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We study the cosmological predictions of the dark D-brane model, in which dark matter resides on a
D-brane moving in a higher-dimensional space. By construction, dark matter interacts only gravitationally
with the standard model sector in this framework. The dark energy scalar field is associated with the
position of the D-brane, and its dynamics is encoded in a Dirac-Born-Infeld action. On the other hand, dark
matter is identified with matter on the D-brane, that naturally couples to dark energy via a disformal
coupling. We analyze the numerical evolution of the cosmological background, highlighting the fact that
there are two regimes of interest: one in which the coupling is positive throughout and another in which the
coupling is negative at the present. In the latter, there is the enticing possibility of having scenarios in which
the coupling is positive for a significant part of the evolution, before decreasing toward negative values. In
both cases, the coupling is very small at early times and starts to grow only during the late matter-
dominated era. We also derive the equations for the linear cosmological perturbations and an expression for
the effective time-dependent gravitational coupling between dark matter particles and present the numerical
results for the cosmic microwave background anisotropy and matter power spectra. This allows for a direct
comparison of the predictions for the growth of large-scale structure with other disformal quintessence
models.
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I. INTRODUCTION

In the past few decades, cosmologists have developed a
framework which explains many properties of the observ-
able Universe [1]. Its successes rely on the existence of a
dark sector, whose origin most likely comes from new
physics beyond the standard model of particle physics.
In the simplest version, the dark sector consists of two parts
[2–4]. The first is some form of nonrelativistic particle, cold
dark matter (CDM), which interacts only very weakly, if at
all, with the standard model fields. Dark matter is needed to
explain a plethora of observations, such as the rotation
curves of galaxies and the motion of galaxies in galaxy
clusters [5,6]. Moreover, it also provides an explanation of
how structures form and makes predictions about the
statistical properties of anisotropies in the cosmic micro-
wave background (CMB), which have been confirmed
by experiments. The second part is motivated by the
observed accelerated expansion of the Universe [7,8], a
phenomenon generally attributed to a new energy form
dubbed dark energy (DE). In the simplest scenario, dark
energy is portrayed by the cosmological constant [9,10],
and the dark sector remains uncoupled.
While this ΛCDM model remains the most economic

scenario for explaining a variety of cosmological observa-
tions, the physical origin of the dark sector remains unclear.

It is generally believed that CDM is a particle, predicted by
most extensions of the standard model. On the other hand,
the magnitude of the cosmological constant is difficult to
explain within conventional quantum field theories
[11–13]. This motivated the formulation of alternative
frameworks, primarily with the introduction of the quintes-
sence canonical scalar field, whose dynamical evolution
can resemble a cosmological-constant-like behavior
[14–18]. Not many works address the possibility of a joint
origin for dark matter and dark energy (see, e.g., [19–22]),
but there are a plethora of models proposed in the literature
in the dark sector is coupled, seminally proposed and
studied in Refs. [23–26] (for a general overview, see
[27,28]). In this work, we will study a model in which
dark matter and dark energy, while still being two distinc-
tive components, have a joint higher-dimensional origin
[29]. Specifically, the dark matter sector originates from
matter on a D-brane, moving in a higher-dimensional
spacetime. The role of the dark energy field is played by
the position of the brane, whose motion in the extra
dimensions is encoded in kinetic and potential energy
terms in the low-energy effective action. This D-brane
scenario arises from hidden sector branes in string theory,
which have no intersection with D-branes responsible for
the visible (standard model) sector, and, therefore, dark
matter interacts only via gravity with the standard model
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fields (for a review on cosmological applications of string
theory, see, e.g., [30]). Although dark energy and dark matter
are still two separate components, in this scenario they both
stem from properties of the D-brane, hence being inevitably
coupled. Furthermore, because the object from which dark
energy originates is a D-brane, the kinetic term is nonca-
nonical and takes the form of a Dirac-Born-Infeld (DBI)
kinetic term, widely studied in cosmology, namely, in the
context of inflation [31–33] and dark energymodels [34–46].
Dark matter and dark energy are naturally coupled in this

scenario, because the metrics which define geodesics for
standard model particles and dark matter are not the same.
Therefore, the coupling of the scalar field to matter is
nonuniversal by construction, avoiding conflicts with con-
straints from Solar System tests [47–50] and with the strict
bounds on the speed of gravitational waves [51]. The
relation between the two metrics is given by a disformal
transformation [52], as will be explained in Sec. II in more
detail, that takes the form

ḡμν ¼ CðϕÞgμν þDðϕÞ∂μϕ∂νϕ: ð1Þ

The conformal factor CðϕÞ and the disformal factor DðϕÞ
are related to each other and carry information about the
curvature of the extradimensional space. The disformal
relation has been previously proposed in brane world
cosmological models [53–56] and has been applied to
several different areas of study in cosmology [57–64]. It
has also been used to study inflationary settings [65,66],
disformal quintessence fields [67,68], and models of dis-
formally coupled dark energy [63,69–79].
In this paper, we further investigate themodel proposed in

Ref. [29], where the cosmological background evolution
was discussed by means of a dynamical systems analysis. In
addition to a numerical study of the background evolution,
taking into account radiation and baryonic matter, we also
discuss for the first time aspects of cosmological perturba-
tions in this theory. We present the perturbation equations in
both the Newtonian and synchronous gauges. We solve the
full set of cosmological equations numerically and present
predictions such as the CMB temperature anisotropies and
matter power spectra. Wewill furthermore compare features
of the dark D-brane cosmological scenario to other dark
energy theories with disformal couplings, such as the ones
proposed in Refs. [72,76,79–81]. To search for new sig-
natures predicted in coupled dark energy models, an in-
depth study of the growth of perturbations is of paramount
importance.1

The paper is organized as follows. In Sec. II, we
present the details of the theory and write down the
general equations of motion. In Sec. III, we discuss the
cosmological evolution, focusing on the case of a flat

Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time. We turn our attention to cosmological perturbations
in Sec. IV, where we present the general equations in the
Newtonian gauge (the equations in the synchronous gauge
are given in Appendix A). We derive an expression for the
effective gravitational constant between dark matter par-
ticles and show that the gravitational constant grows at late
times in the dark D-brane cosmological model. We also
present results for the CMB anisotropy and matter power
spectra and discuss the evolution of the density contrast of
dark matter. A summary of our findings and conclusions
can be found in Sec. V.

II. THE MODEL

In the model we consider in this work, the dark sector
originates from a hidden D3-brane, moving in a higher-
dimensional spacetime, comprised of two degrees of free-
dom: some kind ofmatter fields confined to the brane and the
brane’s radial position.2 Cold dark matter is identified with
particles living on the D3-brane, which has no intersection
with the D-branes from which the standard model fields
originate (hence, the D-brane is hidden). For this reason,
dark matter and the standard model fields interact only
gravitationally in the low-energy field theory. The role of
dark energy is played by the scalar representing the position
of the brane in the extra dimensions, leading to an interaction
in the dark sector. The geometry of the higher-dimensional
space is encoded in the warp factor, which we assume
depends on the radial coordinate only, and, further on, we
will focus on AdS5 × S5 warped regions.
The resulting theory we consider was constructed in

Ref. [29] by considering a warped flux compactification of
type IIB string theory. The low-energy 4D effective action
is of the form (we adopt conventions of c ¼ ℏ ¼ 1 and
metric signature −þþþ)

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p h
h−1ðϕÞ

×
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hðϕÞ∂μϕ∂μϕ

q �
− VðϕÞ

i
þ
X
i

Z
d4x

ffiffiffiffiffiffi
−g

p
LSðgμν;ψ i; ∂μψ iÞ

þ
X
j

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
LDDMðḡμν; χj; ∂μχjÞ: ð2Þ

The first term is the standard Einstein-Hilbert action, where
κ2 ¼ M−2

Pl ¼ 8πGN is the reduced Planck mass, GN is
Newton’s gravitational constant, g is the determinant of the
metric tensor gμν, and R is the Ricci scalar. The metric gμν is

1See, e.g., [70,76,82–86] for previous work on diverse models
with a dark energy–dark matter coupling.

2In this work, we consider the case of only one species living
on the hidden brane, which we assume is pressureless so that it
acts as cold dark matter.
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the metric which defines geodesics for the standard model
fields. The second term corresponds to the scalar Dirac-
Born-Infeld action [31,32] for a D3-brane, with the scalar
field ϕ representing a canonical normalization of the radial
position r of the D3-brane: ϕ≡ ffiffiffiffiffi

T3

p
r, where T3 is the

tension of the brane. The warp factor also becomes field
dependent, hðϕÞ≡ T−1

3 hðrÞ, carrying the geometrical
information about the warped throat region in the com-
pactified space. The term VðϕÞ is a potential function. The
third and fourth terms are the actions for standard model
particles, represented by the matter fields ψ i, and for matter
fields living on the D3-brane, χj, respectively. In the latter,
the fields propagate on geodesics specified by the induced
metric on the brane ḡμν, shown to be related to the metric
gμν by a disformal transformation of the form in Eq. (1). In
this paper, we will assume that the matter on the D-brane is
disformal cold dark matter (DDM). Because dark matter
propagates on the D-brane, it is naturally coupled to the
scalar field ϕ.
Before we discuss cosmological applications of the

action above, we remind the reader that some assumptions
were made when deriving the low-energy effective action
[29]. The most important one is to assume that the dark
D-brane can be treated as a probe brane, i.e., implying
that its presence does not backreact onto the background
geometry. This means that the extra degrees of freedom
that could potentially emerge due to the presence of the
brane can, therefore, be ignored in this context. We will
further on discuss cosmological perturbations in the
model, which are small and treated at a linear level in
perturbation theory only. Furthermore, the brane will itself
never be in the highly relativistic regime, so that any
backreaction on the bulk geometry due to this effect will
also always remain negligible. Thus, for the purpose of
this study, the action in Eq. (2) consists of a satisfactory
framework to describe disformally coupled dark matter in
this model. However, one should keep in mind that, when
studying cosmological perturbations at the nonlinear
level, further corrections to the action in Eq. (2) may
have to be considered, emerging from additional degrees
of freedom in the theory.
As we will discuss below, the conformal and disformal

functions are not independent but related to the warp factor
hðϕÞ. However, for completeness, we will write down the
equations for general CðϕÞ andDðϕÞ. The relation between
the metrics encodes the phenomenological coupling
between the DBI scalar field and CDM. As was previously
mentioned, the standard model particles do not couple to
the dark sector in this framework.
From the action (2), we can derive the equations of

motion. Einstein’s equations read

Gμν ≡ Rμν −
1

2
gμνR ¼ κ2ðTϕ

μν þ Tc
μν þ TS

μνÞ; ð3Þ

where we have defined each energy-momentum tensor as

Tϕ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LϕÞ

δgμν
;

