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Extreme mass ratio inspirals (EMRIs), i.e., binary systems comprised by a compact stellar-mass object
orbiting a massive black hole, are expected to be among the primary gravitational wave (GW) sources for
the forthcoming LISA mission. The astrophysical processes leading to the formation of such systems still
remain poorly understood, resulting into large uncertainties in the predicted cosmic rate of these sources,
spanning at least three orders of magnitude. As LISA can individually resolve mostly EMRIs up to z ≳ 1,
the ensemble of signals below its detection threshold will add up incoherently forming an unresolved
confusion noise, which can be formally described as a stochastic background. We perform an extensive
study of this background by considering a collection of astrophysically motivated EMRI formation
scenarios, spanning current uncertainties. We find that, for most astrophysical models, this signal is easily
detectable by LISA, with signal to noise ratios of several hundreds. In fiducial EMRI models—predicting
hundreds of EMRI detections during mission operations—the background level is comparable to the LISA
noise, affecting the performance of the instrument around 3 mHz. In extreme cases, this background can
even “erase” the whole LISA sensitivity bucket in the 2–10 mHz frequency range. This points to the need of
a better understanding of EMRIs’ astrophysics for a full assessment of the LISA mission potential.
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I. INTRODUCTION

Galactic nuclei are among the densest structures in the
Cosmos. They generally host a massive black hole (MBH) at
the very center [1] and feature a rich content of cold gas, stars
and compact objects. Stellar densities in the central parsec
can reach 106 M⊙ pc−3, making them an ideal environment
for a wide variety of spectacular phenomena driven by
extreme dynamics such as stellar tidal disruptions [2],
hypervelocity stars ejection [3] and relativistic captures of
compact objects [4]. Because of dynamical relaxation, close
encounters and other dynamical processes, compact objects
(COs, generally stellar mass black holes or neutron stars) can
be deflected on very low angular momentum orbits, being
dynamically captured by the central MBH. If specific
conditions are met, the CO decouples from the dense stellar
environment and together with the MBH evolves as a
relativistic binary [5]. The orbital energy of the binary is
gradually released via gravitational wave (GW) emission,
causing the slow adiabatic inspiral of the CO onto theMBH.
Because of the large disparity in mass of the two object
(typically 1 − 50 M⊙ for the CO vs 104–109 M⊙ for the
MBH), those events go under the name of extrememass ratio
inspirals [EMRIs, [6] hereinafter BC04a] and are anticipated
to be among the primary GW sources for the planned space-
borne Laser Interferometer Space Antenna [LISA, [7] ].

LISAwill observe EMRIs at typical GW frequencies lying
in themilli-Hz range,which selects systems involvingMBHs
with mass in the interval 105 − 107 M⊙. Due to their slow
evolution, these sources typically remain in band for the
whole duration of the mission (currently planned to be
4 years), completing up to ∼105 orbital cycles before
eventually plunging onto the central MBH. The resulting
gravitational waveform is very sensitive to the parameters of
the EMRI (e.g., masses of the two objects, spin of the MBH,
orbital inclination and eccentricity) as well as putative
external disturbances from e.g., stellar encounters, or the
presence of a dense gaseous disc [8] or a central concen-
tration of darkmatter [9]. Therefore EMRIs are extraordinary
tools for mapping the space-time around MBHs, promising
unprecedented tests of general relativity (GR) as well as
precious insights in the dynamics of dense nuclei [10–14].
Forecasting EMRI detection prospects for LISA is no

easy task. As already mentioned, from a theoretical
perspective, EMRIs are expected to form in the center of
galaxies, where COs therein can be scattered and directed
toward the MBH as a direct consequence of several two-
body encounters catalyzed by the large densities of the
nuclear regions (i.e., two-body relaxation). A successful
EMRI is usually captured onto an highly eccentric orbit,
with the subsequent evolution primarily dominated by GW
emission [15,16]. Several variants of the above process
have been proposed so far, either considering modification
of the picture, by adding further physical effects such as*matteo.bonetti@unimib.it
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resonant relaxation and BH-BH scattering events, or
invoking different formation processes, including migra-
tion of COs in AGN discs, capture by separation of stellar
binaries, supernova kicks and more [4,5,11,12,17–28].
Even without entering into these complications, in the
vanilla capture scenario, the cosmic formation rate of
EMRIs depends on a number of poorly known ingredients
including the mass function of MBHs below 106 M⊙ [29],
the typical densities of compact objects in galactic nuclei
[30], the ratio of successful EMRIs to direct plunges [31]
and many more. Those uncertainties have been investigated
by [[26], hereinafter Babak17], who found LISA detection
rates spanning three orders of magnitude from just about
one to several thousands per year, with fiducial models
resulting in a couple of hundred EMRIs per year.
Given the complexity of their waveform [e.g., [32–36] ],

in general, a relatively high signal-to-noise ratio (S/N) of 20
is required for EMRI detection. The extreme mass ratio
nature of these systems implies relatively weak GW signals
and mainly systems at z < 1 can reach this S/N threshold.
Therefore, it is anticipated that besides the hundreds of
observable EMRIs, many thousands more will be present in
the LISA data without meeting the detection threshold
either because they are too far away or because they are
caught too early in their adiabatic inspiral, perhaps hun-
dreds of years far from coalescence. The incoherent piling
up of the gravitational radiation emitted by subthreshold
EMRIs could therefore generate an important confusion
noise that can be formally described as a stochastic GW
background [GWB, Ref. [37] hereinafter BC04b]. In the
worst case scenario, this signal could even exceed the LISA
noise power spectral density (PSD), thus affecting the
detectability of other sources. This is, for example, the case
with the collective signal from unresolvable Galactic WD
binaries, which constitutes the primary limitation of LISA
sensitivity to other sources in the frequency range [0.2,
3] mHz [38,39].
The stochastic GWB from EMRIs has been largely

ignored in the literature, and its only systematic compu-
tation dates back to the pioneering work of BC04b. Despite
the indisputable importance of this seminal work, we are
now in the position of improving on their estimates in a
number of ways. From the GW signal computation stand-
point, BC04b used basic piece-wise approximations for the
inclination- and eccentricity-averaged GW signal from
unresolved EMRIs. This was combined with early esti-
mates of the EMRI rates, in terms of a redshift independent
MBH mass function. To improve upon those assumptions,
here we use the EMRI populations of Babak2017, which
are constructed by employing a range of physically
motivated prescriptions to explore uncertainties due to
our current knowledge of MBH evolution and the dynami-
cal processes leading to EMRI formation. From those
populations, we extract Montecarlo realizations of
EMRIs and compute the GWB from unresolved sources
by adding up all individual harmonics of each signal

computed exploiting a simplified version of the analytic
kludge (AK) waveforms of BC04a, which results in a more
accurate estimate of the signal. Finally, the LISA detector
underwent a long series of transformations since the early
2000s, resulting in a substantial revision of its noise PSD.
Here we specialize our results to the latest LISA sensitivity
curve as specified in the “LISA Science Requirement”
document (referenced as ESA-L3-EST-SCI-RS-001_LISA_
SciRD).1

The paper is organized as follows: in Sec. II we describe
the developed framework, such as the employed LISA
sensitivity curve, the (simplified) Fourier-domain wave-
form adopted, as well as an operative description of the
computation of the GWB. In Sec. III, we present some
estimates of the GWB level when some astrophysically
motivated models available in the literature are considered,
while in Sec. IV, we discuss the possible implications and
caveats of the obtained results. Finally, in Sec. V we draw
our conclusions.

