s induction in the presence of strong magnetic
fields [93], the electromagnetic energy density is diluted
like radiation. Then, the strength of the magnetic fields at
the present time is given by

Bnow ¼
�
aend
a0

�
2

Bend; ð2:38Þ

where aend and a0 are the values of the scale factor at the
end of inflation and at present, respectively. Considering
the instant reheating scenario the reheating temperature is
given by

3M2
PH

2 ≃
π2

30
grelT4

rh; ð2:39Þ

in which grel ∼ 106 is the relativistic degree of freedom at
the end of reheating. Assuming for simplicity that the
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Universe was radiation dominated throughout its history,
we have

a0
aend

≃
Trh

T0

∼ 2 × 1028
�

rt
0.01

�1
4

; ð2:40Þ

where we have used Eq. (2.15) while T0 ≃ 2.73 K is the
CMB temperature today. Using these relations, the ampli-
tude of the observed magnetic field at the present time is
about

Bnow ¼ 2.5 × 10−57
�

rt
0.01

�
−1
2

Bend: ð2:41Þ

Finally, using the definition of the power spectrum of
magnetic field PB from Eq. (2.32), the typical amplitude of
the mode k of the magnetic field at the end of inflation is
given by

Bend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PBðηend; kÞ

p
¼ jv�ðηend; kÞjk5=2ffiffiffi

2
p

πa2endfend
; ð2:42Þ

where v� is either of the two polarization modes defined in
Eq. (2.26) as both polarizations have equal amplitude.
Let us study the behavior of the mode function vλ

at the end of inflation which appears in Eq. (2.42).
Since the cosmological modes of interest are all super-
horizon (kη → 0), the behaviors of these modes can be
obtained by using the small argument limit of the Hankel
functions,

lim
x→0

Hð1Þ
ν ðxÞ ∝ x−jνj; for ν ≠ 0: ð2:43Þ

Correspondingly, the amplitude of vλðη; kÞ on superhorizon
scales from (2.26) is obtained to be

lim
kjηj→0

vλðη; kÞ ≃ C1Θ
�
1

2
− n

�
kn−

1
2ηn

þ C2Θ
�
n −

1

2

�
k−nþ1

2η−nþ1; ð2:44Þ

where ΘðxÞ is the Heaviside function and the constant
coefficients Ci’s can be obtained by demanding that the
mode function (2.25) on subhorizon scales connects to the
solutions (2.44) at the horizon crossing akH ¼ k.
Having obtained the solution of vλðη; kÞ on superhorizon

scales, we can also calculate the electromagnetic fields on
superhorizon scales, obtaining

lim
kjηj→0

Eλðη; kÞ ≃ C3Θ
�
−n −

1

2

�
knþ3

2ηnþ3

þ C4Θ
�
nþ 1

2

�
k−nþ1

2η2−n; ð2:45Þ

lim
kjηj→0

Bλðη; kÞ ≃ C5Θ
�
1

2
− n

�
knþ1

2ηnþ2

þ C6Θ
�
n −

1

2

�
k−nþ3

2η3−n; ð2:46Þ

in which the coefficients Ci above can be fixed from C1 and
C2 in Eq. (2.44).
The first term in Eq. (2.44) results in a constant mode for

the gauge field Aλ while the second term could be a
decaying (growing) mode for n < 1

2
(n > 1

2
). Demozzi et al.

[46] have used this result to classify the f2F2 models of
primordial magnetogenesis in two categories and studied
the related issues. We review their case studies below.
However, before doing that, let us look at specific values
of n where the power spectra of electric or magnetic
fields become scale invariant, i.e., either Eλðη; kÞ or
Bλðη; kÞ from Eqs. (2.45) and (2.46) scales like k−3=2. A
scale invariant electric (magnetic) power spectrum is
obtained for n ¼ 2ðn ¼ 3Þ and n ¼ −3ðn ¼ −2Þ, in which
the former belongs to the weak coupling regime while the
latter is in the strong coupling regime.

1. Strong coupling case (n < 1
2)

The strong coupling regime corresponds to n < 0 in
which the effective gauge coupling f−1 is very large at the
start of inflation while approaching to order of unity at the
end of inflation. Therefore, in this regime, during much of
the period of inflation the gauge field sector is strongly
interacting and a perturbative analysis in the matter sector
(as we treated the electromagnetic field so far) is not trusted
at all. As studied in [46], as a subset of strong coupling
regime, we consider the case n < 1

2
in which the first term in

Eq. (2.44) dominates. In this case the dominant mode is
constant, Aλ ∝ const, and the leading contribution to the
electromagnetic energy density comes from the magnetic
part. By matching the superhorizon solution Eq. (2.25) with
the subhorizon solution Eq. (2.44) at the horizon crossing
jηkj ≃ k−1, the constant C1 can be determined, yielding

vλ ≃
1ffiffiffiffiffi
2k

p
�
a
ak

�
−n
; ð2:47Þ

where we have taken into account that η ∝ a−1 during
inflation and ak ¼ k=H at the moment of horizon crossing.
Define λph ≡ aend=k as the physical wavelength corre-

sponding to the comoving wave number k at the end
of inflation. Combining Eqs. (2.47) and (2.42), the ampli-
tude of the magnetic fields at the end of inflation is obtained
to be

Bend ≃
H2

2πfend

�
λph
H−1

�
−n−2

: ð2:48Þ
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For future reference, we can relate λph to the (correlation)
length scale λB of the magnetic field at the present time via

λph ¼
aend
k

¼ aend
a0

λB: ð2:49Þ

Demozzi et al. [46] concluded that in the strong coupling
regime the magnetic field provides the dominant contribu-
tion to the energy density such that their backreactions may
grow too large, violating the conditionR ≪ 1 and terminate
inflation quickly. Specifically, requiring that inflation lasts
at least 75 e-folds they concluded that one needs1 n ≥ −2.2
in order for the magnetic field energy density to not spoil
inflation.
Below we consider various special values of n which

were studied in [46] and present the estimated values
of the magnetic fields on Mpc scale in the absence of the
stochastic effects. We revisit these cases in Sec. IV with the
effects of stochastic dynamics included.

(i) n ¼ −2
As mentioned before, the spectrum of the mag-

netic field is flat for n ¼ −2. Using Eqs. (2.41),
(2.48), and (2.15) with rt ∼Oð0.01Þ, the strength of
the generated magnetic fields today is about

Bnow ≃ 1.2 × 10−11G: ð2:50Þ

(ii) n ¼ −2.2
This is considered in [46] as the critical case in

which inflation is not destroyed by the magnetic
field energy density while for n < −2.2 one can not
have a long enough period of inflation satisfying the
condition R ≪ 1. The magnetic fields for n ¼ −2.2
have a red spectrum so the largest scale has a
dominant contribution to the energy density. Requir-
ing that inflation last at least 75 e-folds, the
amplitude of the magnetic field today in Mpc scale
is obtained to be

Bnow ≃ 5.5 × 10−7G: ð2:51Þ

2. Weak coupling case (n > 1
2)

For this category, the second term in Eq. (2.44) domi-
nates and matching Eqs. (2.25) and (2.44) at the moment of
horizon crossing results in

vλ ≃
1ffiffiffiffiffi
2k

p
�
a
ak

�
n−1

: ð2:52Þ

Substituting Eq. (2.52) into Eq. (2.42) we obtain

Bend ≃
H2

2πfend

�
λph
H−1

�
n−3

: ð2:53Þ

This case corresponds to Aλ ∝ a2n−1 and the main con-
tribution to the electromagnetic energy density comes
from the electric field. The effective coupling is growing
from a small value at the beginning of inflation to the order
of unity at the end of inflation. Therefore the theory is
perturbative throughout inflation.
As shown by Demozzi et al. [46], in the weak coupling

regime the main contribution to the electromagnetic energy
density comes from the electric field and their backreac-
tions may spoil inflation too early. Requiring that inflation
lasts at least 75 e-folds, the condition R < 1 can be satisfied
only if n ≤ 2.2. In the following, we consider various
special cases of n in the weak coupling regime.

(i) n ¼ 2
The case n ¼ 2 corresponds to the well-known

setup of anisotropic inflation which generates aniso-
tropic hair in early Universe [94–96]; for a review of
anisotropic inflation, see [97] and references therein.
The electric field fluctuations are nearly constant and
nearly scale invariant outside the horizon, while the
magnetic field fluctuations rapidly fall off and have a
red spectrum,

Eλ ≃
3H2ffiffiffi
2

p
k3=2

; Bλ ≃
H2ηffiffiffi
2

p
k1=2

: ð2:54Þ

In the absence of stochastic effects, the strength of
magnetic field today in Mpc scale reaches to

Bnow ≃ 6.3 × 10−35G; ð2:55Þ

which is too small to work as a seed for a possible
dynamo mechanism.

