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We study matter density perturbations up to third order and the one-loop matter power spectrum in
degenerate higher-order scalar-tensor (DHOST) theories beyond Horndeski. We systematically solve
gravitational field equations and fluid equations order by order and find three novel shape functions
characterizing the third-order solution in DHOST theories. A complete form of the one-loop matter power
spectrum is then obtained using the resultant second- and third-order solutions. We confirm the previous
result that the convergence condition of the loop integrals in the infrared limit becomes more stringent than
that of the standard one in general relativity. We show that also in the ultraviolet limit the convergence
condition becomes more stringent and the one-loop matter power spectrum is thus sensitive to the short-
wavelength behavior of the linear power spectrum.
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I. INTRODUCTION

Scalar-tensor theories are exciting candidates of the
origin of the accelerated cosmic expansion at late time
[1-3]. While the scalar degree of freedom causes the
accelerated expansion on large cosmological scales, its
effect on small scale gravity experiments must be highly
suppressed in successful theories to evade existing stringent
tests such as in the Solar System. To achieve this, screening
mechanisms are implemented to elaborated scalar-tensor
theories. For example, the Vainshtein mechanism hides the
scalar-mediated force very effectively through the nonlinear
derivative interaction of the scalar degree of freedom [4].
In the Horndeski family of theories [5—7], which spans the
most general scalar-tensor theory having second-order
field equations and hence is a class of theories free
of Ostrogradsky’s ghost [8,9], the Vainshtein screening
mechanism is implemented naturally as the Lagrangian
contains powers of second derivatives of the scalar field
[10-12]. Extending the Horndeski theory even further,
degenerate higher-order scalar-tensor (DHOST) theories
have been developed recently [13—15] (see Refs. [16—18]
for a review). The field equations in such theories are
apparently of higher order, but a careful counting of the
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degrees of freedom shows that there in fact are one scalar
and two tensor degrees of freedom due to the degeneracy of
the theories, and consequently Ostrogradsky’s ghost is
removed. New types of nonlinear derivative interactions
arise in DHOST theories beyond Horndeski. Their effect on
the screening mechanism has been discussed in [19-25],
emphasizing that partial breaking of Vainshtein screening
(first discovered in Ref. [19]) occurs in the presence
of matter [26—41]. The nonstandard interactions between
scalar and gravitational-wave degrees of freedom in
DHOST theories result also in the decay of gravitons
[42,43].

In this paper, we study the impact of the nonlinear
derivative interactions of the scalar field in DHOST
theories on nonlinear evolution of matter density perturba-
tions. It has been found that the matter bispectrum in a class
of DHOST theories shows a distinct feature at the equi-
lateral and folded limits compared with that in general
relativity (GR) [44]. References [45,46] have investigated
the bi- and trispectra of the matter density perturbations and
also the one-loop matter power spectrum in the context of
DHOST theories. They have, in particular, focused on the
behaviors at the infrared (IR) limit: the squeezed limit for
the bispectrum, the double soft limit for the trispectrum,
and the IR contributions in the loop integrals for the one-
loop power spectrum, and studied a consistency relation for
large scale structure and its violation. So far, in DHOST
theories, the third-order solution for the matter density
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perturbations has been obtained only at the IR limit as done
in Refs. [45,46], and the complete form of the one-loop
matter power spectrum has not been derived yet. The goal
of this paper is therefore to derive the third-order solution
for the matter density perturbations and to investigate the
one-loop matter power spectrum in its complete form.

This paper is organized as follows. In the next section,
we introduce quadratic DHOST theories which we focus on
in this paper and derive basic equations for cosmological
perturbations under the quasistatic approximation. Then,
we review the solutions for the matter density perturbations
up to second order. In Sec. III, we obtain the third-order
solution to calculate the complete form of the one-loop
matter power spectrum. In Sec. IV, we derive the one-loop
matter power spectrum and investigate the asymptotic
behavior of the loop integrals at the IR and ultraviolet
(UV) limits. In particular, we emphasize that the conver-
gence condition of the loop integrals in the UV limit
becomes more stringent. Finally, we draw the conclusion of
the present paper in Sec. V.

II. LARGE SCALE STRUCTURE IN QUADRATIC
DHOST THEORIES

A. Quadratic DHOST theories

The action of the quadratic DHOST theories [13] is
given by

5= [ @xyglG:(9.X) - Gs(@ X004 + g OR

+ a (¢’ X)¢;w¢’w + a2(¢’ X)(D¢)2

+a; (¢7 X) (D¢)¢ﬂ¢yu¢y + Cl4(¢), X)¢M¢;4/)¢/w¢y

+ a5(¢’x)(¢ﬂ¢;w¢y)2]’ (1)
where ¢, =V, ¢, ¢,, =V, V, ¢, and X = —¢,¢"/2. To
avoid the Ostrogradsky’s ghosts, we impose degeneracy
conditions among the functions F and «a;(i =1,...,5),
and hence not all these are independent. We focus on the
class ITa DHOST theories, as they are basically healthy and
can be free from instabilities on a cosmological background
[47,48]. The class Ia degeneracy conditions [14] are
summarized as

a;+a, =0, B = —6f3,

Py = =241 2(1 + ay) + p1 (1 + ar)], (2)

where

M? =2(F +2Xa;), M?*ar=-4Xa,,
M?ay = —-4X(Fx +a,), M*B,=2X(Fx—a,+ Xas),
M?B, = 4X[a; + a, — 2X (a3 + ay) + 4X?as),

M?fy = —8X(Fx + a; — Xay). 3)

Here and hereafter, we use the notation Fy = 0F/0X. We
thus have three free functions in addition to G, and G5. In the
Horndeski theory [5-7], we have ay = = f, = 3 =0,
while in the Gleyzes-Langlois-Piazza-Vernizzi theory
[49-51], we have | =, = 3 = 0.