II. METHOD

We first describe all the ingredients necessary to the
estimation of the GWB from a population of eccentric
sources. In particular we have to consider an appropriate
waveform model suited for arbitrarily high eccentricity, the
sensitivity curve of LISA, that combined with the wave-
form allows us to evaluate which sources can be individu-
ally resolved and therefore that do not contribute to the
GWB and, finally, in order to produce sensible estimations
of the level and shape of the GWB, we need an astro-
physical-based set of catalogues of coalescing EMRIs
spanning the wide range of predicted merging rates.
Throughout the paper, unless otherwise stated, we employ
the following definitions for the physical quantities needed
to characterize the GW system under study2:

Tobs ¼ total observation time

z ¼ redshfit

m1; m2 ¼ rest-frame primary and secondary masses

q ¼ m2=m1 ≤ 1 ¼ mass ratio

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

¼ rest-frame chirp mass

Mz ¼ Mð1þ zÞ ¼ redshifted chirp mass

f ¼ observed GW frequency

1See [40] for additional details.
2Note that, in general, Tobs is different from the mission

duration Tmission whenever the observation duty cycleD is smaller
then unity. In fact Tobs ¼ D × Tmission. In this paper, we assume
continuous LISA observations and therefore Tobs ¼ Tmission.
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t ¼ observed time

tr ¼ t=ð1þ zÞ ¼ rest-frame time

fr ¼ fð1þ zÞ ¼ rest-frame GW frequency

forb ¼ rest-frame orbital frequency

n ¼ harmonic number

fn ¼ nforb ¼ nth GW harmonic rest-frame frequency

en ¼ eðfr=nÞ ¼ eccentricity at forb ¼ fr=n

d ¼ comoving distance

dL ¼ dð1þ zÞ ¼ luminosity distance

fn
_fn

¼ dtr
d ln fn

¼ dtr
d ln forb

¼ residence time at fn

A. LISA sensitivity

Throughout the paper, we consider a six-link LISA
configuration (i.e., one consisting of two independent
detectors). We adopt the sky-averaged, LISA sensitivity
curve as detailed in the “LISA Science Requirement
Document” document.
Besides the instrumental noise we also take into account

the effect of a large population of unresolved galactic
compact binaries (mostly white-dwarf, WD, binaries). This
population produces a stochastic “confusion noise” that
effectively degrades the instrumental sensitivity at frequen-
cies below ∼1 mHz. Being dominated by systems located
within the Galactic disk, the WD confusion noise is
expected to be highly anisotropic and its amplitude in
the LISA detector is anticipated to fluctuate due to the
satellite constellation motion. This feature makes this signal
at least partially subtractable from the LISA error budget
when searching for an underlying stochastic background
[41]. We do not consider this possibility in the present
study, and our results are conservative in this respect.
Combining the instrumental and confusion noise contri-
butions, the total (sky-average) LISA sensitivity as a
function of frequency f can be express as

SnoiseðfÞ ¼
1

2

20

3

�
SIðfÞ
ð2πfÞ4 þ SIIðfÞ

�
× RðfÞ þ ScðfÞ; ð1Þ

where

SIðfÞ ¼ 5.76 × 10−48
�
1þ

�
fa
f

�
2
�

s−4 Hz−1

SIIðfÞ ¼ 3.6 × 10−41 Hz−1

RðfÞ ¼ 1þ
�
f
fb

�
2

ð2Þ

with fa ¼ 0.4 mHz and fb ¼ 25 mHz. The galactic con-
fusion noise is fitted with the formula (Karnesis and Babak
in preparation)

Sgal ¼
A
2
e−ðf=f1Þα f−7=3

�
1þ tanh

�
fknee − f

f2

��
; ð3Þ

where A ¼ 1.28 × 10−44 is the overall amplitude, α ¼ 1.63
is a smoothness parameter, while f1, f2 and fknee denote
break frequencies that parametrize the model. In particular,
those frequencies depend on the observation time and
reads

log10ðf1=HzÞ ¼ a1log10ðTobs=yrÞ þ b1;

log10ðf2=HzÞ ¼ −3.318

log10ðfknee=HzÞ ¼ ak log10ðTobs=yrÞ þ bk; ð4Þ

where a1, ak, b1, and bk are parameters that depend on the
adopted S/N threshold for WD binary detectability. If the
threshold is set to S=N ¼ 7 then:

a1 ¼ −0.224

b1 ¼ −2.704

ak ¼ −0.361

bk ¼ −2.378: ð5Þ

The dependence of f1 and fknee on Tobs implies that the
WD confusion noise becomes lower and lower as LISA
collects data. This is because LISA’s frequency resolution
improves as Tobs and individual WD S/N grows as T1=2

obs .
Therefore, the longer Tobs, the larger is the number of
individually resolvable WD binaries, leaving behind a
lower residual unresolved confusion noise.

B. Waveforms and S/N calculation

We turn now to the description of the formalism
employed to model the inspiral of EMRIs. In the standard
astrophysical picture, the successful formation of an EMRI
implies the capture of the CO onto an extremely eccentric
orbit (circularity 1 − e around 10−5 − 10−4). Despite effi-
cient GW circularization, the system can still retain an
high eccentricity (as high as 0.99) when entering the LISA
band. Therefore we need to focus on waveform models that
can handle eccentric sources. Moreover, to compute the
GWB, we need to add-up signals from hundreds of
thousands of EMRIs, which requires a waveform model
that is also fast. To accommodate these requirements, we
develop a simplified version of the PN formalism of
BC04a, which is well suited for a fast computation of
the GW signal from a large population of arbitrarily
eccentric EMRIs.
We use the Newtonian fluxes worked out in Peters [42]

to evolve the orbital elements of binary systems, i.e., the
orbital frequency (related to the semimajor axis) and
eccentricity of a given EMRI. This informs us on which
frequency range is spanned by each system during the
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LISA time window. Specifically, we evolve EMRIs in the
GW regime with the orbit-averaged equations [42]

dforb
dt

¼ 96G5=3

5c5
ð2πÞ8=3M5=3f11=3orb F ðeÞ; ð6Þ

de
dt

¼ −
G5=3

15c5
ð2πÞ8=3M5=3f8=3orbGðeÞ; ð7Þ

where M is the source-frame chirp mass, i.e.,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð8Þ

while F ðeÞ and GðeÞ are algebraic functions of the
eccentricity:

F ðeÞ ¼ 1þ 73=24e2 þ 37=96e4

ð1 − e2Þ7=2 ; ð9Þ

GðeÞ ¼ 304eþ 121e3

ð1 − e2Þ5=2 : ð10Þ

The computation of the S/N implies the knowledge of the
emitted waveform. Gravitational radiation emitted by
eccentric binaries requires a more complicated treatment
compared to the standard circular orbits. While for circular
binaries most of the GW power is contained in the
dominant quadrupolar mode, whose frequency is twice
the orbital frequency, several harmonics are excited with
comparable amplitudes in the eccentric case, i.e., the GW
spectrum contains several dominant frequencies
fn ¼ nforb, where n is the harmonic number. Therefore
the total emitted power in GW is spread on a broad
spectrum of frequencies, with the fraction of power per
harmonic given by [43]

_En ¼
32G7=3

5c5
ð2πMforbÞ10=3gnðeÞ: ð11Þ

Here the dimensionless function gnðeÞ determines which
fraction of the GW power goes into each harmonic and
reads

gnðeÞ ¼
n4

32

��
Jn−2ðneÞ − 2eJn−1ðneÞ þ

2

n
JnðneÞ

þ 2eJnþ1ðneÞ − Jnþ2ðneÞ
�

2

þ ð1 − e2ÞðJn−2ðneÞ − 2JnðneÞ þ Jnþ2ðneÞÞ2

þ 4

3n2
J2nðneÞ

�
; ð12Þ

where Jn represents the nth order Bessel function of the
first kind. Note that in the case of a circular binary only the

second harmonic contributes, i.e., gnð0Þ ¼ δ2n, where δmn
is the standard Kronecker delta.
We employ the formalism developed in Finn and Thorne

[44] and BC04a, where the characteristic strain (inclination-
polarization averaged) of each harmonic is given by

hc;n ¼
1

πd

ffiffiffiffiffiffiffiffiffiffiffiffi
2G _En

c3 _fn

s
; ð13Þ

where _fn ¼ n _forb is the time derivative of the nth harmonic
and d is the comoving distance to the GW source. The total
S/N is then computed as

ðS=NÞ2 ¼
X∞
n¼1

Z
h2c;n

fnSnoiseðfnÞ
d ln fn; ð14Þ

where SnoiseðfnÞ is the sky averaged power spectral density
of LISA, which according to its definition in Sec. II A
already accounts for the fact that the LISA constellation is
comprised of two independent interferometers.
Despite formally correct, the combination of Eq. (13)

and Eq. (14) turns out to be quite expensive to evaluate,
therefore for large EMRI samples the required computa-
tional time can be significant. We can note however that
each hc;n enters Eq. (14) to the square power, thus, by
swapping the sum over n and the integral over fn, we can
express a “total characteristic strain” as the squared sum of
the characteristic strains belonging to each harmonic, i.e.,

h2c ¼
X∞
n¼1

h2c;n; ð15Þ

with the only subtlety consisting in evaluating all h2c;n at the
same frequency. In fact, once the observed GW frequency f
is fixed, the nth harmonic contributing to the signal at f has
to be evaluated when the EMRI is at forb ¼ fð1þ zÞ=n,
i.e., at a different evolutionary stage of the EMRI orbit.
Specifically, the first harmonic contributes when the rest-
frame orbital frequency is forb ¼ fð1þ zÞ, the second one
contributes at f when forb ¼ fð1þ zÞ=2, and so on. Thus,
further expanding Eq. (13) through Eq. (6) and Eq. (11), we
obtain that at a generic observed GW frequency f the nth
characteristic strain reads3

h2c;nðfÞ ¼
2G5=3ð2πÞ2=3M5=3

z f−1=3

3c3π2d2L

gnðenÞ
n2=3F ðenÞ

; ð16Þ

where dL ¼ dð1þ zÞ is the luminosity distance, Mz ¼
Mð1þ zÞ is the redshifted chirp mass, while en¼
eðfð1þzÞ=nÞ is the eccentricity corresponding to a binary

3The characteristic strain can be express either in terms of
observed (f; dL;Mz) or rest-frame quantities (fr; d;M). Here
we adopt the first choice.