(ii) n ¼ 2.2
The magnetic field for n ¼ 2.2 has a blue spec-

trum so the small scales have the dominant con-
tributions to the energy density. The amplitude of the
magnetic field today in Mpc scale is given by

Bnow ≃ 2.8 × 10−30G; ð2:56Þ

which is again too small as the seed of primordial
magnetic fields.

(iii) n ¼ 3
The spectrum of the magnetic field is flat and the

strength of the generated magnetic fields today is
again given by Eq. (2.50). However, as mentioned
above, the electric field backreaction becomes im-
portant terminating inflation quickly.

The above was a summary of the results for the
primordial magnetic field in the setup of (2.1) in the

1We comment that our convention for n differs from that of
[46], by n → −n.
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absence of the stochastic effects. In the following section
we revisit this analysis while taking into account the
stochastic effects of the electromagnetic fields which play
crucial roles. We revisit the conclusion of [46] that keeping
the backreactions under control, the strength of the pri-
mordial magnetic field can not exceed 10−30G in Mpc scale
today in the weak coupling regime.

III. STOCHASTIC DYNAMICS OF
ELECTROMAGNETIC PERTURBATIONS

In this section we present the stochastic dynamics of the
electromagnetic field perturbations in detail.
Since the forms of electric and magnetic mode functions

for both polarization are similar, we combine them into an
auxiliary vector field Xi satisfying the following equation:

Ẍi −
∇2

a2
Xi þ 5H _Xi −

��
ν −

5

2

��
νþ 5

2

�

− 2

�
ν2 −

5

4

�
ϵH þOðϵ2HÞ

�
H2Xi ¼ 0; ð3:1Þ

with the following solution for the mode function in Fourier
space (assuming the Minkowski initial condition):

Xðk; ηÞ ¼ i
ffiffiffi
π

p
2

kH2η5=2Hð1Þ
ν ð−kηÞ: ð3:2Þ

One can check that Eqs. (2.6) and (2.7) for the electric
and magnetic fields perturbations are recovered from
Eq. (3.1) by setting ν → nþ 1

2
and ν → n − 1

2
, respectively.

Specifically, by taking

Eλ ¼ Xðk; ηÞjν→nþ1
2
; Bλ ¼ Xðk; ηÞjν→n−1

2
; ð3:3Þ

the mode function Eq. (3.2) reduces to Eqs. (2.27) and
(2.28) for the electric and magnetic fields, respectively.
Hence, by studying the auxiliary field Xi through

Eq. (3.1), the evolution of electric and magnetic fields
can be found. Our goal is to study the dynamics of Xi using
the stochastic formalism. Following the methods of [61–
63], we split the field Xðt; xÞ and its conjugate momentum
Πðt; xÞ into the long IR and the short UV modes. The
decomposition into the long and short modes is performed
via the Heaviside function Θðk − εaHÞ as a window
function. More specifically, we have

Xðt; xÞ ¼ XIRðt; xÞ þ
ffiffiffi
ℏ

p Z
d3k
ð2πÞ3Θðk − εaHÞXkðtÞeik:x;

ð3:4Þ

_Xðt; xÞ ¼ ΠIRðt; xÞ þ
ffiffiffi
ℏ

p Z
d3k
ð2πÞ3 Θðk − εaHÞ _XkðtÞeik:x;

ð3:5Þ

in which ε is a small constant parameter, and XkðtÞ is
given by

XkðtÞ ¼
X
λ¼�

eλðk̂Þ½Xλðt; kÞâλk þ X�
λðt; kÞâλ†−k�; ð3:6Þ

where the mode function Xλðt; kÞ is given by (3.2). Note
that the quantum nature of the short modes is indicated by
the factor

ffiffiffi
ℏ

p
in the above expansion.

To investigate the stochastic effects, we expand Eq. (3.1)
around XIR and ΠIR and keep terms up to first order of

ffiffiffi
ℏ

p
.

In addition, we discard the term containing the spatial
derivatives of the long modes, obtaining

_ΠIR¼−5HΠIRþ
��

ν−
5

2

��
νþ5

2

�
−2

�
ν2−

5

4

�
ϵH

�
H2XIR

þ
ffiffiffi
ℏ

p
τ; ð3:7Þ

_XIR ¼ ΠIR þ
ffiffiffi
ℏ

p
σ; ð3:8Þ

in which ðτ; σÞ are the quantum noises, given by

τðt; xÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞ _XkðtÞeik:x; ð3:9Þ

σðt; xÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞXkðtÞeik:x: ð3:10Þ

The noises τ and σ arise from the backreactions of the
short modes which affect the dynamics of long modes on
superhorizon scales. The properties of these noises can be
obtained from the behavior of the auxiliary mode function
(3.2), see the Appendix for more details. The noises ðτ; σÞ
are stochastic in nature while their quantum noncommu-
tativity disappears on superhorizon scales by choosing a
sufficiently small parameter ε so they behave as classical
noises.
Let us use the number of e-folds, dN ¼ Hdt, as the

time variable and define the vectorial normalized white
noise ξ as

hξðNÞi ¼ 0; hξiðNÞξjðN0Þi ¼ δijδðN − N0Þ: ð3:11Þ

Also, let us define the following dimensionless stochastic
variable

X ¼ XIR

Xref
; Xref ≡

ffiffiffiffiffiffiffiffi
2ϵH

p
MPH: ð3:12Þ

We show in the Appendix that the Langevin equation for
the long mode can be cast into a dimensionless stochastic
differential equation of the form,

dXðNÞ ¼ bνXdN þDνðεÞdWðNÞ; ð3:13Þ
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whereW is a three dimensional (3D)Wiener processes [98]
associated with the noises ξ via

dWðNÞ≡ ξðNÞdN; ð3:14Þ

while bν andDν represent the amplitude of the drift and the
diffusion terms, respectively, whose specific forms are
given in Eqs. (A25) and (A26).
Equation (3.13) is our master equation in the following

analysis. Its general solution is given by [98]

XðNÞ ¼ X clðNÞ þDνðεÞebνN
Z

N

0

e−bνsdWðsÞ; ð3:15Þ

where the classical solution X cl, in the absence of stochas-
tic noises, is given by

X clðNÞ ¼ X iniebνN; ð3:16Þ

in which the initial condition X ini ¼ Xð0Þ is used. In our
setup the assumption is that the electromagnetic fields have
no classical background values so X cl ¼ 0, but to keep the
discussions general we allow for nonzero initial classical
fields values as well.
Using the following properties of the stochastic

integrals [98]:�Z
T

0

GðtÞdWðtÞ
�

¼ 0;��Z
T

0

GðtÞdWðtÞ
�
2
�

¼
�Z

T

0

G2dt

�
; ð3:17Þ

we can calculate the mean and the variance related to
X iðNÞ. More specifically,

hX iðNÞi ¼ X cl;iðNÞ; ð3:18Þ

hX2
i ðNÞi ¼ X2

cl;iðNÞ þD2
νðεÞ
2bν

ðe2bνN − 1Þ; ð3:19Þ

δ2X i
ðNÞ ¼ D2

νðεÞ
2bν

ðe2bνN − 1Þ; ð3:20Þ

hX2ðNÞi ¼ X2
clðNÞ þ 3D2

νðεÞ
2bν

ðe2bνN − 1Þ; ð3:21Þ

where the variance is defined via δ2X ≡ hX2i − hXi2.
Having obtained the magnitude of the auxiliary field in

Eq. (3.21) one can investigate the backreactions of the
electromagnetic fields on the inflationary background.
More specifically, the backreaction generated from the
growing electric fields can affect the background energy
density and terminate inflation prematurely [46]. Therefore,
we can translate the condition of backreaction in terms of
the parameter R defined in Eq. (2.37) by requiring R ≪ 1.