To keep generality, in this paper, we do not impose any
other constraints among the functions. In particular, we do
not take into account seriously the constraint on scalar-
tensor gravity from the propagation speed of gravitational
waves, as the energy scale observed at LIGO is close to
the cutoff scale of the effective theory if applied to dark
energy [52]. One should note also that in principle the
gravitational-wave constraints are irrelevant to the high-
redshift universe. For these reasons, it is fair to say that
there still is a room for general DHOST theories as viable
dark energy models, and it is important to seek for
independent cosmological constraints on DHOST theories.

B. Perturbation equations

We consider a spatially flat, homogeneous, and isotropic
background universe, and the cosmological perturbations
in the Newtonian gauge. The perturbed metric is given by

ds? = —[1 +2®(t,x)]dr* + a*(1)[1 = 2¥(t,x)]dx?,  (4)
and the perturbed scalar field is
P(t.x) = (1) + =(t.x). (5)

We introduce a dimensionless variable Q := Hr/ d), where
H = a/a and a dot denotes differentiation with respect to .
The matter density perturbation is defined by

(6)

We consider irrotational dust as a matter content and
therefore have only a scalar mode in the velocity field
u', which is characterized by 6 = 0;u’/aH.

We study the quasistatic behavior of those perturbations
deep inside the horizon. Substituting Egs. (4) and (5) to the
action (1) and expanding it in terms of the perturbations, one
obtains the action for the perturbations [22,24,25,44,45,53].
In doing so, we take the quasistatic approximation and
neglect time derivatives compared to spatial derivatives.
Note, however, that in' DHOST theories we have mixed
derivatives such as 9>Q which cannot be simply ignored
[19]. We thus arrive in the end at the action for the quasistatic
perturbations, which we vary to derive the following
equations of motion (EoMs) in Fourier space:

Prn(1.5) = Pra(1)[1 + 6(2,%)].

(14+ap)¥—(1 +0‘H)¢+52Q+0’H%

ar—4a a
— _42T2pl;$y[ﬁp; 0.0 —ngzsas .p:0.0]. (7)
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O ar-Bosno i PIRG s SR 0.0~ 2 s im0 0l ®
c1<1>+cz‘P+b3Q+4aHi—2(2ﬂ1+ﬂ3) +b4g+2(4ﬂ1+ﬁ3)Q
2;‘2 38,1101 Q. 0] + 222 35,0010, ¥] + ;le 38,102 0.9
Sl 0]+ 2 s i, 0] -2 5 0. )
‘%(sashp; 0.0] - §,[r.p:0.0)) - QZZPQ( Sa [1.:2: 0. 0] = S, [1.p: 0. Q])
T i0.0.0)- X T 0. 0,01 ©)

where p denotes a comoving wave vector in Fourier space and p = |p|. Here, Sy[t,p;Y,Z](X = a,a,,y) and
Tv[t,p; X, Y, Z|(T = &,{) are, respectively, second- and third-order contributions with respect to the metric and scalar
field perturbations, and are defined by

Sslt.p; Y, Z] = /d3k1d3k25D(k1 +ky —p)kiksZ (k. ko) Y (1.Ky) Z(t. k). (10)

b
(27)*

1
(27)°

Tv[t,p; X, Y, Z] = /d3k1d3k2d3k35D(k1 +ky + k3 —p)KIKSK3Y (ky ko, K3) X (2,k)) Y (1, ko) Z(1,k3),  (11)

where and 5p (k) is the Dirac delta function. The explicit expres-

sions for the time-dependent coefficients ¢y, ¢,, ¢3, by, by,

alky k) =1+ ki -k, (12) bs, d,,and d, i'n terms of .the functions in the DHQST action

are presented in Appendix A. The terms involving ay, f1,

and 5 are specific to theories more general than Horndeski.
1 (Here, f, is removed by using one of the degenerac

@i, ko) = 2 [allr, ko) + allez, k), (13) conditions (2), but fs is );etaine% because using %63 lead}s,

to simpler expressions.) In GR, the above set of equations

_ (ky - k) (14) corresponds to the Poisson equation and @ = ¥ that are

KK used to express the matter density perturbations ¢ in terms of

the metric potentials. In scalar-tensor theories, the Poisson

(k, .k3)2 (ki ko) (ky - k3) (ks - ky) equation is modified and anisotropic stress induced by the

i3 k% 12i2 k% ’ scalar field changes the relation between @ and . Nonlinear

self-interactions of the scalar field also come into play in the

},(kl’kZ) =

f(kl,kz,k.%) =1-3

(15) equations. In particular, S, and 7, newly appear in DHOST
theories beyond Horndeski, and it turns out that these terms
C(ky ko ks) = (ks - k3)? 3 (ky k3)(ky - k3)* k- ks lead to the more stringent convergence conditions of the loop
bR K3k3 k2k3k3 K3 integrals in the one-loop matter power spectrum as we will

k. -k Jr kO Kk k see in Sec. IV B.
+ (- dey + k32k2 (ks - Ks) , (16) We assume that the matter is minimally coupled to gravity.
172 Then, fluid equations are the same as the standard ones in GR,

|
1.06(¢,p 1

i 00.0) = = s [ Pl -+ = plath k)00, k)3 k), (17)
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100(1.p)

2
H Ot 1 ®(t.p)

H P
* (“112)9(””) T
= ! &3k, ky0p (k) + k
__(271_)3 17k (ky +ky —p)
x [as (k. ky) — y (k. ko) )O(2. Ky )0t ky).

(18)

Although these are the same as the standard ones,
the effects of modified gravity participate through the
gravitational potential @ which is determined by the
EoMs (7)—(9). The nonlinear terms on the right-hand side
also modify the higher-order solutions from the standard
ones in GR because these are induced by the linear solution
that already contains the effects of gravity modification.

C. Solving the perturbation equations

A solution to the EoMs (7)—(9) and the fluid equations (17)
and (18) can be expressed as a perturbative series,

5:25@ @:Z@W,
n=1 n=1

where 6, @), ...[=0O(e")] are the nth order quantities
with 8(!) being O(e) a quantity.