MATTEO BONETTI and ALBERTO SESANA PHYS. REV. D 102, 103023 (2020)

103023-4



rest-frame orbital frequency forb ¼ fð1þ zÞ=n. Finally,
summing over all harmonics the total characteristic strain
for a single EMRI at a generic f is given by

h2cðfÞ ¼
2G5=3π2=3M5=3

z f−1=3

3c3π2d2L
×ΦðfÞ; ð17Þ

ΦðfÞ ¼ 22=3
X∞
n¼1

gnðenÞ
n2=3F ðenÞ

; ð18Þ

with the only difficulty represented by the evaluation of the
sum ΦðfÞ over several n.
Formally, computing the sumΦðfÞ in the above equation

has the very same computational cost of evaluating Eq. (13)
n times, giving no advantages in the computation of
Eq. (17). Nevertheless, we note that at the leading
Newtonian order in the GW back-reaction the eccentricity
evolution turns out to be scale-free. In fact combining
Eq. (6) and Eq. (7) we get [see e.g., [45] ]

forb
forb;0

¼
�
1 − e20
1 − e2

�
e
e0

�12
19

�
1þ 121=304e2

1þ 121=304e20

� 870
2299

�−3=2
; ð19Þ

meaning that the eccentricity evolution is just a function of
the frequency ratio forb=forb;0. As noted by Huerta et al.
[46], this fact translates into a self-similar behavior ofΦðfÞ
when different initial eccentricities at fixed fobs;0 are
selected. Specifically, they found that the location of the
peak of ΦðfÞ (see Fig. 1) simply scales according to the
following relation

fp
forb;0

¼ 1293

181

�
e12=190

1 − e20

�
1þ 121e20

304

�
870=2299

�3=2
: ð20Þ

The spectrum of a binary with a different initial eccentricity
e0, specified at a different initial frequency forb;0, can
therefore be simply obtained by shifting the spectrum of a
reference binary. In practice this consists in evaluating the
function ΦðfÞ at

f ¼ f0
fp
f0p

ð1þ z0Þ
ð1þ zÞ ; ð21Þ

where f0p, z0 and f0 are the peak frequency, the redshift and
the sampled frequency range of a reference binary. This
scaling procedure results in a significant speed-up of the hc
and S/N calculations,4 making feasible the exploration of
the EMRI GWB for several population models and under

different assumptions. Ultimately, this motivates the adop-
tion of the simple quadrupole formula for the EMRI
evolution, instead of the more accurate PN formalism
of BC04a.
The last point we need to address concerns the maximum

and minimum orbital frequencies for which EMRIs are
observed. Equation (19) formally holds in the frequency
range forb ∈ ð0;þ∞Þ. However, at very low orbital
frequencies the EMRI cannot be considered neither isolated
from the dense stellar environment of the galactic nucleus
nor GW-driven, while as the frequency increases due to the
emission of gravitational radiation the CO will eventually
plunge onto the MBH. Moreover, since LISA will observe
EMRIs as transiting GW sources, that enter and coalesce
inside its sensitivity window, it is particularly important to
properly account for the finite duration of the emitted GW
signal. Specifically, when computing the sum ΦðfÞ we
need to discard the harmonics for which the orbital
frequencies that produce contributions at a selected
observed GW frequency f lie outside the interval
½forb;min; forb;max� and consider only those satisfying

forb;min ≤
fð1þ zÞ

n
≤ forb;max: ð22Þ

The lowest frequency is simply settled by the orbital
frequency of each EMRI at the beginning of the LISA
observation run, while the highest one is determined by the
maximum frequency reached at the end of the observation,
which is forb;max ¼ forbðt ¼ TobsÞ if the EMRI does not
plunge within Tobs or the ISCO frequency forb;max ¼
c3=ð2πx3=2GMÞ, withM the binary total mass and x a factor
multiplying the gravitational radius (Rg ¼ GM=c2) of the
system, if the EMRI plunges within Tobs. Assuming the
primary MBH as nonspinning, this factor simply is x ¼ 6,

FIG. 1. Frequency evolution of the function Φ for different
initial e0 chosen at forb;0.

4The computational cost clearly depends on the number of
harmonics taken into account. When such number is several
thousand our procedure can up to 1-2 orders of magnitude faster
since we avoid the cumbersome computation of gnðenÞ for each
source.
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while for the spinning casewe assume that it can range in the
interval x ∈ ½1; 9� depending on the central MBH spin
parameter a and on the EMRI inclination.
In Fig. 2, we report examples of characteristic strains for

three eccentric sources together with the estimate of their S/
N, evaluated as

ðS=NÞ2 ¼
Z

h2cðfÞ
fSnoiseðfÞ

d ln f; ð23Þ

with h2cðfÞ given by Eq. (17). From the figure, we can infer
that, depending on the initial orbital frequency and eccen-
tricity, high harmonics can be quite relevant in shaping the
total characteristic strain.

C. EMRI catalogues

In order to provide astrophysical motivated estimates of
the GWB generated by a cosmic population of EMRIs, we
consider several models presented in Babak17, that are
reported in Table I for completeness. These models
encompass a range of plausible prescriptions for the most
relevant ingredients affecting EMRI formation, from the
cosmic evolution of the MBH mass function to the relation
between MBH mass and density of the surrounding stellar
environment, from the rate of EMRI formation given the
properties of the galactic nucleus to the occurrence ratio of
direct plunges to EMRIs. We refer the reader to Babak17
for a detailed description of the underlying astrophysical
models. For each EMRI population model, we obtained a

FIG. 2. Waveform examples considering three different EMRI systems. Upper left panel: z ¼ 1, m1 ¼ 105 M⊙,
forb=ð1þ zÞ ¼ 10−3 Hz, e ¼ 0.5. Upper right panel: z ¼ 0.2, m1 ¼ 106 M⊙, forb=ð1þ zÞ ¼ 10−3.5 Hz, e ¼ 0.8. Bottom panel:
z ¼ 2,m1 ¼ 106 M⊙, forb=ð1þ zÞ ¼ 10−4 Hz, e ¼ 0.9. In each panel, the value of the estimated S/N is reported (assuming Tobs ¼ 4 yr
and the LISA sensitivity curve of Sec. II A). Note the different role played by high harmonics in the three different cases.
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catalog containing all EMRIs merging in the Universe (out
to z ¼ 4.5) assuming 10 years of observation at Earth.
The GWB is likely generated not only by low S/N

plunging systems (i.e., with S=N < 20, which is our
standard detection threshold), but also by a large number
of EMRIs emitting in the LISA band while still tens or even
hundreds of years far from final plunge. By assuming a
steady state evolution of the EMRI population, EMRIs
plunging today have the same statistical properties of
EMRIs plunging, say, 100 years from now. This means that
EMRIs that are now 100 years from coalescence and are
emitting GWs in the LISA band as we observe them during
their slow adiabatic inspiral, have the same properties of
EMRIs plunging now if they were observed 100 years ago.
We can therefore derive the distribution of EMRIs far from
coalescence in virtue of the continuity equation, simply by
converting the merger rate dN=dt (which we get from
Babak17) into the population of emitting EMRIs sustaining
that rate, i.e., dN=df ¼ ðdN=dtÞðdt=dfÞ. We proceed as
follows:

(i) for each event in the catalog we draw the eccentricity
at the last stable orbit, ep, from a flat distribution in
the range [0, 0.2], thus obtaining all the relevant
properties of the event: ðM; z; epÞ;

(ii) we integrate the orbital elements of the event back-
ward in time for Tback years;

(iii) we then randomly sample Nback ¼ intðTback=10Þ
points in the range ½0; Tback� in order to select
different evolutionary points of a specific EMRI;5

(iv) we record the orbital frequency and eccentricity for
each of Nback points, that effectively will represent
new EMRIs to be then evolved for the duration of
LISA mission.