Using the definition of Xref given in Eq. (3.12), we can
rewrite the backreaction condition as

R ¼ 1

3
ϵHðhE2i þ hB2iÞ ≪ 1; ð3:22Þ

in which the dimensionless electric and magnetic fields are
defined via

E ≡ E
Xref

; B≡ B
Xref

: ð3:23Þ

Alternatively, the Fokker-Planck equation associated
with the Langevin equation (3.13) can be employed to
describe the time evolution of the probability density
function of XðNÞ. Consider fX i

ðx; NÞ as the probability
density function of the random variable X i. Then the
associated Fokker-Planck equation is given by

∂fX i
ðx; NÞ
∂N ¼ −bν

∂
∂x ðxfX i

ðx; NÞÞ þD2
νðεÞ
2

∂2

∂x2 fX i
ðx; NÞ:
ð3:24Þ

Intuitively, one can think of fX i
ðx; NÞdx as the probability

of X i falling within the infinitesimal interval ½x; xþ dx�.
For a given value of ν (or n), we see that the statistical

quantities obtained in Eqs. (3.18)–(3.21) depend on the
number of e-folds N, the initial conditions X ini, the drift bν,
and the diffusion DνðεÞ. Below we investigate how these
parameters can affect the stochastic properties of the
electromagnetic fields.

A. Initial condition

If the electromagnetic fields have no background
classical values then X clðNÞ ¼ 0 so the perturbations X i
are generated pure quantum mechanically, and

hX iðNÞi ¼ 0; ð3:25Þ

δ2X i
ðNÞ ¼ hX2

i ðNÞi ¼ D2
νðεÞ
2bν

ðe2bνN − 1Þ; ð3:26Þ

hX2ðNÞi ¼ 3D2
νðεÞ

2bν
ðe2bνN − 1Þ: ð3:27Þ

Therefore the components of the auxiliary field are
described by a pure Brownian motion at early stages,

δ2X i
¼ D2

νðεÞN; ðjbνjN ≪ 1Þ: ð3:28Þ

The linear growth of the variance with N is the hallmark of
the Brownian motion. We see that even in the absence of a
background classical field energy density a large energy
density can be generated from stochastic dynamics which
can affect the inflationary background as envisaged in [46].
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In the rest of the paper we assume X ini ¼ 0.

B. Drift coefficient

From Eqs. (3.18)–(3.21) we see that the sign of bν is very
important in determining the fate of the electromagnetic
field perturbations Xi. This is the main reason why we kept
the ϵH corrections in Eq. (A25), e.g., for ν ¼ �5=2, we
obtain bν ¼ −ϵH.
As we shall show below, there is a stationary solution for

the probability density of X i (3.13) if bν < 0. For bν ¼ 0
the variance of fluctuations grows linearly with N and the
system describes a random walk (Brownian) process while
the exponential growth of the fluctuations takes place for
bν > 0. The behavior of bν as a function of n is plotted in
Fig. 1(a). As an example, consider the region II in this plot,
corresponding to −3 < n ≤ −2. In this region the electric
field has bν¼nþ1

2
< 0 so it admits a stationary solution for the

probability density function while the magnetic field can
grow exponentially (bν¼n−1

2
> 0) or linearly (bν¼n−1

2
¼ 0). Of

course, this range of n falls into the strong coupling regime.
In the following we have classified the behavior of the

solution of X into three categories depending on the sign
of bν.

1. bν > 0

In this case the mean and the variance of the stochastic
fields X i grow and there is no stationary probability
distribution for its Fokker-Planck equation. This growing
behavior is linear at early stage when bνN ≪ 1,

hX2i ≈ 3D2
νðεÞN; δ2X i

≈D2
νðεÞN ðbN < 1Þ: ð3:29Þ

But when bN ≳ 1, the stochastic noises grows exponen-
tially and its contributions in total energy density can not be
neglected. Let us denote N ¼ Nvio as the time when the
energy density of electromagnetic field becomes compa-
rable to the background energy density with large back-
reactions, violating condition R ≪ 1 in Eq. (3.22). We then
obtain

Nvio ≃
1

2bν
ln

�
1þ 2bν

D2
νϵH

�
: ð3:30Þ

2. bν = 0

The case bν ¼ 0 corresponds to jνj ¼ 5
2
þ ϵH, yielding

DνðεÞ ¼
ffiffiffiffiffiffiffiffi
6Pζ

p
ε−ϵH : ð3:31Þ

Therefore, the Langevin equation (3.13) and the Fokker-
Planck equation (3.24) are simplified, respectively, to

dX ¼ DνðεÞdW; ð3:32Þ

∂fX i
ðx;NÞ
∂N ¼ D2

νðεÞ
2

∂2

∂x2 fX i
ðx;NÞ: ð3:33Þ

This situation corresponds to a Wiener process with no
drift. The solution of the partial differential equation (3.33)
is given by

(a) (b)

FIG. 1. (a) bν in terms of n for the electric and magnetic fields, according to Eqs. (A25) and (2.13) with r ¼ 0.01. The gray region
corresponds to the strong coupling limit while the white regions correspond to weak coupling limit. We have divided the plot into five
regions. In regions (I) and (V) we have bν > 0 for both electric and magnetic fields so the modes grow. In region (II), corresponding to
−3 < n ≤ −2, the electric field admits an equilibrium state while the magnetic field grows. In region (III) both electric and magnetic
fields admit stationary state in which the solutions can be explained by an Ornstein-Uhlenbeck process. In region (IV) electric field
grows while magnetic field falls into a stationary state. For each electric and magnetic field there are two points where bν ¼ 0 and the
solutions are given by a Wiener process. (b) For all ranges of the parameter n shown in this plot bν < 0 (the right vertical axes) the
magnetic field reaches to a stationary regime at the number of e-folds N ¼ Neq given in Eq. (3.48). The gray horizontal dashed line
indicates Neq ¼ 60.
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fX i
ðx;NÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πD2
νðεÞN

p exp

�
−

x2

2D2
νðεÞN

�
; ð3:34Þ

where we have used the initial condition fX i
ðx; 0Þ ¼ δðxÞ.

The above probability distribution function indicates
that X i has a normal (Gaussian) distribution, denoted
by Nð0; D2

νðεÞNÞ, describing a random walk process
with the variance equal to D2

νðεÞN and with zero mean.
The probability distribution function for X i obtained in
Eq. (3.34) allows us to extract the probability density
of X ¼ ðPiX i

2Þ1=2 (see Appendix B in [87] for more
details) as

fX ðx;NÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2πD6
νðεÞN3

s
x2 exp

�
−

x2

2D2
νðεÞN

�
: ð3:35Þ

Armed with the above probability distribution function, we
can compute the associated expectation values and the
variance as follows:

hXðNÞi ¼
Z

∞

0

dxxfX ðx;NÞ ¼ DνðεÞ
ffiffiffiffiffiffiffi
8N
π

r
; ð3:36Þ

hX2ðNÞi ¼
Z

∞

0

dxx2fX ðx;NÞ ¼ 3D2
νðεÞN; ð3:37Þ

δ2X ðNÞ ¼
�
3 −

8

π

�
D2

νðεÞN: ð3:38Þ

In this Wiener process, we should also check the back-
reaction effects because the electromagnetic energy density
can grow during inflation and the condition R ≪ 1 in
Eq. (3.22) may be violated. Denoting the time when this
condition is violated by NW

vio, we have

NW
vio ≃

1

D2
νϵH

≃
ε2ϵH

6PζϵH
: ð3:39Þ

The probability distribution functions (3.35) enable us to
calculate the probability of having a given value of X in a
desired range. The probability of having X1 < X < X2 at
the moment N is given by

PðX1 < X < X 2;NÞ

¼
Z

X2

X1

dxfX ðx;NÞ

¼ Erfðy2ðNÞÞ − Erfðy1ðNÞÞ

−
2ffiffiffi
π

p ðy2ðNÞe−y22ðNÞ − y1ðNÞe−y21ðNÞÞ: ð3:40Þ

Here Erf is the error function and yiðNÞ≡ X iffiffiffiffiffi
2N

p
Dν

where

i ¼ 1, 2. The dependency of the probability density to N is

due to the Wiener process describing a random walk in
which the variance grows linearly with N.

