
 

UV sensitive one-loop matter power spectrum in degenerate higher-order
scalar-tensor theories

Shin’ichi Hirano ,1,* Tsutomu Kobayashi,2,† Daisuke Yamauchi,3,‡ and Shuichiro Yokoyama4,5,§
1Division of Particle and Astrophysical Science, Graduate School of Science,

Nagoya University, Aichi 464-8602, Japan
2Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan
3Faculty of Engineering, Kanagawa University, Kanagawa 221-8686, Japan
4Kobayashi Maskawa Institute, Nagoya University, Aichi 464-8602, Japan

5Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

(Received 19 August 2020; accepted 5 October 2020; published 4 November 2020)

We study matter density perturbations up to third order and the one-loop matter power spectrum in
degenerate higher-order scalar-tensor (DHOST) theories beyond Horndeski. We systematically solve
gravitational field equations and fluid equations order by order and find three novel shape functions
characterizing the third-order solution in DHOST theories. A complete form of the one-loop matter power
spectrum is then obtained using the resultant second- and third-order solutions. We confirm the previous
result that the convergence condition of the loop integrals in the infrared limit becomes more stringent than
that of the standard one in general relativity. We show that also in the ultraviolet limit the convergence
condition becomes more stringent and the one-loop matter power spectrum is thus sensitive to the short-
wavelength behavior of the linear power spectrum.
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I. INTRODUCTION

Scalar-tensor theories are exciting candidates of the
origin of the accelerated cosmic expansion at late time
[1–3]. While the scalar degree of freedom causes the
accelerated expansion on large cosmological scales, its
effect on small scale gravity experiments must be highly
suppressed in successful theories to evade existing stringent
tests such as in the Solar System. To achieve this, screening
mechanisms are implemented to elaborated scalar-tensor
theories. For example, the Vainshtein mechanism hides the
scalar-mediated force very effectively through the nonlinear
derivative interaction of the scalar degree of freedom [4].
In the Horndeski family of theories [5–7], which spans the
most general scalar-tensor theory having second-order
field equations and hence is a class of theories free
of Ostrogradsky’s ghost [8,9], the Vainshtein screening
mechanism is implemented naturally as the Lagrangian
contains powers of second derivatives of the scalar field
[10–12]. Extending the Horndeski theory even further,
degenerate higher-order scalar-tensor (DHOST) theories
have been developed recently [13–15] (see Refs. [16–18]
for a review). The field equations in such theories are
apparently of higher order, but a careful counting of the

degrees of freedom shows that there in fact are one scalar
and two tensor degrees of freedom due to the degeneracy of
the theories, and consequently Ostrogradsky’s ghost is
removed. New types of nonlinear derivative interactions
arise in DHOST theories beyond Horndeski. Their effect on
the screening mechanism has been discussed in [19–25],
emphasizing that partial breaking of Vainshtein screening
(first discovered in Ref. [19]) occurs in the presence
of matter [26–41]. The nonstandard interactions between
scalar and gravitational-wave degrees of freedom in
DHOST theories result also in the decay of gravitons
[42,43].
In this paper, we study the impact of the nonlinear

derivative interactions of the scalar field in DHOST
theories on nonlinear evolution of matter density perturba-
tions. It has been found that the matter bispectrum in a class
of DHOST theories shows a distinct feature at the equi-
lateral and folded limits compared with that in general
relativity (GR) [44]. References [45,46] have investigated
the bi- and trispectra of the matter density perturbations and
also the one-loop matter power spectrum in the context of
DHOST theories. They have, in particular, focused on the
behaviors at the infrared (IR) limit: the squeezed limit for
the bispectrum, the double soft limit for the trispectrum,
and the IR contributions in the loop integrals for the one-
loop power spectrum, and studied a consistency relation for
large scale structure and its violation. So far, in DHOST
theories, the third-order solution for the matter density

*hirano.shinichi@a.mbox.nagoya-u.ac.jp
†tsutomu@rikkyo.ac.jp
‡yamauchi@jindai.jp
§shu@kmi.nagoya-u.ac.jp

PHYSICAL REVIEW D 102, 103505 (2020)

2470-0010=2020=102(10)=103505(15) 103505-1 © 2020 American Physical Society

https://orcid.org/0000-0003-2915-505X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.103505&domain=pdf&date_stamp=2020-11-04
https://doi.org/10.1103/PhysRevD.102.103505
https://doi.org/10.1103/PhysRevD.102.103505
https://doi.org/10.1103/PhysRevD.102.103505
https://doi.org/10.1103/PhysRevD.102.103505


perturbations has been obtained only at the IR limit as done
in Refs. [45,46], and the complete form of the one-loop
matter power spectrum has not been derived yet. The goal
of this paper is therefore to derive the third-order solution
for the matter density perturbations and to investigate the
one-loop matter power spectrum in its complete form.
This paper is organized as follows. In the next section,

we introduce quadratic DHOST theories which we focus on
in this paper and derive basic equations for cosmological
perturbations under the quasistatic approximation. Then,
we review the solutions for the matter density perturbations
up to second order. In Sec. III, we obtain the third-order
solution to calculate the complete form of the one-loop
matter power spectrum. In Sec. IV, we derive the one-loop
matter power spectrum and investigate the asymptotic
behavior of the loop integrals at the IR and ultraviolet
(UV) limits. In particular, we emphasize that the conver-
gence condition of the loop integrals in the UV limit
becomes more stringent. Finally, we draw the conclusion of
the present paper in Sec. V.

II. LARGE SCALE STRUCTURE IN QUADRATIC
DHOST THEORIES

A. Quadratic DHOST theories

The action of the quadratic DHOST theories [13] is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþ Fðϕ; XÞR

þ a1ðϕ; XÞϕμνϕ
μν þ a2ðϕ; XÞð□ϕÞ2

þ a3ðϕ; XÞð□ϕÞϕμϕμνϕ
ν þ a4ðϕ; XÞϕμϕμρϕ

ρνϕν

þ a5ðϕ; XÞðϕμϕμνϕ
νÞ2�; ð1Þ

where ϕμ ¼ ∇μϕ, ϕνρ ¼ ∇ρ∇νϕ, and X ¼ −ϕμϕ
μ=2. To

avoid the Ostrogradsky’s ghosts, we impose degeneracy
conditions among the functions F and aiði ¼ 1;…; 5Þ,
and hence not all these are independent. We focus on the
class Ia DHOST theories, as they are basically healthy and
can be free from instabilities on a cosmological background
[47,48]. The class Ia degeneracy conditions [14] are
summarized as

a1 þ a2 ¼ 0; β2 ¼ −6β21;

β3 ¼ −2β1½2ð1þ αHÞ þ β1ð1þ αTÞ�; ð2Þ

where

M2 ¼ 2ðFþ 2Xa1Þ; M2αT ¼ −4Xa1;

M2αH ¼ −4XðFX þ a1Þ; M2β1 ¼ 2XðFX − a2 þXa3Þ;
M2β2 ¼ 4X½a1 þ a2 − 2Xða3 þ a4Þ þ 4X2a5�;
M2β3 ¼ −8XðFX þ a1 −Xa4Þ: ð3Þ

Here and hereafter, we use the notation FX ¼ ∂F=∂X. We
thus have three free functions in addition toG2 andG3. In the
Horndeski theory [5–7], we have αH ¼ β1 ¼ β2 ¼ β3 ¼ 0,
while in the Gleyzes-Langlois-Piazza-Vernizzi theory
[49–51], we have β1 ¼ β2 ¼ β3 ¼ 0.
To keep generality, in this paper, we do not impose any

other constraints among the functions. In particular, we do
not take into account seriously the constraint on scalar-
tensor gravity from the propagation speed of gravitational
waves, as the energy scale observed at LIGO is close to
the cutoff scale of the effective theory if applied to dark
energy [52]. One should note also that in principle the
gravitational-wave constraints are irrelevant to the high-
redshift universe. For these reasons, it is fair to say that
there still is a room for general DHOST theories as viable
dark energy models, and it is important to seek for
independent cosmological constraints on DHOST theories.