With the above procedurewecan effectivelybuild-up a proxy
of the whole population of EMRIs that, as implied by the
continuity equation, guarantees the merger rate observed in
the synthetic catalogues. This corresponds to formally trans-
form the differential EMRI merger rate d4N=ðdzdMdepdtÞ
into a differential EMRI inspiral rate d4N=ðdzdMdfdefÞ,
where f and ef are self-consistently evaluated by numeri-
cally integrating equation (6) and equation (7) from Tback
years prior to the plunge. In order to optimize our sampling
we adopt a Tback that depends on theMBHmass, specifically
we assume

Tback ¼ 20

�
m1

104 M⊙

�
yr: ð24Þ

Our choice is determined by the fact that the time to cover the
same range in gravitational radii scales linearlywith themass
of the system, thus for more massive MBHs the GW
dominated evolution takes longer from a fixed initial
separation (in units of GM=c2) down to the last stable orbit
of the system. Practically, this means that EMRIs orbiting
around lowmassMBHs emit in the LISA band only over the
last few years of their evolution, whereas those orbiting high
massMBHs emit in the LISA band already several hundreds
of years prior to final plunge.
A caveat of the above procedure is that, practically, we

are building a population made of several copies of the
coalescing EMRIs acquired from the catalogues of
Babak17. In particular for each EMRI there will be
Nback other copies with same redshift and primary mass,

TABLE I. List of EMRI models taken from Babak17 and considered here to assess the GWB level. Column 1 defines the label of each
model. For each model the following quantities are specified: the MBH mass function (column 2), the MBH spin model (column 3),
whether or not the effect of cusp erosion is included (column 4), theM–σ relation (column 5), the ratio of plunges to EMRIs (column 6),
the mass of the COs (column 7), the total EMRI merger rate (yr−1) up to z ¼ 4.5 (column 8). In column 9 and 10 the detected EMRI rate
per year is reported for two different kind of waveforms (AKK and AKS, see Section IV of Babak17 for full details) bracketing GW
waveform modeling uncertainties.

EMRI rate [yr−1]

Model Mass function MBH spin Cusp erosion M–σ relation Np CO mass [M⊙] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189
M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146
M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440
M4 Barausse12 a98 yes Gultekin09 10 30 520 260 221
M5 Gair10 a98 no Gultekin09 10 10 140 47 15
M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261
M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765
M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24
M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177
M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188
M11 Gair10 a0 no Gultekin09 100 10 13 1 1
M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

5The division by 10 is due to the fact that we collect 10
catalogues of EMRIs coalescence, each of which is meant to
represent one year of observation.
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rather than a completely independent population. Despite
this limitation, the 10 year EMRI catalogues we are using
contain several thousands of events covering the relevant
MBH mass and redshift range. Therefore, we do not expect
our “copying procedure” to introduce any significant bias
in the GWB generation process.

D. Background computation

Using the source catalogues generated with the pro-
cedure described in the previous subsection, we are now in
the position to evaluate the GWB generated by EMRIs. To
this end, we start by providing a brief description of the
formalism employed for the evaluation of such GWB,
generally valid for any a cosmic population of GW-driven
binaries, not necessarily EMRIs.
Following Phinney [47], the characteristic strain of the

GWB generated by an inspiralling cosmic population of
sources can be expressed in terms of their comoving
number density (nc) combined with the emitted GWenergy
spectrum (dE=d ln fr), i.e.,:

h2c;gwbðfÞ ¼
4G

πc2f2

Z
dzdM

d2nc
dzdM

1

1þ z
dE

d ln fr

����
fr¼fð1þzÞ

:

ð25Þ

The comoving density can be turned into a merger rate, i.e.,
the number (N) of sources merging per unit time,

d2nc
dzdM

¼ d3N
dzdMdtr

1

ð1þ zÞ4πcd2 ; ð26Þ

that, with additional manipulations, can be further related to
the frequency distribution of sources, i.e.,

d2nc
dzdM

¼ 1

ð1þ zÞ4πcd2
d3N

dzdMd ln forb

d ln forb
dtr

: ð27Þ

Turning to the energy spectrum of GW-driven binaries (as
detailed in Sec. II B), we know that when the eccentricity is
non-zero theGWpower is emitted at several harmonics of the
orbital motion. The spectrum can be therefore expressed as a
sum of contributions coming from each harmonic

dEðfrÞ
d ln fr

¼ fr
dE
dtr

dtr
dfr

¼
X
n

dEn

dtr
fr

dtr
dfr

¼
X
n

dEn

dtr
n
fr
n

dtr
dðnfr=nÞ

¼
X
n

dEn

dtr

dtr
d ln forb

ð28Þ

where forb ¼ fr=n is assumed to hold. In the above
expressions there is also an implicit dependence on the
orbital eccentricity that strongly influences the residence
time at a particular frequency. We therefore need to take into
account the initial eccentricity distribution of sources to
correctly estimate the GWB. Inserting Eq. (27) and Eq. (28)
in Eq. (25) we get

h2c;gwbðfÞ ¼
Z

dzdMde

�X
n

d4N
dzdMded ln forb

×
G _En

ð1þ zÞ2π2c3d2f2
�
forb¼fð1þzÞ

n

: ð29Þ

Substituting f ¼ nforb=ð1þ zÞ and recalling that the rms
strain of the nth harmonic is defined by [44,48]

h2n ¼
G _En

c3π2d2f2n
; ð30Þ

we obtain

h2c;gwbðfÞ ¼
Z

dzdMde

×

�X
n

d4N
dzdMded ln forb

h2nðfÞ
�
forb¼fð1þzÞ

n

ð31Þ

where, at each observed frequency f and for each n in the
sum, only binaries with the proper orbital frequency (i.e.,
forb ¼ fð1þ zÞ=n) contribute to h2c;gwb. Note that in the
particular case of a population of circular binaries the above
equation reduces to thewell known formworked out by, e.g.,
Sesana et al. [49].
Equation (31) assumes that binaries do not evolve

significantly under GW back-reaction during the observa-
tion time span Tobs. Despite this does not represent a
problem for some class of sources, e.g., massive black hole
binaries (MBHBs) in the PTA band, for EMRIs this
approximation turns out to be unrealistic. In fact, during
typical Tobs of months to years, each single EMRI
harmonic can span a substantial frequency range, as shown
by the tracks visualized in Fig. 2.
In this case, we can adapt Eq. (31) by weighting the

contribution of each harmonic with the ratio of the number
of cycles spent by the source at a given frequency (i.e.,
f2= _f) and the maximum number of cycles observable at
that frequency for a given observation duration Tobs, i.e.,:

Ncyc;gw

Ncyc;obs
¼ f

dt
d ln f

×
1

fTobs
: ð32Þ

Note that since observations are limited by Tobs, this ratio
cannot be higher than one, so when Tobs < f= _f we go back
to the non-evolving case discussed above. Then recalling

MATTEO BONETTI and ALBERTO SESANA PHYS. REV. D 102, 103023 (2020)

103023-8



that in Eq. (31) forb ¼ fð1þ zÞ=n must hold, we can
write

h2n × f
dt

d ln f
×

1

fTobs

¼ h2n ×
nforb
1þ z

dt
d lnðnforb=ð1þ zÞÞ ×

1

fTobs

¼ h2n ×
dtr

d lnðnforbÞ
nforb ×

1

fTobs

¼ h2n ×
dtr

d ln fn
fn ×

1

fTobs

¼ 1

2
h2c;n ×

1

fTobs
ð33Þ

where in the last line we used the definition of the
characteristic strain of the nth harmonic [compare
Eq. (13) and Eq. (30) and check with Ref. [44] ].
Finally, we can modify Eq. (31) as

h2c;gwbðfÞ ¼
1

2

Z
dzdMde

�X
n

d4N
dzdMded ln forb

×
h2c;nðfÞ
fTobs

�
forb¼fð1þzÞ

n ∈½forb;min;forb;max�
ð34Þ

where we folded in the additional requirement
forb ∈ ½fmin; fmax�, with extrema defined as

forb;min ¼ forbðt ¼ 0Þ;

forb;max ¼ min
�
forb;ISCO; forbðt ¼ TobsÞ

�
; ð35Þ

to account for the frequency evolution of sources during
Tobs. Practically, this condition selects the GW radiation
emitted within Tobs, i.e., in the time interval in which the
orbital frequency changes from forbðt ¼ 0Þ (the orbital
frequency at beginning of the observation) to forb;max (the
maximum orbital frequency reached, either at the end of the
observation period or at binary coalescence). The above
condition can be also recast to explicitly select a limited
harmonic number range. In fact for a given observed GW
frequency fwe require, as said, that forb ¼ fð1þ zÞ=nmust
hold. The fact that forb has to lie between a minimum an
maximum value translates into requiring that the summation
in Eq. (34) spans the harmonic range ½nmin; nmax�, where