3. bν < 0

The conditions

bν < 0; Dν > 0; ð3:41Þ

convert Eq. (3.13) into an Ornstein-Uhlenbeck (OU)
stochastic differential equation [98],

dXðNÞ
dN

¼ −jbνjX þDνðεÞξ: ð3:42Þ

Not only the frictional drift force −jbνjX can balance the
random force Dνξ, but also it washes out the explicit
dependence of the mean to the initial conditions X ini over
time. It means that the distribution of X i approaches the

normal distribution Nð0; D2
ν

2jbνjÞ as N → ∞.
The OU process (3.42) is a stationary Gauss-Markov

process in which there is the tendency for the system for
drifting toward the mean value, with a greater attraction
when the process is further away from the mean. Therefore
the field X admits a stationary probability distribution,
∂feqX i

=∂N ¼ 0, with a long-term mean and a bounded
variance (mean-reverting process). The stationary solution
of Fokker-Planck Eq. (3.24) is given by

feqX i
ðxÞ ¼

ffiffiffiffiffiffiffiffiffi
jbνj
πD2

ν

s
exp

�
−
jbνj
D2

ν
x2
�
: ð3:43Þ

Using the above probability density function for the
components X i, it is easy to obtain the density function
of its magnitude X as follows:

feqX ðxÞ ¼ 4

ffiffiffiffiffiffiffiffiffi
jbνj3
πD6

ν

s
x2 exp

�
−
jbνj
D2

ν
x2
�
: ð3:44Þ

This density function allows us to calculate various expect-
ation values and variance associated with X as follows:

hXieq ¼
Z

∞

0

dxxfeqX ðxÞ ¼
2Dνffiffiffiffiffiffiffiffiffiffi
πjbνj

p ; ð3:45Þ

hX2ieq ¼
Z

∞

0

dxx2feqX ðxÞ ¼
3D2

ν

2jbνj
; ð3:46Þ

δ2X eq
¼

�
3

2
−
4

π

�
D2

ν

jbνj
: ð3:47Þ

Moreover, we can estimate the equilibrium time when the
field reaches to its stationary value using feqX ðxÞ. Let us
defineNeq as the timewhen hX2ðNeqÞi → hX2ieq. Formally,
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Neq → ∞, but for practical purposes we can considerNeq as
the time when the ratio jhX 2ðNeqÞi − hX2ieqj=hX2ieq drops
to a small value say 10−2.With this approximation, and using
Eqs. (3.27) and (3.46), we obtain

Neq ¼
ln 10
jbνj

; ð3:48Þ

which is plotted for ν ¼ n − 1=2 (magnetic field) in
Fig. 1(b).
It is interesting to check when the backreactions become

important, violating the condition R ≪ 1. Denoting N−
vio as

the time when this condition is violated, we obtain

N−
vio ≃

−1
2jbνj

ln

�
1 −

2jbνj
D2

νϵH

�
: ð3:49Þ

Using Eq. (3.44), the probability of the field X acquiring
a value in the interval X1 < X < X2 is given by

PeqðX1 < X < X2Þ ¼
Z

X2

X1

dxfeqX ðxÞ

¼ Erfðy2Þ − Erfðy1Þ −
2ffiffiffi
π

p ðy2e−y22 − y1e−y
2
1Þ; ð3:50Þ

in which yi ≡
ffiffiffiffiffi
jbνj

p
Dν

X i and i ¼ 1, 2.

C. Diffusion coefficient

Now we study the effects of the diffusion coefficient
DνðεÞ. As mentioned before, the quantum noncommuta-
tivity of ðτ; σÞ is proportional to ε5 (see the Appendix for
more details) so they become classical noises when ε is
chosen small enough. Therefore, it is always possible to
consider ðτ; σÞ as classical noises while for a fixed ν the
diffusion coefficient is only a function of the small
parameter ε. Therefore the dependency of the solutions
to the diffusion coefficient is determined by the value of ε
as given in Eq. (A27).
In single field inflationary scenarios, the coarse graining

is over subhorizon modes with k≳ εaH in which ε is a
cutoff parameter satisfying e−1=3ϵH ≪ ε ≪ 1 [61–63].
Under this condition, in single field inflationary models
the physical results are independent of ε. Here, however,
the results in general depend on the value of ε.
There are two points here that we elaborate in detail.

First, the power of ε in DνðεÞ is directly related to the scale
dependency of the power spectrum of the fields. To see this
specifically, let us first consider the magnetic field, corre-
sponding to ν ¼ n − 1=2. In the conventional treatment
with no stochastic effects considered, the power spectrum
of magnetic field for n > 1=2 from Eq. (2.53) isffiffiffiffiffiffi
PB

p
∝ k3−n, while for n < 1=2, from Eq. (2.48), it isffiffiffiffiffiffi

PB
p

∝ knþ2. Now one can check that the power of k in

either case is the same as the power of ε inDνðεÞ. The same
conclusion applies to electric field as well. As specific
examples, we have seen that for n ¼ 3 the magnetic field is
scale invariant (

ffiffiffiffiffiffi
PB

p
∝ k0), while the electric field has a

red power (
ffiffiffiffiffiffi
PE

p
∝ k−1). On the other hand, in the

stochastic approach, the diffusion coefficients of the
magnetic and electric fields are given by D5=2 ∝ ε0 and
D7=2 ∝ ε−1, respectively, as expected. As a result, from
Eq. (A27) we conclude that the electromagnetic fields have
a red spectrum for jνj > 5=2, a blue spectrum for jνj < 5=2,
and a flat spectrum if jνj ¼ 5=2. In addition, comparing the
power of ε in DνðεÞ with the sign of bν in Eq. (A25) we
arrive at another important conclusion: the sign of the
power of ε in DνðεÞ is opposite to the sign of bν;
electromagnetic perturbations with a blue spectrum have
bν < 0 so they always fall into a stationary state.
Second, Eq. (A27) indicates that by choosing a small

enough value of ε the diffusion coefficient can be very large
for jνj > 5=2. Hence a relevant question is how small ε can
be. The parameter ε appears in the window function in
Eq. (3.4) when performing the long and short decompo-
sition. When constructing a coarse grained field for the long
mode perturbations, depending on the value of ε, all modes
smaller than Hubble patch and a fraction of superhorizon
modes are integrated out by using the window function.
Specifically, all modes in the range k > εaH are integrated
out. If one chooses the simplest choice ε ¼ 1, then the
coarse graining will be only on a Hubble patch, i.e., for
subhorizon modes. But for ε < 1, not only the subhorizon
modes but also a fraction of superhorizon modes which fall
into the window function are also integrated out. The
smaller is ε, the larger is this fraction. A lower bound (or cut
off value) for ε can be obtained by integrating out the
largest wavelength observable in CMB, kCMB, in the coarse
graining process. Let us define kN as the mode k which
leaves the horizon at the number of e-folds N. Then the
smallest value for ε associated to the mode kN is given by

ε≡ kCMB

kN
; ð3:51Þ

which is illustrated in Fig. 2.
We may use the Planck observation’s pivot scale k� ¼

0.05 Mpc−1 [91] as a representative value of kCMB. Then
for the physical length scale 1 Mpc today as the correlation
length of primordial magnetic fields (λB ¼ 1 Mpc), the
value of ε is obtained to be

εMpc ¼
0.05 Mpc−1

2π=1 Mpc
¼ 8 × 10−3: ð3:52Þ

However, as mentioned above, a smaller value for ε can be
calculated by considering the largest observable scales
today, kCMB ≃ 10−4 Mpc−1 [91], which results to
εMpc ¼ 1.6 × 10−5. Therefore we consider εMpc in the range
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10−2–10−5 in our analysis in next section. For convenience,
we do not write the subscript Mpc in εMpc and simply use ε
in our analysis.

IV. MAGNETIC FIELDS TODAY

In this section, we calculate the present value of the
magnetic fields produced in this model taking into account
the stochastic dynamics. Although the conductivity can
play important roles during the reheating era [26], for
simplicity, we have neglected its effects in this section by
considering an instantaneous reheating model. We will see
that the amplitude of the generated magnetic field depends
on parameter n appearing in the definition of coupling
function f, Eq. (2.10). As mentioned before, there are two
regimes for this parameter: n > 1=2 (weak coupling), in
which one faces with the backreaction problem, and n <
1=2 (strong coupling), where the perturbative approaches
break down at the early stage of inflation and the analysis
can not be trusted.
The present value of the magnetic field Bnow is related to

the magnetic field at the end of inflation via Eq. (2.38) in
which Bend itself is determined from the stochastic quantity
Bend via the definition (3.23), as Bend ¼ BendXref . The
relations derived in the preceding section enable us to
calculate

Bend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2ðNendÞi

q
; ð4:1Þ

for different cases of drift coefficients bν > 0, bν ¼ 0, and
bν < 0 using Eqs. (3.27), (3.37), and (3.46), respectively.
On the other hand, using the definition of Xref , we obtain

Xref ≃ 1.12 × 1050G

�
rt

0.01

�
; ð4:2Þ

where Eqs. (2.13) and (2.15) have been used. Then the
present value for the magnetic fields, (2.38), is given by

Bnow ≃ 2.6 × 10−7G

�
rt

0.01

�1
2

Bend: ð4:3Þ

As seen, for rt ¼ Oð0.01Þ, the observational bound given
by (1.1) is roughly satisfied if Bend satisfies the following
constraint:

3.8 × 10−3 ≳ Bend ≳ 3.8 × 10−10

×

8<
:

1 λB ≳ 1 Mpcffiffiffiffiffiffiffiffiffi
1 Mpc
λB

q
λB ≲ 1 Mpc:

ð4:4Þ

In the following, we use the estimation rt ≃ 0.01 for our
calculations and simulations. The results of this section are
summarized in Sec. IV C and in Fig. 6(a).