B. Perturbation equations

We consider a spatially flat, homogeneous, and isotropic
background universe, and the cosmological perturbations
in the Newtonian gauge. The perturbed metric is given by

ds2 ¼ −½1þ 2Φðt; xÞ�dt2 þ a2ðtÞ½1 − 2Ψðt; xÞ�dx2; ð4Þ

and the perturbed scalar field is

ϕðt; xÞ ¼ ϕðtÞ þ πðt; xÞ: ð5Þ

We introduce a dimensionless variable Q ≔ Hπ= _ϕ, where
H ¼ _a=a and a dot denotes differentiation with respect to t.
The matter density perturbation is defined by

ρmðt; xÞ ¼ ρ̄mðtÞ½1þ δðt; xÞ�: ð6Þ

We consider irrotational dust as a matter content and
therefore have only a scalar mode in the velocity field
ui, which is characterized by θ ¼ ∂iui=aH.
We study the quasistatic behavior of those perturbations

deep inside the horizon. Substituting Eqs. (4) and (5) to the
action (1) and expanding it in terms of the perturbations, one
obtains the action for the perturbations [22,24,25,44,45,53].
In doing so, we take the quasistatic approximation and
neglect time derivatives compared to spatial derivatives.
Note, however, that in DHOST theories we have mixed
derivatives such as ∂2 _Q which cannot be simply ignored
[19].We thus arrive in the end at the action for the quasistatic
perturbations, which we vary to derive the following
equations of motion (EoMs) in Fourier space:

ð1þαTÞΨ− ð1þαHÞΦþb2QþαH
_Q
H

¼−
αT−4αH
4a2H2p2

Sγ½t;p;Q;Q�− αH
a2H2p2

Sαs ½t;p;Q;Q�; ð7Þ
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ð1þ αHÞΨ −
β3
2
Φþ b1Qþ 2β1 þ β3

2

_Q
H

þ a2

2M2p2
ρ̄mδ ¼

d2 þ 2ð2β1 þ β3Þ
2a2H2p2

Sγ½t; p;Q;Q� − 2β1 þ β3
2a2H2p2

Sαs ½t; p;Q;Q�; ð8Þ

c1Φþ c2Ψþ b3Qþ 4αH
_Ψ
H

− 2ð2β1 þ β3Þ
_Φ
H

þ b4
_Q
H

þ 2ð4β1 þ β3Þ
Q̈
H2

¼ d1
a2H2p2

Sγ½t; p;Q;Q� þ 2αT
a2H2p2

Sγ½t; p;Q;Ψ� þ 4d2
a2H2p2

Sγ½t; p;Q;Φ�

−
4αH

a2H2p2
Sα½t; p;Ψ; Q� þ 2ð2β1 þ β3Þ

a2H2p2
Sα½t; p;Φ; Q� − 2ð4β1 þ β3Þ

a2H3p2
Sα½t; p;Q; _Q�

−
4ð4β1 þ β3Þ
a2H3p2

ðSαs ½t; p;Q; _Q� − Sγ½t; p;Q; _Q�Þ − b4
a2H2p2

ðSαs ½t; p;Q;Q� − Sγ½t; p;Q;Q�Þ

þ 2d2 þ αT
a4H4p2

T ξ½t; p;Q;Q;Q� − 2ð4β1 þ β3Þ
a4H4p2

T ζ½t; p;Q;Q;Q�; ð9Þ

where p denotes a comoving wave vector in Fourier space and p ¼ jpj. Here, SΣ½t; p;Y; Z�ðΣ ¼ α; αs; γÞ and
T ϒ½t; p;X; Y; Z�ðϒ ¼ ξ; ζÞ are, respectively, second- and third-order contributions with respect to the metric and scalar
field perturbations, and are defined by

SΣ½t; p;Y; Z� ¼
1

ð2πÞ3
Z

d3k1d3k2δDðk1 þ k2 − pÞk21k22Σðk1; k2ÞYðt; k1ÞZðt; k2Þ; ð10Þ

T ϒ½t; p;X; Y; Z� ¼
1

ð2πÞ6
Z

d3k1d3k2d3k3δDðk1 þ k2 þ k3 − pÞk21k22k23ϒðk1; k2; k3ÞXðt; k1ÞYðt; k2ÞZðt; k3Þ; ð11Þ

where

αðk1; k2Þ ¼ 1þ k1 · k2
k21

; ð12Þ

αsðk1; k2Þ ¼
1

2
½αðk1; k2Þ þ αðk2; k1Þ�; ð13Þ

γðk1; k2Þ ¼ 1 −
ðk1 · k2Þ2
k21k

2
2

; ð14Þ

ξðk1;k2;k3Þ ¼ 1− 3
ðk2 · k3Þ2
k22k

2
3

þ 2
ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

k21k
2
2k

2
3

;

ð15Þ

ζðk1; k2; k3Þ ¼
ðk2 · k3Þ2
k22k

2
3

þ 2
ðk1 · k3Þðk2 · k3Þ2

k21k
2
2k

2
3

þ k2 · k3
k22

þ ðk1 · k2 þ k3 · k1Þðk2 · k3Þ
k21k

2
2

; ð16Þ

and δDðkÞ is the Dirac delta function. The explicit expres-
sions for the time-dependent coefficients c1, c2, c3, b1, b2,
b3, d1, and d2 in terms of the functions in the DHOSTaction
are presented in Appendix A. The terms involving αH, β1,
and β3 are specific to theories more general than Horndeski.
(Here, β2 is removed by using one of the degeneracy
conditions (2), but β3 is retained because using β3 leads
to simpler expressions.) In GR, the above set of equations
corresponds to the Poisson equation and Φ ¼ Ψ that are
used to express thematter density perturbations δ in terms of
the metric potentials. In scalar-tensor theories, the Poisson
equation is modified and anisotropic stress induced by the
scalar field changes the relation betweenΦ andΨ. Nonlinear
self-interactions of the scalar field also come into play in the
equations. In particular, Sα and T ζ newly appear in DHOST
theories beyond Horndeski, and it turns out that these terms
lead to themore stringent convergence conditions of the loop
integrals in the one-loop matter power spectrum as we will
see in Sec. IV B.
We assume that the matter is minimally coupled to gravity.

Then, fluid equations are the same as the standard ones inGR,

1

H
∂δðt; pÞ

∂t þ θðt; pÞ ¼ −
1

ð2πÞ3
Z

d3k1d3k2δDðk1 þ k2 − pÞαðk1; k2Þθðt; k1Þδðt; k2Þ; ð17Þ
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1

H
∂θðt; pÞ

∂t þ
�
2þ

_H
H2

�
θðt; pÞ − p2

a2H2
Φðt; pÞ

¼ −
1

ð2πÞ3
Z

d3k1d3k2δDðk1 þ k2 − pÞ

× ½αsðk1; k2Þ − γðk1; k2Þ�θðt; k1Þθðt; k2Þ: ð18Þ

Although these are the same as the standard ones,
the effects of modified gravity participate through the
gravitational potential Φ which is determined by the
EoMs (7)–(9). The nonlinear terms on the right-hand side
also modify the higher-order solutions from the standard
ones in GR because these are induced by the linear solution
that already contains the effects of gravity modification.

C. Solving the perturbation equations

Asolution to theEoMs (7)–(9) and the fluid equations (17)
and (18) can be expressed as a perturbative series,

δ ¼
X
n¼1

δðnÞ; Φ ¼
X
n¼1

ΦðnÞ; …; ð19Þ

where δðnÞ;ΦðnÞ; � � � ½¼OðϵnÞ� are the nth order quantities
with δð1Þ being OðϵÞ a quantity.
Let us now describe the systematic procedure to obtain

the nth order solution. At nth order, Eqs. (7) and (8) are
schematically written as

M
�
ΨðnÞ

ΦðnÞ

�
¼ N

�
QðnÞ

_QðnÞ=H

�
−

a2ρ̄m
2M2p2

�
0

δðnÞ

�

−
a2H2

p2
OðnÞ

0
BB@

WðnÞ
Π1

..