Let us now describe the systematic procedure to obtain
the nth order solution. At nth order, Egs. (7) and (8) are
schematically written as

(n) (n) 2~ 0
VT T N A A P
o) Q<">/H 2M?*p* \ 51

(19)

(20)

where M and N are 2 x 2 matrices, O™ is a 2 x m matrix

with m being different for different n, and W%’fl), f{’ )

are the nth order functions with respect to the initial density
field, &; , which comes from the higher-order contributions
in Egs. (7), (8), (9), (17), and (18). Here, II represents the
shape of the kernel of the nonlinear mode coupling. We

define Wg ) as

; Bk, - &k,
Wi (p) ::/WéD(kl+"'+kn -p)

x (ky, ....k,)op(ky) - - 6L (k,), (21)
where &y (k) denotes the initial density field. The matrices
M and N are independent of n, whose explicit forms are
presented in Appendix B 1. Inverting M, we obtain the

solutions for ¥ and ®™ as follows:

pn) _MIN Q(n) ~ Clz,l_?m M- 0
o O /H)  2M2p? PO
(n)
W
a’H? .
- ——M-10" (22)
p .
Wi

Substituting these and their time derivatives into the nth
order part of Eq. (9), we obtain the solution for Q")

Q> H? 5 2 H? ) )
Q(n) =—— <yQ + KQ(g(n)) -— TQ.HWH ,
p H P r;

(23)

where U, = {I1, - - -, I1,,,} denotes the set of the kernels to
describe the nth order mode coupling. At this step, Q<”) and

Q™ are all canceled thanks to the degeneracy conditions,
so that the equation can be solved algebraically for Q).
The explicit forms of the coefficients v, and k are given
in Appendix B 1. It should be noted that s appears in
Eq. (23) when one considers theories more general than
Horndeski [19,24,25,44,45,53,54]. Given the concrete
form of O™ it is straightforward to write the explicit

form of rg'>n

Turning back to Eq. (22), now one can
eliminate Q) and Q(") on the right-hand side to express

¥ and ®™ in terms of 5 and Wl(T" ) as

2172 (n) s(n)
P = _% (/4‘{1 i_[—z + vy % + K\yﬁ(")>
PH? (1) )
T2 r; TynWn's (24)
YTV N
o) = “pi’ (ﬂ«p e+ Kq,(s<n>)
CH? ) i)
T3 Z TonWn - (25)

P” rev,

The explicit expressions for the coefficients of the homo-
geneous solutions, fpy,vy,---, are also given in
Appendix B 1. We also show the coefficients of the second-
and third-order mode couplings in Appendixes B 2-B 4.
Having thus obtained P ) and Q(") expressed in
terms of the matter density perturbations, we use the fluid
equations (17), (18), and (25) to obtain the evolution

equation for s,
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926 osm 3 ) (n) yrr(n)
o T RHOH— = 0o H 5<>:Hr;5n Wi,
(26)

where
do—ve 3o o K i
l—pe = 2 ™ T 1 3M2H?
(27)

We assume that there is no intrinsic nonlinearity at an initial
time #,, that is, ) (#;) = 8°)(#;) = --- = 0. Then, the first-
order solution is obtained by solving the homogeneous
equation, and the higher-order solutions are given solely by
the inhomogeneous solution.

The first- and second-order solutions for the matter
density perturbations in DHOST theories have already
been obtained in the literature [45,46], but here for
completeness we replicate the previous discussion. The
third-order solution, which is obtained for the first time in
this paper, is presented in the next section.

1. First-order solution

From Eq. (26), by setting W?I’) = 0, we see that the first-
order evolution equation for the density perturbation is
given by

(1)
+ 2+ g)H% - %QmEq,Hzé(U =0. (28)

925
or
This equation has growing and decaying solutions,

denoted, respectively, as D, (¢) and D_(r). Discarding
the decaying solution, we write the solution as

s (r.p) = D (1)é.(p)- (29)

The linear growth rate, f, is convenient for characterizing
the growth of the matter density perturbations and is
defined by

dinD,
f= dlna -~

(30)

Substituting the solution (29) into
equation (17), we obtain

the continuity

0V(t.p) = —f(1)6"(t.p). (31)

2. Second-order solution

In order to obtain the second-order solution of the matter
density perturbations, we need to substitute the first-order
solutions (29) and (31) into the right-hand side of Egs. (17)
and (18). The relevant kernel to describe the second-order
mode-coupling functions are @ and y defined in Eqs. (12)

and (14), namely, U, = {a, y}. With these nonlinear mode-
coupling functions (21), the second-order evolution equa-
tion is given by

o5

0% 3
+ (2 H S QuEH? ) = H? ) SSw.
=ay

or? ot

(32)

The coefficients of the second-order mode coupling are
given by

(1= 4o)SS) =25, (@HD3f), (33)

T 2D N

(1- o)y =15, - D2 2, (34)

where the explicit form of Tg.)n is given in Appendixes B 2

and B 3.
The second-order solution is obtained as

5(1.p) = DAO) [<OWE(p) -2 20WP p) |, (39
where
1 2 7 2
K0 = ¢ )L[HZSE,)], M0 == 35, )L[H2s$ .
(36)

and we defined the functional L acting on a function s of
time as

Ll = [ar D, (T)D_(1) = D.(1)D_(T)
o D (T)D_(T)-D,(T)D_(T)

s(T).  (37)

In the Einstein—de Sitter universe in GR, we have g =
c= rgL = Tg?y =0 and Ep = 1. We then see that 1 =1
and x = 1. In the Horndeski theory, 4 can deviate much from
the standard value, A # 1, but « still takes the standard value,
k = 1[55,56]. In DHOST theories beyond Horndeski, not
only Abut also x can deviate from 1 [44-46]. For k away from
1, the matter bispectrum is altered at the folded configuration
in momentum space [44,45].