A. Strong coupling regime

Although in the regime n < 1=2 the backreaction effects
of the electric fields are under control, for n < 0 the gauge
coupling f−1 is incredibly large at the beginning of inflation
and the perturbative analysis is not trusted. However, since
the dominant contribution to the energy density comes from
the magnetic field, it is interesting to investigate the
stochastic effects in the spacial cases n ¼ −2;−2.2, as
well as n ¼ −2 − ϵH;−3 − ϵH in some more detail. The last
two cases represent the Wiener process for the magnetic
and electric fields, respectively.

1. n = − 2

For n ¼ −2, both electric and magnetic fields have bν <
0 so their evolutions are described via the OU processes.
These behaviors can be seen from the stochastic differential
equations of magnetic (ν ¼ −5=2) and electric (ν ¼ −3=2)
fields, which are given by

dB ¼ −ϵHBdN þ ffiffiffiffiffiffiffiffi
6Pζ

p
dW; ð4:5Þ

dE ¼ −EdN þ 5
ffiffiffiffiffiffi
Pζ

p
2

ffiffiffi
6

p εdW: ð4:6Þ

In this case, the electric and the magnetic fields have
a blue and a scale invariant spectra, respectively. Since the
sign of the drift coefficients is negative, both electric
and magnetic fields admit stationary regimes with the
terminal values

hB2ieq ≃ 3 × 10−5; ð4:7Þ

FIG. 2. Interpretation of long and short modes in terms of ε. Ni
represents the start of the (observed) inflation in which the
longest observable mode (kCMB) have left the horizon. Ne is the
time of end of inflation andNnow is the current time. If ε ¼ 1, then
the coarse graining for a mode of interest kN will be over the
modes in the interval kN < k < ke, i.e., for the modes inside the
Hubble patch. But in the stochastic formalism, the coarse
graining is over a wider range, for the modes in the
interval εkN < k < ke.
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hE2ieq ≃ 2.2 × 10−13; ð4:8Þ

where Eq. (3.46) has been used. Using Eq. (3.48), these
values of the electric and magnetic fields are reached at
around Neq ≃ 3700 and Neq ≃ 3 e-folds, respectively.
Assuming that inflation lasts about 3700 e-folds number,
and using Eq. (4.3), the present value of the scale invariant
magnetic field is given by

Bnow ≃ 1.5 × 10−9G: ð4:9Þ

As seen from the above result, this value is larger by 2 orders
of magnitude compared to (2.50) estimated in conventional
approach where the stochastic effects are neglected.
Although the backreaction condition (3.22) is satisfied

(R ≃ 6.6 × 10−9), as mentioned before, the strong coupling
regime raises serious concern about the applicability of the
perturbative results. The behaviors of the electric and
magnetic fields are shown in Fig. 3(a).

2. n = − 2.2

In this case, the stochastic differential equations for the
magnetic field (ν ¼ −2.7) and electric field (ν ¼ −1.7) are
given by

dB ¼ 0.2BdN þ 3.4
ffiffiffiffiffiffi
Pζ

p
ε−1=5dW; ð4:10Þ

dE ¼ −0.8EdN þ 1.14
ffiffiffiffiffiffi
Pζ

p
ε4=5dW: ð4:11Þ

The power spectra of the electric and magnetic fields are
blue and red tilted, respectively. The electric field admits a
stationary value hE2ieq ≃ 2.3 × 10−12 at around Nvio ≃ 3 e-
folds while the magnetic field grows exponentially and
spoils the condition (3.22) at around Nvio ≃ 55 e-folds.
Requiring inflation lasts at least 60 e-folds, and using

Eq. (3.52) for the value of ε, we obtain

hB2ð60Þi ≃ 3 × 104; R ≃ 6.6: ð4:12Þ

This should be compared with the results obtained in
Sec. II A 1 in the conventional approach in the absence of
the stochastic effects where it is concluded that back-
reactions are not important. Here, however, in the presence
of stochastic effects the backreactions of the magnetic
fields spoil inflation. Also, the present value of the
magnetic field on Mpc scale is about 2 orders of magnitude
larger than the value obtained in (2.51). More specifically,
using the value of ε in Eq. (3.52), we obtain

Bnow ≃ 4.6 × 10−5G: ð4:13Þ

The behaviors of the electric and magnetic fields are shown
in Fig. 3(b).

3. Wiener processes in strong coupling regime

According to Sec. III B 2, we have a Wiener process for
the magnetic field if n ¼ −2 − ϵH which leads to

dB ¼ ffiffiffiffiffiffiffiffi
6Pζ

p
ε−ϵHdW: ð4:14Þ

dE ¼ −EdN þ 5
ffiffiffiffiffiffi
Pζ

p
2

ffiffiffi
6

p εdW: ð4:15Þ

This means that the electric field reaches to the terminal
value hE2i ≃ 2.2 × 10−13 at around Neq ≃ 3 e-folds while
the strength of magnetic field at the end of inflation is
given by

Bend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2ðNendÞi

q
≃ 2 × 10−4

ffiffiffiffiffiffiffiffiffi
Nend

p
ε−ϵH ; ð4:16Þ

where (3.37) has been used. From Eq. (3.39), this value of
magnetic field can spoil inflation after NW

vio ≃ 1.2 × 1011

e-folds. The ratio of the electromagnetic to inflaton energy

FIG. 3. Simulations of the evolution of hX 2i in terms of e-folding number N in strong coupling regime for one hundred realizations
with ε ¼ 10−3 for (a) n ¼ −2 and (b) n ¼ −2.2.
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density is about R ≃ 4 × 10−10 if we assume inflation lasts
60 e-folds.
The present value of the magnetic fields on Mpc scale

from Eq. (4.3) is obtained to be

Bnow ≃ 5.2 × 10−11
ffiffiffiffiffiffiffiffiffi
Nend

p
G: ð4:17Þ

This shows that the amplitude of the magnetic
fields today depends on the number of e-folds that
inflation was in progress. By choosing Nend ¼ 60, we
obtain Bnow≃4×10−10G.
Also, a Wiener process occurs for the electric field if we

choose n ¼ −3 − ϵH,

dB ¼ BdN þ 35
ffiffiffiffiffiffi
Pζ

p
ffiffiffi
6

p
ε

dW; ð4:18Þ

dE ¼ ffiffiffiffiffiffiffiffi
6Pζ

p
ε−ϵHdW: ð4:19Þ

In this case a very large magnetic field is generated at the
early stage of inflation, spoiling inflation at aroundNW

vio ≃ 6

e-folds.
We emphasize that the above results can not be trusted

due to strong coupling problem. But, nonetheless, the
models have interesting aspects from the stochastic points
of view where we also compared our results with those
obtained via the conventional approach where the stochas-
tic effects are neglected.

B. Weak coupling regime

In this regime, the gauge coupling f−1 is exponentially
small at the beginning of inflation and grows to the order of
unity at the end of inflation so the perturbative analysis is
trusted during entire period of inflation. Following the logic
of [46] we define this regime as n > 1=2, although to have
a weak coupling one actually requires n > 0. In this regime,
the main contribution of electromagnetic energy density
comes from the electric part. Therefore, the backreaction
effects could destroy inflation, violating the condition
R ≪ 1 at the e-folding number given in Eq. (3.30) for a
wide range of parameters n. However, as shown by [46],
there are some ranges of parameters where the backreaction
is under control though the generated magnetic fields are
very small; see for example Eq. (2.56). Here we revisit this
issue in the presence of the stochastic noises.
In the following, we consider the spacial cases n ¼ 2,

n ¼ 2.2, n ¼ 3, and n ¼ 3þ ϵH; n ¼ 2þ ϵH with more
details and simulations. The first case corresponds to the
setup of anisotropic inflation which can produce aniso-
tropic hairs in cosmological background. The second case
is the most favorable one from the view of [46], because it
does not suffer from the backreaction problem in the
absence of stochastic effects.