.

WðnÞ
Πm

1
CCA; ð20Þ

where M and N are 2 × 2 matrices, OðnÞ is a 2 ×m matrix

with m being different for different n, and WðnÞ
Π1
;…;WðnÞ

Πm

are the nth order functions with respect to the initial density
field, δL, which comes from the higher-order contributions
in Eqs. (7), (8), (9), (17), and (18). Here, Π represents the
shape of the kernel of the nonlinear mode coupling. We

define WðnÞ
Π as

WðnÞ
Π ðpÞ ≔

Z
d3k1 � � � d3kn
ð2πÞ3ðn−1Þ δDðk1 þ � � � þ kn − pÞ

× Πðk1;…; knÞδLðk1Þ � � � δLðknÞ; ð21Þ

where δLðkÞ denotes the initial density field. The matrices
M and N are independent of n, whose explicit forms are
presented in Appendix B 1. Inverting M, we obtain the
solutions for ΨðnÞ and ΦðnÞ as follows:

�
ΨðnÞ

ΦðnÞ

�
¼ M−1N

�
QðnÞ

_QðnÞ=H

�
−

a2ρ̄m
2M2p2

M−1
�

0

δðnÞ

�

−
a2H2

p2
M−1OðnÞ

0
BB@

WðnÞ
Π1

..

.

WðnÞ
Πm

1
CCA: ð22Þ

Substituting these and their time derivatives into the nth
order part of Eq. (9), we obtain the solution for QðnÞ,

QðnÞ ¼ −
a2H2

p2

�
νQ

_δðnÞ

H
þ κQδ

ðnÞ
�
−
a2H2

p2

X
Π∈Un

τðnÞQ;ΠW
ðnÞ
Π ;

ð23Þ

where Un ¼ fΠ1 � � � ;Πmg denotes the set of the kernels to
describe the nth order mode coupling. At this step, _QðnÞ and
Q̈ðnÞ are all canceled thanks to the degeneracy conditions,
so that the equation can be solved algebraically for QðnÞ.
The explicit forms of the coefficients νQ and κQ are given

in Appendix B 1. It should be noted that _δðnÞ appears in
Eq. (23) when one considers theories more general than
Horndeski [19,24,25,44,45,53,54]. Given the concrete
form of OðnÞ, it is straightforward to write the explicit

form of τðnÞQ;Π. Turning back to Eq. (22), now one can

eliminate QðnÞ and _QðnÞ on the right-hand side to express

ΨðnÞ and ΦðnÞ in terms of δðnÞ and WðnÞ
Π as

ΨðnÞ ¼ −
a2H2

p2

�
μΨ

δ̈ðnÞ

H2
þ νΨ

_δðnÞ

H
þ κΨδ

ðnÞ
�

−
a2H2

p2

X
Π∈Un

τðnÞΨ;ΠW
ðnÞ
Π ; ð24Þ

ΦðnÞ ¼ −
a2H2

p2

�
μΦ

δ̈ðnÞ

H2
þ νΦ

_δðnÞ

H
þ κΦδ

ðnÞ
�

−
a2H2

p2

X
Π∈Un

τðnÞΦ;ΠW
ðnÞ
Π : ð25Þ

The explicit expressions for the coefficients of the homo-
geneous solutions, μΨ; νΨ; � � �, are also given in
Appendix B 1. We also show the coefficients of the second-
and third-order mode couplings in Appendixes B 2–B 4.
Having thus obtained ΨðnÞ, ΦðnÞ, and QðnÞ expressed in

terms of the matter density perturbations, we use the fluid
equations (17), (18), and (25) to obtain the evolution
equation for δðnÞ,

HIRANO, KOBAYASHI, YAMAUCHI, and YOKOYAMA PHYS. REV. D 102, 103505 (2020)

103505-4



∂2δðnÞ

∂t2 þð2þςÞH∂δðnÞ
∂t −

3

2
ΩmΞΦH2δðnÞ ¼H2

X
Π∈Un

SðnÞΠ WðnÞ
Π ;

ð26Þ

where

ς≔
2μΦ − νΦ
1− μΦ

;
3

2
ΩmΞΦ ≔

κΦ
1− μΦ

; Ωm ≔
ρ̄m

3M2H2
:

ð27Þ

We assume that there is no intrinsic nonlinearity at an initial
time ti, that is, δð2ÞðtiÞ ¼ δð3ÞðtiÞ ¼ � � � ¼ 0. Then, the first-
order solution is obtained by solving the homogeneous
equation, and the higher-order solutions are given solely by
the inhomogeneous solution.
The first- and second-order solutions for the matter

density perturbations in DHOST theories have already
been obtained in the literature [45,46], but here for
completeness we replicate the previous discussion. The
third-order solution, which is obtained for the first time in
this paper, is presented in the next section.

1. First-order solution

From Eq. (26), by settingWðnÞ
Π ¼ 0, we see that the first-

order evolution equation for the density perturbation is
given by

∂2δð1Þ

∂t2 þ ð2þ ςÞH ∂δð1Þ
∂t −

3

2
ΩmΞΦH2δð1Þ ¼ 0: ð28Þ

This equation has growing and decaying solutions,
denoted, respectively, as DþðtÞ and D−ðtÞ. Discarding
the decaying solution, we write the solution as

δð1Þðt; pÞ ¼ DþðtÞδLðpÞ: ð29Þ

The linear growth rate, f, is convenient for characterizing
the growth of the matter density perturbations and is
defined by

f ¼ d lnDþ
d ln a

: ð30Þ

Substituting the solution (29) into the continuity
equation (17), we obtain

θð1Þðt; pÞ ¼ −fðtÞδð1Þðt; pÞ: ð31Þ

2. Second-order solution

In order to obtain the second-order solution of the matter
density perturbations, we need to substitute the first-order
solutions (29) and (31) into the right-hand side of Eqs. (17)
and (18). The relevant kernel to describe the second-order
mode-coupling functions are α and γ defined in Eqs. (12)

and (14), namely,U2 ¼ fα; γg. With these nonlinear mode-
coupling functions (21), the second-order evolution equa-
tion is given by

∂2δð2Þ

∂t2 þð2þςÞH∂δð2Þ
∂t −

3

2
ΩmΞΦH2δð2Þ ¼H2

X
Π¼α;γ

Sð2ÞΠ Wð2Þ
Π :

ð32Þ

The coefficients of the second-order mode coupling are
given by

ð1 − μΦÞSð2Þα ¼ τð2ÞΦ;α þ
1

a2H2Dþ
ða2HD3þfÞ·; ð33Þ

ð1 − μΦÞSð2Þγ ¼ τð2ÞΦ;γ −D2þf2; ð34Þ

where the explicit form of τð2ÞΦ;Π is given in Appendixes B 2
and B 3.
The second-order solution is obtained as

δð2Þðt; pÞ ¼ D2þðtÞ
�
κðtÞWð2Þ

α ðpÞ − 2

7
λðtÞWð2Þ

γ ðpÞ
�
; ð35Þ

where

κðtÞ ¼ 1

D2þðtÞ
L½H2Sð2Þα �; λðtÞ ¼ −

7

2D2þðtÞ
L½H2Sð2Þγ �;

ð36Þ

and we defined the functional L acting on a function s of
time as

L½s� ≔
Z

t

0

dT
DþðTÞD−ðtÞ −DþðtÞD−ðTÞ
DþðTÞ _D−ðTÞ − _DþðTÞD−ðTÞ

sðTÞ: ð37Þ

In the Einstein–de Sitter universe in GR, we have μΦ ¼
ς ¼ τð2ÞΦ;α ¼ τð2ÞΦ;γ ¼ 0 and ΞΦ ¼ 1. We then see that λ ¼ 1

and κ ¼ 1. In the Horndeski theory, λ can deviatemuch from
the standard value, λ ≠ 1, but κ still takes the standard value,
κ ¼ 1 [55,56]. In DHOST theories beyond Horndeski, not
only λ but also κ can deviate from1 [44–46]. For κ away from
1, thematter bispectrum is altered at the folded configuration
in momentum space [44,45].
Substituting δð1Þ, δð2Þ, and θð1Þ into Eq. (17), we can also

obtain the second-order velocity divergence,

θð2Þðt; pÞ ¼ −D2þf
�
κθðtÞWð2Þ

α ðpÞ − 4

7
λθðtÞWð2Þ

γ ðpÞ
�
; ð38Þ

where we defined
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κθðtÞ ¼ 2κ − 1þ _κ

fH
; ð39Þ

λθðtÞ ¼ λþ
_λ

2fH
: ð40Þ

In the Einstein–de Sitter universe in GR, λθ ¼ 1 and
κθ ¼ 1. As λ and κ can, in DHOST theories both λθ and
κθ can also deviate much from 1 and they are sensitive to
the time derivative of λ and κ, respectively.

