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Future space-based laser interferometry experiments such as LISA are expected to detect Oð100–1000Þ
stellar-mass compact objects falling into massive black holes in the centers of galaxies, the so-called
extreme-mass-ratio inspirals (EMRIs). If dark matter forms a “spike” due to the growth of the massive
black hole, it will induce a gravitational drag on the inspiralling object, changing the EMRI orbit and
gravitational-wave signal. We show that detection of even a single dark matter spike from an EMRI
will severely constrain several popular dark matter candidates, such as ultralight bosons, keV fermions,
MeV–TeV self-annihilating dark matter, and sub-solar mass primordial black holes, as these candidates
would flatten the spikes through various mechanisms. Future space gravitational wave experiments could
thus have a significant impact on the particle identification of dark matter.
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I. INTRODUCTION

Astrophysical and cosmological observations from
vastly different scales have established the existence of
nonbaryonic substance—dark matter (DM)—that makes up
around 85% of all known matter [1,2]. Significant effort has
gone into identifying DM, whose discovery will be a
crucial breakthrough in fundamental physics and under-
standings of the Universe.
Many probes of DM utilize regions of high DM densities,

such as the Galactic halo and dwarf spheroidals (dSphs).
One attractive target for such searches is the DM spikes,
dense concentrations of DM surrounding massive black
holes (BH) in centers of galaxies [3–5], formed as the BHs
grow adiabatically. If DM self-annihilates, the spikes sig-
nificantly boost the annihilation rate. This has led to searches
of bright isolated gamma-ray sources in the sky as well as
constraints on DM annihilation cross sections [6–17].
However, the abundance and properties of the DM spikes
are uncertain [6,18–22], as the subparsec regions of the BHs
can only be probed in a few selected systems [23–25].
Furthermore, there is no guarantee that DM can self-
annihilate. This dual uncertainty makes it difficult to
constrain either the DM spikes or DM particle properties
robustly.

Thankfully, this picture could soon change dramatically.
Future space-based gravitational-wave experiments, such
as LISA [26], Taiji [27], and TianQin [28] can detect
hundreds to thousands of small compact objects falling
into massive BHs [29]. These events are called extreme-
mass-ratio inspirals (EMRIs). GWs from EMRIs can probe
the properties of the surrounding DM spikes [30–34]. By
measuring the DM spike profile using purely gravitational
interactions, we could reliably detect the spike and simul-
taneously constrain the DM properties.
Previously, it was demonstrated that EMRI measure-

ments could be used to infer ultralight boson properties
[35]. References [36,37] studied the multimessenger pros-
pects for the QCD axion and primordial black hole
detection by DM spikes. The potential to test DM proper-
ties were also briefly noted in Refs. [2,30,33].
In this work, we show that even with a single GW

detection of DM spike, one can place strong constraints on
the properties of several popular DMmodels. These include
ultralight bosons, keV fermions, self-annihilating DM, and
primordial BHs. We provide the principal arguments
and order-of-magnitude, but robust, determination of the
constraints.

II. DM SPIKE FORMATION AROUND BHS

Consider massive BHs at the centers of DM halos.
The density profile near the BH is approximated by

ρðrÞ ≃ ρ0ðr=r0Þ−γ: ð1Þ
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When the BH grows adiabatically, the surrounding DM
density evolves into a concentrated “spike” [3,4,38]:

ρspðrÞ ¼ ρRð1 − 8MBH=rÞ3ðr=RspÞ−α; ð2Þ

where α ¼ ð9 − 2γÞ=ð4 − γÞ, with G ¼ c ¼ ℏ ¼ 1. The
factors ρR and Rsp depend on γ and the BH mass MBH

through the M–σ relation as in Ref. [38] and concentration
relation from [39]. γ ¼ 1 corresponds to the NFW profile,
and we consider γ ¼ 2 to be the optimistic case.
Depending on the merger history and the stellar envi-

ronment of the BHs, the DM spikes could be disrupted and
end up with shallower slopes [6,18,40–42]. However, the
extent of these effects is debated [12,13], and spikes around
lighter BHs are less likely affected by mergers [43,44]. We
emphasize that the EMRI GW detection itself does not
depend on the formation scenarios or properties of DM
(e.g., annihilation).