nmin ¼
fð1þ zÞ
forb;max

;

nmax ¼
fð1þ zÞ
forb;min

; ð36Þ

in which it is implicit that only the integer part of the right-
hand side has to be considered. Equation (34) therefore reads

h2c;gwbðfÞ ¼
1

2

Z
dzdMde

×

� Xnmax

n¼nmin

d4N
dzdMded ln forb

h2c;nðfÞ
fTobs

�
forb¼fð1þzÞ

n

ð37Þ

The practical computation of the GWB from
Eq. (34) proceeds as follows. The distribution d4N=
ðdzdMded ln forbÞ is in fact a finite list of sources computed
following the procedure described in Sec. II C. This turns all
the integrals in Eq. (34) into sums over the list of sources. For
each EMRI forb and e are defined at the start of the LISA
mission t ¼ 0. The EMRI orbital elements are then integrated
between t ¼ 0 and t ¼ Tobs usingEq. (6) andEq. (7) to obtain
the range forb;min < forb < forb;max and the function eðforbÞ
to be considered when evaluating its contribution to the
GWB. If we are computing the GWB at frequency f, we take
all the harmonics for which fð1þ zÞ=n ∈ ½forb;min; forb;max�
is satisfied and we add to h2c;gwbðfÞ a contribution h2cðfÞ=
ðfTobsÞ, where hcðfÞ is given by Eq. (17), withΦðfÞ limited
between ½nmin; nmax�, while the eccentricity is evaluated using
the pre-computed eðfÞ evolution. Note that since hc does not
depend on Tobs, the contribution of each single harmonic of
each individual EMRI to the GWB, h2c;nðfÞ=ðfTobsÞ, is
inversely proportional to Tobs. However, as Tobs increases,
so does the frequency range,forb;min < f < forb;max, towhich
each individual EMRI contributes. This means that, the
number of EMRIs contributing at a given f increases
proportionally to Tobs. Therefore, ignoring subtleties related
to the resolvability of individual sources, the signal computed
via Eq. (34) is independent on Tobs, as expected for an
unresolved GWB.
Finally, the detectability of the GWB is assessed by

computing the associated power signal-to-noise ratio
(S=Ngwb) through [50,51]

ðS=NgwbÞ2 ¼ Tobs

Z
γðfÞ h4c;gwbðfÞ

f2S2noiseðfÞ
df ð38Þ

where h2c;gwbðfÞ is the characteristic strain of the GWB,
SnoiseðfÞ is the power spectral density ofLISA (seeSec. II A),
while the function γðfÞ is assumed to be approximately
constant and equal to unity [see Fig. 4 in Ref. [50] ].
We caution that we do not consider any WD confusion
noise subtraction when computing the EMRI GWB S/N
via Eq. (38).

III. RESULTS

In this section, we present the main results of our
investigation, including (i) the detectability of the EMRI
GWB and its S/N computed via equation (38) and, (ii) the
number of individually resolvable sources. Relevant num-
bers are computed as a function of Tobs for different
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astrophysical EMRI models and under a variety of
assumption for the EMRI waveform model as well as
for the GWB computation, as described below. Table II
quantifies our main results for three representative models
and will serve as a pivotal tool for discussion in the
following subsections.

A. Expected EMRI GWB: General considerations

In Fig. 3 we show the characteristic GWB strain
predicted by the 12 models of Tab. I compared to the
LISA sensitivity curve (black dashed line). Given the
significant uncertainties in the EMRI waveform modeling
close to the final plunge, following Babak17, we ran two
different sets of models, truncating the EMRI GW signal
either at the Schwarzschild (analytic kludge Schwarzschild,
AKS,waveformmodel) or at theKerr ISCO (analytic kludge
Kerr, AKK, waveform model). In the AKS case, shown
in the left panel of Fig. 3, all EMRIs plunge at RISCO ¼
6GM=c2 ¼ 6Rg. In the AKK case, shown in the right panel
of Fig. 3, we use the MBH spin information recorded in our
MBH population synthesis model to identify the last stable
orbit in the range1 < RISCO=Rg < 9, dependingon theMBH
spin and EMRI orbital inclination. In this way, corotating
EMRIs remain stable much closer to the horizon, while
counterrotating ones become unstable and start their radial
infall at farther distance. This, in principle, could make a
substantial difference in the signal computation, since our
population synthesis model predicts that MBHs producing
EMRIs in the LISA range tend to be highly spinning.
However, this does not seem to be the case and, regardless
of the ISCO assumption, we find that two thirds (8 out of 12)
of the investigated models result in a GWB with hc;gwb
comparable to or higher then the LISA noise curve.
To ease the discussion, we focus our attention on the two

models bracketing the GWB uncertainty range, i.e., the
pessimistic model M11 (green line) and the optimistic
model M12 (red line) and the fiducial model M1 (orange
line), which lies halfway between them, grazing the LISA
sensitivity curve close to the bucket. Uncertainties in the
EMRI GWB estimate span about 1.5 orders of magnitude
in hc, which is consistent with the three orders of

TABLE II. Number of resolvable sources and residual GWB S/
N for models M1, M11 and M12 as a function of the mission
duration. Reported numbers represent: mission duration (column
2) number of individually resolvable sources (columns 3, 4 and 5)
and S/N of the GWB (columns 5, 6 and 7). Results are shown for
both the AKK and AKS waveforms. Finally, results marked as
AKSb are obtained considering the LISA curve augmented by the
corresponding EMRI GWB (i.e., considering it as an additional
noise source, see Fig. 5 and main text for details).

Detections S=Ngwb

Model Tobs AKK AKS AKSb AKK AKS AKSb

M1 0.5 yr 23 10 9 283 273 273
1.0 yr 61 39 27 361 347 354
2.0 yr 166 107 80 461 446 457
4.0 yr 466 372 234 569 536 582
10.0 yr 1586 1267 827 747 711 793

M11 0.5 yr 0 0 0 2.3 2.3 2.3
1.0 yr 0 0 0 2.7 2.7 2.7
2.0 yr 0 0 0 3.6 3.6 3.6
4.0 yr 0 0 0 5.0 5.0 5.0
10.0 yr 1 1 1 6.8 6.8 6.8

M12 0.5 yr 331 194 57 3907 3327 3581
1.0 yr 905 521 122 4805 4253 4686
2.0 yr 2444 1515 284 5936 5301 6231
4.0 yr 6492 4126 690 7166 6582 8297
10.0 yr 20698 13551 2085 9424 8849 12279

FIG. 3. Characteristic strain of the GWB generated in the 12 different EMRI formation scenarios reported in Table I. Left panel: last
stable orbit is chosen at 6GM=c2. Right panel: the last stable orbit varies according to the spin of m1.
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magnitude uncertainty in the EMRI rates reported by
Babak17. Two things are worth noticing. First, a large
fraction of the investigated models, including the fiducial
M1, predicts a GWB comparable to or higher than the
LISA sensitivity curve, which therefore cannot be
neglected when considering detectability of other sources.
Second, the more optimistic scenario M12 can be a blessing
for EMRIs but a curse for other sources. In fact, in this case,
the EMRI GWB would deteriorate LISA sensitivity in the
bucket by more than a factor of three.
A detailed comparison of the dependence of the signal

on the location of the ISCO for M1, M11 andM12 is shown
in Fig. 4. In practice, the ISCO location only matters above
f ≈ 10−2 Hz, where in the spinning case (AKK) the GWB
is slightly higher. This is the result of two competing
effects. On the one hand, when adopting the Kerr ISCO
(AKK), the CO can get deeper within the MBH gravita-
tional potential before eventually plunging, thus emitting
more power and at higher frequencies. On the other hand,
this also means that EMRIs have higher S/N on average,
and more of them can be individually resolved and
subtracted from the GWB. The two effects almost cancel
but the latter is subdominant and the resulting GWB is
slightly higher. This is reflected in the GWB S/N reported
in Table II, where a comparison between the AKK and
AKS columns shows that the waveform choice has a mere
5% impact on the S/N of the GWB. Reported numbers
certify that the EMRI GWB is easily detectable in models
M1 and M12, with S/N of several hundreds and several
thousands respectively already after few months of data
collection. Even in the most pessimistic case (M11), despite
the signal level is an order of magnitude below the detector

sensitivity (cf. green curve in Fig. 4), the power S/N is of
the order of a few and the signal might be marginally
detected within few years of observation.
In any case, the difference is small and practically

irrelevant in the LISA band. Therefore, pending potential
issues related to accurate waveform modeling for signal
identification, we conclude that the MBH spin distribution
and the details of the signal close to the final plunge do not
appreciably affect the level of the EMRI GWB. With this
understanding, in the following, we present results for the
AKS models only.
Results shown so far were obtained taking into account