Tc
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−ḡ

p
LDDMÞ

δgμν
;

TS
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LSÞ

δgμν
: ð4Þ

Because of the presence of the coupling in the dark sector,
the energy-momentum tensors of the scalar field and dark
matter are not individually divergenceless. Still, in order to
preserve general covariance, the total energy-momentum
tensor must still be conserved through the Bianchi iden-
tities, given by

∇μðTμν
ϕ þ Tμν

c Þ ¼ 0; ∇μT
μν
S ¼ 0: ð5Þ

From the action in Eq. (2), we find the equation of
motion for the scalar field, which reads

∇μðγ∂μϕÞ−V;ϕ þ
h;ϕ
h2

γ

2
ðγ−1 − 1Þ2

¼∇μ

�
D
C
Tμα
c ∂αϕ

�
−
1

2

�
C;ϕ

C
Tc þ

D;ϕ

C
Tμν
c ∂μϕ∂νϕ

�
; ð6Þ

where the subscript ϕ stands for derivatives with respect to
the scalar field, Tc ≡ gμνT

μν
c is the trace of the dark matter

energy-momentum tensor, and

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hðϕÞ∂μϕ∂μϕ

p ð7Þ

is called the Lorentz factor for the brane’s motion, which
must always be real. This term is a measure of the
relativistic motion of the D3-brane. In the limit where
γ → 1, we recover the canonical kinetic term, and, in this
regime, ϕ behaves like a standard quintessence field. For
γ → ∞, we approach the purely relativistic limit.
So far, all the equations were derived considering general

conformal and disformal functions. We now focus on the
case where the disformal metric in Eq. (1) corresponds to
the induced metric on a probe D3-brane moving in a
warped higher-dimensional spacetime. In this framework,
the terms C and D in the transformation become functions
of the warp factor of the brane, hðϕÞ [29]:

CðϕÞ ¼ ½T3hðϕÞ�−1=2 and DðϕÞ ¼ ½hðϕÞ=T3�1=2: ð8Þ

In this case, Eq. (6) reads
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∇μðγ∂μϕÞ − V;ϕ þ
h;ϕ
2h2

γðγ−1 − 1Þ2

¼ ∇μ½hðϕÞTμν
c ∂νϕ� −

Tμν
c

4

�
−
h;ϕ
h

gμν þ h;ϕ∂μϕ∂νϕ

�
:

ð9Þ

Under the assumption that the Universe is homogeneous
and isotropic, all the matter species in the theory can be
modeled as perfect fluids. For cold dark matter, this means
that its corresponding energy-momentum tensor can be
written as

Tc
μν ¼ ρcucμucν; ð10Þ

where ucμ is the fluid’s four velocity for a comoving
observer and ρc its energy density.
From the definition of the energy-momentum tensor for

the scalar field [Eq. (4)] and the DBI action [Eq. (2)], we
compute

Tϕ
μν ¼

�
1 − γ−1

h
− V

�
gμν þ γ∂μϕ∂νϕ: ð11Þ

Assuming a perfect fluid form for the dark energy fluid as
well, we have

Tϕ
μν ¼ pϕgμν þ ðρϕ þ pϕÞuϕμuϕν : ð12Þ

Comparing Eqs. (11) and (12) yields

uϕμ ¼ ∂μϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂νϕ∂νϕ

p ð13Þ

for the scalar field’s four velocity and

ρϕ ¼ γ − 1

h
þ V and pϕ ¼ 1 − γ−1

h
− V ð14Þ

for the energy density and pressure, respectively. We also
define the equation of state (EOS) parameter of the scalar
field as

wϕ ¼ pϕ

ρϕ
¼ ðγ − 1Þ=hγ − V

ðγ − 1Þ=hþ V
: ð15Þ

The conservation relations in Eq. (5) can be manipulated to
give an analytic expression for the coupling between the
dark fluids, which we denote by Q:

∇μT
μν
ϕ ¼

�
∇μðγ∂μϕÞ−V;ϕþ

h;ϕ
2h2

γðγ−1−1Þ2
�
∂νϕ¼Q∂νϕ;

ð16Þ

with

Q ¼ ∇α½hðϕÞTαβ
c ∂βϕ� −

h;ϕ
4h

Tαβ
c ½−gαβ þ h∂αϕ∂βϕ�: ð17Þ

The interaction term Q encodes the energy flows between
the dark energy component and the dark matter sector and
will play a fundamental role in this work.

III. BACKGROUND FLRW COSMOLOGY

We now turn our attention to the cosmological implica-
tions of the dark D-brane model. We specify the back-
ground spacetime to be a spatially flat FLRW universe with
line element

ds2 ¼ a2ðτÞð−dτ2 þ dx2 þ dy2 þ dz2Þ; ð18Þ

where τ is the conformal time and aðτÞ is the scale factor of
the Universe. The scalar field is assumed to be homo-
geneous; that is, ϕ ¼ ϕðτÞ is a function of time only, and
hereafter we will use primes and upper dots to denote
derivatives with respect to conformal time τ and cosmic
time t, respectively, related by dt ¼ adτ. In the disformal
frame, in which the dark matter geodesics are defined, the
line element becomes

ds̄2 ¼ Ca2ðτÞð−Z2dτ2 þ dx2 þ dy2 þ dz2Þ; ð19Þ

where Z stands for the disformal scalar, related to the
Jacobian of the metric transformation. For the scenario
considered in this work, with C andD as defined in Eq. (8),
the disformal scalar be identified with the inverse of the
Lorentz factor, i.e.,

Z≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

D
C

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hðϕÞϕ

02

a2

s
¼ 1

γ
; ð20Þ

where X stands for the standard kinetic term of the scalar
field, X ¼ − 1

2
gμν∂μϕ∂νϕ ¼ 1

2a2 ϕ
02, and from where it is

clear that Z ≥ 0, with equality holding in the limit γ → ∞
only. From Eq. (19), we can distinguish clearly the effect of
the conformal and the disformal terms independently:
While the conformal factor acts on the whole line element,
modifying the expansion and thereby diluting dark matter
over space and time, the disformal factor acts only on the
time component, changing dark matter particles’ light
cones.
In this context, with Tμν

c as defined in Eq. (10), we can
rewrite the coupling function in Eq. (17) as

Q ¼ a−2ρc
2C

�
D;ϕϕ

02 þ a2C;ϕ − 2
DC;ϕ

C
ϕ02

þ 2D

�
ϕ00 þ ρ0c

ρc
ϕ0 þ 2Hϕ0

��
; ð21Þ

where we have defined the conformal Hubble rate as
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H≡ a0

a
¼ aH ð22Þ

and H ¼ _a=a is the Hubble parameter defined in terms of
the cosmic time. From the definition of the conformal and
disformal functions in Eq. (8), Eq. (21) becomes

Q ¼ a−2hρc

�
3

4

h;ϕ
h

ϕ02 −
a2h;ϕ
4h2

þ ϕ0
�
2Hþ ρ0c

ρc

�
þ ϕ00

�
:

ð23Þ

The equation of motion for the scalar field [Eq. (6)]
together with (21) yields

ϕ00 −Hð1 − 3γ−2Þϕ0 þ h;ϕ
2h2

a2ð1 − 3γ−2 þ 2γ−3Þ
þ γ−3a2ðV;ϕ þQÞ ¼ 0; ð24Þ

with Q as defined in Eq. (23). Since the warp factor of the
brane, hðϕÞ, is always non-negative, we have γ ≥ 1. The
nonrelativistic limit is realized when a−2hϕ02 ≪ 1 and
γ → 1. Also, it is straightforward to see that, in this limit,
the scalar field Lagrangian in Eq. (2) reduces to the
canonical quintessence case. Additionally, this system
can also be reduced to tachyon cosmology, given an
appropriate redefinition of the scalar field and the potential
VðϕÞ [87–89]. It is also worth noting that, even though we
can state that the scalar field action in Eq. (2) is a particular
case of the k-essence action [90,91], the DBI scalar field
cannot feature a negative pressure in the absence of the
potential. From Eq. (15), we easily conclude that, in the
limit where the potential vanishes, we have wϕ → 1=γ,
which is always non-negative. On the other hand, when the
contribution coming from the kinetic term is negligible,
i.e., in the slow-roll limit, the scalar field exhibits a
cosmological constant type of behavior, with wϕ → −1.
Therefore, the coupled DBI model presents a very general
framework that encapsulates some of the models studied in
the literature, such as coupled quintessence [76,79,80] and
coupled tachyonic dark energy [92,93]. We can immedi-
ately see that the equation of motion for the DBI scalar field
is much more intricate than in the canonical case and that,
taking the appropriate limit, the latter is recovered.
From the Einstein equations, we can compute the

standard Friedmann equations, characterized by the evo-
lution of each ith fluid:

H2 ¼ κ2a2

3

X
i

ρi ¼
a2κ2

3
ðρr þ ρb þ ρc þ ρϕÞ ð25Þ

and

H0 þH2 ¼ −
a2κ2

6

X
i

ðρi þ 3piÞ

¼ −
κ2a2

6
ðρr þ ρb þ ρc þ ρϕ þ 3pr þ 3pϕÞ;

ð26Þ

where we have included the other noninteracting matter
components of the Universe: baryons and radiation (we
assume massless neutrinos that can be incorporated
together with photons in an effective radiation fluid),
denoted by the subscripts b and r, respectively. Being
noninteracting, these fluids evolve according to standard
conservation relations

ρ0r þ 4Hρr ¼ 0; ð27Þ

ρ0b þ 3Hρb ¼ 0; ð28Þ

where we have made use of the fact that pb ¼ 0 and pr ¼
1=3ρr for each fluid. On the other hand, from Eqs. (5) and
(16), we derive the continuity equations, describing the
interaction between the disformally coupled fluids

ρ0ϕ þ 3Hρϕð1þ wϕÞ ¼ −Qϕ0; ð29Þ

with wϕ as defined in Eq. (15), and

ρ0c þ 3Hρc ¼ Qϕ0: ð30Þ

Note that, in the nonrelativistic limit, we have γ → 1þ hϕ02
2a2 ,

and the EOS parameter for quintessence is recovered.
However, in this work, we are interested in the effects
coming from the noncanonical behavior, emerging from the
relativistic signatures. Combining Eqs. (23) and (24), we
arrive at an expression for Q, containing first-order deriv-
atives of the scalar field only:

Q ¼ −
�
hðV;ϕ þ 3a−2Hγϕ0Þ þ h;ϕ

h ð1 − 3
4
γÞ

γ þ hρc

�
ρc: ð31Þ

The sign ofQ in Eqs. (29) and (30) determines the direction
in which energy is being transferred, i.e., if it is the dark
energy fluid that grants energy to the disformal dark matter
or the other way around. It is interesting to note that the
coupling has a different interpretation for each fluid. For the
dark energy fluid, the coupling can be combined with the
self-interacting potential to give an effective scalar field
potential Veffðϕ;ϕ0Þ. On the other hand, as previously
mentioned, the coupling can also be interpreted as a local
change in the geometry, encoded in ḡ, defining the geo-
desics according to which dark matter is propagating.
Instead of working with Q, it is convenient to define an
effective coupling, β, given by
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β≡ Q
κρc

: ð32Þ

Because cosmological constraints often assume a non-
interacting dark sector, where dark matter is modeled as a
noninteracting pressureless perfect fluid, we define instead
an effective equation of state parameter for dark energy
wϕ;eff [94]. In doing so, we map the coupled model
presented here to an uncoupled framework, where dark
matter is not interacting with dark energy, and all the effects
of the coupling are included in an effective dark energy
fluid, defined as

ρϕ;eff ¼ ρϕ þ ρc − ρc;0a−3: ð33Þ

Henceforth, a subscript 0 will be used to denote present
values.
Consequently, the Friedmann equation may be written as

H ¼ κ2a2

3
ðρr;0a−4 þ ρb;0a−3 þ ρc;0a−3 þ ρϕ;effÞ; ð34Þ

where ρr;0, ρb;0, and ρc;0, are the measured radiation,
baryon, and dark matter energy densities at the present,
respectively. Taking the derivative of Eq. (33), the con-
tinuity equation for the effective fluid becomes

ρ0ϕ;eff þ 3Hρϕ;effð1þ wϕ;effÞ ¼ 0; ð35Þ

in agreement with a standard uncoupled scenario. Com-
paring the previous equations with Eqs. (29) and (30), we
find

wϕ;eff ¼
pϕ

ρϕ;eff
; ð36Þ

with pϕ as defined in Eq. (14). This definition allows for a
direct comparison between the background evolution of the
disformally coupled dark sector in this model and exper-
imental data.

A. Qualitative dynamics and initial conditions

In this work, we consider the case of an AdS5 throat with
a quadratic potential, for which

hðϕÞ ¼ h0
1

ϕ4
; VðϕÞ ¼ V0

ϕ2

κ2
; ð37Þ

with h0; V0 > 0. This model has four free parameters that
control the cosmological evolution: the theoretical quan-
tities associated with the scale of the warp factor and the
potential, h0 and V0, respectively, and the initial conditions
for the scalar field and its velocity, ϕini and ϕ0

ini, respec-
tively. In Ref. [29], it was argued that V0 and h0 can be
combined in a single dimensionless quantity

Γ0 ≡ V0h0: ð38Þ

This is a key parameter for the dynamics of the system
near the fixed point solutions, and, therefore, it is important
for the late time and future cosmological evolution. Since C
and D are merely functions of the warp factor and tension
of the brane, the disformally coupled model considered
here has the same number of parameters as the correspond-
ing standard DBI uncoupled case [36,37,41]. However, this
also means that the conformal and disformal effects cannot
be directly disentangled and that we are not able to recover
the uncoupled scenario by means of limit values of the
parameters in the theory.
In Ref. [29], the background evolution of this model for

different parameters was addressed through a dynamical
systems analysis (see [95] for a review on dynamical
systems applied to cosmology). The main advantage is
that, instead of evolving the equations numerically, a lot of
information can be extracted from the fixed points of the
dynamical system alone. Each specific set of initial con-
ditions and parameters corresponds to a trajectory in the
phase space, describing the evolution of the Universe. The
fixed points correspond to the limit scenarios of this
evolution that describe specific periods of the Universe’s
history. One of the most appealing features related to the
introduction of dark couplings is the possibility of having
the emergence of scaling fixed points. These are solutions
for which the two components dilute with the same rate
and, hence, their fractional energy densities maintain a
constant ratio, providing a more natural explanation for the
observed energy share in the Universe.
From the dynamical analysis conducted in Ref. [29],

we gather that interesting cosmological settings exist
when Γ0 > 1, with the emergence of a saddle dark
energy–dark matter scaling solution. A typical scenario
comprises standard radiation- and matter-dominated
epochs in the past followed by the scaling solution,
where the system will spend a certain amount of time.
During this regime, it could be the disformally coupled
matter driving part of the expansion, with the accelerated
expansion of the current Universe starting during a
matter-dominated era, fueled by the nonminimal cou-
pling. In the future, and independently of the initial
conditions, due to the repelling nature of the saddle
point, the DDM starts diluting away and the system
evolves toward a standard accelerating attractor solution,
where the cosmic evolution is governed by the DBI
scalar field, and all the other species become negligible.
The initial conditions for ϕ and ϕ0 determine when we

enter into the scaling and attractor regimes, respectively,
and, the more nonrelativistic the field is, the longer the
transition takes. However, these scenarios take place only
in the future, since we will be considering models where the
system is still approaching the scaling solution today. This
means that the effects of taking different values for ϕ0

ini will
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not be visible at the present. On the other hand, as we will
see, the initial value of ϕ has a significant impact on the
evolution of both the background and the perturbations.
During the radiation- and matter-dominated epochs, before
the transition to the scaling solution or the attractor, the
system dwells in a frozen state, with γ ≃ 1 and wϕ ≃ −1,
and the DBI field resembles a cosmological constant for a
broad range of initial conditions, including relativistic ones.
At late times, the system starts approaching the accelerating
fixed points, characterized by γ → ∞, at a constant rate.
This rate will eventually change once the attractor is
(approximately) reached. One interesting feature is that,
for large values of Γ0, i.e., for Γ0 → ∞, both the scaling-
and dark-energy-dominated fixed points approach a de
Sitter–like solution, resulting in a Universe totally domi-
nated by the potential of the scalar field, with wϕ → −1.
Therefore, we expect that, for increasingly higher values of
Γ0, the background cosmology will resemble that of a
ΛCDM model near the fixed point scenarios, even though
this may not be the case at the level of the perturbations.
Since the field ϕ represents the brane’s position in the

extradimensional space, we take ϕ ≥ 0 for consistency.
Furthermore, in order to be moving down the throat with
ϕ ≥ 0, we take ϕ0 < 0, which is also needed in order to
reproduce cosmologies that allow for the scaling regime.
For these reasons, we restrict this study to cases with
fϕini > 0;ϕ0

ini < 0g.
In what follows, we wish to present a numerical study,

highlighting some of the cosmological features in this
model. We will also be interested in analyzing cosmologi-
cally plausible scenarios, where the dark energy field
cannot have had a significant impact in the past [96]
and, therefore, must resemble a slowly evolving cosmo-
logical constant. We have seen that, in this scenario, the
accelerated expansion can be accounted for, in part, by the
disformal dark matter, and, therefore, we expect that
different signatures will be present (when compared to
ΛCDM and coupled quintessence models).