Substituting 5(1), §2), and 0") into Eq. (17), we can also
obtain the second-order velocity divergence,

02)(1.p) = ~DL1 ()W 0) = 4o (OWE p) |, (38)

where we defined
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()_2;<—1+f—H (39)
A A 4 40
o(t) = o (40)

In the Einstein—de Sitter universe in GR, 4y =1 and
kg = 1. As 4 and « can, in DHOST theories both 4, and
Kp can also deviate much from 1 and they are sensitive to
the time derivative of 1 and «, respectively.

II1. THIRD-ORDER SOLUTION

Having reviewed the first- and second-order solutions,
now let us proceed to derive the third-order solution for the
matter density perturbations in DHOST theories. The pro-
cedure is basically the same as in the case of the second-order
solution. Before going to the detailed analysis, we need to
discuss the kernels of the nonlinear mode couplings of the
third-order solution. There are several choices of the shape
functions to describe the third-order solutions for ¥, ®, and
Q. Since the mode couplings in Egs. (7) and (8) are
determined by a, and y, the relevant kernels can be
straightforwardly chosen to be aa, ay, ya, and yy, which
are defined in Egs. (B22)-(B25). Moreover, in order to
include the effect of the antisymmetric part of the kernel o
appearing in Egs. (9) and (17), the additional two kernels aa,
and ays defined in Eqs. (B26) and (B27) are needed.
In addition to these six kernels, we further consider the
kernels & and ¢ defined in Egs. (15) and (16) to take into
account the mode couplings from the three-point self-
interaction terms of the scalar field perturbations in
Eq. (9). In summary, the set of the relevant third-order shape
kernels is given by Us = {aa, ay,ya,yy, aag, ayg, &}

It then follows that the third-order evolution equation is
given by

.. . 3
5 + (24 ¢)HEY - Egm%fﬂa

H2ZS

MU,

(41)

The coefficients of the third-order mode couplings are

(1=o) St = T g+ 203 ko + 5 [ HDLf (k-4 ).
(42)

(1= 1) Sk = Ty — —D3 1
—oo [@HDLf (4 220)]. (43)
(1= po)Stad = 7o) = 2D3 fKp. (44)
(l—ﬂm)sﬁ)_ffp)yy+ D3 1. (45)

3 3 .
(1= 10)Sus = Toae + s [@HDLf (k= xp)].  (46)
1= pg) S =750 o — 2HD3 f(2=249)], (47
( /’tq)) ayS TCIJ,aye 7 2 z[a +f( 0)]’ ( )
a*H
3 3
(1= po)S;" = 7. (48)
(1 - o)S;" = 7. (49)

where the explicit expression of Tg)n is shown in

Appendixes B 2 and B 4. Using the following relation:

w (W + Waye) + Wyy (50)

1
ra —7 Ve

w|~

one can remove W, and absorb its coefficients into W,
Wyes WU’ and W;. .

Following the same step as the second-order solution, we
thus arrive at the third-order solution,

3 4 3 _ 2

_ 3 3,1 0
83) = D3 |d W) — 2 Wer) =57, Wy + 5 d: W

9

T e WO 4 o WO + dgwg@] , (51)

where

1 7 3 1 3
D+L[H255m)} dgy = HL [HZ (SS,Q +ES§,)H ,

1 3
dy==apr LIPS + 72,

d :iL H? S( )__S()
D3 27
d —LL{H2<S<3) +1S(3)>}
@3 ar© THdra |

(52)

daa

1

doae = D—gL [HZSguz)e]
1 (3)

dgzD_iL [H*S;7],

and L[ - -] has already been defined in Eq. (37). In the limit
of the Einstein—de Sitter universe in GR, it is easy to show
that d,,, dg,, d,,, and d; reduce to unity, while the other
three, dyg, doye» and dg, vanish. In the case where gravity
is described by the Horndeski family, we still have d,, = 1
and dyoe = dyye = d; =0, but now d,, d,, and d;
deviate from unity [57,58]. The present analysis shows
that in DHOST theories all of these seven quantities can
have nonstandard values in general. In particular, d,, # 1,
doae 0, dgye #0, and d; # 0 are specific to theories
beyond Horndeski.

103505-6



UV SENSITIVE ONE-LOOP MATTER POWER SPECTRUM IN ...

PHYS. REV. D 102, 103505 (2020)

IV. ONE-LOOP POWER SPECTRUM

We now calculate the one-loop power spectrum for the
matter density perturbations. The one-loop matter power
spectrum has been discussed in the context of modified
gravity theories [59-62] and in particular in the context
of the Horndeski theory [57,58] and DHOST theories
[45,46]. In Refs. [45,46], the one-loop matter power
spectrum in the IR limit of the loop integrals has been
investigated and the third-order solution has been obtained
only in the IR limit. However, the complete form of the
one-loop matter power spectrum including the UV con-
tribution of the loop integrals has not been derived yet in
the context of DHOST theories. In the present paper, we
calculate the complete form of the one-loop matter power
spectrum by using the third-order solution derived in
Sec. III.

The power spectrum for § is given in terms of the two-
point correlation function as

(6(1.k1)5(t.ky)) = (27)*6(ky + ky) Pos(t.ky).  (53)

In this paper, we focus on the autopower spectrum for J; the
one-loop cross-power spectrum between matter density
perturbation and velocity divergence, and the autopower
spectrum for velocity divergence has the same structure as

Gaussian statistics, one can write the one-loop matter
power spectrum as
2 4 (22) (13)
Pss(t.k) =D (1) Pr(k) + D3 (1)[Pgs (1.k) + 2Py (1.k)],
(54)
(22) (13) . .
where Pg; and P’ are one-loop corrections to the linear

power spectrum due to the second- and third-order solu-
tions defined by

(0P (1.ke1)3%) (1.k3)) = (27) 360 (ke +k2)Di(t)Pg§2)(t,k1),
(55)

(6 (1.k1)8) (1K) = (228 (ky k) DL (1) P35 (1K)