III. THIRD-ORDER SOLUTION

Having reviewed the first- and second-order solutions,
now let us proceed to derive the third-order solution for the
matter density perturbations in DHOST theories. The pro-
cedure is basically the same as in the case of the second-order
solution. Before going to the detailed analysis, we need to
discuss the kernels of the nonlinear mode couplings of the
third-order solution. There are several choices of the shape
functions to describe the third-order solutions for Ψ, Φ, and
Q. Since the mode couplings in Eqs. (7) and (8) are
determined by αs and γ, the relevant kernels can be
straightforwardly chosen to be αα, αγ, γα, and γγ, which
are defined in Eqs. (B22)–(B25). Moreover, in order to
include the effect of the antisymmetric part of the kernel α
appearing inEqs. (9) and (17), the additional twokernelsαα⊖
and αγ⊖ defined in Eqs. (B26) and (B27) are needed.
In addition to these six kernels, we further consider the
kernels ξ and ζ defined in Eqs. (15) and (16) to take into
account the mode couplings from the three-point self-
interaction terms of the scalar field perturbations in
Eq. (9). In summary, the set of the relevant third-order shape
kernels is given by U3 ¼ fαα; αγ; γα; γγ; αα⊖; αγ⊖; ξ; ζg.
It then follows that the third-order evolution equation is

given by

δ̈ð3Þ þ ð2þ ςÞH _δð3Þ −
3

2
ΩmΞΦH2δð3Þ ¼ H2

X
Π∈U3

Sð3ÞΠ Wð3Þ
Π :

ð41Þ
The coefficients of the third-order mode couplings are

ð1−μΦÞSð3Þαα ¼ τð3ÞΦ;ααþ2D3þf2κθþ
1

a2H2
½a2HD3þfðκþκθÞ�_;

ð42Þ

ð1 − μΦÞSð3Þαγ ¼ τð3ÞΦ;αγ −
8

7
D3þf2λθ

−
2

7a2H2
½a2HD3þfðλþ 2λθÞ�_; ð43Þ

ð1 − μΦÞSð3Þγα ¼ τð3ÞΦ;γα − 2D3þf2κθ; ð44Þ

ð1 − μΦÞSð3Þγγ ¼ τð3ÞΦ;γγ þ
8

7
D3þf2λθ; ð45Þ

ð1 − μΦÞSð3Þαα⊖ ¼ τð3ÞΦ;αα⊖ þ 1

a2H2
½a2HD3þfðκ − κθÞ�_; ð46Þ

ð1−μΦÞSð3Þαγ⊖¼τð3ÞΦ;αγ⊖−
2

7a2H2
½a2HD3þfðλ−2λθÞ�_; ð47Þ

ð1 − μΦÞSð3Þξ ¼ τð3ÞΦ;ξ; ð48Þ

ð1 − μΦÞSð3Þζ ¼ τð3ÞΦ;ζ; ð49Þ

where the explicit expression of τð3ÞΦ;Π is shown in
Appendixes B 2 and B 4. Using the following relation:

Wγα ¼
1

2
ðWαγ þWαγ⊖Þ þWγγ −

1

2
Wξ; ð50Þ

one can remove Wγα and absorb its coefficients into Wαγ ,
Wαγ⊖, Wγγ , and Wξ.
Following the same step as the second-order solution, we

thus arrive at the third-order solution,

δð3Þ ¼ D3þ

�
dααW

ð3Þ
αα −

4

7
dαγW

ð3Þ
αγ −

2

21
dγγW

ð3Þ
γγ þ 1

9
dξW

ð3Þ
ξ

þ dαα⊖W
ð3Þ
αα⊖ þ dαγ⊖W

ð3Þ
αγ⊖ þ dζW

ð3Þ
ζ

�
; ð51Þ

where

dαα¼
1

D3þ
L½H2Sð3Þαα �; dαγ¼−

7

4D3þ
L

�
H2

�
Sð3Þαγ þ1

2
Sð3Þγα

��
;

dγγ¼−
21

2D3þ
L½H2ðSð3Þγγ þSð3Þγα Þ�;

dξ¼
9

D3þ
L
�
H2

�
Sð3Þξ −

1

2
Sð3Þγα

��
;

dαα⊖¼ 1

D3þ
L½H2Sð3Þαα⊖�; dαγ⊖¼ 1

D3þ
L

�
H2

�
Sð3Þαγ⊖þ1

2
Sð3Þγα

��
;

dζ¼
1

D3þ
L½H2Sð3Þζ �; ð52Þ

and L½� � �� has already been defined in Eq. (37). In the limit
of the Einstein–de Sitter universe in GR, it is easy to show
that dαα, dαγ , dγγ , and dξ reduce to unity, while the other
three, dαα⊖, dαγ⊖, and dζ, vanish. In the case where gravity
is described by the Horndeski family, we still have dαα ¼ 1
and dαα⊖ ¼ dαγ⊖ ¼ dζ ¼ 0, but now dαγ, dγγ , and dξ
deviate from unity [57,58]. The present analysis shows
that in DHOST theories all of these seven quantities can
have nonstandard values in general. In particular, dαα ≠ 1,
dαα⊖ ≠ 0, dαγ⊖ ≠ 0, and dζ ≠ 0 are specific to theories
beyond Horndeski.
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IV. ONE-LOOP POWER SPECTRUM

We now calculate the one-loop power spectrum for the
matter density perturbations. The one-loop matter power
spectrum has been discussed in the context of modified
gravity theories [59–62] and in particular in the context
of the Horndeski theory [57,58] and DHOST theories
[45,46]. In Refs. [45,46], the one-loop matter power
spectrum in the IR limit of the loop integrals has been
investigated and the third-order solution has been obtained
only in the IR limit. However, the complete form of the
one-loop matter power spectrum including the UV con-
tribution of the loop integrals has not been derived yet in
the context of DHOST theories. In the present paper, we
calculate the complete form of the one-loop matter power
spectrum by using the third-order solution derived in
Sec. III.
The power spectrum for δ is given in terms of the two-

point correlation function as

hδðt; k1Þδðt; k2Þi ¼ ð2πÞ3δðk1 þ k2ÞPδδðt; k1Þ: ð53Þ

In this paper, we focus on the autopower spectrum for δ; the
one-loop cross-power spectrum between matter density
perturbation and velocity divergence, and the autopower
spectrum for velocity divergence has the same structure as
that of the autopower spectrum for the matter density
perturbation.

