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Mounting evidence indicates that neutrinos likely undergo fast flavor conversion (FFC) in at least some
core-collapse supernovae. Outcomes of FFC, however, remain highly uncertain. Here we study the cascade
of flavor-field power from large angular scales in momentum space down to small ones, showing that FFC
enhances this process and thereby hastens relaxation. Cascade also poses a computational challenge, which
is present even if the flavor field is stable: When power reaches the smallest angular scale of the calculation,
error from truncating the angular-moment expansion propagates back to larger scales, to disastrous effect
on the overall evolution. Essentially the same issue has prompted extensive work in the context of plasma
kinetics. This link suggests new approaches to averting spurious evolution, a problem that presently puts
severe limitations on the feasibility of realistic oscillation calculations.
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I. INTRODUCTION

Recent advances suggest that neutrino flavor transforma-
tion in core-collapse supernovae may occur on much shorter
scales than previously believed. This new class of collective
effects has been dubbed fast flavor conversion (FFC), in
reference to the fact that the associated instabilities grow at
rates proportional to the neutrino self-coupling potential
μ ¼ ffiffiffi

2
p

GFnν [1–24]. Although a comprehensive appraisal
of their prevalence and importance is still lacking, fast
instabilities have now been located in several simulations
of core-collapse supernovae and accretion-disk systems
in remnants of coalescing neutron-star–neutron-star and
neutron-star–black-hole binaries [25–36]. It appears quite
possible that FFC engenders significant dynamical and
compositional changes in these environments.
In Ref. [17] we proposed that FFC stems from specific

features of the equations of motion that become more
apparent upon expanding in angular moments. Taking the
neutrino density to be high, the neutrino angular distribu-
tions to be axially symmetric, and the matter background to
be homogeneous on the scales of interest, neutrino flavor
evolves on short timescales according to the equation

_Pv þ vP0
v ≅ μðD0 − vD1Þ × Pv; ð1Þ

where Pv is the polarization vector of neutrinos with
propagation angle v ¼ cos θ (Pv;z being its flavor content),
Dl is the lth Legendre moment of Pv − P̄v, and the overdot
and prime denote derivatives with respect to time and
space. In the limit that the flavor field is homogeneous, FFC
is the result of pendulumlike motion of D1, a point
supported by linear stability and numerical analysis. In
the other analytically tractable limit, where the flavor field
is stationary, FFC appears to be the result of pendulumlike
motion of D0. Although the conjecture regarding steady-
state solutions is supported by direct manipulation of the
equations of motion, we have not attempted to test it with
stability analysis or numerics.
In the numerical calculations of Ref. [17], FFC is obser-

ved to be nearly periodic. Aperiodicity occurs because each
angular moment is coupled to its neighbors in an infinite
chain, and nothing prevents power from making its way out
to ever higher l, never to return. On longer timescales the
influence of finite ω ¼ δm2=2p is felt as well, p being
neutrino momentum and δm2 the mass-squared difference.
Crucial conservation laws are broken by ω ≠ 0, and slow
collective effects (with growth rates proportional to

ffiffiffiffiffiffi
ωμ

p
)

come into play, interacting with fast oscillations.
Whereas in our previous study we emphasized the

importance of low-l moments in shaping FFC, here we
focus on the dynamics at later times and smaller angular
scales. Central concepts include irreversibility and colli-
sionless relaxation. Under unitary evolution, there is only
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one way for a dense system of neutrinos to relax to flavor
equilibrium: by transferring power to smaller scales in
phase space. The asymptotic state is not a true equilibrium,
which can only be achieved with collisional processes, but
it is equilibrated in a coarse-grained sense, and for practical
purposes the coarse-grained flavor field is what matters
most. Viewing neutrino flavor evolution through the lens of
collisionless relaxation brings out more clearly some of its
important parallels with other physical systems. We discuss
phase-space transfer at a general level in Sec. II.
Flavor relaxation via phase-space transfer has been

observed and discussed in numerous references, often with
the appellations kinematic decoherence and multiangle
decoherence, to be contrasted with the collisional variety.
Coarse-grained equilibration has been witnessed repeatedly
in numerical toy models. Yet the theory describing how the
flavor field relaxes—on what timescale, to what asymp-
totic ensemble, and with what parametric dependence—is
underdeveloped. In our view, this is one of the most
important gaps in our current understanding of the super-
nova oscillation problem, as it is the missing link connect-
ing linear instabilities and idealized collective phenomena
to realistic neutrino transport. Had we powerful enough
computers, the full problem could be simulated and the
physics we seek to understand would be incorporated
organically. But alas we do not, and given the astrophysical
stakes, waiting for computing power to catch up does not
strike us as prudent.
The foundational exposition of multiangle decoherence

was given by Raffelt and Sigl in Ref. [37], where they
showed that a nearly isotropic gas of neutrinos is prone to
rapid flavor depolarization. One of the important achieve-
ments of that paper was to trace the origin of depolarization
to exponential growth of D1 on a timescale proportional toffiffiffiffiffiffi
ωμ

p −1. Recent years have seen this phenomenon reinter-
preted as an example of a multi-zenith-angle instability. But
while linearized dispersion relations are a powerful analytic
tool, they do not supersede hard-won insights at the level of
the polarization vectors. The goal, after all, is not just to
locate instabilities, but to understand their consequences.
Shortly after the publication of Ref. [37], it was

established that realistic asymmetries between the fluxes
of νe and ν̄e typically prevent this instability from taking
hold during deleptonization [38] (with possible caveats
now coming from the emerging understanding of global
asymmetries in the supernova neutrino emission [39]). Still,
the observations regarding multiangle decoherence remain
interesting, especially in light of the connection between
FFC and pendulumlike motion of D1. The exponential-
growth solution is accompanied by rapid decoherence
because, in accord with a conservation law in the equations
of motion [Eq. (13) below], the growth occurs at the
expense of S0, the 0th Legendre moment of Pv þ P̄v. In
homogeneous FFC, however, the vector magnitude D1 is
constant. If fast instability is to be complicit in multiangle

decoherence, it must accomplish this end differently than
the slow instability identified in Ref. [37].
We show in Sec. III that FFC hastens relaxation by a

distinct mechanism in which the flavor field is kinemat-
ically decohered by polarization-vector dephasing.1 This
mechanism, whereby power leaks to smaller scales in
momentum space, is in fact always operative, even when
the flavor field is linearly stable (see below). Any amount of
anisotropy is enough to expose the system to this source of
effective irreversibility.
Regardless of its origin, momentum-space transfer is a

rather grave computational concern. Once power cascades
down to the smallest angular scale of the calculation, the
flavor field begins to feel the finite resolution of momentum
space. Errors at the smallest scale become magnified as
they propagate back up the chain of multipoles. As we
show in Sec. IV, even a minuscule amount of power
slipping out to high l is enough to wreak havoc.
One solution, of course, is to evolve a large number of

multipoles, but since the details at very high l are practi-
cally irrelevant, this is a highly wasteful approach in a
setting where one can ill afford to be profligate. A better
solution would be to close the equations at a reasonable l in
such a way as to avoid spurious backreaction. Consistent
with our previous study, we find that fast oscillations are
decently well approximated by evolving only the largest
angular scales. But for relaxation to occur, the low-l
moments must be able to lose power to the “inertial range”
that forms at higher l. In this sense, cascade is a necessary
evil. We do not solve the closure problem here, but at the
end of Sec. IV we indicate possible paths forward and point
to some of the strategies that have been employed in plasma
kinetics.
In Sec. V we summarize our analysis. The results

presented here are based on a simplified model of flavor
evolution and are by no means direct predictions of real-
world outcomes. The issues we address, however, are quite
general. If it turns out that instabilities in realistic settings
prompt rapid flavor equipartition (as assumed in Ref. [27],
for example), or something comparably simple and robust,
then the details of how the flavor field relaxes might be
purely academic. But failing that, the physics of relaxation
must be understood more deeply, and momentum-space
transfer will be an essential element. We speculate, in the
final section, on how our findings are likely to be modified
in more realistic models.