1. n = 3

The stochastic differential equations of magnetic field
(ν ¼ 5=2) and electric field (ν ¼ 7=2) up to leading order
are given by

dB ¼ −ϵHBdN þ ffiffiffiffiffiffiffiffi
6Pζ

p
dW; ð4:20Þ

dE ¼ EdN þ 35
ffiffiffiffiffiffi
Pζ

p
ffiffiffi
6

p
ε

dW: ð4:21Þ

Here, the backreaction from the electric energy density
spoils the condition R ≪ 1 very soon at Nvio ≃ 6 e-folds,
long before the magnetic field reaches to its stationary
value which would be given by Eqs. (4.7) at around
Neq ≃ 2 × 105. This is the well-known backreaction prob-
lem of the electric fields in weak coupling regime [46]. The
evolution of the means and the variances of the electric and
magnetic fields for one hundred realizations until e-fold
number N ¼ 60 are plotted in Fig. 4(a) and 4(b). Also the
dependency of hE2i to ε is shown in Fig. 4c.

2. n = 2.2

For n ¼ 2.2, the stochastic differential equations of
magnetic field (ν ¼ 1.7) and electric field (ν ¼ 2.7) up
to leading order are given by

dB ¼ −0.8BdN þ 1.14
ffiffiffiffiffiffi
Pζ

p
ε4=5dW; ð4:22Þ

dE ¼ þ0.2EdN þ 3.4
ffiffiffiffiffiffi
Pζ

p
ε−1=5dW: ð4:23Þ

Figure 4d shows the evolution of the electric and magnetic
field until 60 e-folds.
The condition R ≪ 1 is violated and the backreaction of

the electric field spoils inflation at around Nvio ≃ 55 which
is about the minimum period of inflation required. The
magnetic field reaches to its equilibrium value

hB2ieq ≃ 5.4 × 10−9ε8=5; ð4:24Þ

at around Neq ≃ 3, before the backreaction effects become
important atNvio ≃ 55. Correspondingly, the present ampli-
tude of magnetic field from Eq. (4.3) is obtained to be

Bnow ≃ 1.9 × 10−11Gε4=5: ð4:25Þ

Using the value of ε at Mpc scales from Eq. (3.52) this
leads to

Bnow ≃ 4 × 10−13G: ð4:26Þ

This is larger by 17 orders of magnitude compared to the
result (2.56) obtained in the conventional approach where
the stochastic effects are neglected. Thus, taking the
stochastic effects into account, a model with the parameter
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n≲ 2.2 is promising to explain the origin of the primordial
magnetic fields without being plagued by the electric field
backreactions.

3. n = 2

As mentioned before, this case corresponds to the setup
of anisotropic inflation in which observable anisotropic
hairs can be generated during inflation [94–96].
The stochastic differential equations for the electromag-

netic fields to leading order are given by

dB ¼ −BdN þ 5
ffiffiffiffiffiffi
Pζ

p
2

ffiffiffi
6

p εdW; ð4:27Þ

dE ¼ −ϵHEdN þ ffiffiffiffiffiffiffiffi
6Pζ

p
dW: ð4:28Þ

This case is very desirable because the magnetic field
reaches to its equilibrium value hB2

eqi ≃ 2.2 × 10−13 only

after Neq ≃ 3 e-folds. Thus, the observed magnetic field
today on Mpc scale is given by

Bnow ≃ 1.2 × 10−13G; ð4:29Þ

which is acceptable for magnetogenesis. Interestingly, the
backreaction effects are not important in this case as we
have R ≃ 5 × 10−10 after 60 e-folds. This is an interesting
and unexpected result in our work demonstrating the
crucial effects of the stochastic dynamics which were
neglected in previous works.

4. Wiener processes in weak coupling regime

According to Sec. III B 2, the Wiener process for the
magnetic field happens for n ¼ 3þ ϵH. In this case we
obtain

dB ¼ ffiffiffiffiffiffiffiffi
6Pζ

p
ε−ϵHdW; ð4:30Þ

(a) (b)

(c) (d)

FIG. 4. (a) and (b): Simulations of the evolution of hX2i in terms of N in weak coupling regime for ε ¼ 10−3 for one hundred
realizations. (a): The growing behavior of the electric fields. As seen, at early stage during about the first 4 e-folds, the stochastic effects
enhance the amplitude of the electric fields while the stochastic effects disappear after that. (b): The evolution of magnetic field for one
hundred realizations in the case n ¼ 3. (c): The dependency of hE2i to ε for n ¼ 3. (d): The evolution of electric and magnetic fields for
one hundred realizations in the case n ¼ 2.2.
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dE ¼ EdN þ 35
ffiffiffiffiffiffi
Pζ

p
ffiffiffi
6

p
ε

dW: ð4:31Þ

The strengths of the magnetic fields at the present
time is given by Eq. (4.17). But as in the case of n ¼ 3
in strong coupling regime, the backreactions kick in at
about NW

vio ≃ 6 and inflation is terminated quickly. Thus,
this case also does not work because of the electric field
backreactions.
On the other hand, a Wiener process for the electric field

occurs for n ¼ 2þ ϵH in which

dE ¼ ffiffiffiffiffiffiffiffi
6Pζ

p
ε−ϵHdW: ð4:32Þ

However, the dynamics of the magnetic field in this case are
governed by an OU process with the amplitude of the
present time magnetic fields similar to the case of n ¼ 2.

C. Summary of the results

In this subsection we present our results for generating
primordial magnetic fields in the f2F2 model without
encountering the backreaction or strong coupling problems.
We present some plots to show that there is a suitable range
of parameter space which results in desired observable
magnetic fields in the range (1.1).
Before presenting the plots, let us take a closer look at

the evolution of the magnetic field for the case n ¼ 2 and
compare the results in the presence and in the absence

(a) (b)

(c) (d)

FIG. 5. Comparison of the amplitudes of the present day magnetic fields between usual approach employed by Demozzi et al. [46]
ðBDem

now Þ and the stochastic approach ðBSto
NowÞ for two tensor-to-scalat ratio rt and cutoff parameter ϵ: (a) rt ¼ 0.01; ϵ ¼ 10−3, (b)

rt ¼ 0.01; ϵ ¼ 10−5, (c) rt ¼ 0.0001; ϵ ¼ 10−3, (d) rt ¼ 0.0001; ϵ ¼ 10−5. The vertical axis shows simultaneously the values of BDem
now

and BSto
Now in units of Gauss and the value of R with R ¼ 1 indicated by the horizontal solid line. The grey region corresponds to the

strong coupling regime while elsewhere represents the weak coupling regime. We have assumed that inflation last about 60 e-folds. The
green horizontal band is the observational bound (1.1). The blue vertical band shown in the weak coupling regime indicates a healthy
parameter space for n in which the model has not been plagued by the backreaction effects. As seen, the blue band becomes wider if rt
decreases or ϵ increases.
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of the stochastic noises. As it is seen from Eq. (2.54), in
the absence of stochastic effects the magnetic field rapidly
decreases during inflation. But in the presence of stochastic
noises, the stochastic differential equation (4.27) deter-
mines its evolution. Consequently, the magnetic field
falls into its stationary state at around Neq ¼ 3 e-folds.
This clearly shows how stochastic effects change the
fate of the magnetic fields. The results for the magnetic
fields from the conventional approaches presented in
Sec. II A based on the analysis of [46] and the stochastic
approach are illustrated in Fig. 5 for the cases
rt ¼ 10−2; 10−4ðGUT inflationÞ, and ε ¼ 10−3; 10−5. The
former is denoted by BDem

now , while the latter is shown by
BSto
now. Requiring that inflation lasts at least N ¼ 60 e-folds,

Fig. 5 indicates that the stochastic kicks enhance the
strength of magnetic field by many orders of magnitude;
in the weak coupling regime the ratio BSto

now=BDem
now ranges in

the interval ∼102–1055! The vertical blue band corresponds
to the intersection of the green band Eq. (1.1) and R < 1.
Therefore, the blue band is the allowed region for the
parameter space of n in which BSto

now falls into the bound
(1.1) without being plagued by the backreaction problem.
Above the green region and to the right of blue band we
have R > 1 which for all cases the curve of R leaves the
blue band at around n ¼ 2.1. On the other hand, for the
fixed ε ¼ 10−3, at around n ¼ 1.2 the curve of R enters to
the blue band. Therefore, the interval n ∈ ½1.2; 2.1� can be
considered as a good range for the parameter n in which the
model works. The strength of generated magnetic fields in
this interval is around ∼10−16 − 10−13 G. But note that the
generated magnetic field is not scale invariant in this range.
Also note that by decreasing rt or increasing ε the blue band
becomes wider.

