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The diffusive motion of charged particles in synthetic magnetic turbulence with different properties is
investigated by using numerical simulations with unprecedented dynamical range, which allow us to ensure
that both the inertial range and the long wavelength part of the turbulent spectrum are properly described.
This is of particular importance in evaluating previous suggestions that parallel and perpendicular diffusion
coefficients differ in their energy dependence, an assertion at odds with the many claims of universality of
the D⊥ and Dk as functions of particle energy. Cases with and without an ordered magnetic field are
discussed. Results of the numerical simulations are compared with available theoretical models, for slab,
slab/2D and isotropic turbulence. We find widespread evidence that universality is broken, and that the ratio
D⊥=Dk is not independent of energy. The implications of this finding for the physics of cosmic ray
transport are discussed in depth.
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I. INTRODUCTION

A proper understanding of the interaction of charged
particles with magnetic fluctuations in a plasma is an
essential ingredient of the description of cosmic ray (CR)
transport in astrophysical environments, as well as in the
solar wind. Despite much progress in the field, there are
still fundamental questions that are left unanswered, both in
terms of the nature of turbulence and in terms of particle
transport parallel and perpendicular to an ordered magnetic
field on which turbulence is superposed.
From the theoretical point of view, the problem of

particle transport in an ensemble of Alfvén waves with
amplitude δB propagating along an ordered magnetic field
B0, with δB ≪ B0, has been solved long ago using a
perturbative approach, the so-called quasilinear theory
(QLT) [1]. The theory has been very successful in predict-
ing that the particle motion along the direction of B0 is
diffusive. The same theory connects the diffusion coeffi-
cient parallel to B0 with the properties of the turbulence,
notably its amplitude and spectrum. On the other hand, the
theory has also shown some weak points: (1) it predicts that
the pitch angle diffusion coefficient at 90° vanishes, so as to
create the problem of crossing such a singular point in
velocity space; (2) it is limited to small amplitude magnetic
fluctuations; and (3) it fails in describing the motion of
particles perpendicular to magnetic field lines. While the

first two problems have been properly addressed in weakly
non linear versions of QLT (for instance in the second order
version of QLT [2]), the third problem appears to be more
subtle and remains only partially addressed, as we dis-
cuss below.
From the physics point of view, the problem of particle

transport in turbulent magnetic fields is crucial to under-
stand the origin of CRs and to make sense of the wealth of
information that is becoming available with CR observa-
tions from space (see [3,4] for recent reviews). The escape
of CRs from the Galaxy is usually modeled as diffusive
with an effective diffusion coefficient that depends on
particle momentum and sometimes position (although at
low energies advection might play a role). This effective
treatment is prolific in producing results that compare well
with observations [5,6]. However it remains an effective
treatment in which the diffusion coefficient is interpreted as
some sort of spatial average (over a sufficiently large
volume compared with the turbulence coherence length,
perhaps the Galaxy) of the diffusion parallel and
perpendicular to the ordered field. The latter is reasonably
well known in the disc, but poorly known, if at all, in the
Galactic halo. The question remains: are CRs escaping the
Galaxy mainly along magnetic field lines or perpendicular
to the field lines? And connected to the first question: do
the diffusion coefficients parallel and perpendicular to the
ordered magnetic field share the same energy dependence?
This last question was first raised, as far as we know, in
Ref. [7], where numerical simulations of CR transport in
synthetic turbulence were carried out and some hints of a
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steeper energy dependence of D⊥ was found compared
with Dk. In other words, the authors found that the ratio
D⊥=Dk is a growing function of energy at low energy,
where parallel scattering is still the result of resonances
with turbulence in the inertial range. On the other hand,
based on the limited dynamical range of such simulations,
the authors could only claim a hint of such a trend.
Moreover, previous simulations [8] did not seem to find
such an effect. This tentative claim [7] was later used as a
basis to introduce anisotropic diffusion, though in a
phenomenological way, in models of CR transport in the
Galaxy [9,10].
More recently, thanks to better computational resources,

it became possible to reassess this issue and several new
hints appeared that the ratio D⊥=Dk might be increasing
with energy. One such case is that of isotropic turbulence
superposed on an ordered magnetic field with δB=B0 ≲ 1,
and at low enough energies that the gyroradius of the
particles is much smaller than the energy containing scale
of the turbulence [11]. This result is consistent with [7].
The issue of describing particle transport in realistic

turbulence is even more complex than described so far, in
that there is now overwhelming evidence that Alfvénic
turbulent cascades develop in anisotropic way [12–14],
with most of the energy channeled into the perpendicular
wave numbers, for k in the inertial range. This implies that
there is less power available in the modes that may
potentially resonate with the gyromotion of particles and
lead to particle diffusion [15]. Magnetosonic modes should
be less affected by this process and play an important role
in CR transport [16]. The damping of these modes and the
implications for CR transport were recently discussed in
[17,18]. Much work done in evaluating scattering theories
is accomplished by numerically representing turbulence at
magnetohydrodynamics (MHD) scales propagating par-
ticles in such turbulence [19,20].
A major limitation and challenge in this approach is that

the limited dynamical range imposed by the available
computational resources does not allow extension of these
results in a straightforward way to particle energies of
relevance for CR physics.
In carrying out numerical studies of test particle trajec-

tories, an important and somewhat delicate issue is the
construction of realizations of turbulence based on various
approximations and theoretical models of turbulent fluc-
tuations. The distribution of power in wave vector is a
central issue, and both the scale dependence and rotational
symmetry have leading order influence on scattering. There
are several models that are of historical, technical, and
physical relevance. Some popular models are the traditional
but oversimplified one-dimensional “slab” model [1] that
appears in many plasma physics textbooks, often associated
with parallel propagating waves. Here the importance of
this model is that it concisely captures parallel resonances
and therefore the physics of pitch angle scattering, an effect

of primary importance in energetic particle transport. Even
a small amount of power in parallel wave numbers or slab
turbulence can dominate pitch angle scattering rates and
control spatial diffusion [21]. Another standard limit is the
isotropic model, familiar in hydrodynamics and expected in
plasma turbulence when fluctuations are strong and no
preferred direction is of significance [22]. The two dimen-
sional (2D) model admits variations of the correlation
functions only in the two directions perpendicular to the
mean magnetic field, providing an idealized representation
of the tendency for turbulence in magnetized plasma to
preferentially produce gradients transverse to the magnetic
field direction [23,24].
The composite slabþ 2D model [21] is a useful but

ad hoc parametrization that accommodates both the
dynamical tendency towards two dimensionality as well
as the numerous possibilities for producing an admixture of
parallel gradients due to wave particle interactions, shear
instability, and several other effects. Other specialized
models include reduced MHD, popular in laboratory
plasma and coronal studies, that describes low frequency
fluctuations with a very strong magnetic field [25] and the
“critical balance” model [13,26] that also permits weak
variations along the magnetic field direction but lacks
(slablike) resonant power at higher wave numbers. Since
parallel scattering is almost always an important ingredient
in transport, in the following sections we will model fields
of the slab, composite (slabþ 2D) and isotropic types.
In addition to the anisotropic cascades of MHD turbu-

lence, it has been known for long time that CRs can also
generate their own scattering centres through streaming
instability, either resonant [27,28] or nonresonant [29]. The
role of streaming instability for CR Galactic transport and
its implications for observations has been recently inves-
tigated in detail (see [30,31] for recent reviews). The role of
self-excited nonresonant streaming instability in the escape
of CRs from the Galaxy has been recently discussed in [32].
Progress in this field has proceeded by continuously

seeking a compromise between retaining as much physics
as possible and extending the dynamical range of simu-
lations so as to being able to apply results to CR transport.
With this spirit, in this article we developed and used
numerical simulations with the largest dynamical range
ever achieved to simulate test particle transport in synthetic
turbulence with an assigned spectrum and different topo-
logical properties. We focus on the cases of slab/2D
turbulence and isotropic turbulence, both with and without
an ordered field. In order to check the validity of the
simulations we also test them versus known cases, such as
pitch angle diffusion for slab turbulence and compare the
numerical results with QLT and its second order extension.
While there have been claims of universality of the

D⊥=Dk ratio (independence of the ratio on energy) [33], we
find that this universality is evidently broken in the energy
range of relevance for CR physics. In particular, for slab/2D
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turbulence we show that, for δBslab=B0 ≲ 1, the ratio
becomes constant only at very low energies, typically
too low to be important for CR physics. The ratio
D⊥=Dk in this situation drops with energy in the inertial
range of the turbulence responsible for particle scattering.
Moreover we find that the nonlinear guiding center
(NLGC) theory is a poor description of the D⊥ obtained
from our simulations, for the cases in which energy is
roughly equally shared between slab and 2D. On the other
hand it provides a sufficiently good description of the
results when most of the energy is in the 2D modes. The
numerical simulations we perform in this case have
unprecedented dynamical range and provide strong con-
firmation that, in the range of energy that is accessible at the
present time, the ratio D⊥=Dk is not constant in energy.
Contrary to the case of slab/2D turbulence, for isotropic
turbulence the ratio is found to be a growing function of
energy, which is in agreement with the preliminary results
obtained in Refs. [7,11]. More specifically, the parallel
diffusion coefficient has a behavior which appears to be
consistent with the picture in which particles at low energy
scatter resonantly on perturbations that travel parallel to the
local magnetic field, namely its energy dependence is ∝
r1=3g (∝ r1=2g ) for Kolmogorov (Kraichnan) turbulence for
rg < lc where lc is the coherence scale of the turbulence.
For high energies rg > lc, Dk ∝ r2g irrespective of the
turbulent spectrum. As expected, in the limit of strong
turbulence, δB=B0 ≫ 1, one recovers the condition that
D⊥ ≃Dk [22,34].
The difference in slope, at low energies, between parallel

and perpendicular diffusion coefficient is ∼0.2. For in-
stance, for the case of Kolmogorov turbulence, Dk ∝ E1=3

and D⊥ ∝ E0.5 at low energies. This example shows how
the effective diffusion coefficient used in calculations of
CR transport in the Galaxy might resemble a DðEÞ ∝ E0.5

even for the case of Kolmogorov turbulence if the effective
coefficient were dominated by perpendicular transport.
This would reflect, for instance, in the slope of the
boron-to-carbon ratio. Similar considerations would apply
to other spectra of turbulence.
The article is organized as follows: in § II we discuss in

detail all definitions used (spectra of slab, 2D and isotropic
turbulence, diffusion coefficients) and methods adopted in
the numerical simulations of particle transport. In § III we
briefly summarize the theoretical models that are typically
used to compare the results of numerical simulations with.
In § IV we illustrate our main results for the different types
of turbulence investigated here. We conclude in § V.