II. COLLISIONLESS RELAXATION

The transfer of energy across scales in phase space is a
nearly universal feature of weakly collisional kinetic

1Here and in the following we use “dephasing” to refer to
nonzeroA × B for two polarization vectorsA and B. Most often,
the relevant dephasing will be with respect to D1. We use
“kinematic decoherence” to encompass any kind of collisionless
depolarization.
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systems. In a classical context, it is related most basically to
the law of inertia and the Hamiltonian preservation of
phase-space density. The latter constrains what collision-
less trajectories can accomplish: The best they can do, as far
as transforming the distribution in phase space, is to stretch,
squeeze, and knead it. Because phase-space transfer, which
describes such reconfigurations, tends to move the system
toward more typical macroscopic states, it serves as the
classical mechanism of collisionless relaxation.
Cascade—by which we mean sustained, directed

transfer—occurs when a system’s approach to equilibrium
is facilitated by preferentially shifting energy to smaller
scales than the one at which it is sourced (or, in the case of
inverse cascade, to larger ones). Fluid and magnetohydro-
dynamic turbulence may be the most famous examples: In
the classic turbulent system, energy at the driving scale
cascades down to smaller scales until viscous dissipation
becomes efficient. Fluids, of course, are not weakly colli-
sional, but they are the exception that proves the rule of
transfer’s commonness. Even under the non-Hamiltonian,
momentum-isotropizing effects of collisions, turbulent
dynamics takes advantage of the other half of phase space
and works across spatial scales.
Despite neutrino oscillations being a quantum pheno-

menon, classical kinetics is a good starting point for
thinking about weakly collisional neutrino transport. In
the quantum-kinetic description [40,41] [from which
Eq. (1), for example, derives], physically relevant variations
in time and space occur over scales large enough that the
Wigner quasiprobability distribution resembles a bona
fide probability distribution. Many-body correlations are
also argued, one way or another, to be ignorable [42,43].
Neutrino quantum kinetics then appears to describe a
theory of individual particles, each carrying quantum
degrees of freedom but free-streaming classically. These
considerations imply significant resemblances between
neutrino flavor evolution and classical kinetics, despite
the quantum character of the former.
Direct cascade in a kinetic system corresponds, in

coordinate space, to the formation of small-scale inhomo-
geneities and, in momentum space, to the formation
of small-scale spectral distortions and angular features.
Coordinate- and momentum-space transfer (of which
cascade is a special case) are both already possible in
the collisionless, fieldless Vlasov equation in one spatial
dimension,

_fðt; x; uÞ þ uf0ðt; x; uÞ ¼ 0; ð2Þ

where f is a particle distribution function and u is the
particle velocity. If the spectrum is monochromatic, f is
simply translated along x. But with a spectrum of veloc-
ities, inhomogeneity and polychromaticity work together to
make for more complicated evolution, involving mode
transfer in x- and u-space. The point, to rephrase the

opening remarks of this section, is that particle free-
streaming on its own is sufficient to generate smaller-scale
features over time. Nonzero fields can enrich the dynamics
further, but either way, Liouville’s theorem implies that a
collisionless Vlasov system can only approach equilibrium
in a coarse-grained sense, by hiding the fluctuations below
the resolved granularity.
Cascade commonly poses numerical challenges. In high-

Reynolds-number fluids, like those found in the convective
regions of supernovae, spatially resolving the evolution
down to the dissipation scale is often impossible [44]. In a
collisionless plasma, phase-space filamentation causes
numerical solutions of the Vlasov equation to fail in finite
time, an issue that has been the subject of computationally
oriented investigation going back decades [45,46]. In
collisionless gravitational systems, closely related issues
arise when solving for the evolution in phase space [47].
Cascade must be handled delicately in all of these settings.
Besides being the cause of numerical trouble, it is also of
physical importance, being crucial to (among other things)
Reynolds stresses in fluids, phase-space structures and
enhanced collisionality in plasmas [48,49], and phase
mixing and violent relaxation in gravitational systems [50].
In a collisionless gas of neutrinos, there are multiple

potential sources and forms of phase-space transfer. The
phenomenon most like the previously mentioned examples
is the formation of spectral distortions and filamentation
due to classical transport,

_fναðt;x; û; EÞ þ û · ∇fναðt;x; û; EÞ ¼ 0; ð3Þ

where α identifies flavor. Because ultrarelativistic neutrinos
all travel with velocity u ≈ c ¼ 1 (hence the appearance of
the unit vector û), Eq. (3) lacks the dispersive shearing
exhibited by Eq. (2). Moving along a streamline, spectral
distortions therefore only appear in the angle-integrated
distributions. Other than that, Eq. (3) permits all of the same
relaxation processes one expects from the collisionless,
fieldless Vlasov equation.
In practice, however, collisionless relaxation is not a

particularly helpful lens through which to view the
classical transport of supernova neutrinos. It adds little
to the usual picture of neutrinos as transiting from an
opaque region to a transparent one as they propagate
outward in radius. The angular distributions of momentum,
for instance, are isotropized by emission, absorption, and
scattering, and are rendered more forward peaked by free-
streaming out from a roughly spherical geometry. The
microphysics and the environment are simply not con-
ducive to small-scale angular features beyond those already
captured by interpolating between the isotropic and single-
beam limits. This fact underpins the adequacy of moment
methods in neutrino radiative transfer.
The situation is quite different with oscillating neutrinos.

Flavor ceases to be conserved along trajectories, and the
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nonlinearity arising from neutrino-neutrino forward scat-
tering supports collective effects that promote collisionless
relaxation. Rather in contrast to collisional processes,
oscillations favor the generation of small-scale features
in the neutrino flavor field of a supernova.
The oscillation terms engineer this outcome in different

ways. Ignoring matter currents (and suppressing indepen-
dent variables, which are the same as above), the equation
of motion of polarization vector P with unit velocity vector
û is

_Pþ û ·∇P ¼
�
ωBþ λLþ

ffiffiffi
2

p
GF

Z
dΓ0D0

−
ffiffiffi
2

p
GF

Z
dΓ0ðû · û0ÞD0

�
× P: ð4Þ

Here, dΓ0 is a phase-space element, with the integrals over
all (anti)neutrino momenta at ðt;xÞ; λ ¼ ffiffiffi