LISA instrumental noise and WD confusion noise only
when computing individual EMRI S/N and subtracting
resolvable signals. In practice, this procedure is bound to
likely underestimate the resulting GWB, since the GWB
itself should be taken into account when computing
individual EMRI S/N. A rigorous estimate of the GWB
should therefore be done by subtracting resolvable sources
one by one while including the overall signal produced by
other systems. This is expected to lower the S/N of
individual sources leaving behind a larger GWB. To
bracket uncertainties due to our simplistic procedure, we
also ran a set of models adding in quadrature to the
instrument noise the EMRI GWB previously estimated
by using the LISA noise only. Results are shown in Fig. 5
for the test cases M1, M11 and M12. The overall resulting
LISA sensitivity is shown by the grey dashed and dotted-
dashed curves for models M1 and M12 respectively. For

FIG. 4. Characteristic strain of the GWB for the fiducial and
extreme models when the last stable orbit depends on the spin of
m1 (dotted lines) or not (solid lines). Noticeable differences arise
only above ≈10−2 Hz, where in the spinning case the GWB
results to be slightly higher.

FIG. 5. Characteristic strains of the GWB generated in the
fiducial model (orange lines) and those of the models that bracket
from the lower (pessimistic, green line) and the upper branch
(optimistic, red line) all the investigated EMRI formation
scenarios. Dashed (M1) and dashed-dotted (M12) lines denote
the EMRI GWB and the LISA noise curve (grey) when, for each
model, the associated GWB is heuristically integrated in the
LISA sensitivity as an additional noise source (see text).
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M1 we observe that the sensitivity curve is shifted upward
by about 30%-40% in the bucket, while for M12 the
sensitivity gets dramatically affected with upward shifts up
to a factor of ≈4. As expected, the corresponding GWB for
M1 and M12 evaluated with these degraded sensitivity
curves is slightly higher. Differences are contained within
20%-25% in the worst case scenario (M12), thus certifying
that our simple GWB amplitude estimates are robust. These
figures are reflected in the S/N reported in Table II
(columns AKS vs AKSb): when the GWB is included in
the computation, S/N are generally few % larger for M1, up
to 20% larger for M12 and completely unaffected for M11.
We notice, however, that even a small change in the GWB
amplitude can have an important impact on the number of
resolvable sources, especially because EMRI detection is S/
N threshold limited. For example for M1 we obtain 234
(372) individually resolvable EMRIs in Tobs ¼ 4 yr when
the underlying EMRI GWB is (is not) taken into account in
their S/N evaluation. The difference becomes even more
striking in the M12 models, with individual EMRI detec-
tions dropping by a factor of seven, from 4126 to 690.

B. The build-up of the EMRI GWB

Focusing on the fiducial model M1, we now turn the
discussion on the detailed contribution of individual EMRIs
to the GWB build-up. In Fig. 6 we show how the
characteristic strain of the GWB get shaped when consid-
ering EMRIs that do (orange line) and do not (green line)
plunge during the Tobs, here assumed to be four years. As
expected, plunging sources dominate the high frequency
end of the GWB. Below 3 mHz, however, the larger

contribution to the signal comes from EMRIs that are still
relatively far from final plunge. This confirms that con-
sidering the global population of EMRIs is important in
order to asses the true level of the GWB, which would be
otherwise underestimated if we account only for sources
plunging during the mission lifetime. In fact, for this
fiducial model, if we consider only EMRIs plunging within
Tobs, the resulting GWB would be well below the LISA
instrumental noise, as shown by the orange curve. We
would therefore erroneously predict that the EMRI GWB
will not affect LISA sensitivity and the detectability of
other sources.
So far, we considered a S/N threshold of 20 for

individual EMRI detection (and subsequent signal
removal). This number is backed both by theoretical
considerations of waveform template counts and detect-
ability threshold based on the resulting false alarm prob-
ability estimates, and by numerical simulations of signal
injection and recovery. It should be noted that the mock
LISA data challenge demonstrated the feasibility of
extracting EMRIs down to S=N ≈ 15 in Gaussian instru-
mental noise [52,53]. Although this is an highly idealized
condition, it is nonetheless interesting to study the behavior
of the GWB as a function of the threshold S/N considered
for the sources contributing to it. In fact, since EMRI
detection is inherently sensitivity limited, the distribution of
the number of sources as a function of signal to noise ratio
dN=dðS=NÞ is expected to have a steep dependence on S/N.
For example, ignoring cosmological consideration, in the
limit of Euclidean space and a population of similar sources
uniformly distributed, since S=N ∝ D−1 and dN=dD ∝ D2

(being D the distance to the source), one expects
dN=dðS=NÞ¼ ðdN=dDÞðdD=dðS=NÞÞ∝S=N−4. Although
EMRIs are not all equal and are observed at cosmological
distances, clearly this derivation does not strictly apply, still
Fig. 7 demonstrates that the above scaling is indeed an
appropriate representation of the EMRI S/N distribution in
our models. One can therefore expected the level of the
GWB to be quite sensitive to the adopted S/N threshold for
individual EMRI detectability. This is confirmed by Fig. 8,
demonstrating that the characteristic strain of the back-
ground is dominated by high S/N sources. Sources with
10 < S=N < 20 contribute more then 50% of the total
GWB strain at f ¼ 3 mHz. So if the detection S/N thresh-
old is lowered to 10, than the level of the GWB would fall
well below the LISA sensitivity curve, effectively elimi-
nating (for this specific model) any residual confusion
noise. Although this will be likely unfeasible, still the
figure shows that the EMRI GWB is heavily dominated by
slightly subthreshold events, rather than stemming from the
contribution of a vast number of dim sources.
Finally, the GWB level is expected to depend on Tobs,

mostly because EMRIs are long-lasting sources and longer
observation times result in more sources building-up an
S/N above the detectability threshold. This is depicted in

FIG. 6. Characteristic strain of the GWB generated by EMRIs
in the fiducial model (M1) that merge during the LISA mission
(i.e., within four year, orange line) compared to that arising from
noncoalescing sources (green line). The two subpopulation build
up to form the total GWB for M1 model (orange line, see also
Fig. 3).
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the left panel of Fig. 9 which shows that the unresolved
GWB in the bucket of the LISA sensitivity decreases by
approximately 30% as observations are accumulated from
6 months to 10 years. One would therefore naively expect
that the residual EMRI GWB would have a stronger impact
on the LISA sensitivity for shorter Tobs. However, this is not
the case, because when Tobs is shorter, the WD confusion
noise is also more prominent in the mHz frequency range,
dominating the LISA noise budget. Therefore, although the
EMRI GWB is also higher, its relative impact on the LISA
sensitivity is smaller compared to the WD confusion noise.
This is shown in the right panel of Fig. 9, where it is clear
that the addition of the EMRI GWB has a stronger effect on

the overall LISA sensitivity for longer Tobs.
6 In terms of

detectability, according to Eq. (38), the GWB S/N should
increase with

ffiffiffiffiffiffiffiffi
Tobs

p
. This, however, assumes hc;gwb to be

independent on the observation time. Since we found that
hc;gwb slightly decreases for longer Tobs due to the larger
number of resolvable sources, the dependence of the GWB
S/N is slightly flatter than

ffiffiffiffiffiffiffiffi
Tobs

p
, as shown by the numbers

in Table II. For example, for M1 using the AKS waveform
we find S=N ∝ T0.32

obs .