II. DEFINITIONS AND METHODS

The motion of a charged particle in an assigned
electromagnetic field is described by the Netwon-
Lorentz equation:

d
dt
pðr; tÞ ¼ q

�
Eðr; tÞ þ v

c
×Bðr; tÞ

�
; ð1Þ

where q, v and p ¼ mγv are, respectively, the particle’s
charge, velocity and momentum, E and B represent the
electric and magnetic field, respectively, and γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2c2

p
is the Lorentz factor, m being the particle

mass and c the speed of light.
Here, we focus on the test-particle regime, in which

particles are independent on each other and do not affect the
electromagnetic field. Furthermore, since we are particu-
larly interested in relativistic particles moving in a non-
relativistic environment, the evolution of the underlying
magnetofluid is neglected and the electric component of the
field can be neglected, E ¼ 0. For the same reasons, we
restrict to the magnetostatic case, i.e., ∂B=∂t ¼ 0. The
magnetic field can be split into a regular and fluctuating
part, BðrÞ ¼ B0 þ δBðrÞ, with the following properties:
B0 ¼ B0ẑ, hδBi ¼ 0, and δB2 ≡ hδB2i, where h…i
denotes the ensemble average.
In nature, the turbulent magnetic fluctuations, δBðrÞ, are

typically the result of perturbations that evolve due to a
complex interplay of mode couplings and result in spectra
of the turbulent fluctuations. While this phenomenon is
typically described by using MHD numerical simulations,
here we focus on the transport of charged particles in
synthetic turbulence, which allows us to address the
specific issues discussed in the Introduction that are still
matter of debate in the community. We are fully aware of
the fact that an active turbulent cascade towards small
scales may heavily affect the transport of CRs, both through
the magnetic fields and through electric field fluctuations.
The results of such an investigation will be presented
separately in a forthcoming article, where we discuss the
propagation of test particle CRs in a snapshot of a MHD
simulation where turbulence is fully developed [35]. In this
approach, all the features of MHD turbulence, such as
intermittency and spectral anisotropy, are described self-
consistently. However, the dynamical range is limited by
the finite space resolution of the numerical simulation and
performing high-resolution numerical simulation requires a
huge numerical effort. In the case of synthetic turbulence,
some of the main features of MHD turbulence are mim-
icked only through selection of an appropriate magnetic
field two-point correlation tensor (see, e.g., [36] for a recent
review on these methods). Higher correlations as well as the
information contained in possible phase correlations of
magnetic fluctuations are discarded. These methods in
general have a minor computational cost with respect to
direct simulations. In the current work, we opt for synthetic
models of turbulence, since our aims are to compare
numerical results with theoretical considerations and to
provide some hints for further theoretical developments.
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A. Models of homogeneous turbulence

As anticipated above, magnetic fluctuations in synthetic
models of MHD turbulence are described through the two-
point correlation tensor:

Rlmðx;x0Þ ¼ hδBlðxÞδBmðx0Þi; l; m ¼ x; y; z: ð2Þ

If the turbulence is homogeneous then the correlation
depends only on the spatial lag, r ¼ x − x0. Calculating
the trace gives the correlation function RðrÞ≡ RllðrÞ. The
Fourier transform of RlmðrÞ (in a homogeneous infinite
volume) provides a definition of the magnetic spectral
tensor:

SlmðkÞ ¼
1

ð2πÞ3
Z

d3rRlmðrÞe−ir·k: ð3Þ

This transform is well defined whenever the correlation
functions (elements of the correlation tensor) fall off
rapidly enough at infinity. It is also possible to provide a
more singular relationship that can be used to define the
spectrum in the homogeneous case, namely

δðkþ k0ÞSlmðkÞ ¼ hδB̃lðkÞδB̃mðk0Þi; ð4Þ

where δðkþ k0Þ is the Dirac delta function and the Fourier
transform of the magnetic field fluctuations δB̃ðkÞ is
formally defined as:

δB̃ðkÞ ¼ 1

ð2πÞ3
Z

d3rδBðrÞe−ir·k: ð5Þ

Note that both the δ function and δB are singular objects
and require careful limiting procedures to properly define
them. However, since the analogs of Eqs. (4)–(5) are well
defined in a periodic domain of arbitrarily large size, this
becomes the basis of generating synthetic fields in the
treatment below.
The magnetic correlation tensor (i) has to be consistent

with the ∇ · B ¼ 0 condition, namely k · δB̃ðkÞ ¼ 0, and
(ii) may be determined by selecting an appropriate model
for the energy spectrum. The first requirement, in the case
of isotropic turbulence [37], leads to

SlmðkÞ¼
SðkÞ
2

��
δlm−

klkm
k2

�
þ iσðkÞ

X
n

ϵlmn
kn
k

�
; ð6Þ

where SðkÞ is a real function that reflects the geometry
of the turbulence and its energy spectrum, δlm is the
Kronecker delta, ϵlmn is the Levi-Civita symbol, and
σðkÞ → σðjkjÞ is the magnetic helicity which will be
assumed to vanish in this work. For axisymmetric turbu-
lence [38–40] about a direction ẑ, the spectral form is
slightly more complicated, with two scalar functions of

cylindrical coordinates ðkk ¼ k · ẑ; k⊥ ¼ jk × ẑjÞ instead
of just one, defining the symmetric part of the tensor.
The omnidirectional energy spectrum of turbulence,

usually denoted as EðkÞ, is defined in terms of SllðkÞ
[41,42]:

EðkÞ≡ 1

2

Z
SllðqÞδðjqj − kÞd3q: ð7Þ

The Einstein summation convention is implied for Sll. Due
to the energy cascade, for a large system one postulates the
existence of an inertial range in which EðkÞ becomes self-
similar and, in some sense, universal. That is, for k large
compared to 1=L, the energy residing near scale L, and k
small compared to the reciprocal of the dissipation scale,
the spectrum satisfies the scaling EðkÞ ∝ k−s where s is the
slope of the spectrum in that range. For example, s ¼ 5=3
for the Kolmogorov theory of turbulence and s ¼ 3=2 for
Kraichnan turbulence. Moreover, by the solenoidal con-
straint, the property of homogeneity, and Cramér’s theo-
rem, the energy spectrum obeys the scaling EðkÞ ∝ kq

when k → 0 [37], where q > 0 depends on the turbulence
dimensionality [43]. The total energy density is normalized
to the rms magnetic field strength squared:

Z
∞

0

EðkÞdk ¼ 1

2
δB2; ð8Þ

or, alternatively, δB2 ¼ Rllð0Þ ¼
R
dkSllðkÞ.

Another important quantity that characterizes a turbulent
field is the correlation length lc, defined as [cf. Eq. (2) et
seq.]

lc ≡ 1

Rð0Þ
Z

∞

0

drRðrÞ; ð9Þ

where we recall that RðrÞ is the trace of the correlation
matrix, Eq. (2), and we make use of homogeneity and
isotropy to write the argument as the scalar r ¼ jrj.
Note that, since we are focusing on the magnetostatic

case, the time dependence of the dynamical correlation
function, in general contained in the k-space correlation
tensor, is not retained here.

1. Synthetic spectrum models

The above properties of homogeneous turbulence pro-
vide a framework for development of explicit realizations
of turbulence with prescribed properties, for use in particle
trajectory calculations. Generally speaking the purpose will
be twofold—on the one hand to make contact with
scattering and transport theories that are applied to explan-
ation of cosmic ray observations, and, on the other hand, to
provide magnetic field realizations for particles trajectory
calculations that are implemented in finite domains, often
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periodic domains that are nominally much larger than all
relevant physical scales.
According to the aforementioned prescription, we model

all spectra with a smooth function following the form of
spectrum equations in [44,45]:

Eðq; s; l; δB; kÞ ¼ 2Cðq; sÞδB2l
ðklÞq

½1þ ðklÞ2�ðsþqÞ=2 ; ð10Þ

k being the wave number, and l the bend-over scale. The
normalization constantCðq; sÞ, chosen to fulfill Eq. (8) (see
next subsection), is:

Cðq; sÞ ¼ Γðsþq
2
Þ

2Γðs−1
2
ÞΓðqþ1

2
Þ ; ð11Þ

where Γ is the Euler gamma function.
In the following subsections we describe specific corre-

lation tensors in three different geometries which are
adopted in this work. In order to control properties when
the models are applied to infinite homogeneous media, the
models are described in terms of Fourier transforms and
unbounded domains. The appropriate steps for conversion
to Fourier series representation are discussed in Sec. II B.

2. Slab model

The first turbulence model considered is the slab model,
that is also one of the first models historically introduced
[1,46]. The slab turbulence model is one-dimensional, and
the wave vector is parallel to the imposed background
magnetic field B0. It resembles the propagation of Alfvén
waves along the ordered magnetic field. Thus, by requiring
δBz ¼ 0 and δBiðrÞ ¼ δBiðzÞ, the axisymmetric tensor
analogous to Eq. (6) gives the slab spectral tensor [40]:

Sslablm ðkÞ ¼ Sslabðkk; k⊥Þ
2

δlm; ð12Þ

for l; m ¼ x, y, while other components are zero due to
δBz ¼ 0. The term klkm=k2 can be omitted, since
δBiðrÞ ¼ δBiðzÞ, that implies the presence of δðkxÞδðkyÞ.
Wave vectors follow the axial symmetry of B0∶ k2⊥ ¼
k2x þ k2y and kk ¼ kz; while the slab spectral function is:

Sslabðkk; k⊥Þ ¼ EslabðkkÞ
δðk⊥Þ
2πk⊥

;

¼ 2
CslabðsÞδB2

slablslab
½1þ ðkklslabÞ2�s=2

δðk⊥Þ
2πk⊥

; ð13Þ

in which EslabðkkÞ≡ Eðq ¼ 0; s; lslab; δBslab; kkÞ, lslab is the
slab bend-over scale; and δBslab is the (rms) strength of
magnetic field fluctuations. The slope of the spectrum in the
inertial range is controlled by specifying the parameter s. The
normalization constant reads:

CslabðsÞ≡ Cðq ¼ 0; sÞ ¼ 1

2
ffiffiffi
π

p Γðs
2
Þ

Γðs−1
2
Þ : ð14Þ

The correlation length for the slab model equals
lc;slab ¼ 2πCslabðsÞlslab. Note that, Eq. (13), which contains
the factor δðk⊥Þ=2πk⊥ ¼ δðkxÞδðkyÞ is a spectrum correctly
normalized in a 3D k space (e.g., Ref. [21]).