B. Implementation and background results

We have implemented the model in a modified version of
the Boltzmann code CLASS [97,98]. This allows for a
complete study of the cosmological predictions of the
theory, and, from there, it is possible to infer what is the
interesting range of parameter values to consider. We
adapted the code to account for the background and the
linear perturbations for a DBI scalar field. For the simu-
lations we adopt the Planck 2018 cosmological para-
meters [99]: Ωb;0h2 ¼ 0.022032, Ωc;0h2 ¼ 0.12038,
TCMB ¼ 2.7255 K, and H0 ¼ 67.556 km=s=Mpc, on a
spatially flat cosmological background. The scale of the
potential, V0, is taken to be a shooting parameter that is
numerically adjusted such that we recover the fiducial
Planck cosmological value Ωϕ ≃ 0.68 for the fractional

energy density of the scalar field, while assuming that we
are very close to the scaling regime today.
We studied different regimes of the model, characterized

by different initial conditions and different values of Γ0.
The parameter combinations considered for illustration
purposes are presented in Table I. We consider two groups
of coupled models, characterized by different initial values
of the scalar field, that give rise to distinct natures of the
effective coupling, as depicted in Fig. 1, for all the models
in consideration. The first group is represented here by the
case study in the left-hand side table in Table I, in which
ϕini ¼ 3Mpl. In this case the effective coupling is always
positive up until the present and grows more rapidly for
smaller values of Γ0. On the other hand, for the second
group, exemplified in the right-hand side table of Table I,
with ϕini ¼ 1.7Mpl, the coupling is always negative today
but may start out as being positive, for a significant part of
the evolution, as is the case for the model M4 in Table I. In
contrast, for the second group, the value of the coupling
becomes greater (in absolute value) for higher values of Γ0.
We find that there is no simple degeneracy between Γ0

and ϕini. Since the warp factor has an inverse dependence
on the value of the scalar field, for higher values of ϕini, h0
has to be higher (and, consequently, V0 smaller), given the
same Γ0 value, in order to obtain the fiducial cosmology at
the present.
We now wish to study the redshift evolution of some

relevant background quantities for the cosmological models

TABLE I. Parameter values for the illustrative models consid-
ered in this work. The initial condition for the velocity of the
scalar field is ϕ0

ini ¼ −10−25 ðMplMpc−1Þ for all the models
considered. In all cases, we assume a spatially flat Universe, and
Planck cosmological reference parameters [99] have been chosen
for the present time: Ωb;0h2 ¼ 0.022032, Ωc;0h2 ¼ 0.12038,
TCMB ¼ 2.7255 K, and H0 ¼ 67.556 km=s=Mpc. The models
considered in this work are illustrative only and not necessarily
cosmologically viable. We also present some relevant quantities,
where a superscript 0 denotes present values. The value of the
Lorentz factor γ0 quantifies present deviations from standard
quintessence. The value of the DBI EOS parameter w0

ϕ is a
measure of present deviations from cosmological-constant-like
behavior. We also show the enhancement in the effective
gravitational coupling G0

eff=GN [defined in Eq. (75)] and the
value of the predicted σ8 value for each model.

Model Γ0 ϕiniðMplÞ γ0 w0
ϕ G0

eff=GN σ8

M1 1.5 3 1.029 −0.799 1.286 1.014
M2 5 3 1.051 −0.870 1.147 0.892
M3 10 3 1.063 −0.911 1.038 0.853

Model Γ0 ϕiniðMplÞ γ0 w0
ϕ G0

eff=GN σ8

M4 1.5 1.7 1.434 −0.601 1.004 0.916
M5 5 1.7 1.306 −0.819 1.172 0.797
M6 10 1.7 1.254 −0.904 1.976 0.804
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considered in this work: the effective coupling β, as defined
in Eq. (32); the fractional energy densities Ωi for each ith
fluid, defined asΩi ¼ κ2ρi=3H2; the Hubble expansion rate
H, defined in Eq. (22); and the DBI and effective equation
of state parameters, as defined in Eqs. (15) and (36). These
are standard quantities that characterize the background
evolution of the Universe. Moreover, these will also be
relevant for the study of the linear growth rate of structures,
strongly entangled with the background evolution.
The aforementioned background quantities are depicted

in Figs. 1 and 2. We refer to the captions and to the figures
themselves for the relevant details and for the different
colors and/or line styles used. In the left panels, we depict
the models M1–M3 in Table I, for which the effective
coupling is always positive. However, we expect that, as we
approach the scaling solution, characterized by 1=γ → 0,
the effective coupling should become negative. On the
other hand, in the right panels, we plot the models M4–M6
in Table I, in which β is always negative at late times. It is
worth noting that model M4 has a very characteristic
evolution for the effective coupling, when compared to
M5 and M6: β starts growing much earlier on toward
positive values, reaching a peak value around z ¼ 0.8
(β ≈ 0.3), and then starts decreasing, becoming negative
and significantly smaller when z ¼ 0 (β ≈ −0.05). This
shows that, in principle, this model allows for scenarios in
which, although the coupling in the dark sector is negligible
at the present, it may have been significant over the past
evolution. Our simulations suggest that, for the highest
value of ϕini (right panel), the coupling is activated earlier,
when compared to the same values of Γ0. We also observe
that, when β > 0 (< 0), for higher values of Γ0 the coupling
is activated at smaller (higher) redshifts, leading to smaller
(higher) absolute values for the coupling today. This is also
consistent with cosmologies growing closer to (away from)
ΛCDM during the matter-dominated epoch, which clearly

illustrates the differences between the two regimes.
However, we expect that, once we start approaching the
scaling solution, for the models M1–M3, the coupling will
become negative independently of the initial conditions,
with a characteristic turning point, as the one observed
in M4.
In the top panels in Fig. 2, we show the evolution of the

fractional energy densities. The past evolution of the Uni-
verse is as explained in the previous section: a radiation-
dominated epoch, followed by a DDM-dominated epoch,
with the dark energy fluid becoming important at the
present, as the system starts evolving toward the scaling
solution. As an artifact of the shooting method performed
in CLASS, we find that the matter-radiation equality is also
shifted, despite the fact that the radiation fluid is uncoupled
and both the coupling and the DBI energy density are
negligible at this epoch. At late times, we find that there is
effectively a deviation of the fractional energy densities
from ΛCDM, with higher (lower) abundances of dark
matter for positive (negative) couplings, accounting for
the transfer of energy between the dark fluids. As for the
evolution of Ωϕ, we clearly see that the dashed curves
(corresponding to the highest value of Γ0 considered) are
the closest to ΩΛ in both regimes.
The present value of the expansion rate is fixed according

to the Planck fiducial value (H0 ¼ 67.556 km=s=Mpc).
However, theHðzÞ functions are different in all of the cases
considered, and, due to this effect, different models predict
different evolutions for the fractional energy densities of the
uncoupled species, that is, baryons and radiation. In the
middle panels in Fig. 2, we see that negative (positive)
couplings are associatedwith suppressed (enhanced) expan-
sion rates, that approach the ΛCDM one for lower (higher)
values of Γ0. The evolution of ΔHðzÞ for each case is also
presented in the bottom of the middle panels. Interestingly,
close to the present (z≲ 0.5), we find ΔHðzÞ > 0 for all

FIG. 1. Background evolution of the effective coupling function β, defined in Eq. (32). The left and right panels correspond to models
M1–M3 and M4–M6 in Table I, respectively. All quantities are plotted as functions of the redshift z, related to the scale factor as
1þ z ¼ a0=a. We clearly identify two regimes of the theory: one in which the coupling is always positive throughout the cosmic
evolution, depicted in the left panel, and another one for which the coupling may start out as being positive but eventually starts to
decrease toward negative values at the present, pictured in the right panel.
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models,meaning that theHubble rate is always larger than the
ΛCDM reference values. For models M5 and M6, at higher
redshifts,HðzÞ is smaller than the concordancemodel. For the
scenarios with positive (negative) couplings, in the cases with
higher (lower) Γ0, the Hubble rate approaches the ΛCDM
curve for higher redshifts, to the point where the differences
becomevery small. This result is interesting, because itmeans
that, in principle, by taking increasingly higher (lower) values
of Γ0, models with positive (negative) couplings may
approach ΛCDM with increasingly higher accuracy, even
if the coupling is significantly higher during the past or

present evolution (such as in M4). Even though the models
chosen present high couplings, when compared with present
constraints, we see that the differences when compared to the
concordance model are always below 10%. By having a
different expansion history, thesemodels are expected to have
specific observational imprints. This will be studied in detail
in the next section, where we will see that variations in the
evolution of the Hubble parameter, together with the effect of
changing the value of the effective gravitational constant,
produces particular signatures in the linear growth of
structures.

FIG. 2. Background evolution of the fractional energy densities Ωi ¼ k2ρi=3H2, for each labeled ith fluid (top), of the Hubble
expansion rate H (middle), defined in Eq. (22), and the DBI and effective equation of state parameters, as defined in Eqs. (15) and (36)
(bottom), as functions of the redshift z. In the middle panel, we also present the deviations of the Hubble expansion rate in each
model, ΔH, when compared to the concordance model. The left and right panels correspond to models M1–M3 and M4–M6 in
Table I, respectively.
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Also, in compliancewith the studyof the effective equation
of state for dark energy (bottompanels in Fig. 2) conducted in
the previous section, we find that for positive values of β
phantom behavior, wϕ < −1, is never observed during the
past evolution of the scalar field (models M1–M4). On the
other hand, for negative values of β, we find that the phantom
behavior does emerge, with the transition taking place earlier
for smaller values of Γ0 (models M5 andM6). Higher values
of Γ0 also lead to values of w0

ϕ increasingly closer to −1,
consistent with a cosmological constant in the limit Γ0 → ∞.
On the other hand, for themodels where the coupling turns on
earlier (M1 and M4 in each regime), wϕ also starts departing
from −1 at earlier redshifts.
So far, everything seems to be as expected from the

dynamical and qualitative studies, but we expect that
distinguished features should arise at the linear level of
cosmological perturbation theory, analyzed in the following
section, under the regimes specified above.

