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We argue that the stable (color-singlet) supermassive gravitinos proposed in our previous work can serve
as seeds for giant primordial black holes. These seeds are hypothesized to start out as tightly bound states
of fractionally charged gravitinos in the radiation-dominated era, whose formation is supported by the
universally attractive combination of gravitational and electric forces between the gravitinos and
antigravitinos (reflecting their “almost BPS-like” nature). When lumps of such bound states coalesce
and undergo gravitational collapse, the resulting mini black holes can escape Hawking evaporation if the
radiation temperature exceeds the Hawking temperature. Subsequently the black holes evolve according to
an exact solution of Einstein’s equations, to emerge as macroscopic black holes in the transition to the
matter-dominated era, with masses on the order of the solar mass or larger. The presence of these seeds at
such an early time provides ample time for further accretion of matter and radiation, and would imply the
existence of black holes of almost any size in the Universe, up to the observed maximum.
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I. INTRODUCTION

The origin of large (galactic) black holes, present already
in the early Universe has been a long-standing puzzle; see
e.g., Ref. [1] for information on the most recently discov-
ered behemoth black hole, [2] for a generally accessible
update and overview, and Refs. [3–5] and references
therein for more recent work. It seems generally agreed
that such large black holes cannot form by the usual stellar
processes (i.e., gravitational collapse of stars and sub-
sequent accretion of mass), but must have originated from
some other source. One possible explanation is that black
holes were already present from the very beginning of the
matter-dominated period, and in sufficient numbers and
with sufficiently large masses to be able to grow further by
accretion to very large sizes already a few hundred million
years after the big bang. Various mechanisms have been
proposed and discussed towards solving this problem, most
of them based on extrapolations of known physics, such as
e.g., large random density fluctuations in the early
Universe; see Ref. [6] for a comprehensive recent review
with many further references. That review also discusses
different observational consequences and constraints, while
emphasizing that “the limits are constantly changing as a
result of both observational and theoretical developments”.
From a more theoretical perspective, a mechanism based on
bubble formation during inflation was recently put forward
in Refs. [7,8], but differs essentially from the one presented
here, because there the substantive part of black hole
growth must take place before the onset of the radiation

phase. At any rate, the crucial question remains whether an
explanation can be found in terms of known physics, or
whether an explanation necessarily involves essentially
new physics.
In this paper we present a new proposal towards

addressing this problem which can complement existing
proposals in that it does not rely on random processes, such
as density fluctuations or bubble formation, but invokes
new physics in the form of new elementary particles.
Namely, it is based on the conjectured existence of certain
supermassive particles (gravitinos) that allow for the for-
mation of black holes already during the early radiation
phase, well before decoupling. There are two necessary
prerequisites for a mechanism based on the “condensation”
of superheavy particles to work, namely
(1) the supermassive particles must be absolutely stable

against decay into Standard Model matter; and
(2) they must be subject to sufficiently strong attractive

forces to enable them to rapidly cluster in sufficient
amounts to undergo gravitational collapse.

Although Ansätze towards fundamental physics, in par-
ticular Kaluza-Klein theory and string theory, abound in
massive excitations that might serve as candidates for such
a scenario, such excitations usually fail to meet the first
requirement (with decay lifetimes on the order of the
Planck time tPl), which is why they are often assumed
to play no prominent role in the cosmology of the very early
Universe. Here we will argue that, by contrast, the super-
heavy gravitinos proposed in our previous work [9,10] can
meet both requirements. That the requisite particles should
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be gravitinos, rather than some other particle species, is
perhaps unusual, so let us first explain the reasons for
this claim.
Our proposal has its origin in our earlier attempt to

understand the observed spin-1
2
fermion content of the

Standard Model, with three generations of quarks and
leptons (including three right-chiral neutrinos). It relies on a
unification scenario based on a still hypothetical extension
of maximally extended N ¼ 8 supergravity involving the
infinite-dimensional duality symmetries E10 and KðE10Þ
[9–11] (this proposal itself has its origins in much earlier
work [12,13]). The enlargement of the known duality
symmetries of supergravity and M-theory to the infinite-
dimensional symmetries E10 and KðE10Þ is absolutely
essential here, because without this extension neither the
charge assignments of the quarks and leptons, nor those of
the gravitinos in Eq. (1) below could possibly work, and
stability of the gravitinos against decay could not be
achieved. A key feature of our proposal, and one that sets
it apart from all other unification schemes, is that besides
the 48 spin-1