2
p

GFne is the
matter potential; and B, L, and D are the mass, flavor, and
difference vectors, respectively.
The terms on the right-hand side of Eq. (4) affect phase-

space transfer in distinct ways. The dispersive ωB term
elicits transfer in p-space—something that we noted was
not possible in Eq. (3)—by causing neutrinos of different
energies to dephase. This effect is sometimes (but not
always) what has been meant by the term kinematic
decoherence; it represents the momentum-space comple-
ment to wave-packet separation in coordinate space [51].
Like all of the terms, ωB interacts with convection.
Structures in p-space that are generated by it in one spatial
region thus get communicated to other regions, and vice
versa. Under the common convention that antineutrinos
obey the same equations but with ω → −ω, the vacuum
term is also responsible for dephasing neutrinos from
antineutrinos.
λL is independent of neutrino momentum and therefore

has no direct effect on p-space transfer. This is why it can
be rotated away in settings that are fully homogeneous,
neutrino flavor field included. The term is not entirely
without consequence, however, even in the fully homo-
geneous case, as exemplified by the logarithmic slowdown
of the bipolar instability [52]. In settings that are inhomo-
geneous in the flavor field, if not also in the matter
background, it is responsible for multiangle matter sup-
pression [53]. From one viewpoint, this phenomenon is due
to the compression of oscillation patterns along nonradial
trajectories. Equivalently, it can be seen as a dephasing
effect associated with convection. This is the sense in which
λL alters p-space transfer indirectly.
In the homogeneous limit, which we adopt in the rest of

the paper, the isotropic nonlinear term
R
dΓ0D0 synchro-

nizes neutrinos and antineutrinos of different momenta by
acting equally on all of them [54–59]. The anisotropic
nonlinear term

R
dΓ0ðp̂ · p̂0ÞD0, on the other hand, causes

dephasing because of its dependence on û. If the system

is sufficiently simple or symmetric, (nearly) anisotropic
collective oscillations can result; the dephasing need not be
permanent. One of the main points of this paper, though, is
that realistically this term always drives some dephasing
that is effectively irreversible. To some extent, if the
environment is stationary and axially symmetric, the roles
of the nonlinear terms are swapped,

R
dΓ0ðp̂ · p̂0ÞD0 acting

to synchronize and
R
dΓ0D0 acting to dephase [17]. While

the stationary and homogeneous limits give intuition, in
general the flavor field is spatiotemporally evolving, and
the influence of axial asymmetry may be significant.
In this paper we focus exclusively on momentum-space

transfer, using monochromatic (or integrated-over) spectra
for simplicity’s sake. Recent progress in the physics of
collective neutrino oscillations has brought to the fore the
significance of momentum-space anisotropy for flavor
instability. Our goal is to develop a deeper understanding
of how anisotropy enables flavor relaxation. As a starting
point, and to make contact with Ref. [17], we also adopt
axial symmetry. We comment on the extensions to axial
asymmetry and x-space transfer in the concluding section.

III. OSCILLATIONS AND CASCADE

For this analysis, we consider homogeneous, axially
symmetric, collisionless flavor evolution, and we assume
that the neutrino system is functionally monochromatic due
to the high neutrino density. These simplifications allow us
to isolate certain fundamental aspects of the momentum-
space dynamics. In Sec. V we offer some comments
regarding the effects of inhomogeneity, axial asymmetry,
and collisions. Effects associated with a spectrum of
energies are not pursued here.

A. Analysis of collective effects

With the assumptions stated above, and with the matter
potential rotated out of the problem, the equations of
motion of the neutrino and antineutrino polarization vectors
are

_Pv ¼ þωB × Pv þ μðD0 − vD1Þ × Pv;

_̄Pv ¼ −ωB × P̄v þ μðD0 − vD1Þ × P̄v: ð5Þ
[Relative to Eq. (1) we have dropped the convective term
and restored the vacuum term.] Forming the sum and
difference vectors Sv ¼ Pv þ P̄v and Dv ¼ Pv − P̄v, then
taking Legendre moments, one has

_Sl ¼ ωB × Dl þ μD0 × Sl −
μ

2
D1 × ðalSl−1 þ blSlþ1Þ;

_Dl ¼ ωB × Sl þ μD0 ×Dl −
μ

2
D1 × ðalDl−1 þ blDlþ1Þ;

ð6Þ
where al ¼ 2l=ð2lþ 1Þ and bl ¼ 2ðlþ 1Þ=ð2lþ 1Þ [37].
With μ ≫ ω, D0 is constant on μ−1 timescales. Fast

instability must therefore be caused by instability in D1.
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To understand the evolution of D1 on short timescales, it is
helpful to switch to a frame rotating with frequency μD0

about D̂0. We will use primes to denote vectors in the
rotating frame. Following Ref. [17], we define a (unit-
length) “pendulum vector”

δ0 ¼ D0
1

D1

; ð7Þ

having angular momentum

L0 ¼ 1

3
ðD0

0 þ 2D0
2Þ ð8Þ

and spin

σ ¼ δ0 ·L0; ð9Þ

and being acted on by a gravitational force that points
opposite to

G0 ¼ 2

5
D0

3: ð10Þ

Dropping terms proportional to ω, one then finds that δ0
satisfies the pendulumlike equation

δ0 × δ̈0

μ
þ σ _δ0 ¼ μD1G0 × δ0; ð11Þ

warranting the interpretations just given. Furthermore, the
length D1 of the pendulum is constant and its motion is
restricted by conservation of the energylike quantity

ED ¼ μG0 · D0
1 þ

μ

2
L02; ð12Þ

as well as by a series of more complicated conservation
laws. G0 plays the role of gravity but is itself coupled to δ0
directly and to higher moments via D0

4. These features
distinguish the fast pendulum from the slow (bipolar)
pendulum of Ref. [52], for which gravity is a fixed external
field. Despite the differences, the pendulum analysis
accounts for features of fast oscillations seen in linear
stability and nonlinear numerics.
We reiterate, though, that the fast-pendulumanalysis relies

on vacuum effects being negligible aside from seeding
instability. Nonzero ω leads to nonconservation of ED,
D0, and D1, among other quantities. A different quantity,

ES ¼ ωB · S0 þ
μ

2
ðD2

0 − D2
1Þ; ð13Þ

is still conserved, however [37]. In isotropic settings, this is
the energy of the bipolar pendulum

Q ¼ S0 −
ω

μ
B: ð14Þ

Letting q ¼ Q=Q and assuming isotropic angular distribu-
tions, the bipolar pendulum equation reads

q × q̈
μ

þ ς _q ¼ ωQB × q; ð15Þ

where the spin ς of the pendulum is

ς ¼ q · D0: ð16Þ

Allowing again for anisotropic angular distributions, the
monopole now evolves as

_S0 ¼ ωB ×D0 þ μD0 × S0 − μD1 × S1; ð17Þ

hence

_Q ¼ μD0 ×Q − μD1 × S1: ð18Þ

Anisotropy disrupts the slow pendulum, and it does so in a
way that is mediated by the fast pendulum D1.
Raffelt and Sigl [37] studied kinematic decoherence in

systems with equal fluxes of νe and ν̄e. They observed that,
because ES is conserved, S0 can only go to zero if
appropriate changes occur in D0, D1, or both. In particular,
they identified an exponential solution for D1 as being key
to decoherence. Specifically, when theDl vectors are small,

D̈1 ≅ −
1

3
ωμðB · S0ÞD1: ð19Þ

In the normal hierarchy (NH), B̂ · Ŝ0 ≈ −1 and exponential
growth is possible when S0 is in its stable position. In the
inverted hierarchy (IH), exponential growth only occurs
when the pendulum is unstable and swings away from its
initial inverted position.
Scenarios with small Dl vectors are special cases,

however, and it has been observed in numerical simula-
tions that collective oscillations often exhibit behavior
more in line with single-angle expectations than multi-
angle decoherence [60,61]. As shown in Ref. [38], a large
difference between the νe and ν̄e fluxes suppresses
decoherence. Working with the bulb model, wherein
neutrinos are emitted semi-isotropically from a single
decoupling surface, and using FðναÞ to denote the number
flux of flavor α, the authors identified