3. 2D model

The presence of a background magnetic field B0 favors
the turbulent cascade in the direction transverse to B0

[13,14,24]. The 2D model, proposed to take into account
this perpendicular complexity [47], is characterized
by perpendicular magnetic field fluctuations (δBz ¼ 0),
that depend only on the perpendicular coordinates
[i.e., S2Dðkk; k⊥Þ ∝ δðkkÞ].
As the slab above, the 2D spectral tensor follows also

from the axisymmetric correlation tensor [40]:

S2DlmðkÞ ¼
S2Dðkk; k⊥Þ

2

�
δlm −

klkm
k2

�
ð15Þ

for l; m ¼ x, y while Slz ¼ Szm ¼ Szz ¼ 0, again, due to
δBz ¼ 0. In detail the 2D spectrum function reads:

S2Dðkk; k⊥Þ ¼ Eðq; s; l2D; δB2D; k⊥Þ
2δðkkÞ
πk⊥

; ð16Þ

¼ 4Cðq; sÞ
πk⊥

δB2
2Dl2Dðk⊥l2DÞq

ð1þ k2⊥l22DÞðsþqÞ=2 δðkkÞ; ð17Þ

where l2D is the 2D bend-over scale; δB2D is the magnetic
field fluctuations strength (rms); s is the slope of the spectrum
in the inertial range; and q is the spectral slope in the energy
containing range. To satisfy homogeneity, we set q ¼ 3 [43].

The 2D correlation length is lc;2D ¼ 4
ffiffi
π

p
sþ1

Cðq; sÞl2D, which
for q ¼ 3 and s ¼ 5=3 reads lc;2D ≃ 0.59l2D. It is worth
clarifying that by setting q > 0 the correlation length of the
2Dmodel is always finite (see also [33,45]), opposite to some
previous definitions of the 2D spectral form (e.g., [48]).
These properties of the 2D case are discussed in detail
in Ref. [43].

4. Slab/2D (composite) model

In the composite slab/2D model, the slab component is
combined with the 2D component [21,43,49]. The
composite correlation tensor is defined by:

Scomp
lm ðkÞ ¼ Sslablm ðkÞ þ S2DlmðkÞ; ð18Þ

where Sslablm ðkÞ and S2DlmðkÞ are given by Eqs. (12) and (15),
respectively. In such composite model, one needs to
specify the ratios of magnetic field fluctuation amplitudes
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δB2
2D=δB

2
slab and of bend-over scales l2D=lslab in order to

properly balance the two different components. Fiducial
values, estimated by comparing the synthetic model with
in situ observation of the solar wind [49] and numerical
simulations [50], are δB2

2D=δB
2
slab ¼ 4 (80%=20%) and

l2D ¼ 0.1lslab.

5. Isotropic model

The isotropic model is a fully three-dimensional (3D)
model, in which all the three components of the magnetic
field are present and the correlations and spectra depend
only on the magnitude of spatial lag and k ¼ jkj, respec-
tively. The spectral tensor is defined as:

SisolmðkÞ ¼
SisoðkÞ

2

�
δlm −

klkm
k2

�
; ð19Þ

with the spectrum function as in [44]:

SisoðkÞ ¼ Eðq ¼ 4; s; k; liso; δBisoÞ
1

2πk2
;

¼ Cðq ¼ 4; sÞ
πk2

δB2
isoliso

ðklisoÞ4
ð1þ k2l2isoÞs=2þ2

; ð20Þ

for l; m ¼ x, y, z, liso being the bend-over scale; and δBiso
is the rms strength of the magnetic field fluctuations.
The correlation length for the isotropic case reads:

lc;iso ¼
4π

δB2
iso

Z
∞

0

dr
Z

∞

0

sinðkrÞ
kr

k2SisoðkÞdk;

¼ 4π

sðsþ 2ÞCðq ¼ 4; sÞliso: ð21Þ

which for s ¼ 5=3 gives lc;iso ≃ 0.498liso.
The spectra presented above comply with the turbulence

homogeneity requirement, contrary to those used in [33],
where the authors adopted similar shapes as in Eq. (10), but
with q ¼ 3 for the isotropic case (instead of, at least, 4), and
q ¼ 2 for the 2D case (instead of, at least 3). We remind the
reader that this requirement arises from the fact that the
diagonal elements of the correlation tensor must be even
functions of k to satisfy SlmðkÞ ¼ Smlð−kÞ [37,43].

B. Numerical methods

Learning from technical difficulties of previous numeri-
cal studies [7,51], we decided to use two independent
numerical implementations. This redundancy enabled
detailed comparisons of all results and minimized chances
for subtle errors in codes that could affect results. One
implementation uses and extends CRPropa [52], a publicly
available framework to study the propagation of cosmic
rays, while the other one is based on a novel, locally
developed code specifically tailored for the purposes of this
work. Both codes perform two main duties: the first is to

generate turbulent magnetic fields having assigned proper-
ties and the second is to actually simulate the propagation
of particles in those fields in order to determine diffusion
coefficients as functions of energy.
Magnetic fluctuations are generated on a k-space grid

according to the models described in previous section: the
amplitude of Fourier coefficients are chosen to reproduce
the spectral tensors (i.e., the power spectrum) as described
above, while phases are chosen randomly. Realizations are
constructed in a large periodic simulation box. In order to
satisfy the solenoidality condition, we construct the field
through the magnetic potential in case of the 2D model
[43,48], while the procedure described in Ref. [44] is
adopted for the 3D isotropic model. The solenoidal con-
dition for the slab model of turbulence is fulfilled auto-
matically. Thewave number range is determined by the grid
size and the box size and spans from kmin ¼ k0 ¼ 2π=Lbox
to the Nyquist wave number kmax ¼ k0ðN=2 − 1Þ, where
Lbox is the box size along one axis and N is the number of
grid points along the same axis. The bend-over scale l is
always chosen to be several times smaller than the box size
in the isotropic case, or many times smaller in the slab
and 2D cases, in order to approximate the property of
homogeneity.
Besides the obvious requirement to capture most of the

turbulent energy within the box, larger values of the ratio
Lbox=l ensure the presence of more correlation lengths
inside the box, thus mitigating potential concerns due to
periodic boundaries within the simulations. However, as the
grid size and, consequently, the wave number range are
limited by available computer memory (RAM), increasing
the Lbox=l ratio shrinks the bandwidth of the simulated
inertial range of turbulence. We recall that the inertial range
is of prime interest here as for most astrophysical appli-
cations particle transport is dominated by resonant scatter-
ing off perturbations in such regime. Moreover well known
standard trends of the parallel diffusion coefficient typically
refer to the inertial range. In the case of isotropic turbu-
lence, Lbox=liso ¼ 8 was found to be a good compromise.
The used grid size of 20483 guarantees that particle
scattering is properly described in at least 1–1.5 decades
in energy (or equivalently in wave number in the inertial
range). For the 2D model and especially the slab model the
ratio can be much larger, effectively retaining several
decades of the inertial range due to weaker memory
constraints. In the slab case, the grid size is limited up
to 230 and the ratio is chosen to be at most Lbox=lslab ¼ 106,
while for the 2D case the grid size is 214 in each direction
and Lbox=l2D ¼ 103. The specific parameters for each set of
performed simulations are given in the next section.
As the final step, the magnetic field in physical space is

reconstructed by using fast Fourier transform. Within
CRPropa, that is accomplished with FFTW [53], while
in the second code we use the procedure based on Ref. [54].
CRPropa-based vector grids use single-precision floating
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point while the second implementation adopts double
precision. This setting did not introduce discrepancies in
the numerical results of particles diffusion. We remark that
the box is 1D (along the z axis) in the slab case, 2D (along
x and y) in the 2D case and 3D in both the slab/2D and the
3D-isotropic cases.
In addition, we employ interpolation methods to evaluate

the magnetic field between the equidistant grid points.
Results presented in this work have been obtained with a
trilinear interpolation method [55]. We made sure that the
results presented here are not affected by the usage of a
more accurate yet slower 3D-cubic spline method (not
shown here).
An alternative technique of synthesizing the required

turbulent field is the so-called wavelet technique in which
the field is generated directly, and only as a function of
time, at the particle position through a superposition of
plane waves, thus eliminating the need for interpolations
and in terms of performance, trading memory space for
CPU time [8,56–59]. A fast method that reduces the
computational time and significantly extends the dynamical
range of simulations has been recently proposed in
Ref. [58]. These methods usually do not set the wave
number binning and the number of modes, and that may
affect features of resonance interaction, that needs at least
few wave numbers around the resonant one [36,60].
Considering that, here we focus on the above mentioned
grid method and leave for future work the comparison with
a wavelet-based method.
Test-particle simulations are performed by numerically

integrating Eq. (1) adopting the symplectic Boris method
[61–64]. CRPropa also supports the Runge-Kutta method
with the Cash-Karp coefficients, and some key results have
been repeated with this integrator: no differences between
the two have been found. For one set of parameters, the
integration is repeated for an ensemble of Np particles
injected homogeneously throughout the box with the initial
directions of particles uniformly sampled on the unit 3D
sphere. Additionally, in the case of CRPropa simulations,
every simulation experiment is repeated and averaged over
at least five different realizations of the turbulent field.
Results obtained within the two numerical methods are
consistent. The total number of particles injected in one
run, Np, depends on the specific context. However, at
least Np ¼ 2000 have been used to ensure statistical
convergence and, for several cases, we have injected
Np ¼ 5000–10000. We emphasize that, according to sev-
eral tests we have carried out (not shown), injecting many
particles (∼8000) in a single field realization is equivalent
to injecting fewer particles (∼2000) in several field real-
izations, provided that the single field realization contains
many correlation lengths, i.e., Lbox=lc is large (≳10). In
other words, a statistically homogeneous sample is
achieved in both ways, making them equivalent for the
purposes of the present study.