C. Properties of resolvable EMRIs

Finally, it is interesting to investigate the properties of
individually resolvable EMRIs. Again, we take the fiducial
M1 model, and consider the evolution of this source
population as a function of Tobs. In Fig. 10 we report,
from top left to bottom right, the distribution of detections
as a function of redshift, initial orbital frequency and
circularity (i.e., 1 − e) as well as the time to coalescence
(indicated as Tgw). In each plot, the various curves (from
dark blue to yellow) refer to a different Tobs as labelled. In
addition, in the bottom right panel, we also report the total
number of detections (i.e., S=N > 20) as a function of Tobs.
Here there are several things to notice. First, the number of
resolvable EMRIs does not grow linearly with the obser-
vation time. To first order, persistent sources have S=N ∝
T1=2 which results in a number of detected systems N ∝
T3=2 (assuming an Euclidean space and an homogeneous
distribution of sources). EMRIs, however, sit at the inter-
section between persistent (e.g., WD binaries) and “tem-
porally localized” sources (e.g., MBHB inspirals).
Depending on their initial semimajor axis and eccentricity
at the time of LISA observation, they can plunge in a matter
of months or stay in band for the whole mission duration.
Therefore, the dependence of the number of observed
sources on the mission lifetime is not immediately obvious.
Numbers reported in Fig. 10 and Table II suggest
N ∝ T1.4 − T1.5, close to the expected scaling for persistent
sources. This highlights the benefit of a longer mission
duration, since the number of observed EMRIs grows faster
then linearly with the observation time.
It is also interesting to see the evolution of the properties

of observed sources as Tobs increases. Despite the redshift
distribution of observed sources appears to evolve self-
similarly with Tobs (top-left panel of Fig. 10), the same does
not hold true for other properties. This is an obvious
consequence of the shape of the LISA sensitivity curve
combined with the S/N build-up of EMRIs. In fact, EMRIs
tend to accumulate most S/N in the last months before
plunge, when the signal is strong and tend to fall around the
bucket of the LISA sensitivity curve (cf. Fig. 2). Therefore,
initially, for Tobs ≤ 1 yr only systems with forb > 10−3 Hz

FIG. 7. S/N distribution of EMRI for the fiducial model for
different Tobs as labeled.

FIG. 8. Characteristic strain of the GWB for the fiducial model
(M1) when different S/N threshold for single source detection
(and removal from the GWB) are considered.

6We remind the reader that we are ignoring the possibility of
subtracting the WD confusion noise.
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tend to be resolvable (top-right panel of Fig. 10). Those are
generally in a late evolutionary stage, and in fact their time-
to-plunge when LISA starts observing is <1 yr and the
sources plunge within the mission lifetime. As Tobs grows,
systems with lower initial frequency and farther from final
plunge have time to accumulate enough S/N to surpass the
detection threshold, and consequently the forb (Tgw) dis-
tribution extends to lower (longer) values. This also

naturally results into a long tail of detected systems with
high eccentricity. In fact, due to GW circularization, EMRIs
detected within few months are emitting at high frequency
and had already time to significantly circularize. When
“caught” by LISA, their eccentricity is generally <0.5.
However, as Tobs extends to 10 years, eccentric systems
become increasingly important with as much as 5% of all
detection having e > 0.9 and possibly few EMRIs with
e > 0.99. Finally, it is interesting to notice that, despite
there is a peak of observable EMRIs at Tgw ≲ Tobs, there is
also a long tail at Tgw > Tobs. In general, 5%–10% of
EMRIs individually identified above the detectability
threshold will not plunge within the LISA mission lifetime.
For example, assuming the standard 4 year mission, there is
an handful of EMRIs caught as early as ≈30 yr prior to
final plunge. This subpopulation of “nonplunging EMRIs”
is generally overlooked when observable EMRI rates are
computed in the literature (e.g., in Babak17).

IV. DISCUSSION

A. Observational consequences of the EMRI GWB

Our results have a number of theoretical as well as
practical consequences. In fact, it is important to notice that
in several variations of the standard scenario M1, the EMRI
GWBwill significantly contribute to the LISA noise budget
around the sensitivity bucket, possibly jeopardizing the
detectability of other interesting sources. The effect might
be particularly severe for two family of sources that are of
paramount importance for the LISA science case, namely
high redshift seed MBHBs and stellar origin BH (SOBH)
binaries.

FIG. 9. Left panel: time evolution of the EMRI GWB for the fiducial model (M1) for different Tobs as labeled. As more and more
sources exceed the S/N threshold those that can be resolved are removed from the GWB. Additionally, also the WD noise lowers with
time (compare orange and blue curve) allowing more sources to be detected. Right panel: time evolution of the LISA sensitivity curve
accounting for WD noise (solid) and for the presence of the EMRI GWB (dashed).

FIG. 10. Differential number of detected EMRIs (S=N > 20)
for the fiducial model (M1) as a function of redshift, initial orbital
frequency, circularity and time to coalescence for different Tobs
ranging from six months to ten years (see labels).
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LISA is expected to observe seed MBHBs as light as few
×103 M⊙ out to z ≈ 20 [see e.g., [54–56] ]. These systems
should naturally arise in cosmological scenarios where
MBHs grow from low mass seeds, possibly remnants of
population III (popIII) stars of few hundred solar masses
[57]. During their early growth, the seeds are expected to
form a large number of binaries, potentially detectable by
LISA. Because of the low mass and high redshift, these
sources slowly cross the bottom of the LISA sensitivity
bucket and accumulate most of the S/N over several months
[cf. Fig. 2 in Ref. [58] ]. A degradation of about 50% of the
detector noise budget in this region will affect the mass and
redshift threshold within which those systems are detect-
able, making more difficult to reconstruct the early MBH
cosmic history. In the worst case scenario (which is
optimistic from an EMRI detection stand point, M12),
the sensitivity at 10−3 Hz < f < 10−2 Hz will be severely
compromised, to the point that it might be impossible to
distinguish among seed formation channels.
Likewise, although to a lesser extent, the GWB will

affect detectability of SOBH binaries [51,59–61].
Multiband sources, crossing to the ground based detector
band within few years, are expected to be observed at
f > 0.01 Hz, and therefore should not be affected. There
is, however, also a large population of slowly inspiralling
systems falling at lower frequencies, which might be lost
if a significant EMRI GWB contributes to the LISA
noise budget at f < 0.01 Hz. This will also be a problem
for some resolvable galactic WD binaries emitting at
f > 1 mHz.
In light of the above considerations, from a theoretical

standpoint it becomes of paramount importance to better
understand EMRI rates. The three orders of magnitude
uncertainties in the rate reported in Babak17 stem mostly
from the poor knowledge of the low mass end of the MBH
mass function and of the characteristic EMRI rates per
individual MBH. The latter in particular are generally based
on numerical simulations of MilkyWay type galactic nuclei
[30,31], extrapolated at lower masses by appropriately
scaling the nuclear stellar density and the associated
relaxation time with the MBH mass. Moreover, they are
affected by the uncertain estimates of the ratio of direct
plunges to EMRIs occurrence. Our findings call for
targeted dynamical modeling and relativistic numerical
simulations of dense nuclei around MBHs in the
105–106 M⊙ mass range, most relevant to LISA, to better
pin down the complex dynamics of EMRIs and reduce the
uncertainty in rate estimates.

B. Comparison with previous work

To the best of our knowledge, so far the only detailed
computation of EMRI background has been performed by
BC04b. Their computation relied on a simplified piece-
wise function describing the energy density emitted by an
individual EMRI, coupled with a number of empirical

estimates of the MBH mass function and a scaling relation
for the EMRI rate per MBH (R ∝ M3=8). Moreover, the
computation was done using the sensitivity curve for
“Classic LISA” [62], relevant at the time. Besides updating
the LISA curve to the current design, our calculations also
rely on later developments in the study of EMRI dynamics
resulting in different rates R ∝ M−0.2 [19,63], a more
detailed computation of the emission of each individual
EMRI, and on realistic MBHmass functions. Most notably,
this returns a flatter GWB spectrum; while at 10−3 Hz <
f < 10−2 Hz BC04b finds a steep GWB with hc ∝ f−1.5,
our calculation results in hc ∝ f−1. This is likely due to the
larger contribution of EMRIs forming around lighter
MBHs, contributing more power to the signal at high
frequencies. Nonetheless, we confirm the main finding of
BC04b that the EMRI GWB might significantly affect the
LISA sensitivity in the bucket and should be taken into
account seriously.
We can also compare the number of detectable systems

(S=N > 20) with those given in Babak17. Comparing
numbers in Fig. 10 and Table II with those given in
Table I, our detection rates appear to be more than a factor
of two smaller. The discrepancy can be ascribed both to the
waveform model adopted, but also to the different sensi-
tivity curve employed. To check the contribution of the
latter, we repeated our calculations changing LISA sensi-
tivity in order to match that used by Babak17. Results
reported in Fig. 11 show that by doing this, we get rates that
are larger by a factor of ≈2. Detections per year reported in
the figure are consistent with those given by the AKS
waveform in Babak17 (last column of Table I). We
conclude that differences due to our simpler waveform

FIG. 11. Same as Fig. 10, but considering the sensitivity curve
of Babak et al. [26].
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modeling [most notably the use of inclination-polarization
averaged fluxes, cf. Eq. (13)] are minor. We also stress that
a detailed comparison of the rates is not straightforward. In
fact, Babak17 consider catalogs of EMRIs plunging over
10 years and select detectable ones by integrating for each
of them the signal from the plunge backwards in time for
two years. They then divide numbers by 10 to obtain a
yearly detection rates. Although this procedure provides
results that are ball-park correct, it does not correspond to
any realistic observation scenario. Conversely, based on the
same catalogs of plunging EMRIs, we consistently con-
struct the differential d4NEMRI=ðdMdzdfdeÞ at the time
LISA starts its observations and we integrate the signal of
each event over Tobs. This allows to: (i) take into account
for the lifetime of each EMRI in the simulation (e.g., the
signals from EMRIs that are only few months from
coalescence when LISA starts taking data are consistently
integrated only for few months), and (ii) identify EMRIs
that can be resolved despite they do not plunge within Tobs
(that can account for up to 10% of the whole population, as
described in Sec. III C). The most important difference is
that an “universal EMRI rate” per year cannot be techni-
cally defined regardless of the mission duration, since the
number of detections does not scale linearly with Tobs.