In Fig. 6(a), we have reproduced the results of Fig. 5 for
the cases ε ¼ 1, 0.1, 0.01, and 0.001. Figure 6(b) represents
the allowed value of the parameter n corresponding to the
green band 10−16 G < Bnow < 10−9 G intersected by the
condition R < 1 for a wide range of ε. As can be seen, for
ε≲ 5 × 10−7 (corresponding to the correlation scale
λB ≲ 63 pc), there is no allowed value of n > 1=2 that
the model can work.
The conclusion is that, taking the stochastic effects into

account, there are some ranges of parameter space in which
the observed primordial magnetic field can be achieved
without facing the backreaction or the strong coupling
problems.
Before ending this section, it is worth it to investigate the

relation between the correlation length λB and the model
parameter n. For the interval n ∈ ½1.2; 2.1�, the generated
magnetic fields settles down to the equilibrium state with

the magnitude Bend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2ieq

q
. Therefore the magnetic

field today is given by

Bnow¼6.8×10−14G

�
rt

0.01

�1
2

×
ð4πÞnΓðn−1=2Þ
ðnþ2Þ ffiffiffiffiffiffiffiffiffiffi

3−n
p ðλBkCMBÞ3−n; n∈ ½1.2;2.1�;

ð4:33Þ

where Eqs. (4.3), (3.46), (A27) (with ν ¼ n − 1=2), and
(3.51) have been used. The above relation is inconsistent
with (1.1), Bobs ∝ λ−1=2B , for λB ≲ 1 Mpc. This means that
on the smaller scales, and with a fixed n, the model predicts
a weaker magnetic field than what is observed. Note that in

(a) (b)

FIG. 6. (a) A snapshot of R at the moment N ¼ 60 e-folds is given by the dashed curves while the solid curves indicate the present
value of the magnetic field (normalized to femto-Gauss) assuming inflation lasts 60 e-folds with rt ¼ 0.01. The vertical axis shows
simultaneously the amplitudes of R and the normalized magnetic field. The green region corresponds to the observational bound (1.1).
Above the green bound we have R > 1. The vertical dashed lines at n ¼ −2 and n ¼ 3 represent the scale invariant spectrum for the
magnetic field. (b) The green regions are allowed in the parameter space of n corresponding to the bound (1.1) intersected by the
condition R < 1.
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this paper we have focused on the case λ≳ 1 Mpc, so for
smaller scales our analysis can not be directly used because
we have analyzed the evolution of the long modes without
worrying about small scale effects like possible conduc-
tivity, chiral, and turbulence effects [89,90]. The generated
magnetic field in our analysis can be amplified by astro-
physical processes such as the galactic dynamo mechanism
to produce a stronger magnetic field to be consistent with
the observed values (1.1) for smaller scales.

V. PROBABILISTIC ANALYSIS

In this section we briefly study the probability distribu-
tion function of the magnetic field. The probability dis-
tribution functions for the cases bν ¼ 0 and bν < 0 are
given by Eqs. (3.35) and (3.44), respectively. The former
represents a Wiener process while the latter represents an
OU process. These distribution functions enable us to
calculate the probability of having a given amplitude for
the magnetic field in a desired range, as presented in
Eqs. (3.40) and (3.50). The desired range corresponds to
the lower and upper bounds on cosmological magnetic
fields as given in Eq. (1.1). Subsequently, these bounds are
translated into Eq. (4.4) which determines the values of χ1
and χ2 in Eqs. (3.40) and (3.50).
As mentioned in Sec. III B 2, the case bν ¼ 0 corre-

sponds to jνj ¼ ϵH þ 5=2. For the magnetic field there are
two possibilities for the parameter n: n ¼ 3þ ϵH and
n ¼ −2 − ϵH. For these two values, the probability of
having the present magnetic field in the range of (1.1) is
given by (3.40),

Pð10−10 ≲ Bend ≲ 10−3;NÞ: ð5:1Þ

The dependency of the probability toN is due to theWiener
process which describes a random walk with variance
proportional to N. Hence, the probability of having the
magnetic field in a desired range depends on how many e-
folds inflation was in progress. The evolution of this
probability is plotted in Fig. 7(a). The plot shows that if
inflation takes about 100 e-folds or less, then the proba-
bility is about 100%. But if the inflationary stage takes a
much longer period then the probability becomes smaller
and smaller. The overall behavior of the probability (5.1) is
independent of ε.
If bν < 0 [represented by the blue dashed lines in

Fig. 1(b)], the magnetic field admits a stationary state at
around the e-folding number Neq defined in Eq. (3.48).
Here we have assumed that the magnetic field reaches to its
equilibrium (stationary) state before the end of inflation,
i.e., Neq ≲ 60. In this case the probability of having the
present value of magnetic field in the interval determined in
Eq. (1.1) is given by (3.50), yielding

Peqð10−10 ≲ Bend ≲ 10−3Þ: ð5:2Þ

This probability depends on ε and n as it is shown in
Fig. 7(b). The main feature in this plot is that the smaller
values of the parameter ε yield smaller probability in some
parts of parameter space n. This statement is consistent
with the results in Fig. 5 as the probabilistic interpretation
based on the Fokker-Planck equation is a parallel approach
to the mechanism of stochastic differential equations
presented in Sec. IV.

(a) (b)

FIG. 7. (a) The probability of having the magnetic field in the range of (1.1) according to Eq. (3.40) when bν ¼ 0 corresponding to
n ¼ 3þ ϵH and n ¼ −2 − ϵH . The gray dashed line corresponds to N ¼ 60 e-folds. The overall behavior of this probability is
independent of ε but here the plot is for ε ¼ 10−3. (b) The probability distribution Eq. (3.50) in terms of parameter n for the case with
bν < 0 where magnetic fields reach to a equilibrium state. The gray (white) region represents the strong (weak) coupling regime. The
probability depends on ε. For ε in the range 10−2 ≲ ε≲ 1, the probability of having the present value of magnetic field in the bound (1.1)
is almost 100%. This plot is well consistent with Fig. 5.
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VI. CONCLUSION

In this paper, we have revisited the mechanism of
magnetogenesis in the f2F2 inflationary model by taking
into account the stochastic effects. We have derived the
associated Langevin equations for the electric and magnetic
fields. We have also derived and solved the Fokker-Planck
equation associated to the magnetic field for wide ranges of
parameter n.
As mentioned in previous literature, there are difficulties

in magnetogenesis in the f2F2 model, namely the back-
reaction and the strong coupling problems. If one chooses
to work in the weak coupling regime the backreaction of the
electric fields would spoil inflation too early. In usual
approach employed in [46], there is region of the parameter
space n (n < 2.2) in which the backreactions are not strong
enough to spoil inflation, but the amplitude of the generated
magnetic field cannot exceed 10−30 G in Mpc scales today
[for example, for the most favorable case n ¼ 2.2, see
Eq. (2.56)]. Although in the presence of the stochastic
noises the backreaction of the electric field becomes more
relevant to spoil inflation, but at the same time these
stochastic effects enhance the magnetic field significantly.
For example, for the case of n ¼ 2.2, the stochastic effects
amplify the magnetic fields by about 17 orders of magni-
tude; see Eq. (4.26). The main reason for the amplification
of the magnetic field in this case (and similar cases with
bν < 0) is due to the mean-reverting process of an
Ornstein-Uhlenbeck stochastic differential equation which
settles the fields into an equilibrium state and prevent them
from decaying. This is unlike the conventional approach
in which the magnetic fields decay rapidly on superhorizon
scales.
In Sec. IV we have shown that for n in the range n ∈

½1.2; 2.1� magnetic fields at the correlation length Mpc with
amplitude ∼10−16–10−13 G at present time can be gener-
ated without encountering the backreaction or the strong
coupling problem (the blue band in Fig. 5). This range of
allowed value of n actually depends on rt and ε in which the
lower bound on the allowed value of n can be pushed to
0.51. In addition, the probabilistic analysis performed in
Sec. V confirmed this conclusion.
To have a consistent model, one should also check that

the curvature perturbation induced by the electromagnetic
fields is consistent with the CMB observations. In [87] we
have studied the case n ≃ 2 by allowing a background
electric field energy density, Ecl ≠ 0. There, we have shown
that the theory is consistent with the CMB observations
(i.e., the probability of generating quadrupolar statistical
anisotropy is consistent with CMB constraints). Combining
our finding in [87] with our current results shows that the
anisotropic inflation model f2F2 with f ∝ a−2 (i.e., n ¼ 2)
is not only consistent with the CMB anisotropy constraints
but also can produce primordial seeds for magnetic fields
observed today on Mpc scales. This is one important result
of this work.