III. DM SPIKE DETECTION WITH EMRI

DetectingDMspikes:WemodelGWs fromEMRI systems
interacting with DM spikes (following Refs. [30,33]), and
recover the spike parameters in LISA setting. As the compact
objects fall into the BHs, they lose energy and change orbit
due todynamical friction [30,33,45], allowing for aDMspike
measurement.
Our setup is as follows: For each BH mass, MBH, we set

a constant signal-to-noise ratio of SNR ¼ 30 (the usual
detection threshold for EMRIs [46]).1 DM effects are
modeled at the lowest post-Newtonian (PN) order for
ρdmðrÞ ¼ ρpeakðr=20MBHÞ−α profile using stationary phase
approximation [47] (see Ref. [33], Supplemental Material).
Other binary interactions are at 2.5 PN [48]. We set the
mass ratio of the binary q ¼ μ=MBH ¼ 10−4 (our wave-
form approximation likely breaks down at smaller values of
q ≪ 10−4 and above q≳ 10−3 the spike is likely to be
destroyed by the inspiraling compact object [49]), and we
assume LISA sensitivity with angle-averaged antenna
pattern functions [50]. We recover the parameters of the
injected waveforms, including ρpeak and the density slope α,
by the Fisher information matrix (FIM) method [48,51].2

We assume 5 years of orbital time and the last orbital cycle
at r ¼ 20MBH. The choice for the last orbital cycle is
motivated by the fact that the DM spike is no longer a
power-law below 20MBH; at a very high radius, the orbit

does not shrink, and thus the inspiral does not explore the
full profile of the density spike. Note that the latter may not
be the case for eccentric orbits, which could explore a larger
portion of the spike without losing much of their orbital
energy [52]. Generally, larger central black holes allow us
to probe to larger distances, and could thus be favored as
detection candidates. Systems with very small central black
holes may not be detected very far. However, a more
detailed EMRI population study will be required to
quantify the rate.
Figure 1 shows the error on ρpeak recovery. The recovery

is accurate (Δ log10 ρpeak < 1) in much of the parameter
space. We find Δ log10 ρpeak ≲ 3 at BH masses MBH ∈
½103; 104.5� M⊙ and MBH ∈ ½103; 105� M⊙ for γ ¼ 1 and
γ ¼ 2, respectively. We consider the cases where
Δ log10 ρpeak > 3, as “unmeasurable.” At all the considered
values, the spike leaves a noticeable orbital shift on the
compact object’s trajectory. Below 103 M⊙, the detector
sensitivity deteriorates rapidly [53]. We emphasize that
even order-of-magnitude estimates (Δ log10 ρpeak ≲ 3) can
place stringent bounds on the DM models.
We note that at high densities (around the purple line

in Fig. 1 and M ≳ 105.5 M⊙) the matter-induced phase
corrections become larger and the waveform approximation
is unsuitable (Ref. [33,35]; Supplemental Material [54]).
As the effect is larger, we expect the measurement
would be even easier; the measurement precision is thus
interpolated from lower density points as a conservative
estimate.
More accurate waveforms introduce higher-order

effects [55]. In principle, these higher-order corrections

FIG. 1. Uncertainty in the peak DM spike density Δ log10 ρpeak
from EMRI GWmeasurement around a massive BH as a function
of ρpeak and BH mass MBH. We set the mass ratio q ¼ 10−4 and
SNR ¼ 30. Even order-of-magnitude estimates (Δ log10 ρmax ≲ 3)
will be enough to place stringent constraints on the DM models.
Δ log10 ρmax ≲ 3 is satisfied in the range MBH ∈ ½103; 104.5� M⊙
and MBH ∈ ½103; 105� M⊙ for γ ¼ 1 and γ ¼ 2 (thick solid and
dashed lines, respectively). Beyond that, we consider the event
“unmeasurable.”

1Note that the horizon distance, under this assumption, can be
very small for light binaries. Our simplistic computation of the
optimally oriented SNR indicate that the binaries (as modelled
here) can be detected up to Oð1Þ, Oð100Þ and Oð1000Þ Mpc for
M ¼ 103, M ¼ 104 and M ¼ 105 M⊙ central black hole masses,
respectively, depending somewhat on the parameter choice.