IV. PERTURBATIONS

In this section, we will discuss the evolution of cosmo-
logical perturbations. From the background analysis, we
expect that the dark D-brane model will feature a rich
phenomenology at the linear level, allowing one to probe
predictions of the theory that may be constrained with the
available observational data. We calculate the spectrum of
anisotropies in the CMB and the predictions for the matter
power spectrum. The equations in this section are given in
the Newtonian gauge, specifically for the model discussed
in this paper. For completeness, the expressions in the
synchronous gauge are given in Appendix A, along with
the equations for generic conformal coupling CðϕÞ and
general disformal coupling DðϕÞ.
We focus on scalar perturbations in the conformal

Newtonian gauge, in which the perturbed line element is
given by

ds2 ¼ a2ðτÞ½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞδijdxidxj�: ð39Þ

The quantities Ψðτ; xiÞ and Φðτ; xiÞ are the scalar metric
perturbations, and δij is the Kronecker delta symbol, with
Latin indices denoting spatial coordinates. From Eqs. (3)
and (39), it is straightforward to compute the components
of the perturbed Einstein equations:

δGμ
ν ¼ κ2δTμ

ν ; ð40Þ

where δGμ
ν and δTμ

ν are the perturbed Einstein and energy-
momentum tensor, respectively. For each fluid, the indi-
vidual components of δTμ

ν read

δT0
0;f ¼ −δρf; ð41Þ

δT0
i;f ¼ ðρf þ pfÞ∂ivf; ð42Þ

δTi
0;f ¼ −ðρf þ pfÞ∂ivf; ð43Þ

δTi
j;f ¼ δpfδ

i
j þ Πi

j;f; ð44Þ

where f is an index for each individual fluid and δρf, δpf,
vf, andΠi

j;f stand for the perturbation of the energy density,
the perturbation of the pressure, the peculiar velocity
potential, and the anisotropic stress tensor of the fluid f,
respectively. If the matter source is specified, then the
perturbation of the energy-momentum tensor is defined
accordingly. For the model in consideration, the perturbed
Einstein equations, written in Fourier space, read

k2Φþ 3HðΦ0 þHΨÞ ¼ −4πGNa2
X
f

δρf; ð45Þ

k2ðΦ0 þHΨÞ ¼ 4πGNa2
X
f

ρfð1þ wfÞθf; ð46Þ

Φ00 þHðΨ0 þ 2Φ0Þ þ ΨðH2 þ 2H0Þ þ k2

3
ðΦ −ΨÞ

¼ 4πGNa2
X
f

δpf; ð47Þ

k2ðΦ −ΨÞ ¼ 12πGNa2
X
f

ρfð1þ wfÞσf: ð48Þ

These equations relate the scalar potentials Φ and Ψ to the
perturbations in the matter fluids. The metric potentials
have been expanded in a Fourier transform, which in
practice translates to the replacement of spatial derivatives
by the Fourier mode for each wave number k. In the
equations above, we have also defined the velocity poten-
tial θf ¼ ∂i∂ivf and a rescaled anisotropic stress pertur-

bation σf ¼ 2wfΠf

3ð1þwfÞ. As a first approximation, we will

consider the case of vanishing σf for all fluids.
According to the fourth perturbed Einstein equation
[Eq. (48)], this implies the equality of the two gravitational
potentials:Ψ ¼ Φ. In what follows, we will also replace the
perturbed energy density δρf by the density contrast,
defined as the perturbed energy density weighted over
its background counterpart:

δf ¼ δρf=ρf: ð49Þ
We also consider that all the fluids are characterized by an
adiabatic speed of sound:

c2s;f ¼ δpf=δρf: ð50Þ
The perturbed conservation equations are derived from the
energy conservation equation, ∇νT

μν
f ¼ 0:

∇μδT
μ
ν;u þ δΓμ

μβT
β
ν;u − δΓβ

μνT
μ
β;u ¼ 0 and

∇μδT
μ
ν;c þ δΓμ

μβT
β
ν;c − δΓβ

μνT
μ
β;c ¼ −Q∂νϕ; ð51Þ
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where the indices f ¼ fu; cg stand for uncoupled and
coupled components, respectively, with respect to the scalar
field. The quantities δΓμ

νβ are the perturbation of the
Christoffel symbols. Equations (51) can be computed using
Eqs. (41)–(44), (49), and (50) and give rise to evolution
equations for the density contrast δf and velocity potential
θf of each fluid. The baryonic and radiation sectors remain
uncoupled from the scalar field and satisfy the following
conservation equations, presented here for a generic bar-
otropic fluid with equation of state wu ¼ pu=ρu:

δ0u þ 3Hðc2s;u − wuÞδu ¼ ð1þ wuÞð3Φ0 − θuÞ ð52Þ

and

θ0u þ
�
Hð1 − 3wuÞ þ

w0
u

1þ wu

�
θu

¼ k2
�

c2s;u
1þ wu

δu þ Ψ
�
− k2σu; ð53Þ

with u ¼ fb; rg. The first equation is called the perturbed
continuity equation, and the second one is the Euler
equation, stemming from the time and spatial components
of the energy conservation equation, respectively. Since
DDM is the only component coupled to the scalar field, the
continuity equation and the Euler equation are modified.
Setting wc ¼ 0 ¼ cs;c, we find

δ0c ¼ −ðθc − 3Φ0Þ − Q
ρc

ϕ0δc þ
Q
ρc

δϕ0 þ δQ
ρc

ϕ0 ð54Þ

and

θ0c þHθc ¼ k2Ψ −
Qϕ0

ρc
θc þ k2

Q
ρc

δϕ; ð55Þ

that have clear dependencies on the coupling function Q
and its perturbation δQ. The evolution of the perturbed DBI
scalar field is dictated by the perturbed Klein-Gordon
equation:

δϕ00 þ
�
3h;ϕ
h

ð1 − γ−1Þϕ0 −Hð7 − 9γ−2Þ − 3hðV;ϕ þQÞγ−1ϕ0
�
δϕ0 þ

�
−
3h;ϕ
h

Hð1 − γ−2Þϕ0 þ a2V;ϕϕγ
−3

þ h;ϕϕ
2h2

a2ð1 − 3γ−2 þ 2γ−3Þ − 3

2

h;ϕ
h

a2ðV;ϕ þQÞðγ−1 − γ−3Þ þ h2;ϕ
2h3

a2ð1 − 3γ−1 þ 3γ−2 − γ−3Þ
�
δϕ

þ
�
6Hð1 − γ−2Þϕ0 −

h;ϕ
h2

a2ð2 − 3γ−1 þ γ−3Þ þ a2ðV;ϕ þQÞð3γ−1 − γ−3Þ
�
Ψ − ϕ0Ψ0 − 3γ−2ϕ0Φ0

− γ−2∂i∂iδϕþ a2γ−3δQ ¼ 0: ð56Þ

To derive this equation, we made use of the background
Klein-Gordon equation. Finally, the perturbation of the
coupling Q is given in the Newtonian gauge by3

δQ ¼ a−2ρc
γ−2 þ hρcγ−3

ðQ1δc þQ2Φ0 þQ3ΨþQ4δϕ
0

þQ5δϕÞ; ð57Þ

where we have defined the coefficients

Q1 ¼ a2
Q
ρc

γ−2 þ 3h
δpc

δρc

�
a2

h;ϕ
4h2

−Hϕ0
�
; ð58Þ

Q2 ¼ 3hðγ−2 þ wÞϕ0; ð59Þ

Q3 ¼ 3hHð1þ γ−2 þ 2wÞϕ0 − a2
3

4

h;ϕ
h

ð1 − γ−2Þ

þ a2
Q
ρc

ð1 − γ−2Þ; ð60Þ

Q4 ¼ 3hHð2 − 3γ−2 − wÞ þ 3h2ðV;ϕ þQÞγ−1ϕ0

þ 2h
Q
ρc

ϕ0 −
3

2
h;ϕð1 − 2γ−1Þϕ0; ð61Þ

Q5 ¼ −k2hðγ−2 þ wÞ þ a2
h2;ϕ
2h2

�
3

4
−
15

4
γ−2 þ 4γ−3 −

3

2
w

�

þ a2
3

4

h;ϕϕ
h

�
γ−2 −

4

3
γ−3 þ w

�

−
3

2
h;ϕHð1 − γ−2 þ 2wÞϕ0 − a2hV;ϕϕγ

−3

− a2
h;ϕ
2h

Q
ρc

ð1 − 3γ−2Þ: ð62Þ

We have verified that, in the limit where hϕ02 ≪ a2 and
γ → 1, we recover the disformal quintessence case, studied
in Refs. [76,81]. Also, from the expression of δQ, we see

3The expression for general conformal, CðϕÞ, and disformal,
DðϕÞ, coupling functions is given in Appendix B.
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that the disformal scenario introduces a dependence on the
scale k, through the first term of Q5, in Eq. (62). This is a
well-known feature of disformal couplings [72,76,81], and
we expect it to be reflected in the growth and distribution of
perturbations. For the DBI scalar field, and considering
adiabatic perturbations, we have

c2s;ϕ ≡
�∂p
∂X

��∂ρ
∂X

�
−1

¼ 1

γ2
≤ 1; ð63Þ

which is always positive, granting the perturbations
free from instabilities. The fact that this model allows
for c2s;ϕ ≠ 1 may give rise to distinctive signatures, namely,
at the level of the cosmic microwave background temper-
ature anisotropies and the matter power spectrum, two of
the perturbed observables we will be interested in studying.
The set of dynamical perturbed Einstein equations

[Eqs. (45)–(48)], the perturbed continuity and Euler equa-
tions [Eqs. (52)–(55)], and the perturbed equation of motion
for the scalar field [Eq. (56)] can be evolved numerically,
under particular assumptions and initial conditions, to give
different cosmological regimes of this theory.