A. One-loop matter power spectrum

Using the solution of the matter density perturbations up
to third order, δðt; kÞ ¼ δð1Þðt; kÞ þ δð2Þðt; kÞ þ δð3Þðt; kÞ,
and assuming that the initial density field obeys the

Gaussian statistics, one can write the one-loop matter
power spectrum as

Pδδðt;kÞ¼D2þðtÞPLðkÞþD4þðtÞ½Pð22Þ
δδ ðt;kÞþ2Pð13Þ

δδ ðt;kÞ�;
ð54Þ

where Pð22Þ
δδ and Pð13Þ

δδ are one-loop corrections to the linear
power spectrum due to the second- and third-order solu-
tions defined by

hδð2Þðt;k1Þδð2Þðt;k2Þi¼ð2πÞ3δð3Þðk1þk2ÞD4þðtÞPð22Þ
δδ ðt;k1Þ;

ð55Þ

hδð1Þðt;k1Þδð3Þðt;k2Þi¼ð2πÞ3δð3Þðk1þk2ÞD4þðtÞPð13Þ
δδ ðt;k1Þ;

ð56Þ
and PLðkÞ is the linear power spectrum for the initial
density field δL. It follows from Eqs. (35) and (51) that the
second- and third-order solutions can be written in terms of
the kernels as

δð2Þðt; kÞ ¼ D2þðtÞ
ð2πÞ3

Z
d3p1d3p2δDðp1 þ p2 − kÞ

× F2ðt; p1; p2ÞδLðp1ÞδLðp2Þ; ð57Þ

δð3Þðt; kÞ ¼ D3þðtÞ
ð2πÞ6

Z
d3p1d3p2d3p3δDðp1 þ p2 þ p3 − kÞ

× F3ðt; p1; p2; p3ÞδLðp1ÞδLðp2ÞδLðp3Þ; ð58Þ

with

F2ðt; p1; p2Þ ¼ κðtÞαsðp1; p2Þ −
2

7
λðtÞγðp1; p2Þ; ð59Þ

F3ðt; p1; p2; p3Þ ¼ dααðtÞααðp1; p2; p3Þ −
4

7
dαγðtÞαγðp1; p2; p3Þ −

2

21
dγγðtÞγγðp1; p2; p3Þ þ

1

9
dξðtÞξcðp1; p2; p3Þ

þ dαα⊖ðtÞαα⊖ðp1; p2; p3Þ þ dαγ⊖ðtÞαγ⊖ðp1; p2; p3Þ þ dζðtÞζcðp1; p2; p3Þ; ð60Þ

where the explicit forms of the mode-coupling kernels are shown in Eqs. (B22)–(B29). Substituting these into Eqs. (55) and
(56) and using Wick’s theorem, we obtain

Pð22Þ
δδ ðt; kÞ ¼ 2

ð2πÞ3
Z

d3pF2
2ðt; p; k − pÞPLðpÞPLðjk − pjÞ; ð61Þ

Pð13Þ
δδ ðt; kÞ ¼ 3

ð2πÞ3 PLðkÞ
Z

d3pF3ðt; k; p;−pÞPLðpÞ: ð62Þ

Performing the integrals, we arrive at the final form of the one-loop corrections,
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Pð22Þ
δδ ðt; kÞ ¼ k2

ð2πÞ2
Z

∞

0

dpP22ðpÞ; ð63Þ

Pð13Þ
δδ ðt; kÞ ¼ k2

ð2πÞ2
Z

∞

0

dpP13ðpÞ: ð64Þ

Here we have defined the kernel functions as

P22ðpÞ ¼
PLðpÞ
98

Z
1

−1
dxPLððk2 þ p2 − 2kpxÞ1=2Þ ½ð7κ − 4λÞpþ 7κkx − 2px2ð7κ − 2λÞ�2

ðk2 − 2kpxþ p2Þ2 ; ð65Þ

P13ðpÞ ¼
PLðkÞPLðpÞ

12

�
2

7
dγγ

k2

p2
þ 4

�
3

4
D −

4

21
dγγ − dαα − dαα⊖ − 2dζ

�

þ 8

�
D −

1

28
dγγ − dαα⊖ − dζ

�
p2

k2
þ 3D

p4

k4
þ 3

2

�
D
p2

k2
þ 2

21
dγγ

� ðk2 − p2Þ3
k3p3

ln

�
kþ p
jk − pj

��
; ð66Þ

where x denotes the directional cosine between k and p
defined as x ¼ k · p=kp, and we have introduced

D ≔ dαα −
4

7
dαγ −

2

21
dγγ − dαα⊖ − dαγ⊖: ð67Þ

Given a concrete model of modified gravity and a linear
power spectrum, it is now straightforward to calculate the
one-loop matter power spectrum using Eqs. (63) and (64).

B. Asymptotic behaviors of the loop integrals

In order to study the one-loop contributions to the matter
power spectrum in the context of DHOST theories, we
would like to examine their asymptotic behavior of the
short- and long-wavelength limits in the loop integrals as
done in Ref. [63]. To do this, let us divide the one-loop
contributions into that from the momentum integration for
p ≫ k (UV region) and that from the integration for p ≪ k
(IR region), for fixed k. It was shown in Ref. [63] that,
when assuming GR and the standard linear matter power
spectrum,1 the leading terms from P22 and P13 in the IR
limit are exactly canceled out and the loop integrals in both
the IR and UV regions are convergent. In this section, we
extend their analysis to DHOST theories, and in particular,
we investigate the asymptotic behavior of the matter power
spectrum and the condition for their convergence.

1. IR limit

Let us first consider the long-wavelength contribution in
the IR limit, namely, p=k → 0. In the naive p → 0 limit of
Eq. (65), we have

P22 →
1

3
κ2PLðkÞPLðpÞ: ð69Þ

However, as pointed out in Ref. [63], since the second-
order kernel F2ðt; p; k − pÞ is symmetric between p and
k − p, we also have to take into account the jk − pj → 0
limit so that the integrand in the appropriate limit is twice
larger than Eq. (69). Hence, the appropriate IR limit of (65)
is given by

P22 →
2

3
κ2PLðkÞPLðpÞ: ð70Þ

On the other hand, the same limit of Eq. (66) yields

P13 → −
1

3
ðdαα þ dαα⊖ þ 2dζÞPLðkÞPLðpÞ: ð71Þ

We find from Eqs. (70) and (71) that in the IR limit the
sum of the kernel functions in the one-loop correction,
P22 þ 2P13, is canceled out within the Horndeski family of
theories, κ ¼ dαα ¼ 1 and dαα⊖ ¼ dζ ¼ 0, and the con-
vergence condition is the same as those in GR [58].
However, once we consider DHOST theories, this cancel-
lation does not occur, and the convergence condition of the
loop integrals seems to become more stringent than that of
standard one in GR. This phenomenon has been already
reported in Refs. [45,46] (see Ref. [58] in the context of
effective field theory of large scale structure) while we
described the explicit forms of the functions d, which
determine the asymptotic behavior of P22 þ 2P13, in
terms of parameters characterizing DHOST theories.

1Assuming the scale-invariant primordial curvature perturba-
tions, the standard scale dependence of the linear power spectrum
is roughly given by

PLðkÞ ∝ kT2ðkÞ ∝
�
k ðk ≪ keqÞ;
k−3 ðk ≫ keqÞ; ð68Þ

where TðkÞ is the transfer function and keq is the wave number at
the matter-radiation equality time.
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We anticipate that the more stringent convergence con-
dition of the loop integrals in the IR region originates from
strong correlations between short and long modes in such
theories. In order to support this argument, we revisit the
matter trispectrum in DHOST theories.
The trispectrum for δ is given in terms of the four-point

correlation function as

hδðt; k1Þδðt; k2Þδðt; k3Þδðt; k4Þi
¼ ð2πÞ3δðk1 þ k2 þ k3 þ k4ÞTðt; k1; k2; k3; k4Þ: ð72Þ

Since the linear density field is assumed to be Gaussian, the
matter trispectrum is given to leading order by

Tðt; k1; k2; k3; k4Þ ≃D6þðtÞ½Tð1122Þðt; k1; k2; k3; k4Þ þ Tð1113Þðt; k1; k2; k3; k4Þ�; ð73Þ

where

Tð1122Þ ¼ 4PLðk1ÞPLðk2Þ½PLðjk1 þ k3jÞF2ðt; k1;−k1 − k3ÞF2ðt; k2; k1 þ k3Þ
þ PLðjk1 þ k4jÞF2ðt; k1;−k1 − k4ÞF2ðt; k2; k1 þ k4Þ�
þ 5 perms:; ð74Þ