(56)
and Py (k) is the linear power spectrum for the initial
density field & . It follows from Eqs. (35) and (51) that the

second- and third-order solutions can be written in terms of
the kernels as

D% (1
5(2)(1‘,’() = (2;()2/d3p1d3p25])<p1 +p2—k)

that of the autopower spectrum for the matter density X Fa(t.p1.2)51(P1)8L(p2). (57)
perturbation. X
83(1,k) = D+(t)/d3p1d3pzd3p35D(P1 +p2+p3—k)
A. One-loop matter power spectrum (27)°
Using the solution of the matter density perturbations up X F3(t,p1,p2.p3)0L(P1)0L(P2)6L(p3),  (58)
to third order, &(t,k) = o) (¢,k) + 6 (t,k) + 63 (1,k),
and assuming that the initial density field obeys the  with
|
2
Fy(t.p1.p2) = k(t)ay(p1.p2) — 7’1@7(1’17172)7 (59)

F3(t.p1.p2.p3) = dyo(t)aa(py.pr.p3) — 7

4 2 1
—doy (H)ay(p1.p2.p3) — ﬁdyy(t)w(pl,pz,pa) + = d:(1)¢.(p1.P2.P3)

9

+ daa@(t)aae(phvapS) + day@(t)aYG (pl’p25p3) + d{(t)gc(PlvPZ’pS)’ (60)

where the explicit forms of the mode-coupling kernels are shown in Egs. (B22)—(B29). Substituting these into Egs. (55) and

(56) and using Wick’s theorem, we obtain

2
Py (1K) = 5 [ Erritp k-pPip) Pk

13
P((sa )(t’k) = (27)°

): (61)

LK) / S pFs(1.k.p.~p)PL(p). (62)

Performing the integrals, we arrive at the final form of the one-loop corrections,
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2
(22) ke [
P t,k) = dpP , 63
55 ( ) (2”)2A 4 22(1’) ( )
PR = s [T P (64)
56 (2”)2 o
Here we have defined the kernel functions as
P.(p) /1 ) 5 [(7Tx — 42) p + Tkx — 2px*(Tk — 24))?
=—"2 [ dxP.((k —2kpx)'/? , 65
Pa(p) 98 /., xPy((k* +p px)'/*) (& = 2kpx + p?)? (65)
Pl3(p):T ?d}/y?+4 ZD_ﬁdyy_daa_daae_ZdC
1 P’ pt 3 (P 2 (=p*)? (k+p
8 D——d,, —d,yo —ds | =+3D—+-|D—+—d 1 , 66
- ( 28 11 faad C>k2+ a2\t a%) ey k=gl (66)
where x denotes the directional cosine between k and p 1. IR limit

defined as x =k - p/kp, and we have introduced

4 2

D:=dyg — 7day - idyy = dgao — daye' (67)

Given a concrete model of modified gravity and a linear
power spectrum, it is now straightforward to calculate the
one-loop matter power spectrum using Eqgs. (63) and (64).

B. Asymptotic behaviors of the loop integrals

In order to study the one-loop contributions to the matter
power spectrum in the context of DHOST theories, we
would like to examine their asymptotic behavior of the
short- and long-wavelength limits in the loop integrals as
done in Ref. [63]. To do this, let us divide the one-loop
contributions into that from the momentum integration for
p > k (UV region) and that from the integration for p < k
(IR region), for fixed k. It was shown in Ref. [63] that,
when assuming GR and the standard linear matter power
spectrum,’ the leading terms from Py, and Py; in the IR
limit are exactly canceled out and the loop integrals in both
the IR and UV regions are convergent. In this section, we
extend their analysis to DHOST theories, and in particular,
we investigate the asymptotic behavior of the matter power
spectrum and the condition for their convergence.

lAssuming the scale-invariant primordial curvature perturba-
tions, the standard scale dependence of the linear power spectrum
is roughly given by
ko (k< keg)s
k=3 (k> keg),

where T'(k) is the transfer function and k. is the wave number at
the matter-radiation equality time.

Py (k) o kT?(k) « { (68)

Let us first consider the long-wavelength contribution in
the IR limit, namely, p/k — 0. In the naive p — 0 limit of
Eq. (65), we have

Pry = 3PLKIPL(p). (69)

However, as pointed out in Ref. [63], since the second-
order kernel F,(t,p,k —p) is symmetric between p and
k —p, we also have to take into account the |k —p| — 0
limit so that the integrand in the appropriate limit is twice
larger than Eq. (69). Hence, the appropriate IR limit of (65)
is given by

2
P — §K2PL(/‘)PL(P)- (70)
On the other hand, the same limit of Eq. (66) yields
1
7)13 - _g(daa_‘_daa@+2d§)PL(k)PL(p)' (71)

We find from Egs. (70) and (71) that in the IR limit the
sum of the kernel functions in the one-loop correction,
P2y + 27Py3, is canceled out within the Horndeski family of
theories, x = d,, = 1 and d,,e = d; =0, and the con-
vergence condition is the same as those in GR [58].
However, once we consider DHOST theories, this cancel-
lation does not occur, and the convergence condition of the
loop integrals seems to become more stringent than that of
standard one in GR. This phenomenon has been already
reported in Refs. [45,46] (see Ref. [58] in the context of
effective field theory of large scale structure) while we
described the explicit forms of the functions d, which
determine the asymptotic behavior of P,, +2P;3, in
terms of parameters characterizing DHOST theories.
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We anticipate that the more stringent convergence con-
dition of the loop integrals in the IR region originates from
strong correlations between short and long modes in such
theories. In order to support this argument, we revisit the
matter trispectrum in DHOST theories.
The trispectrum for ¢ is given in terms of the four-point
correlation function as
|

(0(t,k1)0(t, k2)5(t, k3)5(t, ky))
= (2n)*(k, +ky + k3 + k)T (t,k; ko, k3, ky).  (72)

Since the linear density field is assumed to be Gaussian, the
matter trispectrum is given to leading order by

T(t.ky. ky.ky, ky) = DS ()T (1, ky Ky, ke ky) + T (2, ke Ky ke k), (73)

where

TU22) = 4Py (ky)Py (k) [PL(lky + k3| )Fo(t.ky, —ky — k3)F5(t,ky, ky + k)
+ PL(lky +ky|)Fo(t. by, —ky —ky)Fy (2. ko, kg + Ky)]

+ S perms.,

(74)

T(1113) — 6Py (ki) Py (ky) Py (k3)F5(t,ky, ky, ks) + 3 perms.. (75)

As we are interested in the interactions between short and
long modes, we take the double soft limit in which two
wave vectors are taken to be much smaller than the other
two. Let us look at the dimensionless reduced trispectrum
defined by

Q(t7k1’k2’ qlﬁq2)

_ T(t.ki.k>.q1.9)
DS (1) [Py (ky )Py (ky)Py(q1) + 3 perms.]