ϵ ¼ FðνeÞ − Fðν̄eÞ
Fðν̄eÞ − Fðν̄xÞ

ð20Þ

as the decisive asymmetry parameter determining the
transition from quasi-single-angle to decoherent multiangle
behavior. Insofar as bulb-model results are accounted for by
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analyzing the homogeneous Eq. (5), the suppression of
decoherence can be attributed to other terms showing up on
the right-hand side of Eq. (19).
It is now understood that the bulb model is itself a special

case, assuming as it does that all flavors have angular
distributions of the same shape. Quasi-single-angle evolu-
tion, kinematic decoherence, and fast oscillations are all
related to asymmetries in the fluxes, and in a realistic
supernova no single parameter controls the relative sig-
nificance of each of these facets of the problem. The
relevance to fast oscillations of the ratios Dl=D0, for
example, was emphasized in Ref. [17].
The importance of asymmetry in controlling kinematic

decoherence can be seen in the equations

_S1 ¼ ωB ×D1 þ μD0 × S1 þ
1

3
μðS0 þ 2S2Þ ×D1;

_D1 ¼ ωB × S1 þ
2

3
μð2D0 þ D2Þ ×D1; ð21Þ

where as usual the role ofD1 in coupling adjacent moments
is on display. IfD0 is large enough, these equations become

_S1 ≅ μD0 × S1;

_D1 ≅
4

3
μD0 ×D1: ð22Þ

That is, both S1 and D1 tend to track D0 as it evolves,
keeping the decohering term D1 × S1 small in Eq. (17).
Then, since

_D0 ¼ ωB × S0 ð23Þ

as always, the equation of motion of S0 is approximately
that of the isotropic bipolar system. The larger D0 is, the
more adiabatic the tracking, the more suppressed the
decoherence, and the more accurate the isotropic approxi-
mation. A large isotropic asymmetryD0 is not the only way
to prevent multiangle decoherence, however. Large initial
values of D1 can also preempt the exponential solution
of Eq. (19).
The goal of the analysis thus far has been to indicate how

fast collective oscillations, slow collective oscillations, and
multiangle decoherence all arise out of the same system of
equations. These phenomena can be understood in isolation
by appealing to Eqs. (11), (15), and (19), respectively. In a
linear analysis, they correspond to the fast, bipolar, and
multi-zenith-angle instabilities.

B. Relaxation and cascade

We now turn to one of our central points, which is that
decoherence need not proceed through exponential decay
of S0. Even in the quasi-isotropic limit, D1 × S1 does not
vanish precisely and decoherence is expected to take place
at some level. Moreover, fast oscillations of D1 have the

potential to accelerate the relaxation rate by dephasing D1

and S1. This is quite in contrast to bipolar oscillations,
which tend to keep these vectors (anti)aligned as dis-
cussed above.
Acceleration of kinematic decoherence by FFC is shown

in Fig. 1, which presents numerical solutions using μ=ω
and angular distributions taken from a spherically sym-
metric FORNAX simulation at 200 ms postbounce and a
radius of 70 km. The number density nν̄e is treated as a free
parameter, and the ratio α ¼ nν̄e=nνe is varied in order
to compare evolution under conditions stable to FFC
(α ¼ 0.85) and conditions unstable to it (α ¼ 0.90).
The top panel of the figure compares the isotropic flavor

composition P0;z for the two choices of α. In both mass
hierarchies, α ¼ 0.85 exhibits quasi-isotropic evolution,
whereas α ¼ 0.90 exhibits fast oscillations modulated by
bipolar motion and—as confirmed by the middle panel,
showing S0—by kinematic decoherence. Consistent with
the foregoing analysis, no decoherence is visible in the
quasi-isotropic evolution, but it is substantial in the NH
when the system is unstable to fast oscillations. FFC-
assisted decoherence is evident in the IH as well, albeit to a
lesser extent.
The bottom panel indicates that decoherence proceeds

through the growth (NH) or decay (IH) of D1, as expected
from the conservation of ES. (Though not shown, D0 is
very nearly constant in all calculations presented in the
figure.) On μ−1 timescales and in the limit μ ≫ ω, the mass
hierarchies are described by approximately identical equa-
tions of motion. But as noted previously, D1 is constant
under the same assumptions. Decoherence and its hierarchy
dependence can thus be traced back to the term ωB × S1 in
the second of Eq. (21). In particular,

d
dt

D2
1 ¼ −2ωB · ðD1 × S1Þ: ð24Þ

The mass hierarchies are distinguished by the orientation of
the decohering term D1 × S1 with respect to ωB.
Conservation of the energylike quantity ES offers one

perspective on collisionless relaxation. Another perspective
is provided by unitarity. Defining the power Πl in angular
moment l,

Πl ¼
�
lþ 1

2

�
jPlj2; ð25Þ

unitarity implies that the sum of the power over all angular
scales is conserved,

X∞
l¼0

Πl ¼ const: ð26Þ

(Similar quantities can of course be defined for antineu-
trinos. In the cases we study the evolution of antineutrinos
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is comparable to that of neutrinos.) As the isotropic
moment relaxes, higher ones are excited. Recalling that
the term in the Hamiltonian proportional to D1 couples
each Pl to its nearest neighbors, the default expectation is

that power will continue to be relayed out to higher l.
This process constitutes collisionless relaxation via phase-
space transfer in homogeneous, axially symmetric flavor
evolution.

FIG. 1. Flavor evolution—P0;z (top), S0 (middle), and D1 (bottom)—with time t in homogeneous, axially symmetric calculations,
using the angular distributions and ratio μ=ω from a spherically symmetric FORNAX simulation at a radius of 70 km and a postbounce
time of 200 ms. The ν̄e angular distribution is rescaled to α ¼ nν̄e=nνe ¼ 0.90 (black) and α ¼ 0.85 (red), and the normalization is such
that jP0ð0Þj ¼ 0.5. The normal hierarchy is shown on the left, inverted hierarchy on the right. Time is in units of ω−1. For typical
supernova conditions and a neutrino energy of ∼10 MeV, the horizontal axis spans about a microsecond. Gray curves represent the same
data as the black curves but time-averaged over windows of duration 6 × 10−3ω−1, spanning about three periods of fast collective
oscillations. In the bottom panels, the dashed lines mark the initial values. At α ¼ 0.90, the system is unstable to fast oscillations, which
facilitate kinematic decoherence (decay of S0) by a dephasing mechanism. See text for further discussion.
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Power is principally lost from the isotropic moments.
Although we do not analyze the impact of collisions in
this paper, their influence—and especially the relative
importance of emission and absorption and scattering
processes—will depend on where power resides and
how it is transferred collisionlessly.
Figure 2 displays the “angular power spectra” in both

mass hierarchies, again comparing α ¼ 0.85 and α ¼ 0.90.
As anticipated, cascade occurs in all cases and is greatly
magnified by FFC. Enhancement is seen both in the rate
at which power travels out to higher l and in the ampli-
tude at which it does so. As the cascade front moves
outward, roughly flat regions form in its wake, expanding
and becoming flatter with time. (For α ¼ 0.90, the rapid
oscillations as a function of l are flattened by time
averaging over many fast-oscillation periods.) The
orders-of-magnitude difference between typical Πl values
in the α ¼ 0.90 and α ¼ 0.85 calculations explains why
kinematic decoherence is visible in Fig. 1 for the former but
not the latter.