C. Calculation of diffusion coefficients

The spatial diffusion coefficient, defined as

Dxx ≡ lim
t→∞

hðΔxðtÞÞ2i
2t

; ð22Þ

is estimated numerically through the practical formulation
of the time-dependent running diffusion coefficient:

DxxðtÞ ¼
hðΔxðtÞÞ2i

2t
; ð23Þ

or in the derivative form:

dxxðtÞ ¼
1

2

d
dt
hðΔxðtÞÞ2i: ð24Þ

Here ΔxðtÞ is the displacement of a particle during a time
interval t. A familiar approach to empirical determination
of the diffusion coefficient is to continuously compute
DxxðtÞ or dxxðtÞ until a stable value is attained. Analogous
definitions hold for the pitch-angle diffusion coefficient
Dμμ. Equations (23) and (24) are equivalent at sufficiently
late times, when the saturation of the running diffusion
coefficients is achieved. However, we emphasize that the
time needed to reach such saturation may be different with
the two definitions. In particular Eq. (23), although easier to
implement and less computationally demanding, takes
longer time to reach the running diffusion coefficient’s
saturation with respect to Eq. (24). Particles propagation is
stopped once the diffusion plateau is reached.

III. THEORIES OF DIFFUSIVE PARTICLE
TRANSPORT

In this section we revisit existing theoretical results on
the diffusion of charged particles parallel and perpendicular
to the regular (background) magnetic field and a limiting
case of vanishing regular field, all of which are compared
with our numerical results in the next section. For the sake
of clarity, these cases are discussed in separate subsections.

A. Physics of parallel scattering

The basic picture of particle transport parallel to an
ordered magnetic field, in the presence of a turbulent
magnetic field can be described in a simple way: the
unperturbed motion of a charged particle in the ordered
magnetic field B0 simply consists of a circular orbit in the
plane perpendicular to B0 and a uniform motion along B0,
with velocity vk ¼ vμ, where μ is the cosine of the pitch
angle, the angle between the regular field B0 and the
particle velocity vector v. The presence of turbulence
dramatically changes this simple picture, in that if pertur-
bations exist with wavelength comparable with the par-
ticle’s gyroradius rg, the pitch angle resonantly changes.
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This phenomenon leads to pitch-angle diffusion and,
consequently, parallel diffusion in physical space.
This idea was successfully implemented for the first time

in the mid-sixties, in the so-called QLT [1]. The basic
assumption of the QLT is that the particle’s perpendicular
components of velocity and position can be approximated
as the unperturbed values, while turbulence only affects the
parallel velocity vector, provided the level of turbulence is
very small compared with the original field B0. This
assumption makes QLT increasingly more inaccurate for
larger amplitudes of the fluctuations and for later times
when the discrepancy between the unperturbed and real
orbits is accumulating. Moreover, for magnetostatic turbu-
lence, the resonance function is assumed to be Dirac’s delta
with the gyroresonance condition being vk=Ωg¼μrg¼1=kk,
where Ωg ¼ qB=mcγ is the gyration frequency. The wave
number kk ¼ ðμrgÞ−1 is called the resonant wave number.
From the Fokker-Planck equation and using the assump-

tions mentioned above, QLT returns the pitch angle
diffusion coefficient Dμμ in the following form:

Dμμ ¼
πΩgð1 − μ2Þ

2B2
0vμ

Eslab

�
kk ¼

Ωg

vμ

�
: ð25Þ

By inserting the slab model spectrum from Eq. (13), it is
straightforward to obtain:

Dμμ ¼
πCslabðsÞvδB̃2

slab

lslab

ð1 − μ2Þμs−1
ð1þ μ2r̃2gÞs=2

r̃s−2g ; ð26Þ

where δB̃slab ¼ δBslab=B0 and r̃g ¼ rg=lslab. The pitch angle
diffusion coefficient controls parallel spatial diffusion Dk:

λk ¼
3Dk
v

¼ 3v
8

Z
1

−1
dμ

ð1 − μ2Þ2
Dμμ

; ð27Þ

where λk is known as the parallel mean free path [1,65].
Finally, by using Eq. (26), the parallel mean free path

reads:

λk ¼
6lslab

8πCslabðsÞδB̃2
slab

r̃2−sg

×
�

1

2 − s 2F1

�
1 −

s
2
;−

s
2
; 2 −

s
2
;−r̃2g

�

−
1

4 − s 2F1

�
2 −

s
2
;−

s
2
; 3 −

s
2
;−r̃2g

��
; ð28Þ

where 2F1 are the ordinary hypergeometric functions.
For s ¼ 5=3, it is easy to recover theknown scaling λk ∼ r̃

1
3
g

and λk ∼ r̃2g, in the limit of small and large rigidities,
respectively.
QLT is characterized by several limitations: as described

above, it does not describe well diffusion as the strength of

the turbulent fluctuations increases. Furthermore, as it is
based on a sharp resonance function, it leads to the well
known 90° (μ ∼ 0) problem, namely a divergent parallel
mean free path at μ ¼ 0, for any reasonable spectral slope
of the turbulence spectrum [21]. Besides that, for the
perpendicular transport, which is the topic of the next
subsection, QLT fails to reproduce numerical results. In
order to cope with these issues, nonlinear theories were
developed through the years.
Here we provide a brief overview of one weakly non-

linear theory of parallel transport proposed in [2] and
named as second order QLTs (SO-QLTs). This formulation
adopts the second-order correction of the unperturbed orbit.
The resonance function is broadened and the broadening
width is taken as σz ∼ δBslab=B0. The pitch angle diffusion
coefficient then reads:

Dμμ ¼
Ω2

gð1 − μ2Þ
2B2

0

Z
∞

0

dkkEslabðkkÞ
Z

∞

0

dt

× fcos½ðkkvμþΩgÞt�

þ cos½ðkkvμ −ΩgÞt�g exp
�
−
σ2zðtÞk2k

2

�
: ð29Þ

A closure for the broadening width, that in general depends
on both time and pitch angle, has to be chosen to evaluate
the pitch-angle scattering. Here, we follow the so-called
90°-late-time approximation [48], namely:

σ2zðt; μÞ ∼
v2δB̃2

slabt
2

2
: ð30Þ

By combining Eqs. (29)–(30) and by adopting the spectrum
of Eq. (13), it is possible to numerically compute Dμμ and,
thus, λk.

B. Physics of perpendicular scattering

The transport perpendicular to the background magnetic
field is usually interpreted, in the absence of Coulomb
collisions, as being the result of the magnetic field line
random walk (FLRW), under the quasilinear assumption
that particle gyrocenters follow magnetic field lines [1].
Although providing a simple physical picture, even quali-
tative predictions turn out to be not consistent with
numerical experiments [57]. Indeed, the observed
perpendicular diffusion is smaller than the FLRW expect-
ation, especially at small rigidities (for example, see Fig. 7
of Ref. [57]). The basic physics responsible for this is the
profound effect of parallel scattering on the behavior
particles as they move along field lines [66,67].
The failure of QLT for perpendicular transport has

motivated the development of several nonlinear theories.
Within the context of nonlinear closures approximations,
we here describe the nonlinear guiding center theory [68]
that has showed both good agreement with numerical
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results in case of the slab/2D turbulence, and served as a
basis for later improvements and variations [48].
The NLGC theory allows us to compute the

perpendicular diffusion coefficient D⊥ for a given parallel
diffusion coefficient Dk. Its derivation starts from the
perpendicular diffusion coefficient, defined in Tylor-
Green-Kubo (TGK) formulation [69]:

Dxx ¼
Z

∞

0

dthvxðtÞvxð0Þi: ð31Þ

By starting from the particle motion equations and by
assuming slow perturbations, one easily finds the
perpendicular speed of the particle gyrocenters:

ṽxðtÞ ¼ vzðtÞ
δBx

B0

− vxðtÞ
δBz

B0

; ð32Þ

ṽyðtÞ ¼ vzðtÞ
δBy

B0

− vyðtÞ
δBz

B0

; ð33Þ

being ṽiðtÞ¼ 1=T
R
tþT
t dτviðτÞ (i¼ x, y, z) and T ¼ 2π=Ωg.

The standard NLGC theory, initially derived for the
composite (slab/2D) case, neglects the component of the
fluctuations parallel to z, setting δBz ¼ 0. In the following,
we apply such theoretical development to both slab/2D and
3D isotropic cases, although in the latter δBz ≠ 0. In fact we
have generalized the NLGC theory to the case in which
δBz ≠ 0 (not presented here) but this development has no
practical impact on the results, in that its effect is totally
negligible. In any case, the focus of this article is on the
comparison of numerical results with previous theoretical
formulations rather presenting new theories, which will be
discussed elsewhere.
By neglecting δBz terms, we get:

Dxx ¼
Z

∞

0

dthṽxðtÞṽxð0Þi

¼ a2

B2
0

Z
∞

0

dthṽzðtÞṽzð0ÞδBxðr; tÞδBxðr; 0Þi ð34Þ

where two integrals containing mixed correlators have been
neglected (∼ṽzṽxδBzδBx). The numerical parameter a has
been introduced to describe the departure of the guiding
centers from following field lines, which is a ¼ 1 in case
where field lines are being followed, while a ¼ 1=

ffiffiffi
3

p
is set

to better match results of simulations in the slab/2D
composite model of turbulence [51,68].
The derivation proceeds as follows:
1. Each fourth order correlator is separated into two

second order correlators.
2. The velocity correlation function is modeled as an

exponential in time,

hṽzðtÞṽzð0Þi ¼
v2

3
exp

�
−
vt
λk

�
; ð35Þ

an ansatz that automatically satisfies the TGK
formula for parallel diffusion. When needed, an
analogous assumption is made for the perpendicular
velocity autocorrelation hṽxðtÞṽxð0Þi.