Another important finding in this work is about the roles
of the stochastic effects in backreaction problem. In strong
coupling regime Demozzi et al. [46] have shown that the
magnetic field energy density does not spoil inflation if
n ≥ −2.2. However, we have seen that in the presence of
the stochastic noises the backreactions of the magnetic field
can spoil inflation even for this range of n (e.g., refer to
Sec. IVA 2). Moreover, the backreaction problem in the
weak coupling regime becomes more important in
the presence of stochastic noises than in their absence if
n > 2.2 (e.g., refer to the Sec. IV B 1 and Fig. 4).
This study opens up a new window into the studies of the

primordial magnetogenesis in the presence of stochastic
noises. For example, it would be interesting to explore the
stochastic approach in other scenarios such as magneto-
genesis in the setup of pseudoscalar inflation [99,100].
Also one can look at Schwinger effects in this setup
[101,102], Faraday’s law of induction [93] and conductivity
[26] in the presence of the stochastic noises. A good
question is how stochastic noises affect the parametric
resonance mechanism to produced magnetic fields [103].
We leave these issues to future works.
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APPENDIX: PROPERTIES OF THE
NOISE TERMS ðτ; σÞ

In this Appendix, we derive the explicit forms of the
quantum noises ðτ; σÞ and then obtain the associated
Langevin equation for the superhorizon perturbations.
The noise terms are given by

τðt; xÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞ _XkðtÞeik:x; ðA1Þ

σðt; xÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞXkðtÞeik:x; ðA2Þ

with the mode function

Xλ ¼ i
ffiffiffi
π

p
2

kH2η5=2Hð1Þ
ν ð−kηÞ; ðA3Þ

appearing in its associated Fourier transforms

XkðηÞ ¼
X
λ¼�

eλðk̂Þ½Xλðη; kÞâλk þ X�
λðη; kÞâλ†−k�: ðA4Þ

The quantum properties of the noises ðτ; σÞ can be read
off by looking at their commutators. Here, to simplify
the notation, we denote the components of the source
terms ðτ; σÞ collectively as Ai and Bi and define their
commutators as
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1

2
½Aiðx1Þ; Bjðx2Þ�
≡DABðx1; x2Þj0ðεaHjx1 − x2jÞδijδðt1 − t2Þ; ðA5Þ

in which xi ¼ ðti; xiÞ and j0 is the zeroth order Bessel
function. Since ε is a small parameter, and using the
definitions of (3.2), (3.10), and (3.9), we obtain

Dσσðx1; x2Þ ¼ Dττðx1; x2Þ ¼ 0; ðA6Þ

Dστðx1; x2Þ ¼ −i
H6

6π2
ε5: ðA7Þ

As we see, the quantum noncommutativity disappears up to
Oðε4Þ independent of ν. Hence, by choosing a sufficiently
small value of ε, the quantum nature of these noises dies
away and one can treat them as classical noises.
The correlation functions of ðτ; σÞ can be defined by

choosing a suitable state. Here we impose the Bunch-
Davies (Minkowski) initial condition j0i and define the
correlation function among operators Ai and Bj as

h0jAiðx1ÞBjðx2Þj0i
≡ CABðx1; x2Þj0ðεaHjx1 − x2jÞδijδðt1 − t2Þ: ðA8Þ

Consequently, for ν ≠ 0 we obtain

Cσσðx1; x2Þ ≈
4−1þjνjðΓðjνjÞÞ2

3π3
H5ε5−2jνj; ðA9Þ

Cττðx1;x2Þ≈
8<
:

H7ε4

6π2
ν¼�5=2

4−1þjνjðΓðjνjÞÞ2
3π3

H7ε5−2jνj
	
5
2
− jνj



2
ν≠�5=2;

ðA10Þ

Cστþτσðx1;x2Þ≈
8<
:

H6ε2

π2
ν¼�5=2

4−1þjνjðΓðjνjÞÞ2
3π3

H6ε5−2jνjð5−2jνjÞ ν≠�5=2:

ðA11Þ

However, for ν ¼ 0, the leading order correlation function
starts at the order ∼Oðε5Þ which is neglected in this work.
Using the number of e-folds, dN ¼ Hdt, as the time

variable and defining the vectorial normalized white
noise ξ via

hξðNÞi ¼ 0; hξiðNÞξjðN0Þi ¼ δijδðN − N0Þ; ðA12Þ

the above correlation functions allow us to express the
noises ðτ; σÞ in terms of the normalized white noise ξ as

σðNÞ≡ SνðεÞH3ξðNÞ; ðA13Þ

τðNÞ≡ TνðεÞH4ξðNÞ; ðA14Þ

in which the functions SνðεÞ and TνðεÞ are defined via

SνðεÞ ¼
ΓðjνjÞ
π

2−1þjνjffiffiffiffiffiffi
3π

p ε
5
2
−jνj; ðA15Þ

TνðεÞ ¼
8<
:

SνðεÞ
��� 52 − jνj

��� ν ≠ �5=2

ε2ffiffi
6

p
π

ν ¼ �5=2:
ðA16Þ

The two coupled stochastic equations (3.7) and (3.8) can
be simplified further by considering the superhorizon
behaviors of the auxiliary field X,

Xλðη; kÞ ∝ H2η
5
2
−jνj; ðA17Þ

where Eqs. (3.2) and (2.43) are used. Using the above
approximation, _ΠIR is calculated to be

_ΠIR ≃
�
jνj − 5

2
−
�
jνj þ 1

2

�
ϵH

�
HΠIR: ðA18Þ

Now using Eq. (A18) to eliminate _ΠIR in favor of HΠIR in
Eq. (3.7) and combining the two coupled Eqs. (3.7) and
(3.8) we obtain the desired Langevin equation for the long
mode XIRðNÞ as follows:

dXIRðNÞ
dN

¼ qνXIRðNÞþ
�
SνðεÞþ

TνðεÞ
Qν

�
H2ξðNÞ; ðA19Þ

where, to leading orders in slow-roll parameter, the
parameters qν and Qν are defined via

qν ≡ 1

Qν

��
ν −

5

2

��
νþ 5

2

�
− 2

�
ν2 −

5

4

�
ϵH

�
; ðA20Þ

Qν≡jνj þ 5

2
−
�
jνj þ 1

2

�
ϵH: ðA21Þ

By defining the following dimensionless stochastic
variable

X ¼ XIR

Xref
; Xref ≡

ffiffiffiffiffiffiffiffi
2ϵH

p
MPH; ðA22Þ

the Langevin equation (A19) can be cast into a dimension-
less stochastic differential equation as follows:

dXðNÞ ¼ bνXdN þDνðεÞdWðNÞ; ðA23Þ

whereW is a three dimensional (3D)Wiener processes [98]
associated with the noises ξ via
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dWðNÞ≡ ξðNÞdN; ðA24Þ

while bν andDν represent the amplitude of the drift and the
diffusion terms, respectively, given by

bν ≡ jνj − 5

2
þ 75 − 28ν2 þ ð10 − 8ν2Þjνj

2ð5þ 2jνjÞ2 ϵH; ðA25Þ

DνðεÞ≡ 2π
ffiffiffiffiffiffi
Pζ

p �
SνðεÞ þ

TνðεÞ
Qν

�
; ðA26Þ

in which the power spectrum Pζ is defined in Eq. (2.11).

Equation (A23) is our master equation whose solutions
were studied in the main text.
It is useful to simplify the form of diffusion coefficient as

a function of ε. From Eqs. (A15), (A16), and (A26), the
diffusion coefficient up to leading order in ε is given by

DνðεÞ¼
ffiffiffiffiffiffiffiffi
6Pζ

p
×

(
2jνj
3

ΓðjνjÞffiffiffiffi
2π

p
	
1þj5

2
−jνjj
Qν



ε
5
2
−jνj jνj≠ 5=2

1 ν¼�5=2;

ðA27Þ

which will be used in the main text.
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