These regions are analogous to the inertial ranges
encountered in fluid turbulence, which span intermediate
scales between those at which driving and dissipation
occur. Here the driving is oscillations at large angular
scales. Oscillations induce dephasing and thereby momen-
tum-space transfer. In this collisionless system, there is no
analog of a dissipation scale, and so power continues to
cascade perpetually out to higher l. The asymptotic state,
one imagines, is infinitesimal power equally distributed
over all moments out to infinity. This is the closest the
system can get to fully relaxed while still satisfying
unitarity, Eq. (26).
Over time, as power cascades to higher l, small-scale

angular features becomes increasingly apparent in the
flavor composition Pv;z as a function of propagation angle
v. Figure 3 shows this development by comparing the
v dependence of fast oscillations at different times.
Interaction of FFC with momentum-space transfer and
slow collective evolution causes the Pv;z profile and its
periodicity to be increasingly disrupted [17,23]. The effect

FIG. 2. Momentum-space angular power spectra of neutrino flavor for the same set of calculations presented in Fig. 1. The powerΠl in
angular moment l is defined in Eq. (25). From darkest to lightest, the curves show log10 Πl at t ¼ 0.2, 0.4, 0.6, 0.8, and 1.0, in units of
ω−1. FFC enhances cascade and hastens relaxation. All cases show interesting features at angular scales intermediate between the
expanding front of nonzero power and the low-l scales directly involved in fast and bipolar collective oscillations.
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should not be overstated, however, as the outline of the
ω → 0 collective behavior persists to some degree, at least
in these calculations. The essence of the fast pendulum
remains even as the pendulum is affected and modulated by
finite-ω effects.
We have seen, in this subsection, how the dephasing

mechanism of Sec. III A brings about kinematic deco-
herence; how the mechanism is intensified by FFC; how the
power lost at large angular scales cascades down to smaller
ones, relaxing the system in a unitary manner; and how
cascade manifests as small-scale angular structures in the
flavor evolution. Next we look more closely at the nature of
momentum-space transfer far from the monopole.

C. Transfer at small angular scales

Further insight into the momentum-space dynamics is
gained by observing the evolution of an initially isolated
seed in the angular power spectrum. An experiment of this
kind allows us to focus in on transfer without the compli-
cating features specific to low-l evolution, namely fast and
bipolar collective oscillations and the existence of a natural
cutoff at l ¼ 0. (In a real physical setting these features are
of course essential, and Ref. [17] was devoted to studying
them.) The section following this one then goes to the other
extreme, examining the effects on transfer of an artificial
cutoff at l ¼ lmax.
In Fig. 4, power has been placed by hand at t ¼ 0 in the

l ¼ 50 moments of Pv and P̄v. Color-coded snapshots of
the angular power spectrum are shown. These calculations
were done using the NH and α ¼ 0.85. Without the l ¼ 50
seeds, they would be the same as the calculation shown in
the bottom-left panel of Fig. 2.
The top panel of Fig. 4 shows the evolution that results

when the seeds are chosen to be parallel to the flavor axis z
at t ¼ 0. Gently sloping plateaus form on the sides of the
l ¼ 50 spike in the angular power spectrum and expand
outward over time. Because of the relatively low ampli-
tudes of these plateaus, little power is lost from l ¼ 50.
The bottom panel shows the evolution when the seeds

are initially perpendicular to the flavor axis. In this case, a

single plateau forms, which encompasses l ¼ 50 and is flat
when averaged over suitable intervals of time. The entire
spike vanishes into this expanding region, which conse-
quently has a much higher amplitude than in the top panel,

FIG. 3. Flavor composition Pv;z plotted as a function of propagation angle v ¼ cos θ, for the α ¼ 0.90, NH calculation of the previous
figures. The curves are color coded by time, beginning at the top of a fast-oscillation dip (blue), lasting a duration of ∼10−3, and ending
at the bottom of the dip at time tf (red). As usual, times are given in units of ω−1. Finite-ω effects—the disruption of the fast pendulum
and the cascade of power to smaller angular scales—become increasingly apparent at later times.

FIG. 4. Angular power spectra in calculations with power
seeded at l ¼ 50. In the plot labels, “Parallel” indicates that
P50 and P̄50 are set parallel to the flavor axis z at t ¼ 0, and
“Perpendicular” indicates that they are perpendicular to the flavor
axis and parallel to each other. From darkest to lightest, the curves
are at times 1.1 × 10−5, 2.2 × 10−3, 4.4 × 10−3, 6.6 × 10−3, and
8.8 × 10−3 in units of ω−1.
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where only a tiny fraction of the seeded power is sapped by
the moments neighboring l ¼ 50. In contrast with the top
panel, here the inverse cascade emanating from the seed
overwhelms the direct cascade from low l.
The plateaus in Πl form due to the final term in

_Pl ¼ ωB × Pl þ μD0 × Pl

−
μ

2
D1 × ðalPl−1 þ blPlþ1Þ: ð27Þ

D1 causes P49 and P51 to sap power from the seed, but only
when P50 has a part orthogonal to D1. This accounts for the
different behaviors seen in the two panels. When P̂50 starts
(and stays) close to �D̂1, power gradually leaks out of
l ¼ 50, but when they are initially orthogonal, D1 quickly
smears out the power concentrated there.
Based on a nonexhaustive parametric study with fixed

initial distributions, we find that the spreading rate and
height of the plateau are proportional to μ and, in the
parallel case, ðω sin 2θ=μÞ2, respectively. (Since the seed
quickly dissolves into the plateau in the perpendicular
calculation, the plateau’s height is simply set by the seed
power and the plateau width.) These findings are sensible.
The final term in Eq. (27) tells us that the rate of moment
transfer is scaled by μ, hence the proportionality to μ of the
spreading rate. As for the height, the angular separation
between P̂50 and �D̂1 is roughly expected to scale like
ω sin 2θ=μ, where the numerator is the typical separation
due to vacuum oscillations and the denominator is sup-
pression due to vectors adiabatically tracking D0, as
discussed below Eq. (22). Because Πl ∝ jPlj2, one roughly
expects the scaling reported above.
Unsurprisingly, larger initial D0, which enhances adia-

baticity, does tend to decrease the plateau height.
Conversely, a larger initial D1 increases the height, as it
shifts the balance from adiabaticity to decoherence: The
third term on the right-hand side of Eq. (27) is enhanced
relative to the second one. The empirical scalings are not
always straightforward, however, as the typical angular
separations are determined by competing effects. The
spreading rate, dependent only on the last term of
Eq. (27), is independent of D0 and proportional to D1.
In the parallel case, the decoherence rate of P50 is

expected to be roughly the product of the height and twice
the rate at which each plateau front advances, the factor of 2
coming from the fact that the seed sources both a direct and
an inverse cascade. As noted before, these plateaus slope
downward away from l ¼ 50. We have not attempted to
estimate the slope. In the perpendicular case, the plateau is
approximately flat when averaged over a timescale long
relative to the fluctuations in a given Pl and short relative to
the expansion rate. The flatness reflects the efficient
scrambling of the initial seed. The μD1 term that causes
the plateau to expand is, naturally, also responsible for
transferring power between neighbors within the plateau.