3. Corrsin’s hypothesis [70] and turbulence spatial
homogeneity are invoked to relate the Lagrangian
magnetic field autocorrelation function to the ap-
propriate element of the energy spectrum and the
characteristic function of the random displacements
ΔrðtÞ, as:

Rxx ¼ hδBxðrðtÞ; tÞδBxðrð0Þ; 0Þi

¼
Z

d3kSxxðkÞheik·Δri ð36Þ

where SxxðkÞ is the spectral tensor for the magneto-
static case. This essentially is a closure for the
Langrangian correlation in terms of the Eulerian
correlation.

4. The ensemble average containing spatial displace-
ments is evaluated by assuming a Gaussian distri-
bution of particles and a diffusive closure for the
mean displacements.

Taking all of these into account, one arrives to the final
expression:

Dxx ¼
a2v2

3B2
0

Z
d3k

SxxðkÞ
v
λk
þDxxk2x þDyyk2y þDzzk2z

: ð37Þ

In the composite slab/2D case, one gets:

λ⊥
λk

¼ a2

2

��
δBslab

B0

�
2

Kðsslab; qslab; αkÞ

þ
�
δB2D

B0

�
2

Kðs2D; q2D;α⊥Þ
�
; ð38Þ

where qslab ¼ 0, αk ¼ λ2k=3l
2
slab, α⊥ ¼ λkλ⊥=3l22D, and

Kðs;q;αÞ¼ s−1

sþq2F1

�
1;
qþ1

2
;
sþq
2

þ1;1−α

�
: ð39Þ

Note that the solution of Eq. (38) requires to numerically
calculate the roots of a transcendental expression.
By employing the same procedure as for the 3D isotropic

turbulence model [Eq. (20)] and by neglecting δBz, we find:

λ⊥
λk

¼ a2Cðq ¼ 4; sÞ
2

�
δBiso

B0

�
2

I

�
s; α0k

λ⊥
λk

α0k

�
; ð40Þ

being α0k ¼ λ2k=3l
2
iso and
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Iðs; A1; A2Þ ¼
Z

∞

0

dη⊥η⊥
Z

∞

−∞
dηk

×
η2⊥ þ 2η2k

ð1þ η2⊥ þ η2kÞs=2þ2ð1þ A1η
2⊥ þ A2η

2
kÞ
:

ð41Þ

We conclude this section by briefly revisiting the unified
nonlinear theory (UNLT). The derivation of UNLT differs
from the standard NLGC in that NLGC adopts an expo-
nential functional form for the velocity autocorrelation as in
Eq. (35), while UNLT solves an auxiliary Fokker-Planck
equation to determine this correlation.
As proposed in Ref. [71], we compute the perpendicular

diffusion coefficient as:

D⊥ ¼ a2v2

3B2
0

Z
d3k

SxxðkÞ
v
λk
þ 4

3
D⊥k2⊥ þ AðkÞ ; ð42Þ

where AðkÞ ¼ ðv2=3D⊥Þðkk=k⊥Þ2 substitutes the term
Dkk2k of standard NLGC and there is a factor 4=3

multiplying the term proportional to D⊥.
For the composite model of turbulence, UNLT provides:

D⊥ ¼ a2v2

3B2
0

Z
d3k

S2Dxx ðkÞ
v
λk
þ 4

3
D⊥k2⊥ þ AðkÞ ð43Þ

that, after few algebraic steps, simplifies to:

λ⊥
λk

¼ a2

2

�
δB2D

B0

�
2

Kðs2D; q2D; α00⊥Þ; ð44Þ

being α00⊥ ¼ 4=3α⊥. Note that, in this case, the slab
component contributes only in characterizing the parallel
mean free path while, at variance with respect to NLGC,
does not explicitly appear at the rhs of Eq. (44).
On the other hand, for the isotropic turbulence model

[Eq. (20)], UNLT gives the following implicit equation:

1 ¼ a2

2

�
δBiso

B0

�
2

Cðq ¼ 4; sÞJ0
�
s; α00k;

λ⊥
λk

�
; ð45Þ

being α00k ¼ 4=3α0k and

J0ðs;α;rÞ¼
Z

∞

0

dη⊥η3⊥
Z

∞

−∞
dηk

×
η2⊥þ2η2k

ð1þη2⊥þη2kÞs=2þ2ðrη2⊥ð1þrαη2⊥Þþη2kÞ
: ð46Þ

C. The case δB=B0 → ∞
The particle transport in case without any (globally)

ordered magnetic field has been recently considered [22].
The high-energy limit, i.e., when the particle gyroradius
exceeds the correlation length, is known from literature (for
example, [72]) and reads:

Dxx ¼ Dyy ¼ Dzz ¼
r2gv

2lc;iso
: ð47Þ

This expression reflects the fact that the particle’s succes-
sive deflections are uncorrelated, hence, the deflection
angle performs a Brownian motion. In this case, the
decorrelation required for convergence of the TGK formula
is accomplished due to straight line particle trajectory
through the magnetic fluctuations, which themselves decor-
relate over a coherence length lc.
In the low-energy limit, although there is no regular

magnetic field present at the largest scale given by the
simulation box, particles with gyroradii smaller than the
correlation length approximately gyrate along the local
magnetic field. The direction/structure of the local field is
determined by fluctuations near the scale of the correlation
length lc, where most of the turbulence energy resides.
Both FLRWand resonant scattering in the local field affect
particle diffusion. Here we quote the arguments of Ref. [22]
and introduce the final analytical expressions useful for
practical proposes since they were omitted in the origi-
nal work.
The starting point is the QLT pitch-angle diffusion

coefficient, properly modified to take into account the
scattering at μ ∼ 0, that is,

Dμμ ¼
πα2ð1 − μ2Þ

v
Ey

�
kz ¼

Ωg

v

�
: ð48Þ

Here EyðkzÞ ¼
R
dkxdkySyyðkÞ, α ¼ q=mγc and Ωg ¼ αB,

where B is the local field. Note that the reduced spectrum is
the Fourier transformof the corresponding spatial correlation
function Eq. (6) with respect to a single coordinate, the other
spatial lags set to zero, i.e., EyðkzÞ ¼ 1

2π

R
dzRyyð0; 0; zÞ×

exp ð−ikzzÞ. We remark that the one-dimensional reduced
spectrum EyðkzÞ represents the energy associated with y
fluctuations reduced by integrating on kx and ky; this
differs from the omni-directional spectral energy EðkÞ ¼
2πk2SisoðkÞ, though they have the same dimensions and are
functionally related [37]. Moreover, as discussed above, the
resonance is provided by the local field B.
By adopting the spectrum in Eq. (20) and by averaging

the pitch-angle diffusion coefficient on a Maxwellian
distribution of the local magnetic field strength, we get:

D̄μμ ¼
ffiffiffiffiffiffi
2π

p
Cð4; sÞð1 − μ2Þ
sðsþ 2Þ

v
liso

�
liso
rg

�
2

I

�
s;

ffiffiffi
3

p
rg

liso

�
; ð49Þ

DUNDOVIC, PEZZI, BLASI, EVOLI, and MATTHAEUS PHYS. REV. D 102, 103016 (2020)

103016-10



where the gyroradius rg is computed using δBrms and

Iðs; RÞ ¼
Z

∞

0

dξξ2e−ξ
2=2 1þ ð1þ sÞðξRÞ2

ð1þ ðξRÞ2Þ
s
2
þ1

: ð50Þ

Finally, by expanding D̄μμ in the limit rg=liso ≪ 1 and
inserting in Eq. (27), we obtain:

λiso ¼
3liso
8

AðsisoÞ
�
rg
liso

�
2−s

; ð51Þ

where λiso ¼ λk ¼ λxx ¼ λyy ¼ λzz and

AðsÞ ¼
�
2

3

�
s=2 sðsþ 2Þ

sþ 1

Γðs−1
2
Þ

Γðs
2
þ 2ÞΓð3−s

2
Þ : ð52Þ

In the case of Kolmogorov slope, we recover the scaling
λiso ∼ ðrg=lisoÞ1=3. For a Kraichnan inertial range with slope
−3=2 this becomes λiso ∼ ðrg=lisoÞ12.
In Ref. [22], authors also developed an extended low-

energy theory, based on the idea that particles make an
unperturbed orbit along the local mean magnetic field.
Hence, the mean perpendicular displacement is about rg
andEyðkzÞ is evaluated asEyðkzÞ¼

R
dkxdkySyyðkÞe−k2⊥r2g=6.

Again, after expanding the expression in the limit
rg=liso ≪ 1, we retrieve:

λiso ¼
3liso
8

AðsisoÞ
BðsisoÞ

�
rg
liso

�
2−s

; ð53Þ

in which AðsÞ is the same as above, while BðsÞ reads:

BðsÞ ¼ 32

210
1

ðs − 2Þðsþ 1Þ ½2
5sð4s − 5Þ − 221

þ 31−sð13þ 8sÞ2F1

�
−
1

2
;
3 − s
2

;
1

2
;−8

��
: ð54Þ

From BðsÞ one can easily check that Eqs. (51) and (53)
differ by 15% for s ¼ 5=3 and 20% for s ¼ 3=2.
The explicit expressions derived here for the low-energy

theory Eq. (51), and for the extended low-energy theory,
Eq. (53), may be used to develop transport models in
astrophysical environments where δB ≫ B0. This would be
appropriate close to CR sources such as supernovae
shocks [3,73].

IV. NUMERICAL RESULTS AND DISCUSSION

In this Section we discuss the results of numerical
simulations for several models of turbulence discussed
above.