(76)

In the double soft limit, ¢, g, < ky, k, with k; = —k, and
q1 = —q», Eqs. (74) and (75) reduce to

T122) — 8P| (k) )P} (q))k* ()2 (g1, k),  (77)

T(HB) d 12PL(kl>Pi(ql)[daa(t)aa(klaql»qZ)
+ dyas (Naag (ky. 1. q2) + de (1S (k1. 41, 42)]

(78)
and hence the reduced trispectrum reads
O(t. k1. k. q1.9>)
Py(q;) > <Q1'k1>2
= ———L (k" —dyy — dyee — 2d . 79
Pulln) M)

In the Horndeski theory, we have x =d,, =1 and
dyae = dr = 0, so that the above would-be leading con-
tribution vanishes. However, in theories more general than
Horndeski, the above expression does not vanish in general.
We thus see that in the trispectrum there is a non-negligible
contribution in the double soft limit that appears for the first
time in DHOST theories beyond Horndeski. This result is

consistent with the more stringent convergence condition of
the loop integrals in the IR limit and we reproduce the
results of Ref. [45,46]. We conclude that the more stringent
convergence condition of the loop integrals in the IR limit
originates from the strong correlations between short and
long modes.

2. UV limit

Let us move on the short-wavelength contribution in the
UV limit, namely, p/k — oo. Hereafter, we assume that the
linear power spectrum Py (p) in the UV regions behaves
asymptotically in proportion to p”. In the p/k — oo limit,
Eq. (65) reduces to

343k% —336xA + 12812 k?

75 7 [PL(p)]? o p*n=1). (80)

Py —

This expression can be rewritten as

P (k) _ 343 — 3364 + 12822
Py (k) 735(2r)?
e IR Y00 )
Pr(k) Jpzk

Thus, this term is convergent for n < 1/2, which is the
same as the convergence condition in GR. We then
investigate the same limit of Eq. (66),

2

2 p
— (daa@ + dC) ﬁ

P
13 = 3

Py (k)PL(p) & p"™2. (82)

Hence, we have
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P(13)(k) 2(d¢m d )
OIS T /pzkdppzmp), (83)

which immediately leads to that the integration with the UV

regions in Péy) is separately convergent only for n < —3.

We then find that its leading dependence on p is stronger
and the condition of its convergence becomes more
stringent than that of in GR. On the other hand, in the
case of the Horndeski theory, the coefficient of the leading
term vanishes and the next-to-leading term is given by

147 — 1442 — 64d,,
315

PiE™ — Py(k)Py(p) « p". (84)
implying that the convergence condition reduces to that in
GR, n < —1. Therefore, we conclude that in DHOST
theories beyond Horndeski the linear power spectrum
should be required to be redder than that in the case of
the Horndeski theory and GR for the convergence of the
one-loop correction. An important observation is that the
standard linear power spectrum which behaves as Py (k) «
k=3 for short wavelengths is on the edge of the convergence
in DHOST theories. Note that the coefficient of the leading
term, dy,g + d;, does not vanish even in the viable DHOST
theory evading gravitational-wave constraints [42,64].
Before closing the section, let us suggest some possibil-
ities to resolve this UV sensitive behavior of the one-loop
matter power spectrum in DHOST theories. The first
possibility is, as we have already discussed, to consider
the linear power spectrum with the power-law index being
n < =3 for short wavelengths. The second is to introduce
the cutoff scale in the matter power spectrum, which
depends on the nature of dark matter [65]. One may also
have another, rather different, possibility that one elimi-
nates the UV terms at the level of the integrand, namely,
one imposes the additional condition d g + d; = 0, which
can be used to add the constraint on the combination of the
parameters, on the basis of the assumption that this UV
divergent behavior would be spurious and must vanish.

V. CONCLUSIONS

In this paper, we have studied the third-order solution of
the matter density perturbations and the one-loop matter
power spectrum in the context of the DHOST theories. We
have solved the field equations for the gravitational potentials
and scalar field perturbation order by order under the
quasistatic approximation and obtained the formal solutions
at all order. We then explicitly presented the second- and
third-order nonlinear terms appearing in the evolution
equation for the density perturbation. The second- and
third-order solutions can be characterized, respectively, by
two and seven functions describing the nonlinear mode
couplings. In particular, we found that at third order there
appear three new shape functions in the momentum space

[Egs. (B26), (B27), and (B29)] in DHOST theories beyond
Horndeski, which could yield the unique signature of this
new class of scalar-tensor theories.

Furthermore, by using the resultant second- and third-
order solutions of the matter density perturbations, we
calculated the one-loop matter power spectrum and inves-
tigated their asymptotic behavior in the short- and long-
wavelength limits in the loop integrals. Although as far as the
Horndeski theory is concerned, the asymptotic behavior both
in IR and UV limits is basically the same as that in general
relativity; we have shown that in DHOST theories the
behavior of the loop integrals can be drastically changed.
At the IR limit, the leading terms in Pé? and Pg;) do not
cancel and the condition for the IR convergence is thus more
stringent than the standard one in general relativity. Even
though this feature has been already discussed in
Refs. [45,46], we derive the complete expressions for the
leading terms in terms of the functions characterizing the
theories and it can make the origin of this distinctive IR
behaviorin DHOST theories clearer. By evaluating the matter
trispectrum in the double soft limit, we argue that the more
stringent convergence condition of the loop integrals in the IR
limit is the consequence of strong correlations between short
and long modes in such theories. For the UV limit, we have
shown that the loop integral related to the third-order solution
in DHOST theories has logarithmic divergence in the case of
the standard linear power spectrum. Hence, we conclude that
the one-loop contributions to the matter power spectrum
would be sensitive to the short-wavelength behavior of the
linear power spectrum as long as gravity is described by
DHOST theories beyond Horndeski.