As cascade proceeds, power therefore remains equilibrated
(again in a time-averaged sense) over the entirety of
the plateau. The parallel seed, in contrast, is a persistent,
“low-entropy” feature that greatly delays this sort of
equilibration.
It is worth making contact here with the observation of

Ref. [37] that the equations of motion bear resemblance to
drift-diffusion equations in multipole space. Treating l as a
continuous variable, the authors showed that the Dl
equation of motion, for example, can be rewritten as [their
Eq. (50)]

_Dl ≅ ωB × Sl − μD1 ×

�
1

2lþ 1

dDl

dl
þ 1

2

d2Dl

dl2

�

þ μðD0 −D1Þ ×Dl: ð28Þ

In this interpretation of the equations, equipartition
between the kinetic and potential energies constituting
ES [Eq. (13)] implies that the drift speed and diffusivity
are proportional to

ffiffiffiffiffiffi
ωμ

p
. Equipartition was expected and

observed in Ref. [37] due to saturation of the exponential
instability. The situation here is different. Because our test
cases are stable against the exponentially growing D1

solution, equipartition is not reached, and relaxation occurs
instead through subtle dephasing effects in which the
oscillatory behavior of D1 is critical. The drift-diffusion
behavior reflects this distinction, as it is linked to the
mechanism that releases power from low l.

IV. NUMERICAL CHALLENGES

In the previous section we observed the continuous
transfer of power to smaller angular scales. In some
instances, though, such as when the system is stable to
FFC, the cascade is of such a modest magnitude that
kinematic decoherence is negligible. It might be supposed
that the cascade is therefore harmless and irrelevant. That
conclusion, we now show, would be incorrect.
Spurious evolution occurs when the angular-moment

expansion is truncated at too small a value of l. Figure 5,
based on calculations with 200 moments, exemplifies this
point. Here all Pl and P̄l are set to zero at all times for
l ≥ 200. The figure can be directly compared to Fig. 1,
which is converged in the number of moments. Although
the calculations agree at early times, discrepancy eventually
sets in. The most dramatic difference is that the calculations
with 200 moments are beset by spurious decoherence.
Tellingly, its onset is largely independent of mass hierarchy
but does depend on whether FFC is present or not.
The root of the problem is especially clear in the

α ¼ 0.85 calculations. Figure 6 shows the angular power
spectrum log10Πl, comparing the 200-moment calculations
to the converged ones. Once the power at l ¼ 199 becomes
nonzero, errors due to truncation start to accrue and
propagate back to lower moments. As time proceeds,
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power artificially builds up in the inertial range rather than
passing through l ¼ 199 out toward infinity. The buildup,
through its backreaction on large angular scales, causes the
spurious decoherence seen in the preceding figure. By the
end of the 200-moment calculation, the time-averaged
power is nearly equipartitioned over 0 ≤ l ≤ 199.
The situation is similar in the α ¼ 0.90 calculations,

as shown in Fig. 7. Errors arise at l ¼ 199, propagate
backward, and disrupt the low-l evolution. Ultimately the

system tends toward moment equipartition. The artificial
buildup of power in the inertial range is less pronounced
here, but still evident. Because FFC amplifies and quickens
the cascade of power, spurious features arise earlier in the
presence of FFC than in its absence.
It is well known that multiangle calculations of neutrino

flavor evolution are plagued by spurious instabilities. The
traditional solution, working with a discretized approach,
has been to chop up the angular coordinate very finely.

FIG. 5. Same as the top four panels of Fig. 1, but the calculations here were done using lmax ¼ 199. Significant discrepancies,
including spurious decoherence, set in at late times due to truncation of the angular-moment expansion.

FIG. 6. Angular power spectra, comparing a calculation (NH, α ¼ 0.85) with lmax ¼ 199 (light blue) to one that is converged in lmax
(dark blue). In the former case, error accrues at lmax and propagates back to lower l. Power artificially builds up until backreaction incites
spurious decoherence.

FAST OSCILLATIONS, COLLISIONLESS RELAXATION, AND … PHYS. REV. D 102, 103017 (2020)

103017-11



In bulb-model computations, the total number of angle
bins is typically Oð103Þ, if not more. Given that modern
discrete-ordinate supernova simulations employ Oð10Þ
bins [62], the apparent need to evolve 1000s of bins to
track oscillations is clearly alarming.
Past work aimed at understanding the origin of spurious

instabilities has demonstrated the appearance of errone-
ously unstable modes in the linear regime [63,64]. As the
angular resolution is increased, the unstable modes pro-
liferate in number but migrate toward the real axis of the
complex plane of frequency Ω (for temporally growing
modes) or wave number K (for spatially growing ones).
It has been argued that, by working with integral quantities
instead of discretizing, problematic logarithms are explic-
itly retained in the linear analysis and spurious instabilities
are consequently avoided [17,64]. (Possible evidence
against this is found in Ref. [63], whose authors reported
that spurious instabilities still appeared in their analysis
when using angular moments. Since they did not go into
detail on this point, it is difficult for us to interpret with their
finding.)
If this argument is correct, then spurious instabilities are

more properly thought of as numerical artifacts of discre-
tization, as opposed to resolution. The distinction is that
spurious instabilities never fully disappear for discretized
distributions, no matter how fine the resolution is, whereas
they never appear for distributions expanded in basis
functions, no matter how coarse the resolution is. This
viewpoint is physically appealing, as there is no reason
(that we are aware of) for thinking that collective insta-
bilities are acutely sensitive to the details at extremely small
scales. It also seems to be evidenced by Refs. [63,64],
which both found that physical modes are already rather
well captured with very few bins. Rephrasing slightly, the
problem is not that a low-resolution calculation is unaware
of the real physics. The problem is that it also knows about
the spurious side effects of discretization.
The spurious evolution we are addressing in this paper is

due to errors in the evolution of Plmax
and P̄lmax

being
sequentially communicated to larger angular scales through
the D1-mediated coupling of moment l to moment l − 1.
Even if angular moments evade the problem of spurious

evolution as the term has usually been used (i.e., in
reference to instabilities apparently arising from discreti-
zation), they do not escape this kind. We surmise that
backreaction may have been responsible for the limitations
of the multipole calculations reported on in Ref. [65], but
again, lacking details, we cannot be sure.
Another closely related though distinct numerical phe-

nomenon is the recurrence effect described in Ref. [37].
Recurrence occurs in the moment-truncated system
because the number of degrees of freedom has been
rendered artificially finite. Power is reflected at lmax and,
after a long enough period, the initial system is (nearly)
restored to its initial configuration. As the authors of that
paper note, nonlinearity is subdominant in their toy model
demonstrating recurrence, allowing for the exponential
solution to be effectively reversed as power returns to
l ¼ 0. In our calculations, where kinematic decoherence is
effected by the dephasing mechanism, power is scrambled
over the finite range of moments as power reflected at lmax
interacts with power cascading from l ¼ 0. We believe that
the lack of recurrence in our calculations is, from another
perspective, related to the different drift-diffusion behavior
[Eq. (28)] that results from the relaxation process of interest
to us here.
It is also worth distinguishing the buildup-backreaction

problem from another numerical pitfall. Step size is always
an issue in the numerical integration of differential equa-
tions, but in this system it is particularly critical that a small
enough step size be used that ES is conserved to high
precision. Failure to do so can enable the (often rather
sudden) onset of spurious decoherence—a problem not
quite the same as the step-by-step accumulation of error.
We have found in our Runge-Kutta calculations that, for the
same step size or error criterion, nonconservation of ES is
typically much more severe when FFC occurs. The spu-
rious onset of decoherence due to integration error is, once
more, closely related to but distinct from the onset due to
moment truncation.
In Ref. [17] it was pointed out that the moments l ≤ 3 are

indispensable for homogeneous, axially symmetric FFC.
The equation of motion of the fast pendulum, Eq. (11),
involves these four moments explicitly. Retaining only