2We recover θ⃗ ∈ fA;ϕc; tc; logMc; log η; β; σ; log ρpeak; αg,
where β, σ represent spin-orbit and spin-spin contributions to
the phasing [48].
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could be degenerate with the gravitational drag induced by
the spike. However, we expect the degeneracies to be
small: the spike introduces a slow cumulative phase shift
due to gravitational drag, which is quite distinct from the
higher-order effects, such as spin precession.
Our results do not strongly depend on the final spike

index, but is most sensitive to ρpeak. For simplicity, we fix
the SNR and q. A larger SNR would lower the measurable
line (by a factor of a few for SNR ¼ 100). The gain another
factor of few if we choose q ¼ 10−3, and vice versa for
q ¼ 10−5.
Finally, we note that the final DM density index is

always α > 2.25. If the astrophysical spike disruption
effects are important, the slope could be flattened, perhaps
ending with a shallow case α ≃ 1.5 or an intermediate case
α ≃ 1.8 [12]. Even in the shallow case, the spike can still be
detectable at fMBH ¼ 103 M⊙; γ ¼ 2g; while in the inter-
mediate case, the spike is detectable at fMBH ¼
103 M⊙; γ ≃ 1.6g or fMBH ≤ 104 M⊙; γ ¼ 2g. The EMRI
GW probe can thus be sensitive to a broad range of spike
parameters.
EMRI detection rates: Studies of the expected EMRI

rate with self-consistent BH formation and evolution
models suggest Oð100–1000Þ EMRI observable events
in LISA [29]. Importantly, these models favor events with
lighter BHs. DM spikes around lighter BHs are denser
and thus easier to detect (Fig. 1). Also, light BHs are
less likely to suffer from major mergers and thus more
likely to retain the DM spikes [30,33,43,44]. DM spikes
themselves could enhance the merger rates due to
dynamical friction effect [56], making them more likely
to harbor detectable EMRIs. Here we have fixed our
parameter choices for the black hole/DM spike system,
and consider somewhat different setup for the rates than
considered in, for example, Ref. [29]. Therefore, it is not
clear at what rate we would detect the type of system we
consider with respect to regular EMRIs. Indeed, a more
dedicated study to the EMRI population that explores the
whole population of black hole parameters, EMRIs, and
DM spikes will be required before we can quantitatively
estimate how many DM spikes we might expect to
observe with LISA.

IV. DARK MATTER TESTS WITH EMRIS

If DM consists of ultralight bosons, light fermions, self-
annihilating particles, or primordial BHs (PBHs), the DM
spike density would be affected.
Ultralight bosonic DM: Consider a scalar field ψ i

surrounding the center of a galaxy without a BH. Since
the boson is light, it forms a BEC (i.e., it is in ground state;
ψ i ¼ ψground

i for some initial Hamiltonian) [57–62]. A BH
then grows adiabatically in the center, evolving the sur-
rounding scalar field. The growth takes place on much

greater timescale than the scalar field cycle,3 thus adiabatic
theorem [67–69] applies: The final state of the scalar field
ψf, after growth, will be in the ground state of the final
Hamiltonian, which is approximately the BH Hamiltonian
near the center [58].
The density of the (final) ground state [63,70]

ρsðμs;MBH;r;θ;MsÞ≃
Ms

64πμs
M5

BHμ
11
s r2e−MBHμ

2
srsin2θ; ð3Þ

in theMBHμs ≪ 1 limit, where μs is the boson mass, r is the
radius,Ms ¼

R
ρr2drdΩ is the cloud mass, and the density

has been expanded in leading order of r−1. We assume
complex scalar fields, but real fields share similar predic-
tions [64,65,71,72].
The cloud mass must be smaller than the mass inside

the influence radius (Ms ≲Mmax
s ∼ 2MBH [73]). This

translates to constraints on the maximal observed density
ρobs ≲ ρmax ¼ ρsðμ;MBH; 2=ðMBHμ

2
sÞ; π=2;Mmax

s Þ, which
yields

μs≳5×10−17 eV

�
ρobs

1020GeV=cm3

2MBH

Mmax
s

�
1=6

�
105M⊙

MBH

�
2=3

:

ð4Þ
Consequently, we could disfavour, e.g., the fuzzy/wave
DM candidate in the μs ∈ ½10−23; 10−21� eV range [62,63],
proposed as a solution to many cosmological problems
(Fig. 2, panel a).
If stars or compact objects of large mass are present near

the BH in sufficient abundance, the cloud ground state
[Eq. (3)] could mix with higher-order states, or collapse
back to the BH [70,77]. In this case, the boson cloud will no
longer reside in the ground state, but either does not exist or
resides in a higher state. However, higher modes are spread
across an even larger volume and therefore predict smaller
densities [63], making our estimate conservative.
When the boson mass is larger, superradiance can create

bosonic clouds [65,66].4 These clouds may allow one to
verify the existence of the bosons by this same EMRI
measurement [35] (Fig. 2, panel a, green region, which we
show for completeness).
Ultralight bosons could, in principle, inhibit the for-

mation of these tails due to quantum effects [61]. The
precise framework to model the gravitational effects by
light bosons (or scalar fields) is still worked out [45,74,
78–85]. If light bosons inhibit the tails and thus dynamical
friction, then a measurement of the spike implies even
stronger constraints on the ultralight bosons.
Fermionic DM: Consider a system of a degenerate

fermionic DM. The Fermi velocity is

3The scalar field oscillation time-scale τ ∼ μ−1s ≲ 100 yr ≪
106 yrs when μs ≳ 1025 eV [63–66].

4In the LISA BH range MBH ∈ ½103; 106� M⊙ would have
such “resonant” bosons in the μs ∈ ½10−17; 10−14� eV range.
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vF ¼
�
6π2ℏ3ρ

m4
DMg

�
1=3

: ð5Þ

For the density spike to be stable, the Fermi velocity must
be less than the escape velocity of the BH/DM spike system

vF ≤ vesc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GðMBH þMχÞ

R

r
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMBH

R

r
: ð6Þ

This translates to a lower bound on the fermionic DMmass,
given an observation of density ρobs,

mDM≳30 keV

�
ρobs

1020 GeV=cm3

2

g

�
1=4

�
R

20MBH

�
3=8

: ð7Þ

Thus, a detection of the DM spike could significantly
improve existing fermioninc DM constraint [75] by more
than 2 orders of magnitude. While our result only depends
on the measured density, we express the constraint in terms
of MBH using our reference DM spike model for consis-
tency, as shown in Fig. 2 panel a. This result is robust,
and does not depend on the initial phase-space density
distribution [86,87]. It will also close the νMSM sterile
neutrino DM window [88,89] without relying on X-ray
searches [90–97].
Self-annihilating DM: Self-annihilating DM would rap-

idly smooth out the DM spike, forming an “annihilation

plateau” [4]. We approximate the plateau as a flat core,
ρcore ¼ mχ=ðσvtBHÞ [3] (see also [17,42,98]). Taking con-
servatively the age of the BH to be tBH ≳ 106 years (much
less than the age of galaxies or stars, ∼1010 yr), an EMRI
DM spike measurement sets an upper limit on the total
annihilation cross section,

σv ≲ 3.17 × 10−32 cm3 s−1
�

mχ

100 GeV

�

×

�
1020 GeV=cm3

ρobs

��
106 yr
tBH

�
: ð8Þ

Thus, any EMRI DM spike measurement will be in strong
tension with the simplest thermal relic DM hypothesis
(Fig. 2, panel c), currently an open window between
20 GeV < mχ < 100 TeV [76]. We emphasize that this
is the total cross-section, and thus includes the difficult-to-
probe neutrino channels.
For other cases (p-wave annihilation, non-thermal mod-

els), the cross-section could be significantly lower [13].
Then, the EMRI event could have a persistent electromag-
netic counterpart due to DM annihilation. We find that in
the optimistic scenario, where γ ¼ 2, the BH is heavy
MBH ∼ 106 M⊙ (see EMRI detection section, however) and
nearby D ∼ 90 Mpc, the electromagnetic part is detectable
by e-ASTROGAM/Fermi/CTA [99–101], by comparing

(a) (b) (c) (d)