The more stringent convergence conditions of the loop
integrals could be interpreted from the point of view of
quantum field theory. As usually discussed in quantum
field theory, symmetry protects loop corrections of corre-
lation functions. As reported in Refs. [45,46], Horndeski
theories have the accidental symmetry which is related to
the Friedmann-Lemaitre-Robertson-Walker symmetry and
shift symmetry in terms of fields (see Refs. [45,46] as the
detailed discussion) while operators in DHOST theories
beyond Horndeski violate that. So, this violation may be
related to the more stringent convergence conditions of the
loop integrals in DHOST theories beyond Horndeski. To
support this argument, it is important to investigate whether
divergent terms in the loop integrals vanish thanks to the
above accidental symmetry in light of effective field theory
of large scale structure [66]. Or, moving to the Einstein
frame, the coupling between matter and the scalar degree of
freedom could be large, so that the prediction based on
perturbation theory might not be reliable. We hope to come
back to these issues in the future.
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APPENDIX A: DEFINITION OF THE
COEFFICIENTS IN THE EQUATIONS
OF MOTION

In this section, we summarize the definition of the
effective field theory parameters and the coefficients in
the equations of motion. In addition to the parameters that
appear in the class Ia degeneracy conditions (2) and (3), one
can characterize cosmological perturbations in DHOST
theories by introducing ag, oy, and ay defined by

d
M2Hay = - M?, (A1)
dt
2 a2 a2
M HaB =M Hav 3M Hﬁ]

+ ¢(—XGx + Gay + 2XGayy)

+ ¢¢[2X(G4xx —ayx + Xazy —ay

+2Xas) +3(Gux — a + Xa3)], (A2)

M2av = 4X(G4X - 2a2 - 2Xa2X). (A3)

These parameters appear within Horndeski theories. Note
that we have yet another parameter which is often denoted
as ay, but it does not appear in the equations under the
quasistatic region (i.e., on subhorizon scales).

The explicit expressions of the coefficients in Egs. (7)-(9)
are given by

b3

Bﬂ, (A4)

Cq :—4|:(XB (XH+ ﬁ

a
C2:4|:(XH(1+GM)+(IM—(XT+FH:|, (AS)

H ag — &
C3:—2{<1+(1M+m)(GB—QH)+ BH H

3, H
+T+H2+GT oM

H
. [_ L ﬂ3<1 + ay) +flﬂ <1 +ay — H2>
H H\"ps aMﬁ3 Ps
_zﬁﬁ+(ﬁ> 2 H +4H2} "o
1 2
b= +2(1+aM>(2ﬁ1 +hs)+ 2dt< ﬁllj%)’ "

C a; :
bzz—f+(1+aM)aH+ <EH> (A8)

by =2c3 + K +ay — >(1+aM)+2/I}(4ﬁ1+ﬂ3)
u )<4ﬁ1+ﬂ3) +(%> (A9)

b4:2[<1+aM—%>(4/31 +p3) + (%ﬂ

+2(1

(A10)

dy = —[av+3(aH—aT) —4dag + oy (2 —ay +ayg +86;)

20+ ) - A, (A1)
1
dzzi(av_aH_élﬂl)a (A12)

where Q,, was defined in Eq. (27).

APPENDIX B: COEFFICIENTS OF FIRST-,
SECOND-, AND THIRD-ORDER SOLUTIONS

In this section, we summarize the coefficients of first-,
second- and third-order solutions.

1. Homogeneous solutions

The components of the matrices M and N in Eq. (20) are
read off from Egs. (7) and (8) as

My M\y@) B (1+aT —(1+aH)>

M=(M) , =
Mo (Mcw Moo l+ay —p5/2

(B1)

N‘I’Q N‘I’Q) (—bz —oy )
, (B2
<N¢Q N by —(2p1+p3)/2 (B2)

with a, b stand for ¥ and ®. The coefficients in (24) and
(25) can be written in terms of above quantities and the
coefficient of Eq. (23) as

Ha = (M_]N)QQVQ» (B3)

_ (a*Hvg)
v, =M lN)an/Q + (M- N) |:KQ +a2—H2Q , (B4)
3 B B B (a’H?kp)
Ka:EQm(M 1)u<D+(M 1N)aQK-Q—’—(IVI IN)aQTI_[%Q'
(B5)
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Substituting these back into Eq. (9), we obtain the explicit
forms of the coefficients in Eq. (23) as

V=3 2 ey (Mg =220, + 1) M g, (B6)
kg = —%% [cz(M“)w 4oy (M)
e | ]
LI RTE] SR
where
Z= by + oM N)yg +¢1 (M N)gg + o [(M-IN)y ]
HEPD) 01N ) (BS)

2. General expression of coefficients
of higher-order solutions

We show that the nth order coefficient with the shape I1
in Egs. (24) and (25) is generally written in terms of the nth
order coefficient of Q") and the matrix components of M,

N, and O™ as
Ta},% = (M7'O™) 1y + (M~ 1N)aQTQH
| (@HEL)
+(M lN)aQ L2H? (B9)

Substituting the nth order solutions of ¥, ® and Eq. (23)

into Eq. (9), we then obtain the form of T(QH’)H as

n 1 n - n - n
T(Q.>H =7 O(Q,)l'[ — (M 10l ))wn - (M 10l ))‘PH

4o
- a2I-II{3 [asz(M_IOM))‘PH]'

2026, + p
i (ﬂ;H3/3)

[a®H*(M~'O") g ] | (B10)

where Z was defined in Eq. (B8). Here, the coefficient O(Q")H

EoM of Q and the coefficient of W%" ). Therefore, once the
lower-order solutions and the nth order matrix components

of O are given, we can straightforwardly derive the nth
order solution of ¥, ®, and Q.