C. Caveats related to the employed waveform

Finally, it is worth pointing out some caveats, mostly
related to the waveform used in this work. Our waveform
model is a simplified version of the AK waveform con-
structed by BC04a, where instead of integrating the PN
equations for the evolution of the orbital elements, we
consider only the quadrupole fluxes given by Peters [42].
This was necessary to make use of the f − e relation to
speed-up the GWB computation, as described in Sec. II B.
Nonetheless, the overall hc spectrum of individual EMRIs
obtained in this way does not significantly different from a
computation including all the PN orders considered by
BC04a. Note, moreover, that by evaluating hcðfnÞ at
integer multiples of the Keplerian orbital frequency
fn ¼ n × forb, we avoid the frequency mismatch of the
original AK waveform of BC04a, as first noted in Chua and
Gair [64].
Chua et al. [36] built on the work of BC04a to construct

an “augmented analytic kludge” (AAK) waveform. AAK is
a fast and efficient model able to match the waveform
obtained by solving numerically the trajectory of the CO
along the Kerr geodesic (also referred to as numerical
kludge, NK). In Fig. 12, we compare the NK waveform to
our simplified AK model for an EMRI with redshifted
masses of 106 M⊙ þ 10 M⊙, primary spin parameter
a=M ¼ 0.5 at z ¼ 0.8. Our AK model captures the salient
features of the waveform, but is not accurate in modeling
the spectrum close to the final plunge, because it over-
estimates the frequency of the ISCO. In fact, for the
considered a=M ¼ 0.5 system, the NK waveform (blue)

frequency range is better matched by a Schwarzshild AK
waveform (red) rather than an AK waveform with a=M ¼
0.5 (green). We deem, however, this waveform inaccuracy
unimportant for our purposes, since we found that the shape
and amplitude of the GWB is essentially independent on
the ISCO choice (cf. Sec. III A). It should be also noted that
the different shape and normalization of the waveforms
stem from the fact that we are comparing the AK
inclination-polarization averaged hc to a NK nonaveraged
hc, where the inclination angle of the source is assumed to
be ι ¼ π=6.
Finally, we stress that our GWB computation is based on

the use of inclination-polarization averaged fluxes, and a
more sophisticated model should take into account the
inclination of each individual system with respect to the
observer line of sight. We expect, however, this effect to
produce only minor adjustments to our estimates.

V. CONCLUSIONS

We have performed a comprehensive study of the sto-
chastic GWB produced by a cosmological population of
EMRIs in the LISA band. Our work expands and updates the
original investigation by BC04b. We built our computation
on the state of the art plunging EMRI catalogs of Babak17,
constructed from EMRI population models encompassing a
range of physically motivated prescriptions for the most
relevant ingredients affecting their formation, including:
(i) the cosmic evolution of the MBH mass function,
(ii) the relation between MBH mass and density of the
surrounding stellar environment, (iii) the modification of

FIG. 12. Revisiting of Fig. 3 of Chua et al. [36]. The figure
shows hc emitted by an EMRI with redshifted masses 106 M⊙,
10 M⊙, primary spin parameter a=M ¼ 0.5 at z ¼ 0.8. The blue
line shows the NK waveform, whereas the red and green lines
show AK waveforms truncated at the Schwarzschild ISCO and at
the Kerr ISCO for a=M ¼ 0.5 respectively.
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such environment due to galaxy mergers, (iv) the rate of
EMRI formation given the properties of the galactic nucleus
and (v) the occurrence ratio of direct plunges to EMRIs. We
devised a formalism to construct from each catalog the
distribution of EMRIs as a function of MBH mass, redshift,
orbital frequency and eccentricity at the time LISA obser-
vations start, and we integrated their signals using a sim-
plified, inclination-polarization averaged version of the AK
waveform of BC04a. We removed signals with S=N > 20
and computed the residual GWBby adding up the remaining
sources. We then investigated in details the properties of
resolvable sources and residual GWB as a function of the
LISA mission duration Tobs. Our main findings can be
summarized as follows:

(i) there is about a factor 1.5 dex uncertainty in the
expected GWB level, consistent with the 3 dex
uncertainty in the EMRI rate estimated by Babak17
(cf. Fig. 3);

(ii) the EMRI GWB is easily detectable for most
considered astrophysical scenarios, with S/N of
several hundreds to several thousands. Even in the
most pessimistic case marginal detection is expected
with S/N of a few (cf. Table II);

(iii) most of the investigated models produce a residual
GWB that is going to affect the LISA sensitivity
curve in the bucket. In particular, the GWB level
predicted by our fiducial model M1 grazes the LISA
noise curve around 3 mHz, whereas in the optimistic
(in terms of EMRI counts) model M12, the residual
GWB is more than a factor of 3 higher then the
instrument noise at the same frequency, effectively
erasing the LISA sensitivity bucket (cf. Fig. 5);

(iv) those results are largely insensitive to the spin
distribution of MBHs and to the details of the
adopted waveform close to final plunge (cf. Fig. 4);

(v) the GWB mildly decreases for longer mission dura-
tions, dropping by about 20%–25%as the observation
time increases from 6months to 10 years (cf. Fig. 10);

(vi) the dominant contribution to the GWB is produced
by EMRIs with 10 < S=N < 20, just below the
S=N ¼ 20 detectability threshold (cf. Fig. 8) and
at f < 3 mHz is due to EMRIs that will not plunge
within the mission lifetime (cf. Fig. 6);

(vii) the number of individual EMRIs observable with
S=N > 20 grows as T1.4

obs − T1=5
obs , i.e., faster than

linearly;
(viii) as many as 10% of resolved EMRIs do not plunge

within the LISA observation time (cf. bottom-right
panel of Fig. 10).

We compared our findings to BC04b and Babak17,
discussing the most relevant differences, and we highlighted
their implications for LISA. In particular, if the actual EMRI
rates are on the high side of the estimated range, the
sensitivity of LISA between 10−3 Hz and 10−2 Hz can be
severely compromised, with undesired consequences par-
ticularly for the detection of high redshift, low mass seed
MBHBs and of SOBH binaries, which are both primary
target sources of LISA. This calls for a concerted theoretical
effort aimed at a better understanding ofEMRI formation and
dynamics, with the goal of reducing the cosmic EMRI rate
uncertainty range.
Finally,wediscussed a number of caveatsmostly related to

the use of a simplified AK waveform, noticing however that
our main results should be robust against this assumption.
Our GWB computation assumes that all EMRIs with S=N >
20 can be correctly identified and accurately subtracted from
the LISA data stream. Eventually, this requires a faithful
model of the EMRI waveform, which will likely require the
full development of second order self force computations,
currently under way [e.g., [34,65,66] ]. Any mismatch
between the true signal and the waveform model used in
the analysis will result in imperfect removal of resolved
signals, spuriously increasing the residual unresolved GWB.
Moreover, our analysis assume no subtraction of theGalactic
WD confusion noise: a consistent detection pipeline for an
EMRI GWB will have to consistently model the time
evolution of the WD confusion noise, including the pos-
sibility of its (at least partial) subtraction due to its anisotropic
nature. It is therefore of paramount important for the full
scientific success of the LISA mission to pursue a concerted
community effort aimed at a better understanding of all
aspects of EMRIs, from the intricacies of their astrophysical
and dynamical origin responsible for their expected cosmic
rate, to the finest details of their emitted gravitational
waveforms as well as the complexity of building end-to-
end detection pipelines.
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