FIG. 7. Same as Fig. 6, but with α ¼ 0.90. Errors associated with truncation at lmax again cause highly spurious evolution. Note that
the sampled times and the range of the vertical axis differ with respect to the previous figure.
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l ≤ 2 makes FFC impossible, since the pendulum is never
unstable if the gravity vector G0 [Eq. (10)], a rotated and
scaled version of D3, always vanishes. Fortuitously, super-
nova simulations using M1 closure do provide the first four
moments of the classical angular distributions.
For these reasons it is interesting to look at the results

of evolving only the first four moments. Figure 8 shows
the same calculations, but now using lmax ¼ 3, that
were plotted in Fig. 1 (converged in lmax) and Fig. 5
(lmax ¼ 199). The results, including the fast oscillations, are
not entirely dissimilar from those presented in Fig. 1. The
principal difference is that relaxation is virtually nonexist-
ent in the calculations with only four moments, owing to
the fact that there is no inertial range to facilitate kinematic
decoherence. Not having an inertial range turns out to be
helpful for capturing fast collective oscillations because
power is unable to build up artificially and backreact on
large scales, but the price is that the realistic transfer of
power to small scales cannot occur either.
We suspect this finding might have some utility in more

sophisticated approaches, for instance if the full flavor
transformation can be approximated by taking the l ≤ 3

evolution and modulating it with a prescription for relax-
ation. The guiding idea behind such a technique would be
that, although relaxation is important, and cascade neces-
sary for achieving it, the details at high l are not critical. If
an approach of this kind can be made to work, it would still
remain to be seen whether it generalizes to more realistic
models, where there may not be as neat a division between
large-scale “pendulum moments” and small-scale “cascade
moments.”
As mentioned in Sec. II, the breakdown of numerical

calculations due to increasingly fine phase-space structure
is a familiar problem in plasma kinetics. Various strategies
have been developed in response. Early work established
that the breakdown is caused by approximating an infinite
spectrum with a finite one and proposed the addition of
small imaginary parts to the truncated set of eigenvalues,
either by analytically extrapolating past the evolved modes
or explicitly adding damping or collisional terms to the
equations of motion [45,66]. Other approaches include
periodically filtering the phase-space distribution in such a
way as to smooth out the fine features [67] or allowing
small-scale information to escape the calculation by

FIG. 8. Same as the top four panels of Fig. 1, but the calculations here were done using lmax ¼ 3. Because l ≤ 3 are the most relevant
for evolution of the slow and fast pendulums, important features of the evolution are decently well approximated. Relaxation is not
captured, however, because momentum-space cascade is prohibited by the small number of angular moments.
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imposing outgoing-wave boundary conditions [68]. All of
these methods artificially generate entropy over time, but it
is also possible to implement filtration in a manner that
does not [46]. More details and references on numerically
solving the Vlasov equation can be found in Ref. [69].
These ideas—extrapolation, damping, filtration, boun-

dary conditions—need to be adapted to neutrino quantum
kinetics, and at this point we cannot vouch for their
usefulness. We mention them here only as possible sources
of inspiration for future efforts. Our own investigations
have been limited, and on the whole we have found that the
evolution is somewhat delicate to intervention. If strong
artificial damping is applied to all l ≥ ld, for example, the
reflection problem is not avoided. (As the damping rate is
made very large, the equations effectively resemble those of
the system truncated at ld.) Artificial damping that grows
with l has shown some promise, but our exploration of this
approach has been far from exhaustive.
These plasma-inspired techniques are alternatives to the

one described in connection to Fig. 8, in which only a small
number of moments are evolved and relaxation is super-
imposed on the system in a physically motivated but non-
self-consistent way. The plasma strategies are a compromise,
evolving just enough of the cascade to capture relaxation at
larger scales. At the other extreme is the approach tradition-
ally taken in oscillation calculations: attaining convergence
through very high resolution. We emphasize once more that
relying on the last of these approaches continues to be amajor
impediment to progress in computing neutrino flavor evo-
lution, and it may in fact be unnecessary.

V. DISCUSSION

In this paper we have studied relaxation of the neu-
trino flavor field via momentum-space cascade, operating
under the assumptions of monochromaticity, homogeneity,
axial symmetry, and collisionless evolution. These sim-
plifications are highly restrictive—axial symmetry and
homogeneity above all, most likely—and preclude our
calculations from being anything like predictions of the
flavor evolution taking place at specific times and locations in
a supernova. Simplicity is what we are after, however. Our
objective is not, at this point, to simulate flavor evolution, but
rather to understand what the essential ingredients are and
determine how they can be captured with both fidelity to the
physics and deference to finite computational resources.
In calculations with parameters motivated by simulation

data, we have seen that if kinematic decoherence does not
occur through an exponential instability, it instead occurs
through the comparatively gradual seepage of power to
smaller angular scales. Fast oscillations expedite this
process, sometimes considerably, by enhancing the dephas-
ing of the relevant polarization vectors. We have situated
this relaxation mechanism alongside the other major
features of the model: bipolar oscillations, fast oscillations,
and the multi-zenith-angle instability.

Cascade of power is a serious numerical concern, as
errors at lmax propagate back to larger scales, growing in
magnitude until their backreaction on the isotropic moment
is enough to spuriously decohere it. The computations
performed for this study evolved Pl and P̄l directly. We
expect similar spurious results to appear in calculations that
evolve discretized angle bins, since the origin of the
problem—the development of features at small angular
scales—is a real aspect of the physics.
The problem is not unique to neutrino flavor, either. It is

commonly encountered in weakly collisional kinetic sys-
tems of all kinds. We believe this is reason for optimism.
Various strategies have already been developed in the
context of kinetic plasmas for addressing essentially the
same numerical challenges. If analogous techniques can be
employed successfully for neutrino quantum kinetics, it
may be possible to considerably lighten the computational
burden of oscillation calculations. The key hypothesis we
are advancing, which would make such computational
strides possible, is that the evolution of the flavor field
should not depend qualitatively on the details at very small
angular scales.
In reality, collisions damp the angular power spectrum,

especially in the high-l region. The scattering rate is
typically much smaller than μ, however, and collisions
on their own are unlikely to resolve the numerical chal-
lenges of cascade. Speaking from a computational stand-
point, we suspect that power still makes its way out to
unacceptably large l. On the other hand, collisions have
also been noted to exert a less direct but still possibly
significant influence through the halo effect [70–72]. From
the angular-moment perspective, the result of the halo
effect is to isotropize power initially spread over many
moments, potentially giving that power (i.e., the scattered
particles) greater leverage on the overall flavor evolution.
Having emphasized the numerical significance of our

findings, let us return to the physical implications. Relaxing
the assumption of axial symmetry permits additional insta-
bilities, both fast and slow. At a more fundamental level, the
dimensionality of phase space is simply larger. Whether or
not the flavor field becomes unstable as a result of axial
asymmetry, there are more channels for collisionless relax-
ation. There are, in other words, more ways to shift power
from large angular scales to small ones. Crucially, the
isotropic multipole can be decohered by any of the three
vectors D0