A. The growth of perturbations and the effective
gravitational constant between dark matter particles

In what follows, we derive the equation of motion for the
density contrast in the subhorizon limit (k ≫ aH), a first
analytical approximation from which we can extract some
relevant features. In doing so, we apply the quasistatic
approximation, where the time dependence of the gravita-
tional potential is given through the matter and field
perturbations, so that we may neglect time derivatives of
the perturbations and metric potential, such as Φ0 in
Einstein’s equations and in the expression for the pertur-
bation of the coupling. Likewise, we neglect δϕ00 and δϕ0 in
the Klein-Gordon equation, assuming these are negligible
when compared to the other terms. Thus, Eqs. (54) and (55)
read, respectively,

δ0c ≃ −θc −
Q
ρc

ϕ0δc þ
δQ
ρc

ϕ0; ð64Þ

θ0c ≃ −Hθc þ k2Ψ −
Qϕ0

ρc
þ k2

Q
ρc

δϕ: ð65Þ

From the perturbed Einstein equations, we extract an
approximation for the Poisson equation for the gravitational
field, ignoring the contribution of baryons and radiation,
residual at the present. Thus, we have (note that Φ ¼ ΨÞ

k2Ψ ≃ −4πGNρcδc: ð66Þ

Finally, the Klein-Gordon equation reads

AΨþ ðk2γ−2 þ a2m2
effÞδϕþ a2γ−3δQ ≃ 0; ð67Þ

where

A ¼
�
6Hð1 − γ−2Þϕ0 −

h;ϕ
h2

a2ð2 − 3γ−1 þ γ−3Þ

þ a2ðV;ϕ þQÞð3γ−1 − γ−3Þ
�

ð68Þ

and

a2m2
eff ¼ −

3h;ϕ
h

Hð1 − γ−2Þϕ0 þ h;ϕϕ
2h2

a2ð1 − 3γ−2 þ 2γ−3Þ

−
3

2

h;ϕ
h

a2ðV;ϕ þQÞðγ−1 − γ−3Þ

þ a2V;ϕϕγ
−3 þ h2;ϕ

2h3
a2ð1 − 3γ−1 þ 3γ−2 − γ−3Þ:

ð69Þ

Applying these approximations to the expression for the
perturbation of the coupling [Eq. (57)], we have

δQ ≃
a−2ρc

γ−2 þ hρcγ−3
ðQ1δc þQ5δϕÞ: ð70Þ

In the expression for theQ5 coefficient [Eq. (62)], the k2

term is dominant. Following the same procedure for
Eq. (70), we arrive at the very simple expression, in the
subhorizon limit:

δQ ≃Qδc; ð71Þ
which we have verified numerically and also holds in other
theories with conformal and disformal couplings [72,76,81].
Taking the time derivative of the first equation in Eq. (65)

and using Eqs. (65)–(67), we derive the following expres-
sion for the evolution of the density contrast δc:

δ00c þHeffδ
0
c ≃ 4πGeffρcδc; ð72Þ

where we have defined the effective Hubble rate

Heff ¼
�
Hþ Q

ρc
ϕ0
�

ð73Þ

and the effective gravitational constant, given by

Geff ¼ GN

�
1þ 2β2

1

γð1þ a2m2
eff=k

2γ2Þ − A
Q
ρc

γ2

k2

�
: ð74Þ

In the limits k2 ≫ a2m2
eff=γ

2 and k2 ≫ AQγ2=ρc, Geff

reduces to

Geff ≃ GN

�
1þ 2β2

γ

�
ð75Þ

with β as defined in Eq. (32). Geff is the effective
gravitational coupling between two dark matter particles,
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comprised by standard gravity plus the long-range force
mediated by the scalar field [second term in Eq. (75)]. Our
result is consistent with that of Ref. [100] for scalar-tensor
gravity models under a conformal transformation, gener-
alized here to the disformal case, with a different functional
form for β.
The evolution of Geff=GN for the models in Table I is

shown in Fig. 3. We see that Geff deviates from GN at low
redshift, whereas it tends to GN at early times. Consistently
with what was found for β in the background study, we see
that smaller values of ϕini lead to higher values ofGeff at the
present. On the other hand, in this case, the coupling also
turns on later, and, therefore, interestingly, we expect that
there will be fewer variations at the level of the CMB
anisotropies and the matter power spectrum, when com-
pared to ΛCDM, similar to what was observed in Ref. [80]
for disformally coupled models with a standard kinetic
term. The early growth ofGeff is potentially problematic for
the viability of the theory, when compared to observations.
However, we also show an example in which the effective
coupling starts out by being significantly positive but
eventually starts decreasing (model M4 in the right panel
in Fig. 3), becoming smaller at the present. This means that
there are parameter choices for which Geff ≃GN today,
but structure formation is influenced by the scalar-field-
mediated force at intermediate redshifts. It is clear that the
different evolution of Geff in each model will translate into
different behaviors for the matter fluctuations. This is the
focus of the next subsection.

B. CMB anisotropy and matter power spectra

To evaluate the CMB anisotropy power spectrum and the
matter power spectrum in the dark D-brane scenario, we
resorted to the CLASS code [97,98], modified for our
purposes. The results for the cases in Table I, together
with the predictions for the ΛCDM model, are depicted
in Fig. 4, in which we present the CMB temperature

anisotropies (top panels) and the matter power spectra
for DDM and baryons at z ¼ 0 (bottom panels). In all
cases, we have considered standard adiabatic initial con-
ditions with an amplitude As ¼ 2.215 × 10−9 and kpivot ¼
0.05 Mpc−1 and vanishing initial perturbations for the
scalar field, δϕini ¼ δϕ0

ini ¼ 0. Similarly to the background
cosmology, the linear perturbations feature a strong
dependence on the parameters. This is confirmed in
Fig. 4, where different choices for Γ0, but fixed ϕini, result
in different predictions for the power spectra. On the other
hand, in Fig. 4 we also present two distinct solutions for the
same values of Γ0, one for ϕini ¼ 3MPl (models M1–M3 in
the left panel) and another ϕini ¼ 1.7 MPl (models M4–M6
in the right panel), characterized by the same line styles. As
expected, different initial field values also result in distinct
cosmological imprints at the level of linear perturbations.
By comparing the left and right panels in Fig. 4, one

concludes that the sign of the effective coupling β, which
depends on Γ0 and ϕini, has a clear effect on the evolution of
the perturbations. For the CMB anisotropy power spec-
trum, we observe that, for β > 0 (<0), the curves are
generally above (below) the ΛCDM case for low l and
below (above) for medium and high values of l. Also,
when β > 0 (<0), higher (lower) values of Γ0 result in
fewer deviations from the ΛCDMmodel. It is interesting to
note that, even though the effective coupling today is much
smaller in the models M1–M4 (see Fig. 1), the deviations
from ΛCDM are much larger when compared to M5 and
M6. This can be ascribed to the fact that the coupling
becomes significant at higher redshifts, leading to earlier
deviations from the standard model.
The reason why the predictions for the CMB anisotropies

in the models differ is twofold: First, the background
evolution is not the same, as explained in Sec. III. In
particular, the ratio Ωb=Ωc is, in general, not constant,
and its evolution and value at high redshifts depend on the
parameters chosen. This is the main contributor to the shifts
in position and changes in amplitude of the various peaks,

FIG. 3. Evolution of the effective gravitational constant, defined in Eq. (75), as a function of the redshift z. The left and right panels
correspond to models M1–M3 and M4–M6 in Table I, respectively, and the line styles used are the same as in the background evolution,
depicted in Figs. 1 and 2.
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which look narrower (wider) for models M1–M4 (M5 and
M6), when compared to the ΛCDM case. Second, the
evolution of Geff , directly related to the coupling β and
the Lorentz factor γ, influences the growth of perturbations
in the DDM fluid. In the case of models M1–M4, the
effective gravitational coupling Geff may start to grow at a
redshift as high as about 6, for the values of Γ0 considered,
whereas for modelsM5 andM6,Geff starts to grow only at a
redshift of about 2 or later. The growth of the effective
coupling at late times influences the late time integrated
Sachs-Wolfe (ISW) effect.
The predictions for the matter power spectrum, shown in

Fig. 4 for all cases, depend on various factors. Apart from
the different background evolution, the change in the
effective gravitational coupling Geff , defined in Eq. (75),
and the effective Hubble expansion rate, defined in
Eq. (73), have a major influence on the evolution of the
dark matter density contrast, as discussed in the last
subsection. In the bottom panels in Fig. 4, we see that,
for models M1–M4 (M5 and M6), on very large scales,
k≲ kpeak, the dynamical evolution of dark energy contrib-
utes to a suppression (enhancement) of the growth of
structures, when compared to the ΛCDM case, whereas on

small scales, k≳ kpeak, the opposite holds. In agreement
with the discussion for the CMB power spectrum, the
deviations from the standard model are more pronounced
for models M1–M4, for which the coupling is activated at
earlier redshifts. In addition, at least for some period of
time, the perturbation of the coupling, δQ, is scale
dependent [through the coefficient Q5, Eq. (62)]. The
predicted baryon oscillations are also clearly imprinted
on the matter power spectrum at small scales. To quantify
the effect of the modified growth of density perturbations,
we plot in Fig. 5 the evolution of the quantityDþ=a, where
Dþ ¼ δM=δM;0 (M stands for total nonrelativistic matter:
dark matter and baryons) is the growth factor, normalized at
z ¼ 0, for the cases presented in Table I and the ΛCDM
model. At high redshift, the difference to the concordance
model can be as high as about 10% for M1 and can be
almost negligible (≲1%) for models M3 and M6. With the
normalization chosen, for models M1–M4, the amplitude
of primordial perturbations will have to be larger to obtain
the same number of structures today, with the opposite
holding for M5 and M6. This is in agreement with what is
presented in Fig. 6 for models M1–M4, where we show the
evolution of the density contrast δc of the DDM fluid for the