Tð1113Þ ¼ 6PLðk1ÞPLðk2ÞPLðk3ÞF3ðt; k1; k2; k3Þ þ 3 perms:: ð75Þ

As we are interested in the interactions between short and
long modes, we take the double soft limit in which two
wave vectors are taken to be much smaller than the other
two. Let us look at the dimensionless reduced trispectrum
defined by

Qðt; k1; k2; q1; q2Þ

¼ Tðt; k1; k2; q1; q2Þ
D6þðtÞ½PLðk1ÞPLðk2ÞPLðq1Þ þ 3 perms:� : ð76Þ

In the double soft limit, q1; q2 ≪ k1; k2 with k1 ≈ −k2 and
q1 ≈ −q2, Eqs. (74) and (75) reduce to

Tð1122Þ → 8PLðk1ÞP2
Lðq1Þκ2ðtÞα2sðq1; k1Þ; ð77Þ

Tð1113Þ → 12PLðk1ÞP2
Lðq1Þ½dααðtÞααðk1; q1; q2Þ

þ dαα⊖ðtÞαα⊖ðk1; q1; q2Þ þ dζðtÞζcðk1; q1; q2Þ�;
ð78Þ

and hence the reduced trispectrum reads

Qðt; k1; k2; q1; q2Þ

→
PLðq1Þ
PLðk1Þ

ðκ2 − dαα − dαα⊖ − 2dζÞ
�
q1 · k1
q21

�
2

: ð79Þ

In the Horndeski theory, we have κ ¼ dαα ¼ 1 and
dαα⊖ ¼ dζ ¼ 0, so that the above would-be leading con-
tribution vanishes. However, in theories more general than
Horndeski, the above expression does not vanish in general.
We thus see that in the trispectrum there is a non-negligible
contribution in the double soft limit that appears for the first
time in DHOST theories beyond Horndeski. This result is

consistent with the more stringent convergence condition of
the loop integrals in the IR limit and we reproduce the
results of Ref. [45,46]. We conclude that the more stringent
convergence condition of the loop integrals in the IR limit
originates from the strong correlations between short and
long modes.

2. UV limit

Let us move on the short-wavelength contribution in the
UV limit, namely, p=k → ∞. Hereafter, we assume that the
linear power spectrum PLðpÞ in the UV regions behaves
asymptotically in proportion to pn. In the p=k → ∞ limit,
Eq. (65) reduces to

P22→
343κ2−336κλþ128λ2

735

k2

p2
½PLðpÞ�2 ∝p2ðn−1Þ: ð80Þ

This expression can be rewritten as

Pð22Þ
δδ ðkÞ
PLðkÞ

→
343κ2 − 336κλþ 128λ2

735ð2πÞ2

×
k4

PLðkÞ
Z
p≳k

dpp−2½PLðpÞ�2: ð81Þ

Thus, this term is convergent for n ≤ 1=2, which is the
same as the convergence condition in GR. We then
investigate the same limit of Eq. (66),

P13 → −
2

3
ðdαα⊖ þ dζÞ

p2

k2
PLðkÞPLðpÞ ∝ pnþ2: ð82Þ

Hence, we have
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Pð13Þ
δδ ðkÞ
PLðkÞ

→ −
2ðdαα⊖ þ dζÞ

3ð2πÞ2
Z
p≳k

dpp2PLðpÞ; ð83Þ

which immediately leads to that the integration with the UV

regions in Pð13Þ
δδ is separately convergent only for n ≤ −3.

We then find that its leading dependence on p is stronger
and the condition of its convergence becomes more
stringent than that of in GR. On the other hand, in the
case of the Horndeski theory, the coefficient of the leading
term vanishes and the next-to-leading term is given by

PHorn
13 →

147 − 144λ − 64dγγ
315

PLðkÞPLðpÞ ∝ pn; ð84Þ

implying that the convergence condition reduces to that in
GR, n ≤ −1. Therefore, we conclude that in DHOST
theories beyond Horndeski the linear power spectrum
should be required to be redder than that in the case of
the Horndeski theory and GR for the convergence of the
one-loop correction. An important observation is that the
standard linear power spectrum which behaves as PLðkÞ ∝
k−3 for short wavelengths is on the edge of the convergence
in DHOST theories. Note that the coefficient of the leading
term, dαα⊖ þ dζ, does not vanish even in the viable DHOST
theory evading gravitational-wave constraints [42,64].
Before closing the section, let us suggest some possibil-

ities to resolve this UV sensitive behavior of the one-loop
matter power spectrum in DHOST theories. The first
possibility is, as we have already discussed, to consider
the linear power spectrum with the power-law index being
n ≤ −3 for short wavelengths. The second is to introduce
the cutoff scale in the matter power spectrum, which
depends on the nature of dark matter [65]. One may also
have another, rather different, possibility that one elimi-
nates the UV terms at the level of the integrand, namely,
one imposes the additional condition dαα⊖ þ dζ ¼ 0, which
can be used to add the constraint on the combination of the
parameters, on the basis of the assumption that this UV
divergent behavior would be spurious and must vanish.

V. CONCLUSIONS

In this paper, we have studied the third-order solution of
the matter density perturbations and the one-loop matter
power spectrum in the context of the DHOST theories. We
have solved the field equations for the gravitational potentials
and scalar field perturbation order by order under the
quasistatic approximation and obtained the formal solutions
at all order. We then explicitly presented the second- and
third-order nonlinear terms appearing in the evolution
equation for the density perturbation. The second- and
third-order solutions can be characterized, respectively, by
two and seven functions describing the nonlinear mode
couplings. In particular, we found that at third order there
appear three new shape functions in the momentum space

[Eqs. (B26), (B27), and (B29)] in DHOST theories beyond
Horndeski, which could yield the unique signature of this
new class of scalar-tensor theories.
Furthermore, by using the resultant second- and third-

order solutions of the matter density perturbations, we
calculated the one-loop matter power spectrum and inves-
tigated their asymptotic behavior in the short- and long-
wavelength limits in the loop integrals. Although as far as the
Horndeski theory is concerned, the asymptotic behavior both
in IR and UV limits is basically the same as that in general
relativity; we have shown that in DHOST theories the
behavior of the loop integrals can be drastically changed.
At the IR limit, the leading terms in Pð22Þ

δδ and Pð13Þ
δδ do not

cancel and the condition for the IR convergence is thus more
stringent than the standard one in general relativity. Even
though this feature has been already discussed in
Refs. [45,46], we derive the complete expressions for the
leading terms in terms of the functions characterizing the
theories and it can make the origin of this distinctive IR
behavior inDHOST theories clearer. Byevaluating thematter
trispectrum in the double soft limit, we argue that the more
stringent convergence condition of the loop integrals in the IR
limit is the consequence of strong correlations between short
and long modes in such theories. For the UV limit, we have
shown that the loop integral related to the third-order solution
in DHOST theories has logarithmic divergence in the case of
the standard linear power spectrum. Hence, we conclude that
the one-loop contributions to the matter power spectrum
would be sensitive to the short-wavelength behavior of the
linear power spectrum as long as gravity is described by
DHOST theories beyond Horndeski.
The more stringent convergence conditions of the loop

integrals could be interpreted from the point of view of
quantum field theory. As usually discussed in quantum
field theory, symmetry protects loop corrections of corre-
lation functions. As reported in Refs. [45,46], Horndeski
theories have the accidental symmetry which is related to
the Friedmann-Lemaître-Robertson-Walker symmetry and
shift symmetry in terms of fields (see Refs. [45,46] as the
detailed discussion) while operators in DHOST theories
beyond Horndeski violate that. So, this violation may be
related to the more stringent convergence conditions of the
loop integrals in DHOST theories beyond Horndeski. To
support this argument, it is important to investigate whether
divergent terms in the loop integrals vanish thanks to the
above accidental symmetry in light of effective field theory
of large scale structure [66]. Or, moving to the Einstein
frame, the coupling between matter and the scalar degree of
freedom could be large, so that the prediction based on
perturbation theory might not be reliable. We hope to come
back to these issues in the future.
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APPENDIX A: DEFINITION OF THE
COEFFICIENTS IN THE EQUATIONS