3. Second-order solutions

To derive the second-order coefficients in Egs. (23)-(25),
we need to write down the reduced first-order solution.
When substituting Egs. (28) and (30) into the first-order

solution of Egs. (23)—(25), ¥, &), and Q" can be
rewritten as
w0 (1 p) =~ O b (o). BIY
o0.p) == k00 (9p). (812
0"(1p) = - kop. (0500). (B13)
a2 3
0" =~ k0D ). (B14

At the second order, the relevant shape functions to
describe the solutions are shown to be a,(k;,k,) and
y(ky,k,), which are defined in Egs. (13) and (14). Since
the nonlinear interaction in Eqs. (7) and (8) are determined
by Q, the matrix components of O in Eq. (20) at the second
order, that is, O'?), can be written in terms of the first order
solution of Q. We then have

2 A®
00 = <O“*“ O‘”)

2 2

O, O

1 4o ar—4a
:-D’iz@( " t ) (B15)
4 2281 +P3) —2(dy+2P1+p3)
Moreover, with the use of Ky, K¢, and K, and the shape

functions, the coefficient in Eq. (B10) is given by

O(QZ)a = DiKop{4auKy —2(2f, + f3)Ko + bsK

+6(461 + P3)K ) (B16)
0y, = ~D3Ko{2arKy + 4d>Ko + (di + by)K,
+4(4p1 + 1)K} (B17)

4. Third-order solutions

Following the same step as the previous subsection, to
derive the third-order solutions, it is useful to introduce the
reduced second-order solutions. Substituting the second-
order solution Eq. (35) into Egs. (23)—(25), we obtain

a2 2
w0 (1p) = = (W) + 70,0, )
(BIS)
@0(1.p) = =0 10, (W, () + 70, (0, )
(B19)
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(12 2
00)(1.p) = —% Fpul0Wa(p) + 0, (OW, ()],
(B20)
a2 3
00(p) = - WO o (Wp) + 25, (W, )]
P

(B21)

where 7, ;; can be described by the lower-order solutions
and 7, itself.

Let us consider the kernels that describe the nonlinear
mode coupling of the third-order solutions. We first define
the kernels that are generated by «, and y as

1
aalky, ky ky) = 3 [as (ky ky + k3)a(ky. k3) + 2 perms.],

(B22)

1
ay(ky, ky. k3) = 3 lay(ky, ky + k3)y (ks k3) 4 2 perms. ],

(B23)
1
yalk, . ky. ks) = 3 [y(ky. ks + k3 )ag(ky, ks) + 2 perms. ],
(B24)
1
yr(ky. ko ks) = 3 ly(ky.ky + k3)y (ky. k3) + 2 perms.].
(B25)
|
(3) (3) (3) (3) (3) (3)
O‘P.aa O‘Y,(xy O‘I’,ya O‘{’,yy O‘P,aae O‘I’,ay@

006 =
0(3) O(3> 0(3) 0(3)

3) 3)
[N 73 D,ay Dya Dyy O@,aae O<I>.aye

zaH%Q,a ZGH%Q’},

Substituting the reduced lower-order solutions Eqs. (B11)—
(B14) and (B18)—(B21) into Eq. (9), we can extract the
correspondence between the coefficient OS)H and other
parameters, which are given by

Og)aa = 2D+{4aHK(‘P =221 + B3)K(o + bsK (o

+ 6(4;61 +ﬂ3)K(Q}%Q),m (B?’l)

OSLY = 2D {4auKy —2(26, + p3)Ko + bsK g

+6(481 + B3)K o }0).- (B32)

Dbk < (ap —4ay)7pq/2
e (261 +P3)T0a (281 +P3)T0, —(da+4P) +283)T0, —(dy+4p1+203)7p, 0 0 0 O

In solving Egs. (9), (17), and (18), we need to introduce the
kernels that are generated by the asntisymmetric part of « as
well as a, and y. Hence, we define

aag (ky.ky.k3)
1
:6{[0("1 Jo +k3) —alk, + ks ko)), (ky ks) +2perms. },
(B26)

ayg (ki.ky . ks)
1
:6{[0’("1”‘2 +k3) —alky +ks.ky)]y (k. ks) +2perms. }.
(B27)

In addition to these six kernels, we have to take into
account the mode couplings from the three-point self-
interaction terms of Q in Eq. (9), that is, £ and {. We then
define the following cyclic-symmetrized mode-coupling
functions as

1
€c<k17k2’k3) :g{é(kl’kZ’kB)_szerms'}’ (B28)

1
Colky Ky ks3) :g{C(klykz,kﬂ +2perms.}.  (B29)

In summary, we need to consider the set of the eight
kernels, Us={aa,ay,ya,yy,aag,ay5,6..C.}. With these
kernels, the matrix components of O®) can be written as

(aT_4aH)%Q,y/2 0000

). (B30)

[
OS,)ya = _2D+{2aTK(‘P + 4d2K((1> + (dl + b4)K(Q

+ 4<4ﬂl +ﬂ3)K(Q}%Q).w (B33)

OS,)W = -2D {20:K gy +4d1K (¢ + (dy + bs)K o

+4(4p, + ,&)K@}%QW (B34)
where we have used the round bracket as the symmetrized
symbol defined as Kz7gn = (KaZpn + KpTan)/2.
Introducing  the antisymmetric symbol K 7Zp =
(Ka7pm — KpZTam)/2, the remaining coefficients can be
given by
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0(3)
0(3)

3 _ ~ 3
OQé =27t

() )
Opr=Zrps =~

0.0ae = ZT0.aae = 4D {2auKw — (21 + P3)Kjo — (461 + 3)K |} g).ar
0.are = ZT0.ae =4D {20uK 1w — (281 + B3) Ko — (481 + P3)K p } o -

0&

(B35)

(B36)
DK} (2d; + ar), (B37)
2D3 K (4P + Ps). (B38)
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