A. Slab model

For the slab model of the turbulent magnetic field, the
power spectrum tensor is given by Eq. (13). In this case,
our simulations are characterized by a grid size Nz ¼ 225,
while lslab ¼ 10−4Lz (for box size Lz ¼ 400 kpc) and
B0 ¼ 1 μG. The spectral slope in the inertial range is
s ¼ 5=3. Note that we set lslab ≪ Lz in such a way that the
parallel mean path λk ¼ 3Dk=c is well contained inside the
numerical box for most of the considered gyroradii and
δBslab=B0 values.
Figure 1 shows the pitch-angle diffusion coefficient,

Dμμ, as a function of the pitch angle μ, for the case
δBslab=B0 ¼ 10−2 and for the gyroradius rg ¼ 0.02lslab. For
a given time-lag Δt, in order to evaluateDμμðμÞwe selected
a temporal window of width T ¼ tmax=5, being tmax ≃
10λk=c the maximum time of the simulation. Within the
selected window, we increased the statistics by shifting the
origin t0 inΔμ ¼ μðt0 þ ΔtÞ − μðt0Þ. No differences inDμμ

are recovered by changing the window on which we apply
this procedure. Finally, the histogram of Δμ with respect to
μðtÞ is calculated.
At a small time-lag Δt ¼ 10−2λk=c, where λk ¼ 3Dzz=c

is evaluated from the running diffusion coefficient of the
numerical simulation, simulations (red line) are in agree-
ment with the QLT prediction, given by Eq. (26) (dashed
gray line). When increasing the time lag Δt ¼ 10−1λk=c
(green line), a discrepancy at μ ∼ 0, typical of resonance
broadening, is found. Such difference confirms that QLT
validity is limited not only to the small amplitude case, but
also to the small time-lag regime, in other words, the pitch
angle has to accumulate small changes.
The next test of our numerical procedures is to compare

numerical results of the spatial diffusion coefficient Dzz in
the slab turbulence with the theoretical expectations of

FIG. 1. Pitch-angle diffusion coefficient Dμμ for slab turbu-
lence, as a function of μ, evaluated at the time lag Δt ¼ 10−2λk=c
(solid red) and Δt ¼ 10−1λk=c (solid green), for the case
rL=lslab ¼ 0.02 and δBslab=B0 ¼ 10−2. The dashed gray line is
the theoretical prediction of QLT [Eq. (26)].
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QLT, Eq. (28), and second order QLT (SO-QLT) which we
obtained by inserting Eqs. (29)–(30) in Eq. (27).
We adopted a grid size of Nz ¼ 230 grid points within

Lz ¼ 384 kpc, while lslab ¼ 10−6Lz to minimize the impact
of periodicity of the box on the results. The mean field
strength is set to 1 μG while the turbulent component
ranges from δBslab ¼ 0.05 to 1 μG. Figure 2 displays
λk=lslab as a function of rg=lslab, for the listed values of
δBslab=B0. The results from numerical simulations (points)
are showed together with the QLT (dashed lines) and the
SO-QLT (solid lines) predictions. The results are, as
expected, in excellent agreement with both QLT and
SO-QLT when the turbulent field fluctuations are small,
while the SO-QLT performs better for the cases in which
δBslab=B0 is closer to unity. It is worth mentioning that, for
larger values of δBslab=B0, the simulation results tend to lie
between the QLT and SO-QLT predictions.
In the above results we noticed a slight underestimate of

the diffusion coefficient compared with the theory for the
case δBslab=B0 ¼ 0.05, due to accumulation of numerical
errors in the Boris method of the particle trajectory
integration. When the Runge-Kutta method is used in
the same setup, the diffusion coefficient is slightly over-
estimated. This difference in the integration method hap-
pens only in this stringent case in which ≳104Ω−1

g are
needed to reach the diffusion plateau. This uncertainty is
represented through the error bars of the red points.

B. Slab/2D (composite) model

Here we focus on simulations of particle transport in
slab/2D models of turbulence [Eq. (18)]. The interest in this
case is twofold. First, it represents an additional test of our
numerical approach to cases that have been studied in the
literature both with simulations and with NLGC [68].

Second, and more importantly, by means of these simu-
lations we address the issue of whether the ratio λ⊥=λk
becomes constant in the limit of small particle rigidity.
Indeed, a constant ratio λ⊥=λk is expected both in NLGC
and universal nonlinear theories [71,74,75], but the limited
dynamical range of existing simulations has limited the
validation of this theoretical prediction [7,33].
The 3D numerical box size has been chosen to have

Lz ¼ 400 kpc, Lx ¼ Ly ¼ 10−2Lz, and it has been dis-
cretized with Nx ¼ Ny ¼ 214 and Nz ¼ 225 grid points.
The magnetic perturbation amplitude is δB=B0 ¼ 0.3,
where δB2 ¼ δB2

slab þ δB2
2D and B0 ¼ 1 μG. The slab

bend-over length is lslab=Lz ¼ 10−3, while l2D=Lx ¼
10−2 (i.e., l2D ¼ 0.1lslab). The inertial range spectral slope
is sslab ¼ s2D ¼ 5=3, while q2D ¼ 3.
Figure 3 displays the time evolution of the running

diffusion coefficientsD⊥ andDk. For the sake of simplicity,
we only report the case rg=lslab ¼ 1.6 × 10−2, that properly
falls in the inertial range for both slab and 2D models. It is
interesting to notice that the saturation in the perpendicular
direction is slower with respect to the parallel direction. In
particular, in the time range when parallel diffusion has
already reached saturation, perpendicular diffusion under-
goes a subdiffusive phase, followed by the proper diffusive
behavior at later times [59,67]. This is consistent with the
naive expectation that perpendicular diffusion requires a
time ðδB=B0Þ2 times longer to reach saturation.
Figure 4 shows the results of the two cases in which the

2D to slab power ratio is set either to 80%=20% (left
column) or to 50%=50% (right column). The top-row
panels show λk (red dots) and λ⊥ (blue crosses) as a
function of the normalized gyroradius rg=lslab. The two
vertical gray lines indicate the minimum rigidity for which
the resonance can be considered as well resolved in our
simulations. They are related to the minimum gyroradius in
the parallel grid (dashed line) and the perpendicular grid

FIG. 2. Parallel mean free path for slab turbulence as a function
of rigidity. The points refer to the results of our test particle
simulations for different values of δB=B0, as indicated [from 0.05
(top points) to 1 (bottom points)]. The dashed lines depict the
corresponding predictions from QLT [Eq. (28)]. The solid lines
come from the second order QLT [Eqs. (29)–(30)]. The spectral
index of turbulence is s ¼ 5=3.

FIG. 3. Time evolution of Dk (red) and D⊥ (blue), for the case
of slab/2D field turbulence where the 2D to slab power ratio is
80%–20%, and rg=lslab ¼ 1.6 × 10−2. The dashed lines refer to
standard deviations.
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(dot-dashed line), evaluated in such a way that the mini-
mum Larmor radius is described with five grid points in the
parallel or perpendicular grid.
In both 80%=20% and 50%=50% cases, the parallel

mean free path is in quite good agreement with and SO-
QLT [Eqs. (29)–(30) inserted in Eq. (27), green dashed
line] predictions, showing a r2g trend at high energies and

the usual r1=3g at smaller energies. Notice also that, since we
do not see any transition at l2D ¼ 0.1lslab in parallel
diffusion within simulations, we conclude that, as expected
from QLT considerations, parallel diffusion is not affected
by the 2D component. Moreover, perpendicular diffusion is
roughly constant at small gyroradius and shows a transition
around rg ∼ l2D and then it increases above rg ∼ lslab.
It is interesting to check whether the ratio λ⊥=λk is well

described by NLGC and UNL theories. Bottom panels of
Fig. 4 show the ratio λ⊥=λk as a function of rg=lslab. Red
points refer to the ratio directly computed from numerical
simulations, while green dot-dashed and blue dashed lines,
respectively, display the theoretical calculations within
NLGC [Eq. (38)] and UNL [Eq. (44)] theories, being
the parallel path length evaluated through SO-QLT. We set

a2 ¼ 1=3 as in previous works [33,68]. A good agreement
between numerical simulations and theories is recovered in
the 80%–20% case. A larger discrepancy (about a factor of
5) is instead found in the 50%–50% case for both theories.
In the two cases, UNLT provides slightly better results with
respect to NLGC one. Moreover, NLGC and UNL theories
depend on both l2D and lslab. Hence, one might expect
breaks in the energy dependence at both of these scales in
the simulations, since here l2D ≠ lslab. However, as seen in
the top panels of Fig. 4, there is no apparent transition at
l2D. On this basis, we suggest that the behavior of λk
influences the most the shape of the λ⊥=λk ratio.
Within the current framework, in order to achieve a better

agreement of theory and simulation when increasing the
power in the slab component, one would require a smaller
value of the parameter a2. This different behavior can be
better understood with the help of Fig. 5, where we show
the relative importance of the two terms in Eq. (38), that
here we refer to as the slab term and the 2D term. The lines
show the two terms for the 50%=50% case (orange lines in
Fig. 5) and the 80%=20% case (blue lines in Fig. 5). One
can see that the 2D contribution to the ratio λ⊥=λk is