OF MOTION

In this section, we summarize the definition of the
effective field theory parameters and the coefficients in
the equations of motion. In addition to the parameters that
appear in the class Ia degeneracy conditions (2) and (3), one
can characterize cosmological perturbations in DHOST
theories by introducing αB, αM, and αV defined by

M2HαM ¼ d
dt
M2; ðA1Þ

M2HαB ¼ M2HαV − 3M2Hβ1

þ _ϕð−XG3X þ G4ϕ þ 2XG4ϕXÞ
þ _ϕ ϕ̈½2XðG4XX − a2X þ Xa3X − a4

þ 2Xa5Þ þ 3ðG4X − a2 þ Xa3Þ�; ðA2Þ

M2αV ¼ 4XðG4X − 2a2 − 2Xa2XÞ: ðA3Þ

These parameters appear within Horndeski theories. Note
that we have yet another parameter which is often denoted
as αK, but it does not appear in the equations under the
quasistatic region (i.e., on subhorizon scales).
The explicit expressions of the coefficients in Eqs. (7)–(9)

are given by

c1 ¼ −4
�
αB − αH þ β3

2
ð1þ αMÞ þ

_β3
2H

�
; ðA4Þ

c2 ¼ 4

�
αHð1þ αMÞ þ αM − αT þ

_αH
H

�
; ðA5Þ

c3 ¼ −2
��

1þ αM þ
_H
H2

�
ðαB − αHÞ þ

_αB − _αH
H

þ 3Ωm

2
þ

_H
H2

þ αT − αM

þ
�
−2

_H
H2

β1 þ
β3
4
ð1þ αMÞ þ

_β3
2H

��
1þ αM −

_H
H2

�

− 2
_H
H2

_β1
H

þ
�

_H
H2

�2 β3
2
þ _αM

H
β3
4
þ β̈3
4H2

�
; ðA6Þ

b1¼
c1
4
þ1

2
ð1þαMÞð2β1þβ3Þþ

1

2

d
dt

�
2β1þβ3

H

�
; ðA7Þ

b2 ¼ −
c2
4
þ ð1þ αMÞαH þ

�
αH
H

�
·
; ðA8Þ

b3 ¼ 2c3 þ
��

1þ αM −
_H
H2

�
ð1þ αMÞ þ

_αM
H

�
ð4β1 þ β3Þ

þ 2ð1þ αMÞ
�
4β1 þ β3

H

�
·
þ
�
2β1 þ β3

H2

�
··
; ðA9Þ

b4 ¼ 2

��
1þ αM −

_H
H2

�
ð4β1 þ β3Þ þ

�
4β1 þ β3

H

�
·
�
;

ðA10Þ

d1 ¼ −
�
αV þ 3ðαH − αTÞ− 4αB þ αMð2− αV þ αH þ 8β1Þ

þ 2ð4β1 þ β3Þ
_H
H2

−
_αV − _αH − 8_β1

H

�
; ðA11Þ

d2 ¼
1

2
ðαV − αH − 4β1Þ; ðA12Þ

where Ωm was defined in Eq. (27).

APPENDIX B: COEFFICIENTS OF FIRST-,
SECOND-, AND THIRD-ORDER SOLUTIONS

In this section, we summarize the coefficients of first-,
second- and third-order solutions.

1. Homogeneous solutions

The components of the matricesM and N in Eq. (20) are
read off from Eqs. (7) and (8) as

M¼ ðMÞab ¼
�
MΨΨ MΨΦ

MΦΨ MΦΦ

�
¼
�
1þ αT −ð1þ αHÞ
1þ αH −β3=2

�
;

ðB1Þ

N¼
�NΨQ NΨ _Q

NΦQ NΦ _Q

�
¼
�−b2 −αH
−b1 −ð2β1þ β3Þ=2

�
; ðB2Þ

with a, b stand for Ψ and Φ. The coefficients in (24) and
(25) can be written in terms of above quantities and the
coefficient of Eq. (23) as

μa ¼ ðM−1NÞa _QνQ; ðB3Þ

νa ¼ ðM−1NÞaQνQ þ ðM−1NÞa _Q

�
κQ þ ða2HνQÞ·

a2H2

�
; ðB4Þ

κa ¼
3

2
ΩmðM−1ÞaΦþðM−1NÞaQκQþðM−1NÞa _Q

ða2H2κQÞ·
a2H3

:

ðB5Þ
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Substituting these back into Eq. (9), we obtain the explicit
forms of the coefficients in Eq. (23) as

νQ ¼−
3

2

Ωm

Z
½4αHðM−1ÞΨΦ−2ð2β1þβ3ÞðM−1ÞΦΦ�; ðB6Þ

κQ ¼ −
3

2

Ωm

Z

�
c2ðM−1ÞΨΦ þ c1ðM−1ÞΦΦ

þ 4aM2αH
H

�
1

aM2
ðM−1ÞΨΦ

�
·

−
2aM2ð2β1 þ β3Þ

H

�
1

aM2
ðM−1ÞΦΦ

�
·
�
; ðB7Þ

where

Z¼ b3þ c2ðM−1NÞΨQþ c1ðM−1NÞΦQþ 4αH
H

½ðM−1NÞΨQ�·

−
2ð2β1þ β3Þ

H
½ðM−1NÞΦQ�·: ðB8Þ

2. General expression of coefficients
of higher-order solutions

We show that the nth order coefficient with the shape Π
in Eqs. (24) and (25) is generally written in terms of the nth
order coefficient of QðnÞ and the matrix components of M,
N, and OðnÞ as

τðnÞa;Π ¼ ðM−1OðnÞÞaΠ þ ðM−1NÞaQτðnÞQ;Π

þ ðM−1NÞa _Q

ða2H2τðnÞQ;ΠÞ·
a2H3

: ðB9Þ

Substituting the nth order solutions of Ψ, Φ and Eq. (23)

into Eq. (9), we then obtain the form of τðnÞQ;Π as

τðnÞQ;Π ¼ 1

Z

�
OðnÞ

Q;Π − c2ðM−1OðnÞÞΨΠ − c1ðM−1OðnÞÞΨΠ

−
4αH
a2H3

½a2H2ðM−1OðnÞÞΨΠ�·

þ 2ð2β1 þ β3Þ
a2H3

½a2H2ðM−1OðnÞÞΦΠ�·
�
; ðB10Þ

where Zwas defined in Eq. (B8). Here, the coefficientOðnÞ
Q;Π

EoM of Q and the coefficient of WðnÞ
Π . Therefore, once the

lower-order solutions and the nth order matrix components
of OðnÞ are given, we can straightforwardly derive the nth
order solution of Ψ, Φ, and Q.