1, D
�1
1 , where Dm

l is the ðl; mÞ spherical harmonic
of the difference vector. Each of these three vectors interacts
with the others, the effect of which is probably to disrupt any
would-be periodic behavior even beyond the extent that we
have seen here. This may already be apparent in the axially
asymmetric calculations of Ref. [23].
With inhomogeneity comes a spectrum of instabilities

associated with the nonvanishing convective term, and
the dimensionality of phase-space is again expanded.
Coordinate-space transfer differs in a number of significant
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ways from momentum-space transfer, and the manner in
which our results are modified by convection is likely to
depend on the nature of the inhomogeneity itself. What we
can say, quite generally, is that we expect phase-space
relaxation to figure prominently in realistic settings where
the flavor field is unstable—with all of the ramifications
that go along with it.

ACKNOWLEDGMENTS

We are grateful to Evan Grohs, Kei Kotake, Zidu Lin,
Amol Patwardhan, and Manibrata Sen for stimulating
conversations at the INT workshop on “Neutrinos from
the Lab to the Cosmos” and to Shashank Shalgar and Irene
Tamborra for enjoyable correspondence. Support for this
work was provided by NASA through the NASA Hubble
Fellowship Grant No. HST-HF2-51461.001-A awarded by
the Space Telescope Science Institute, which is operated by

the Association of Universities for Research in Astronomy,
Incorporated, under NASA contract NAS5-26555. L. J.
acknowledges support as a NASA Einstein Fellow. L. J.
and G. M. F. acknowledge support from NSF Grant
No. PHY-1914242, from the Department of Energy
Scientific Discovery through Advanced Computing
(SciDAC-4) grant register No. SN60152 (Award
No. de-sc0018297), and from the NSF N3AS Hub Grant
No. PHY-1630782 and Heising-Simons Foundation Grant
No. 2017-22. A. B. acknowledges support from the U.S.
Department of Energy Office of Science and the Office
of Advanced Scientific Computing Research via the
Scientific Discovery through Advanced Computing
(SciDAC4) program and Grant DE-SC0018297
(Subaward No. 00009650). In addition, he acknowledges
support from the U.S. NSF under Grants No. AST-1714267
and No. PHY-1804048.

[1] R. F. Sawyer, Phys. Rev. D 72, 045003 (2005).
[2] R. F. Sawyer, Phys. Rev. D 79, 105003 (2009).
[3] R. F. Sawyer, Phys. Rev. Lett. 116, 081101 (2016).
[4] S. Chakraborty, R. S. Hansen, I. Izaguirre, and G. Raffelt,

J. Cosmol. Astropart. Phys. 01 (2016) 028.
[5] S. Chakraborty, R. S. Hansen, I. Izaguirre, and G. Raffelt,

J. Cosmol. Astropart. Phys. 03 (2016) 042.
[6] B. Dasgupta, A. Mirizzi, and M. Sen, J. Cosmol. Astropart.

Phys. 02 (2017) 019.
[7] B. Dasgupta, A. Mirizzi, and M. Sen, Phys. Rev. D 98,

103001 (2018).
[8] B. Dasgupta and M. Sen, Phys. Rev. D 97, 023017 (2018).
[9] S. Airen, F. Capozzi, S. Chakraborty, B. Dasgupta,

G. Raffelt, and T. Stirner, J. Cosmol. Astropart. Phys. 12
(2018) 019.

[10] S. Abbar and H. Duan, Phys. Rev. D 98, 043014 (2018).
[11] S. Abbar and M. C. Volpe, Phys. Lett. B 790, 545

(2019).
[12] F. Capozzi, B. Dasgupta, A. Mirizzi, M. Sen, and G. Sigl,

Phys. Rev. Lett. 122, 091101 (2019).
[13] F. Capozzi, G. Raffelt, and T. Stirner, J. Cosmol. Astropart.

Phys. 09 (2019) 002.
[14] C. Yi, L. Ma, J. D. Martin, and H. Duan, Phys. Rev. D 99,

063005 (2019).
[15] M. Chakraborty and S. Chakraborty, J. Cosmol. Astropart.

Phys. 01 (2020) 005.
[16] J. D. Martin, C. Yi, and H. Duan, Phys. Lett. B 800, 135088

(2020).
[17] L. Johns, H. Nagakura, G. M. Fuller, and A. Burrows, Phys.

Rev. D 101, 043009 (2020).
[18] S. Bhattacharyya and B. Dasgupta, Phys. Rev. D 102,

063018 (2020).
[19] S. Abbar, J. Cosmol. Astropart. Phys. 05 (2020) 027.
[20] S. Shalgar, I. Padilla-Gay, and I. Tamborra, J. Cosmol.

Astropart. Phys. 06 (2020) 048.

[21] F. Capozzi, M. Chakraborty, S. Chakraborty, and M. Sen,
arXiv:2005.14204.

[22] Z. Xiong, A. Sieverding, M. Sen, and Y.-Z. Qian,
Astrophys. J. 900, 144 (2020).

[23] S. Shalgar and I. Tamborra, arXiv:2007.07926.
[24] S. Bhattacharyya and B. Dasgupta, arXiv:2009.03337.
[25] I. Tamborra, L. Hüdepohl, G. G. Raffelt, and H.-T. Janka,

Astrophys. J. 839, 132 (2017).
[26] M.-R. Wu and I. Tamborra, Phys. Rev. D 95, 103007 (2017).
[27] M.-R. Wu, I. Tamborra, O. Just, and H.-T. Janka, Phys. Rev.

D 96, 123015 (2017).
[28] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C.

Volpe, Phys. Rev. D 100, 043004 (2019).
[29] M. Delfan Azari, S. Yamada, T. Morinaga, W. Iwakami, H.

Okawa, H. Nagakura, and K. Sumiyoshi, Phys. Rev. D 99,
103011 (2019).

[30] S. Shalgar and I. Tamborra, Astrophys. J. 883, 80 (2019).
[31] H. Nagakura, T. Morinaga, C. Kato, and S. Yamada,

Astrophys. J. 886, 139 (2019).
[32] T. Morinaga, H. Nagakura, C. Kato, and S. Yamada, Phys.

Rev. Research 2, 012046 (2020).
[33] R. Glas, H.-T. Janka, F. Capozzi, M. Sen, B. Dasgupta, A.

Mirizzi, and G. Sigl, Phys. Rev. D 101, 063001 (2020).
[34] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C.

Volpe, Phys. Rev. D 101, 043016 (2020).
[35] I. Padilla-Gay, S. Shalgar, and I. Tamborra, arXiv:

2009.01843.
[36] M. George, M.-R. Wu, I. Tamborra, R. Ardevol-Pulpillo,

and H.-T. Janka, arXiv:2009.04046.
[37] G. G. Raffelt and G. Sigl, Phys. Rev. D 75, 083002 (2007).
[38] A. Esteban-Pretel, S. Pastor, R. Tomàs, G. G. Raffelt, and G.
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