FIG. 4. Slab/2D field model, assuming a slab power ratio of 80%–20% (left) and 50%–50% (right). The top rows show λk (red dots)
and λ⊥ (blue crosses) as a function of rg=lslab. Note that l2D ¼ 0.1lslab. The green dashed lines correspond to the theoretical predictions
for λk obtained with SO-QLT [Eqs. (29)–(30)]. The bottom rows display the ratio λ⊥=λk as a function of rg=lslab. The red symbols are
values obtained from the simulations. The theoretical lines of the bottom panels are being calculated from the NLGC [Eq. (38), green]
and UNL [Eq. (44), blue] theories with a2 ¼ 1=3 where, for the Dk input, SO-QLT is used.
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dominant for the 80%=20% case while the slab term
slightly dominates in the 50%=50% case. In other words,
it seems that the NLGC theory works best when the 2D
component is dominant. This reason for this latter feature is
at least twofold. The more intense slab component makes
field line direction less parallel to the background magnetic
field, hence the assumption of particle guiding centers
following magnetic field lines is less satisfied with respect
to the 2D dominant case. Moreover, for a more significant
slab component, the parallel mean free path diminishes,
thus reducing the distance over which particle guiding
centers follow magnetic field lines [76].
We remark here that, in the analyzed gyroradius range,

the ratio λ⊥=λk does not become constant when decreasing
particle energy. In Fig. 6 we show λ⊥=λk, evaluated from
both NLGC [Eq. (38), left] and UNL [Eq. (44), right]
theories, as a function of the gyroradius rg=lslab, for different

values of the parameters (δB=B0, 2D to slab power ratio, and
2D to slab bend-over lengths ratio). Dk has been evaluated
using SO-QLT. Within both theoretical formulations, the
flatness of the ratio λ⊥=λk only occurs at very small values of
rg=lslab, unless δB≳ B0. This behavior is easily understood:
from NLGC and UNL theories one concludes that the ratio
becomes constant occurs when λk ∼ lslab. But inQLTone can
roughly approximate the parallel mean free path as
λk ≈ r1=3g l2=3slabðδB=B0Þ−2, so that the condition λk ∼ lslab is
obtained when

rg
lslab

∼
�
δBslab

B0

�
6

: ð55Þ

Therefore, the ratio λ⊥=λk becomes constant at ever smaller
energies as the slab turbulence amplitude δBslab=B0 is
reduced. Note also that, since lslab ∼ lc, the same line of
reasoning applies for rg=lc.
For typical values of parameters consistent with properties

of the interstellar medium (ISM) (δB=B0 ∼ 0.1), the con-
dition in Eq. (55) is fulfilled only for very low energy
particles. This condition can even correspond to nonrelativ-
istic protons if the Larmor radius equals the coherence scale
at PeV energies, as typically happens. In other words, for
most energies the parallel and perpendicular diffusion
coefficients are expected to have a different energy depend-
ence. Notably, as visible in Fig. 6, the ratio λ⊥=λk is a
decreasing function of rigidity formost of the relevant values
of rigidity, for the present case of slab/2D model of
turbulence. As we discuss below, this conclusion appears
to be reversed in the case of isotropic turbulence in the
presence of an ordered field B0.

C. Isotropic model without B0

Here we focus on the three-dimensional isotropic model
of turbulence. These simulations have been performed
with Nx;y;z ¼ 2048 grid points. The bend-over scale is

FIG. 5. Energy dependence of the two terms in Eq. (38) for
slab/2D turbulence with δB=B0 ¼ 0.3 and l2D ¼ 0.1lslab. The two
terms are referred to as slab term (solid) and 2D term (dot
dashed), respectively, and are displayed for the 80%–20% (blue)
and 50%–50% (orange) cases. The sum of the two terms
coincides with the formal solution of NLGC theory. The parallel
diffusion coefficient has been computed by means of QLT.

FIG. 6. Solution of NLGC [Eq. (38), left] and UNL [Eq. (44), right] theories for different δB=B0 ¼ 0.03, 0.3, 3 (orange, blue and
green, respectively). Solid, dashed and dot-dashed lines refer to 80%=20% and l2D ¼ 0.1lslab; 80%=20% and l2D ¼ 1lslab; and
50%=50% and l2D ¼ 0.1lslab, respectively.
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liso ¼ Lbox=8, where Lbox ¼ 512 pc. The magnetic field
fluctuation amplitude is set to δB ¼ δBiso ¼ 1 μG. In
general, in this section, we show results for both the
Kolmogorov and Kraichnan slopes.
We first revisit results of Ref. [22] in which the diffusion

coefficient is studied as a special case where δB=B0 → ∞
for high- and low-rigidity range. Here we investigate its
agreement with our simulations when B0 ¼ 0 and
δBiso ¼ 1 μG. The top panel of Fig. 7 displays the behavior
of the isotropic mfp λiso=liso as a function of rg=liso,
focusing on the region just below rg=liso ¼ 1 where the
transition between high rigidity and low rigidity asymptotic
forms occurs. For high rigidities, i.e., rg=liso > 1, the
expected behavior λiso ∼ r2g is recovered. The small offset

in the normalization of the high-energy line is due to the
difference between the theoretical correlation length given
in Eq. (21), and one actually present in the simulated
turbulent field. With the ratio liso ¼ Lbox=8 a small fraction
of turbulence energy (approximately ∼10%) is not con-
tained in the box, and that leads to slightly different Lc;iso

(see Sec. II B) which reflects on the normalization of the
high-energy points. The correlation length can be calcu-
lated for the finite integral of k in Eq. (9), from kmin to kmax
which would give a better agreement with the simulation
results.
In the opposite regime, for small gyroradii compared to

the bend-over scale of turbulence, rg=liso < 1, the simu-
lation results also agree with the theoretical predictions,
especially for the bigger box (20483 grid points). We define
a marker called the grid limit that represents the gyroradius
that comprises at least five grid points. At scales above the
grid limit, a particle can sense the resonance in the inertial
range of turbulence while for the smaller gyroradii, this
cannot be guaranteed and leads to unphysical results.
In the upper panel, only the Kolmogorov (s ¼ 5=3) points

are shown for two grid sizes, 1024 and 2048 in blue and
orange, respectively. Here it can be seen that the blue points,
as they approach the grid limit from above, begin to lose
resonance at higher energies than the orange points. The
orange points agree well with the extended low-energy
theory (the solid green line) given in Eq. (53) to lower
rigidities, rg=liso < 10−2. The lower panel enlarges the
lower-energy range of the upper panel, and adds the
Kraichnan case for comparisons (dark gray points) and
the accompanying theory line (the solid violet line). The
dashed lines depict Eq. (51) for the Kolmogorov and
Kraichnan cases and are colored the same way as their
extended counterparts.
The detailed numerical simulations of this section con-

firm that the low-energy theory presented in [22] indeed
agrees well with the simulations. We also note that accurate
numerical simulation in the low rigidity regime is consid-
erably demanding in terms of computational resources.

D. Isotropic model with B0 ≠ 0

This section is concluded with results of the isotropic
model with the background field present, i.e., B0 ≠ 0. We
consider this as the most important result since it departs
from expectations of known theoretical models.
Theoretical approaches in modeling the axisymmetric

diffusion of particles normally consider B0 as the only
component relevant for defining gyroradius rg, primarily
because δB ≪ B0 is assumed, such as in QLT. So far in the
current work, we have adopted the same definition.
However, with increasing δB, and especially when
δB≳ B0, this definition of rg cannot support any mean-
ingful transition to the isotropic case without B0, shown in
the previous subsection. That is why, hereafter, we use

FIG. 7. Path length for CR transport in isotropic turbulence
without mean field (B0 ¼ 0) as a function of rigidity. The
simulation parameters are δB ¼ 1 μG, Lbox=liso ¼ 8, Nx ¼ Ny ¼
Nz ¼ f1024; 2048g, Lbox ¼ 512 pc. The blue and orange points
refer to simulation results for the Kolmogorov spectrum in the
1024 and 2048 grid size boxes, respectively. The gray vertical
lines represents the so-called grid limit for 1024 and 2048 (see
text). The green solid line shows the extended low-energy (LE)
theory given in Eq. (53), while the red dashed-dotted one is the
high energy theory, Eq. (47). The bottom panel is the enlarged
upper panel to emphasize the low-energy region in which the
Kraichnan simulation points are added (purple points) together
with its theoretical line for extended LE theory (solid lines). The
dashed lines show the nonextended LE theory, Eq. (51). The
orange color refers to the Kolmogorov spectrum.
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Btot ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0 þ δB2

iso

p
in the definition of rg when dealing

with isotropic turbulence to seamlessly converge to the case
of vanishing B0. If compared with results made with the
previous definition, the difference is visually noticeable
only for δBiso=B0 > 0.5.
The simulation parameters are the same as in the

previous subsection except for the presence of the mean
magnetic field. In Fig. 8 we show to convergence of the
procedure for the calculation of the parallel and
perpendicular diffusion coefficients in terms of a plateau
in the running diffusion coefficients. In this case, the plot is
obtained with 2500 particles in five different realizations of
the magnetic field and, as one can see the result, is not
affected by any systematics associated with any of the
realizations. The same result is achieved with simulations
that include only one realization.
The energy dependence of the mean free paths, λk and λ⊥

is displayed in Fig. 9, for the Kolmogorov spectrum
(siso ¼ 5=3) in the upper panel and for the Kraichnan
spectrum (siso ¼ 3=2) in the lower panel. Each panel shows
results for δBiso=B0 ¼ 0.3 (red), δBiso=B0 ¼ 0.5 (green),
δBiso=B0 ¼ 1 (blue) and δBiso=B0 ¼ 5 (brown). The tri-
angles and dots, respectively, refer to λk and λ⊥. The
parallel mean free paths clearly follow the slope expect-
ation based upon QLT. The general trend is revealing. For
rigidity values corresponding to the inertial range of
turbulence, and therefore to a regime in which there is
resonant scattering, one finds that the parallel and
perpendicular diffusion coefficients have different energy
dependence. On the other hand, as expected, increasing the
turbulence amplitude δBiso=B0, the difference between λk
and λ⊥ reduces towards the limiting case of no background
magnetic field. In that case, there is, as expected, no
distinction between parallel and perpendicular directions.

Our simulations, having a large dynamical range com-
pared with previous investigations of this problem, confirm
previous hints [7] of a different energy dependence of the
parallel and perpendicular diffusion coefficients for
δBiso=B0 ≲ 1. Since there are no theoretical predictions
for the case of particle transport in isotropic turbulence in
the presence of an ordered magnetic field to compare our
simulations against, we have derived these predictions by the
straightforward application of NLGC and UNL theories,
as shown above, although, with the explicit assumption
δBz ¼ 0 to simplify the presentation. Unfortunately, both
theories return predictions that are at odds with the results of
the simulations, suggesting that they miss some important
pieces of physics of transport in this situation. This can be
clearly observed from Fig. 10, where we show the energy
dependence of the ratio of the perpendicular and parallel
diffusion coefficients, especially in the region rg < lc. The
dashed lines in the same figure represent the results ofNLGC
calculation for the 3D isotropic model of turbulence,
Eq. (40), while dot-dashed lines refer to UNLT, Eq. (45).
Both theories have been evaluated with ða2 ¼ 1=3Þ and

FIG. 8. Sample running diffusion coefficients, D⊥ ¼
ðDxx þDyyÞ=2, Dk ¼ Dzz, in the isotropic model with B0 ≠ 0

represented as mean free paths over the bend-over scale for one
simulation runs with parameters δB=B0 ¼ 0.5 and rg=liso ∼ 0.3,
while dashed lines refer to standard deviations. The upper scale is
measured in the correlation length in the parallel direction, λk.