3. Second-order solutions

To derive the second-order coefficients in Eqs. (23)–(25),
we need to write down the reduced first-order solution.
When substituting Eqs. (28) and (30) into the first-order

solution of Eqs. (23)–(25), Ψð1Þ, Φð1Þ, and Qð1Þ can be
rewritten as

Ψð1Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
KΨðtÞDþðtÞδLðpÞ; ðB11Þ

Φð1Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
KΦðtÞDþðtÞδLðpÞ; ðB12Þ

Qð1Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
KQðtÞDþðtÞδLðpÞ; ðB13Þ

_Qð1Þðt; pÞ ¼ −
a2ðtÞH3ðtÞ

p2
K _QðtÞDþðtÞδLðpÞ: ðB14Þ

At the second order, the relevant shape functions to
describe the solutions are shown to be αsðk1; k2Þ and
γðk1; k2Þ, which are defined in Eqs. (13) and (14). Since
the nonlinear interaction in Eqs. (7) and (8) are determined
byQ, the matrix components of O in Eq. (20) at the second
order, that is, Oð2Þ, can be written in terms of the first order
solution of Q. We then have

Oð2Þ ¼
�Oð2Þ

Ψ;α Oð2Þ
Ψ;γ

Oð2Þ
Φ;α Oð2Þ

Φ;γ

�

¼1

4
D2þK2

Q

�
4αH αT−4αH

2ð2β1þβ3Þ −2ðd2þ2β1þβ3Þ

�
: ðB15Þ

Moreover, with the use of KΨ, KΦ, and KQ, and the shape
functions, the coefficient in Eq. (B10) is given by

Oð2Þ
Q;α ¼ D2þKQf4αHKΨ − 2ð2β1 þ β3ÞKΦ þ b4KQ

þ 6ð4β1 þ β3ÞK _Qg; ðB16Þ

Oð2Þ
Q;γ ¼ −D2þKQf2αTKΨ þ 4d2KΦ þ ðd1 þ b4ÞKQ

þ 4ð4β1 þ β3ÞK _Qg: ðB17Þ

4. Third-order solutions

Following the same step as the previous subsection, to
derive the third-order solutions, it is useful to introduce the
reduced second-order solutions. Substituting the second-
order solution Eq. (35) into Eqs. (23)–(25), we obtain

Ψð2Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
½τ̃Ψ;αðtÞWαðpÞ þ τ̃Ψ;γðtÞWγðpÞ�;

ðB18Þ

Φð2Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
½τ̃Φ;αðtÞWαðpÞ þ τ̃Φ;γðtÞWγðpÞ�;

ðB19Þ
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Qð2Þðt; pÞ ¼ −
a2ðtÞH2ðtÞ

p2
½τ̃Q;αðtÞWαðpÞ þ τ̃Q;γðtÞWγðpÞ�;

ðB20Þ

_Qð2Þðt; pÞ ¼ −
a2ðtÞH3ðtÞ

p2
½τ̃ _Q;αðtÞWαðpÞ þ τ̃ _Q;γðtÞWγðpÞ�;

ðB21Þ

where τ̃�;Π can be described by the lower-order solutions
and τ�;Π itself.
Let us consider the kernels that describe the nonlinear

mode coupling of the third-order solutions. We first define
the kernels that are generated by αs and γ as

ααðk1; k2; k3Þ ¼
1

3
½αsðk1; k2 þ k3Þαsðk2; k3Þ þ 2 perms:�;

ðB22Þ

αγðk1; k2; k3Þ ¼
1

3
½αsðk1; k2 þ k3Þγðk2; k3Þ þ 2 perms:�;

ðB23Þ

γαðk1; k2; k3Þ ¼
1

3
½γðk1; k2 þ k3Þαsðk2; k3Þ þ 2 perms:�;

ðB24Þ

γγðk1; k2; k3Þ ¼
1

3
½γðk1; k2 þ k3Þγðk2; k3Þ þ 2 perms:�:

ðB25Þ

In solving Eqs. (9), (17), and (18), we need to introduce the
kernels that are generated by the asntisymmetric part of α as
well as αs and γ. Hence, we define

αα⊖ðk1;k2;k3Þ

¼1

6
f½αðk1;k2þk3Þ−αðk2þk3;k1Þ�αsðk2;k3Þþ2perms:g;

ðB26Þ

αγ⊖ðk1;k2;k3Þ

¼ 1

6
f½αðk1;k2þk3Þ−αðk2þk3;k1Þ�γðk2;k3Þþ2perms:g:

ðB27Þ

In addition to these six kernels, we have to take into
account the mode couplings from the three-point self-
interaction terms of Q in Eq. (9), that is, ξ and ζ. We then
define the following cyclic-symmetrized mode-coupling
functions as

ξcðk1; k2; k3Þ ¼
1

3
fξðk1; k2; k3Þ þ 2 perms:g; ðB28Þ

ζcðk1; k2; k3Þ ¼
1

3
fζðk1; k2; k3Þ þ 2 perms:g: ðB29Þ

In summary, we need to consider the set of the eight
kernels, U3¼fαα;αγ;γα;γγ;αα⊖;αγ⊖;ξc;ζcg. With these
kernels, the matrix components of Oð3Þ can be written as

Oð3Þ ¼

0
B@Oð3Þ

Ψ;αα Oð3Þ
Ψ;αγ Oð3Þ

Ψ;γα Oð3Þ
Ψ;γγ Oð3Þ

Ψ;αα⊖ Oð3Þ
Ψ;αγ⊖ Oð3Þ

Ψ;ξ Oð3Þ
Ψ;ζ

Oð3Þ
Φ;αα Oð3Þ

Φ;αγ Oð3Þ
Φ;γα Oð3Þ

Φ;γγ Oð3Þ
Φ;αα⊖ Oð3Þ

Φ;αγ⊖ Oð3Þ
Φ;ξ Oð3Þ

Φ;ζ

1
CA

¼DþKQ

�
2αHτ̃Q;α 2αHτ̃Q;γ ðαT − 4αHÞτ̃Q;α=2 ðαT − 4αHÞτ̃Q;γ=2 0 0 0 0

ð2β1 þ β3Þτ̃Q;α ð2β1 þ β3Þτ̃Q;γ −ðd2 þ 4β1 þ 2β3Þτ̃Q;α −ðd2 þ 4β1 þ 2β3Þτ̃Q;γ 0 0 0 0

�
: ðB30Þ

Substituting the reduced lower-order solutions Eqs. (B11)–
(B14) and (B18)–(B21) into Eq. (9), we can extract the
correspondence between the coefficient Oð3Þ

Q;Π and other
parameters, which are given by

Oð3Þ
Q;αα ¼ 2Dþf4αHKðΨ − 2ð2β1 þ β3ÞKðΦ þ b4KðQ

þ 6ð4β1 þ β3ÞKð _Qgτ̃QÞ;α; ðB31Þ

Oð3Þ
Q;αγ ¼ 2Dþf4αHKðΨ − 2ð2β1 þ β3ÞKðΦ þ b4KðQ

þ 6ð4β1 þ β3ÞKð _Qgτ̃QÞ;γ; ðB32Þ

Oð3Þ
Q;γα ¼ −2Dþf2αTKðΨ þ 4d2KðΦ þ ðd1 þ b4ÞKðQ

þ 4ð4β1 þ β3ÞKð _Qgτ̃QÞ;α; ðB33Þ

Oð3Þ
Q;γγ ¼ −2Dþf2αTKðΨ þ 4d2KðΦ þ ðd1 þ b4ÞKðQ

þ 4ð4β1 þ β3ÞKð _Qgτ̃QÞ;γ; ðB34Þ

where we have used the round bracket as the symmetrized
symbol defined as KðAτ̃BÞ;Π ¼ ðKAτ̃B;Π þ KBτ̃A;ΠÞ=2.
Introducing the antisymmetric symbol K½Aτ̃B�;Π ¼
ðKAτ̃B;Π − KBτ̃A;ΠÞ=2, the remaining coefficients can be
given by
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Oð3Þ
Q;αα⊖ ¼ ZτQ;αα⊖ ¼ 4Dþf2αHK½Ψ − ð2β1 þ β3ÞK½Φ − ð4β1 þ β3ÞK½ _Qgτ̃Q�;α; ðB35Þ

Oð3Þ
Q;αγ⊖ ¼ZτQ;αγ⊖ ¼ 4Dþf2αHK½Ψ− ð2β1þβ3ÞK½Φ− ð4β1þβ3ÞK½ _Qgτ̃Q�;γ; ðB36Þ

Oð3Þ
Q;ξ ¼ Zτð3ÞQ;ξ ¼ D3þK3

Qð2d2 þ αTÞ; ðB37Þ

Oð3Þ
Q;ζ ¼ Zτð3ÞQ;ζ ¼ −2D3þK3

Qð4β1 þ β3Þ: ðB38Þ
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