FIG. 4. The top panels show the CMB temperature-temperature angular power spectrum CTT
l , plotted as a function of the angle scale

l. The bottom panels depict the matter power spectra Pk, for different Fourier scales (wave numbers) k. For each observable, we also
provide the ΛCDM predictions (lighter shades), together with the relative deviation of each model from the standard model. The left and
right panels correspond to models M1–M3 and M4–M6 in Table I, respectively, and the line types used are the same as in Figs. 1 and 2
for the background evolution.
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scale k ¼ 0.1 Mpc−1. This is also consistent with the fact
that these models show a slightly higher dark energy
fractional density parameter at late times, when compared
to the ΛCDM case (see red curves in the left upper panel in
Fig. 2). The early onset of dark energy suppresses the
growth of perturbations and acts against the growing
influence of the coupling. In models M5 and M6, dark
energy becomes important at a later redshift, when com-
pared to M1–M4. At early times, when the presence of dark
energy is negligible, the growth rate is proportional to the
scale factor for all models: DþðaÞ ∝ a.
The ISW effect is proportional to dðDþðaÞ=aÞ=da. For

models M1–M4, the derivative of DþðaÞ=a is larger (in
absolute value) at late times, and, therefore, the ISW effect
will be more pronounced, when compared to the ΛCDM
case, giving rise to the enhancement of the low-l tail of the
CMB anisotropy spectrum depicted in the top panels in
Fig. 4, with the opposite holding for M5 and M6. Another
contribution to the ISW effect would be a period of early
dark energy. However, in contrast to other dark energy
models with disformal couplings (e.g., Ref. [72]), we do

not observe any significant early dark energy signatures in
the dark D-brane scenario, at least not with the form of the
potential we have chosen in this work.
From Table I, we also note that models M1–M4 (M5 and

M6) predict values of σ8 that are above (below) the one for
the ΛCDM model, that is, σΛCDM8 ¼ 0.848.
The DDM scenario shares some similarities with other

disformal models discussed in the literature. As reported
in previous works, the effective gravitational coupling
between dark matter particles is not constant in disformal
models [72,76,80,81] (whereas, e.g., in the standard
conformally coupled quintessence scenario, it is often
chosen to be constant; see [24,25]). In the dark D-brane
setting, the coupling is negligible in the very early
Universe, because it is suppressed by the denominator
in Eq. (32). This is yet another model which motivates
searches for violations of the equivalence principle in the
dark sector at late times. In future work, we will study in
more depth the impact of the time-evolving coupling on
structure formation and compare the DDM model to
cosmological data [101].

FIG. 5. Evolution of the growth factor Dþ, normalized according to its value at z ¼ 0 and divided by the scale factor a. The plots
depict the predictions for k ¼ 0.1 Mpc−1, plotted as a function of the redshift z. The left and right panels correspond to models M1–M3
and M4–M6 in Table I, respectively, and the line styles used are the same as in Figs. 1 and 2 for the background evolution.

FIG. 6. Evolution of the density contrast of disformal dark matter, δc, for the scale k ¼ 0.1 Mpc−1, plotted as a function of the redshift
z. The left and right panels correspond to models M1–M3 and M4–M6 in Table I, respectively, and the line types used are the same as in
Figs. 1 and 2 for the background evolution.
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V. CONCLUSIONS

In this work, we have analyzed the evolution of the
background and linear cosmological perturbations for the
dark D-brane model, introduced in Ref. [29]. To probe
the effects of a disformal coupling between the dark energy
component and dark matter residing on the D-brane, we
have chosen six sets of parameters, which allow us to study
two regimes, distinguished by the behavior of the coupling
at different redshifts. The coupling is always small initially
and starts to grow at intermediate redshifts only. In one
case, the coupling is positive throughout the evolution. In
the other, the coupling may start out as being positive,
before becoming smaller and approaching negative values
at late times. These two classes of models introduce distinct
and rich phenomenology for the evolution of both the
background and the linear perturbations.
At the background level, and near the fixed point

solutions, we found that the model resembles ΛCDM for
increasingly higher values of the parameter Γ0, defined in
Eq. (38), as expected from the dynamical systems study. In
all models, the Universe is evolving toward a state charac-
terized by a scaling fixed point, where the fractional energy
densities of DE and DM maintain a constant ratio. After
spending a certain number of e-folds around this solution,
the system will inevitably evolve toward a state where the
dynamics of the Universe is fully dominated by the DBI
scalar field. This model is devoid of phantomlike behavior,
as the equation of state parameter for dark energy is always
larger, albeit very close, than −1. However, the effective
EOS parameter, defined in Eq. (36), can mimic an apparent
phantom nature, by transposing the effects of the coupling
between DM and DE to an effective noninteracting dark
energy fluid. In addition to the dynamical system analysis
conducted in Ref. [29], we find that the initial condition of
the field plays an important role, since this quantity also
affects the evolution of the coupling. By fixingΓ0, we gather
that, by taking initial conditions for the field that lead to
higher present values of β, the coupling starts to grow much
earlier, during the matter-dominated epoch, leaving distinct
signatures at the level of the perturbations. Therefore, we
conclude that the difference in the direction of the energy
exchange between the dark fluids introduces distinct fea-
tures at the level of the background, potentially shifting the
matter-radiation equality and the time of transition from
matter- to dark-energy-dominated epochs.
In addition to studying the evolution of the background,

we have derived the equations for the evolution of
cosmological perturbations in both the Newtonian and
synchronous gauges and calculated the resulting CMB
anisotropies power spectrum and matter power spectrum.
One of the distinct features of the DBI models is the fact
that the sound speed depends on the Lorentz factor,
and, therefore, it will generally deviate from the speed
of light. As expected, the two different background regimes
also lead to distinct signatures in the growth of the

perturbations. For the CMB power spectrum, we identify
an enhancement or suppression of the ISW tail at low
multipoles, with the deviations becoming higher for the
models with the greater effective coupling today, along
with a slight shift and change in shape of the acoustic peaks
at high multipoles. We find that the deviations from ΛCDM
are actually larger for models M1–M4, with smaller
couplings at the present. The fact that the coupling turns
on earlier has a great impact on the time evolution of the
perturbations and is also reflected on the larger deviations
of the matter power spectrum of models M1–M4, when
compared to the ΛCDM model.
In our simulations, the initial value of the scalar field was

always chosen to be of the order of the Planck mass. In
terms of the higher-dimensional picture, this means that the
D-brane is far away from the tip of the AdS throat. In
Ref. [29], another limit was discussed, namely, the region
in which ϕ ≪ 1MPl and the brane is moving near the tip of
the AdS throat. In this scenario, and in order to explain the
observed value of the vacuum energy today, the mass of the
scalar field, mϕ, is constrained only by a lower bound and,
therefore, does not have to be necessarily small, in contrast
to standard quintessence models. However, we found that
this scenario is challenging to study numerically, since, in
addition to a very small initial condition for the scalar field,
large values of Γ0 need to be considered. It would be of
interest to study this situation in more detail in the future.
Nevertheless, we expect that the physics presented in this
work should remain relevant in this regime.
In general, the numerical results presented in this paper

hint at the possibility of finding distinct observational
imprints of the dark D-brane model in the CMB and
large-scale structures. In future work, we will perform a
Markov chain Monte Carlo analysis to constrain the param-
eters of the theory [101] according to current observational
data. Somemodels of coupled dark energy alleviate existing
tensions among the cosmological parameters obtained from
various datasets [102,103], and, therefore, it remains to be
seenwhether the darkD-branemodel belongs to such a class
of coupledmodels. Over the next decade, new cosmological
data will be available from next-generation surveys, such as
Euclid [104,105] and DESI [106]. Since these observations
are expected to introduce further constraints on theories
beyond the ΛCDM scenario, a complete study of the
observational signatures of cosmological models is of
paramount importance. Nonstandard cosmological scenar-
ios, such as the dark D-brane model or the ones studied in,
e.g., Refs. [72,81,107], also motivate the searches for late-
time equivalence principle violations signatures in the dark
sector, for which a detailed study of the evolution of
nonlinear perturbations is needed.
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APPENDIX A: SYNCHRONOUS GAUGE

In the main text, we have worked in the Newtonian
gauge, for simplicity of the analysis. When studying the
evolution of perturbations and calculating the resulting
power spectra, we also worked in the synchronous gauge.
Therefore, for completeness, in this Appendix, we provide
the perturbation equations in the synchronous gauge for a
generic conformal coupling function CðϕÞ and disformal
coupling function DðϕÞ for a coupled DBI field. We also
particularize the equations to the case considered in this
work, in which CðϕÞ and DðϕÞ are related to the warp
factor hðϕÞ.
The line element in the synchronous gauge can be

written as

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ðA1Þ

where hij represents the metric perturbation. In what
follows, we will adopt Ma-Bertschinger [108] notation,
although we use h and η for the scalar metric perturbations
instead of the original h and η in order to avoid any
confusion with the warp factor hðϕÞ. In what follows, we
write down the relevant equations in Fourier space, with k
standing for the Fourier modes (wave numbers).
Analogously to the treatment for the Newtonian gauge,

we derive the perturbed Einstein equations:

k2η −
1

2
Hh0 ¼ −4πGNa2

X
δρf; ðA2Þ

k2η0 ¼ 4πGNa2
X

ρfð1þ wfÞθf; ðA3Þ

h00 þ 2Hh0 − 2k2η ¼ −24πGNa2
X

δpf; ðA4Þ

h00 þ 6η00 þ 2Hðh0 þ 6η0Þ − 2k2η

¼ −24πGNa2
X

ρfð1þ wfÞσf ðA5Þ

with θf ¼ ∇ivif and σf ¼ 2wfΠf

3ð1þwfÞ, with vif being the

velocity perturbation and Πf the anisotropic stress.
The perturbed continuity and Euler equations for the

uncoupled baryonic and radiation fluids are derived directly
from the perturbation of the conservation relations ∇μT

μ
ν .