FIG. 9. Parallel (triangles) and perpendicular (circles) mean
free paths as functions of rg=liso for several values of δB=B0

(different colors). The top panel refers to Kolmogorov turbulence
and the bottom to Kraichnan turbulence. Parallel mean free path
scales as r1=3g and r1=2g for Kolmogorov and Kraichnan cases,
respectively (yellow dashed lines). The simulations were per-
formed on 2048 and 1024 grids.
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simulations points have been used for the ðDkÞ input.
Figure 10 displays results only for the Kolmogorov case,
for the sake of clarity, but the same trend is also found in the
Kraichnan case. We stress once more that the problem is not
related to the fact that we neglected the contribution due to
non vanishing δBz, which can be shown to be negligible in
terms of perpendicular diffusion.
There is no doubt that further theoretical investigation

is needed to understand the physical reason for the trend
in the ratio. We stress once more that the increasing
trend as a function of energy is opposite to that found in
the case of slab/2D turbulence model discussed above,
where the NLGC theory provides at least a qualitatively
correct description of the results of simulations.
The change of slope of the D⊥=Dk ratios in the inertial

range is also demonstrated in Fig. 11. It displays the slope
for both Kolmogorov (top) and Kraichnan (bottom) models
of turbulence as a function of δBiso=B0. The different colors
of the points correspond to the different fitting procedures
for obtaining the slope, performed as follows. For each
value of δBiso=B0, we have first selected the optimal range
of Larmor radii, within the inertial range defined as where
Dk ∝ r2−sg where s refers to the spectral index. The results
of fits performed on this “best” range are displayed as the
red points. Then, to verify if the selection procedure of the
fit range is not determining the results, we have repeated
the procedures by reducing the fit range, i.e., by removing
edge points. In particular, we have excluded one point at
high-energy (blue); one point at low-energy (green); or one
point at high-energy and another point at low-energy
(orange). The results of fitting procedures in different
ranges are consistent among themselves, demonstrating
the robustness of the slope results.

V. DISCUSSION AND CONCLUSIONS

We performed numerical simulations of CR transport in
synthetic turbulence in the case of slab, slab/2D and
isotropic turbulence. The dynamical range achieved in
these simulations allows us to reach solid conclusions
concerning the energy dependence of the diffusion coef-
ficient in the directions parallel and perpendicular to the
large scale ordered magnetic field B0. For the case of
isotropic turbulence (δBz ≠ 0), we also extend previous
simulations [7,22] to cover a larger dynamical range.
The numerical approach has been tested versus the case of

slab turbulencewith different levels of turbulence δB=B0: the
results of numerical simulations for the pitch angle diffusion
coefficient and the spatial diffusion coefficient are in excel-
lent agreementwithQLTas long as δB=B0 ≲ 0.05. For larger
levels of turbulence, 0.05≲ δB=B0 ≲ 0.5, the second order
QLT provides a better description of numerical results. For
even larger levels of turbulence, the parallel mean free path
derived numerically seems to be in between the predictions
of QLT and SO-QLT. The behavior of the pitch angle
diffusion coefficient derived from simulations clearly shows
the resonance broadening around μ ∼ 0where QLT becomes
problematic (the 90° problem).

FIG. 10. D⊥=Dk ratio as a function of gyroradius for different
values of δB=B0 with the Kolmogorov spectrum. Dashed and dot-
dashed lines, respectively, represent predictions of NLGC
[Eq. (40)] and UNL theories [Eq. (45)] for isotropic turbulence,
both evaluated with a2 ¼ 1=3 and where, for the Dk input,
simulation points are used. Gray dotted lines are fits to the inertial
range behavior as used in Fig. 11.

FIG. 11. Slope of D⊥=Dk as a function of δBiso=B0 for the
Kolmogorov (top) and Kraichnan (bottom) spectra. Different
colors correspond to different ranges of Larmor radii over which
the fitting procedure has been implemented as described at the
end of Sec. IV D.
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The slope of Dk as a function of energy, at low energies
is always consistent with what would be naïvely expected
from QLT for the given spectrum of turbulence (for
instance the slope is 1=3 for Kolmogorov turbulence),
provided the resonant scale k is resolved by the numerical
simulation. Typically in the simulations the latter scale
is between two and three orders of magnitude below
the correlation length, lslab, for slab turbulence. At high
energies, for which rg ≫ lslab, we find Dk ∝ r2g, as
expected.
For slab/2D turbulence, the situation is more complex.

We investigated two configurations in which energy is
shared between 2D and slab turbulence as 80%=20% and
50%=50%, respectively. The case we investigated has
δB=B0 ¼ 0.3, with δB2 ¼ δB2

slab þ δB2
2D. In both cases

and for the whole range of Larmor radii here considered,
the parallel path length is in good agreement with SO-QLT,
thus confirming the powerful nature of this theoretical
approach, despite its perturbative origin. In the same
conditions the perpendicular path length is basically energy
independent in the low energy regime.
Simulation results for the composite model of turbulence

have been also compared with the predictions of the NLGC
and UNL theories for the D⊥=Dk ratio. Since both theories
require as an input the parallel path length, we adopted λk
resulting from SO-QLT, while we considered a2 ¼ 1=3
[68]. A good agreement between numerical simulations and
theories is recovered in the 80%–20% case, while a more
significant disagreement is found in the 50%–50% case.
Moreover UNLT yields slightly more accurate results with
respect to NLGC theory. We also remark that, the single
transition recovered, for both NLGC and UNL theories, in
the ration λ⊥=λk occurs at rg ∼ lslab, while no transitions are
found at rg ∼ l2D ¼ 0.1lslab. This may suggest that—within
such theories—the qualitative behavior of the ratio λ⊥=λk is
mainly governed by λk.
One should also keep in mind that UNL and NLGC

theories make use of a free parameter a2 which is
somehow tuned to fit data or simulations, which is a
weak point of this approach. In our calculations for the
slab/2D case, as in much of the literature, we assume
a2 ¼ 1=3, but it is possible that a different choice of a2,
perhaps depending on the turbulence intensity, might
provide a better agreement with the simulated D⊥=Dk. A
rule of thumb seems that the agreement of the NLGC
results with simulations is better when most of the power
is concentrated in the 2D component of the turbulence. In
this perspective note that Shalchi [77] recently claimed to
prove the physical meaning of setting a2 ¼ 1=3. However
simulations results (e.g., results of Arendt and Shalchi
[78] suggest that this parameter depends on both particle
energy and fluctuations level) indicate that this feature is
still poorly understood and an intense effort is required to
deeply comprehend it.

Both simulations and NLGC results agree on predicting
that the D⊥=Dk is a decreasing function of energy for slab/
2D turbulence. Due to limited computational resources, it is
not possible to extend the simulations to energies much
below the ones considered here. However we can tenta-
tively trust the NLGC theory in predicting the trend of the
D⊥=Dk ratio at low energies, so as to check claims of
universality [33], namely constancy of the ratio at low
energy. We proved that such universality is achieved when
rg=lslab ∼ ðδBslab=B0Þ6 for a Kolmogorov shape of the
spectrum. For conditions that are typically adopted for
the ISM in our Galaxy (lslab ∼ 10 pc and δBslab=B0 ∼ 0.1),
one can clearly see that the D⊥=Dk ratio should become
constant only at energies below ∼10 GeV, while at higher
energies the ratio should be a decreasing function
of energy.
Finally, we discuss the case of isotropic turbulence

(δBz ≠ 0). In the presence of an ordered field B0, we
show that the diffusion coefficients parallel and
perpendicular to B0 have slopes that differ from one
another in the low energy regime. This behavior was found
for both Kolmogorov and Kraichnan spectra of the turbu-
lence. and confirms previous hints [7], obtained with
smaller boxes of the simulated field. At low energies,
the parallel mean free path has the slope that would be
expected based on QLT, for all levels of turbulence, and for
the turbulent spectra considered here, contrary to what has
recently been claimed in [79]. Their result is probably
simply due to the fact that in the lowest energy bins their
simulations are unable to capture the resonances respon-
sible for particle scattering. This physical ingredient is
instead correctly described in our simulations, due to the
very large box adopted here. By qualitatively comparing
results described here and the ones obtained with the plane
waves method in Casse et al. [8], we conclude that the
dynamical range in Ref. [8] was not extended enough in the
regime of small gyroradii (see, e.g., Fig. 4 of [8]) to observe
the energy dependence of the D⊥=Dk ratio. More powerful
computational resources available at the present time,
have allowed us to clarify this issue, because of the
access to a wider range of energies and because of the
capability to have numerical accuracy under control. We
aim to directly compare our method with plane wave
methods in a future work.
The ratio D⊥=Dk changes with energy in a different way

depending on the level of turbulence, δB=B0 and, as
expected, becomes constant for δB=B0 → ∞ (or B0 → 0).
For δB=B0 < 1 the ratio grows with energy for rg=lc < 1, at
odds with the case of slab/2D turbulence, while it decreases
with energy for rg=lc < 1, where the parallel scattering is no
longer dominated by resonances. Interestingly, no theory
exists for the case of isotropic turbulence in the presence of an
ordered field B0, while a generalization of the NLGC
approach for the strong turbulence case (B0 → 0) was
previously presented in [22]. In the present article we
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provided a simple application of the NLGC and the
UNL theories to the isotropic case, in order to estimate
the perpendicular diffusion coefficient, but the results
of such calculation do not match theD⊥=Dk ratio obtained
from our numerical simulations. The results collected
here suggest that the breaking of universality emerges
due to the energy dependence of the perpendicular mean
free path, since the parallel mean free path is consistent
with standard theoretical approaches (QLT/SO-QLT).
A theoretical approach to the description of particle trans-
port in isotropic turbulence with an ordered magnetic
field is definitely still missing and will be the subject of
future efforts.
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