FIG. 2. New constraints (red) on DM models if a DM spike is detected with an EMRI. For ultralight bosons (panel a), fermionic DM
(panel b), and PBH DM (panel d), we exclude a region of the DM particle/PBH mass. The constraints depend on the mass of the detected
central BH,MBH (the DM spike profile is uniquely predicted for givenMBH using theM–σ relation). For self-annihilating DM (panel c),
the constraint is on the cross section-DM mass plane, assuming MBH ¼ 105 M⊙. If ultralight bosons exist in the mDM ∈
½10−17; 10−14� eV range, they could be identified through superradiant-induced clouds (see Ref. [35,70,74]; panel a, green region).
Lower limits (gray) on fermionic DM and upper limits on DM annihilation cross section are from Refs. [75,76]. For all panels, the thick
solid lines and thin gray lines correspond to γ ¼ 2 and γ ¼ 1 initial DM halo slopes, respectively.
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the expected signals with the detector sensitivity, and
assuming χχ→ττ channel [102] (details in Supplemental
Material [54]). However, within such a small volume, the
expected number of EMRI events is only of order one
[103]. Thus, to observe the counterpart, the fraction of
halos hosting spikes must be high, the DM spike must be
young, and the event must be nearby.
Primordial black hole DM We consider the case that

PBHs dominates cosmic DM density. If a DM spike is
measured with EMRI, there must be at least one PBH
(N ≥ 1) in the probed volume (8MBH < r < 300MBH).
The mass of the PBH mPBH, must then satisfy

mPBH ≤
Z

300MBH

8MBH

ρobsðrÞd3r: ð9Þ

Consequently, the PBH mass range could be constrained
to mPBH ≲ 10−7 M⊙ (γ ¼ 1, Fig. 2, panel d). This simple
PBH number argument offers an independent constraint on
the PBHs, complementary to existing considerations (e.g.,
Refs. [104–109]). We note that the above N ¼ 1 constraint
is exceptionally conservative. In the case of a spike
detection, for the PBH DM to mimic the dynamical friction
effect, the spike must have a large amount of PBHs N ≫ 1,
thus leading to more stringent constraints.
One could combine these spike measurements with

ground-based detectors that observe PBH mergers within
the spikes. However, unfortunately, the fraction of mergers
within a single halo is Nsp ≲ 10−2 yr−1 [38], and thus
constraining PBHs by aid of ground-based detectors would
be difficult. We note that PBHs themselves also act as
EMRIs, which could offer another channel for their
detections [110].

V. DISCUSSION AND CONCLUSION

We have shown that EMRI GWmeasurement with space
interferometry experiments could place strong constraints
on DM models across the particle landscape. The EMRI
GWemission will provide purely gravitational tests for DM
spikes, which is a prediction of cold collisionless DM.
In the DM parameter space we consider here, the DM

spike will always flatten due to the intrinsic DM particle
properties. On the other hand, astrophysical effects may
also partially flatten the spike. A large number of expected
EMRIs (∼100–1000) is thus extremely advantageous. They
allow us to probe BH systems under various astrophysical
conditions and with variable merger histories, reducing the
chance of non-detection of the spike due to astrophysical
effects. However, a more dedicated study to the EMRI
population will be required to make quantitative estimates
on the detection rate.
If no spikes are detected, then, unfortunately, no

conclusions can be drawn immediately. One possibility
is that astrophysical processes (stellar heating, mergers

[6,18,21,41]) have destroyed the spikes. The processes
must then be common, robust, and applicable to different
BHs masses and galaxy properties. Follow-up and detailed
astronomical observations of the EMRI events (e.g., [111])
are then necessary to identify the astrophysical mechanism.
Indeed, galaxies with large EMRI rates may tend to have
stellar cusps, which could negatively bias their likelihood
of hosting DM spikes [29,112]. However, a recent work
demonstrates that the spikes could enhance the merger
rates [56].
The properties of DM might also cause the smoothing

of the spike. In these cases, the GW observation itself
may already contain smoking-gun signatures of the particle
DM (e.g., [35]). Otherwise, independent probes are needed
to pinpoint the particle effect (gamma-ray searches or
others [24,25]).
Here we provide the principal methodologies for DM

searches by EMRIs. To fully realize the search potential,
realistic waveforms are required. These waveforms should
be generic in their ability to model DM distributions. The
form of the spike distribution can, in principle, be quite
generic. Additionally, the current form of dynamical
friction assumes large velocities for the smaller compact
object [113]; however, in principle, there will be a depend-
ence on the local DM velocity distribution, which should be
quantified. It will also be crucial to study waveforms
specialized toward EMRIs [29,114–118]. Indeed, more
flexible waveforms should be developed for realistic
LISA data analysis. These future studies will be vital to
the development of DM spike detection, but we expect the
results here to be qualitatively similar in the future.
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