They are given by

δ0u þ 3Hðc2s;u − wuÞδu ¼ −ð1þ wuÞ
�
h0

2
þ θu

�
; ðA6Þ

θ0u þ
�
Hð1 − 3wuÞ þ

w0
u

1þ wu

�
θu ¼ k2

c2s;u
1þ wu

δu − k2σu;

ðA7Þ

with u ¼ fb; rg. For DDM, we need the coupled sheer-free
version of these equations, presented below for a general
equation of state and adiabatic sound speed:

δ0c þ 3Hðc2s;c − wcÞδc ¼ −ð1þ wcÞ
�
h0

2
þ θc

�
−
Q
ρc

δcϕ
0 þ Q

ρc
δϕ0 þ δQ

ρc
ϕ0; ðA8Þ

θ0c þ
�
Hð1 − 3wcÞ þ

w0
c

1þ wc

�
θc ¼ k2

c2s;c
1þ wc

δc −
Q
ρc

ϕ0θc þ k2
Q

ρcð1þ wcÞ
δϕ: ðA9Þ

For the energy density and pressure of the scalar field, we also have

δρϕ ¼ a−2γ3ϕ0δϕ0 þ h;ϕ
2h2

ð2 − 3γ þ γ3Þδϕþ V;ϕδϕ; ðA10Þ

δpϕ ¼ a−2γϕ0δϕ0 −
h;ϕ
2h2

ð2 − γ−1 − γÞδϕ − V;ϕδϕ: ðA11Þ

The perturbed Klein-Gordon equation in the synchronous gauge reads

δϕ00 þh0

2
γ−2ϕ0 þ

�
2Hþ 3

4

h;ϕ
h

ϕ0 þ 3
Q
ρc

ϕ0
�
δϕ0 þ

�
k2γ−2 þ 3

2

h;ϕ
h

Hð1 − γ−2Þϕ0

−
a2

2

h2;ϕ
h3

�
5

4
þ 4γ−3 −

21

4
γ−2

�
þ a2

2

h;ϕϕ
h2

ð1þ 2γ−3 − 3γ−2Þ þ a2V;ϕϕγ
−3
�
δϕþ a2γ−3δQ ¼ 0; ðA12Þ

with the perturbation of the coupling function Q defined as

DARK D-BRANE COSMOLOGY: FROM BACKGROUND … PHYS. REV. D 102, 103503 (2020)

103503-17



δQ ¼ a−2ρc
C − D

h ð1 − γ−2Þ þDγ−3ρc
ðQ1δc þQ2h0 þQ3δϕ

0 þQ4δϕÞ; ðA13Þ

with

Q1 ¼
1

2
a2C;ϕ

�
1 − 3

δpc

δρc

�
− 3DH

δpc

δρc
ϕ0 −

DC;ϕ

C
ϕ02 þD;ϕ

2
ϕ02 − a2

D
2

h;ϕ
h2

�
1 −

3

2
γ−2

�
þ a2D

Q
hρc

γ−2; ðA14Þ

Q2 ¼ −
D
2
γ−2ð1þ wcÞϕ0; ðA15Þ

Q3 ¼ 3DHð2 − 3γ−2 − wcÞ − 2
DC;ϕ

C
ϕ0 þD;ϕϕ

0 − 3D
h;ϕ
h

ð1 − γ−1Þϕ0 þ 3DHγ−1ðV;ϕ þQÞϕ0 þ 2D
Q
ρc

ϕ0; ðA16Þ

Q4 ¼ −k2Dðγ−2 þ wcÞ þ 3H
�
DC;ϕ

C
−D;ϕ

�
wcϕ

0 −
a2

2

C2
;ϕ

C
ð1 − 3wcÞ þ 2

DC;ϕ

C
ϕ02 −

3

2

C;ϕD;ϕ

C
ϕ02

−
3

2
D
h;ϕ
h

Hð1 − γ−2Þϕ0 þ a2

2

DC;ϕ

C

h;ϕ
h2

�
1 −

3

2
γ−2

�
−
a2

2
D;ϕ

h;ϕ
h2

�
1 −

3

2
γ−2

�

þ a2

2
D
h2;ϕ
h3

�
5

4
−
21

4
γ−2 þ 4γ−3

�
þ 1

2
a2C;ϕϕð1 − 3wcÞ −

DC;ϕϕ

C
ϕ02 þD;ϕϕ

2
ϕ02 ðA17Þ

−
a2

2
D
h;ϕϕ
h2

ð1 − 3γ−2 þ 2γ−3Þ − a2Dγ−3V;ϕϕ þ
Q
hρc

�
a2D;ϕ − a2

DC;ϕ

C
−
3

2
Dh;ϕϕ02

�
; ðA18Þ

for general conformal and disformal coupling functions. If we now take CðϕÞ ¼ ðT3hðϕÞÞ−1=2 and DðϕÞ ¼ ðhðϕÞ=T3Þ1=2,
then we have

δQ ¼ a−2ρc
γ−2 þ hρcγ−3

ðQ1δc þQ2h0 þQ3δϕ
0 þQ4δϕÞ; ðA19Þ

where

Q1 ¼ a2
Q
ρc

γ−2 þ 3h
δpc

δρc

�
a2

h;ϕ
4h2

−Hϕ0
�
; ðA20Þ

Q2 ¼ −
h
2
ðγ−2 þ wÞϕ0; ðA21Þ

Q3 ¼ 3hHð2 − 3γ−2 − wÞ þ 3h2ðV;ϕ þQÞγ−1ϕ0 þ 2h
Q
ρc

ϕ0 −
3

2
h;ϕð1 − 2γ−1Þϕ0; ðA22Þ

Q4 ¼ −k2hðγ−2 þ wÞ þ a2
h2;ϕ
2h2

�
3

4
−
15

4
γ−2 þ 4γ−3 −

3

2
w

�
þ a2

3

4

h;ϕϕ
h

�
γ−2 −

4

3
γ−3 þ w

�

−
3

2
h;ϕHð1 − γ−2 þ 2wÞϕ0 − a2hV;ϕϕγ

−3 − a2
h;ϕ
2h

Q
ρc

ð1 − 3γ−2Þ: ðA23Þ

APPENDIX B: GENERIC COUPLING IN NEWTONIAN GAUGE

In this Appendix, we provide the general expression of the perturbed disformal coupling δQ, as discussed in Sec. IV, in
the Newtonian gauge. It is given by

δQ ¼ a−2ρc
C − D

h ð1 − γ−2Þ þDρcγ
−3 ðQ1δc þQ2Φ0 þQ3ΨþQ4δϕ

0 þQ5δϕÞ; ðB1Þ
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with

Q1 ¼
1

2
a2C;ϕ

�
1 − 3

δpc

δρc

�
− 3DH

δpc

δρc
ϕ0 −

DC;ϕ

C
ϕ02 þD;ϕ

2
ϕ02 − a2

D
2

h;ϕ
h2

�
1 −

3

2
γ−2

�
þ a2D

Q
hρc

γ−2; ðB2Þ

Q2 ¼ 3Dðγ−2 þ wÞϕ0; ðB3Þ

Q3 ¼ 3DHð1þ γ−2 þ 2wÞϕ0 − a2
D;ϕ

h
ð1 − γ−2Þ þ 3

4
a2D

h;ϕ
h2

ð1 − γ−2Þ þ 2a2
D
h

C;ϕ

C
ð1 − γ−2Þ

þ a2
D
h
Q
ρc

ð1 − γ−2Þ; ðB4Þ

Q4 ¼ 3DHð2 − 3γ−2 − wcÞ − 2
DC;ϕ

C
ϕ0 þD;ϕϕ

0 − 3D
h;ϕ
h

ð1 − γ−1Þϕ0 þ 3DHγ−1ðV;ϕ þQÞϕ0 þ 2D
Q
ρc

ϕ0; ðB5Þ

Q5 ¼ −k2Dðγ−2 þ wcÞ þ 3H
�
DC;ϕ

C
−D;ϕ

�
wcϕ

0 −
a2

2

C2
;ϕ

C
ð1 − 3wcÞ þ 2

DC;ϕ

C
ϕ02 −

3

2

C;ϕD;ϕ

C
ϕ02

−
3

2
D
h;ϕ
h

Hð1 − γ−2Þϕ0 þ a2

2

DC;ϕ

C

h;ϕ
h2

�
1 −

3

2
γ−2

�
−
a2

2
D;ϕ

h;ϕ
h2

�
1 −

3

2
γ−2

�

þ a2

2
D
h2;ϕ
h3

�
5

4
−
21

4
γ−2 þ 4γ−3

�
þ 1

2
a2C;ϕϕð1 − 3wcÞ −

DC;ϕϕ

C
ϕ02 þD;ϕϕ

2
ϕ02 ðB6Þ

−
a2

2
D
h;ϕϕ
h2

ð1 − 3γ−2 þ 2γ−3Þ − a2Dγ−3V;ϕϕ þ
Q
hρc

�
a2D;ϕ−a2

DC;ϕ

C
−
3

2
Dh;ϕϕ02

�
; ðB7Þ

for general conformal and disformal functions CðϕÞ and DðϕÞ, respectively.
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