2
fermions of the Standard Model, the only

other fermions are the eight supermassive gravitinos
corresponding to the spin-3

2
states of the N ¼ 8 super-

multiplet. It is thus a prediction that the spin-1
2
fermion

content of the Standard Model will remain unaltered up to
the Planck scale, a prediction that is (at least so far)
supported by the absence of any signs of new physics
from the LHC, and by the fact that the currently known
Standard Model couplings can be consistently evolved all
the way to the Planck scale. Indeed, the detection of any
new fundamental spin-1

2
degree of freedom (such as a sterile

fourth neutrino, or a fourth generation of quarks and
leptons, or any of the “-ino” fermions predicted by low-
energy supersymmetry) would immediately falsify the
present scheme.
Evidence for infinite-dimensional duality symmetries

of Kac-Moody type comes from an earlier Belinski-
Khalatnikov-Lifshitz (BKL)-type analysis of cosmological
singularities in general relativity [14,15]. This has led to the
conjecture that M-theory in the “near singularity limit” is
governed by the dynamics of an E10=KðE10Þ nonlinear σ
model [16]. In this scenario space-time, and with it space-
time-based quantum field theory and space-time sym-
metries would have to be emergent, in the sense that all
the relevant information about space-time physics gets
encoded in and “spread over” a hugely infinite-dimensional
hyperbolic Kac-Moody algebra. In particular, this scheme
goes beyond supergravity in that the infinite-dimensional
E10 duality symmetry replaces, and quite possibly disposes
of, supersymmetry as a guiding principle towards unifica-
tion. The fermionic sector of the theory is then governed by
the “maximal compact” (or more correctly, “involutory”)
subgroup KðE10Þ ⊂ E10, which can be regarded as an
infinite-dimensional generalization of the usual R sym-
metries of extended supergravity theories. While an

analysis of the bosonic sector of the E10=KðE10Þ model
and its dynamics beyond the very first few levels is severely
hampered by the fact that a full understanding of E10

remains out of reach, a remarkable property of its involu-
tory subgroup KðE10Þ is the existence of finite-dimensional
(unfaithful) spinorial representations [17–19]. The com-
bined spin-1

2
and spin-3

2
fermionic degrees of freedom at any

given spatial point are then no longer viewed as fermionic
members of the N ¼ 8 supermultiplet, but rather as
belonging to an (unfaithful) irreducible representation of
the generalized R-symmetry KðE10Þ [17–19]. The link with
the physical fermion states is then made by identifying the
known KðE10Þ representation with the Standard Model
fermions at a given spatial point, in the spirit of a BKL-type
expansion in spatial gradients, as explained for the bosonic
sector in Ref. [16].
A crucial feature is now that the gravitinos are predicted

to participate in strong and electromagnetic interactions
(unlike the sterile gravitinos of minimal supersymmetric
Standard Model-like models with low-energy supersym-
metry), and that they carry fractional charges. More
precisely, as a consequence of the group-theoretic analysis
in Refs. [9–11], the eight massive gravitinos are assigned to
the following representations of the residual unbroken
SUð3Þc × Uð1Þem symmetry:

�
3c;

1

3

�
⊕
�
3̄c;−

1

3

�
⊕
�
1c;

2

3

�
⊕
�
1c;−

2

3

�
: ð1Þ

These assignments follow from an SUð3Þ × Uð1Þ ⊂ SOð8Þ
decomposition of the N ¼ 8 supergravity gravitinos, except
for the “spurion” shift of the U(1) charges by � 1

6
that was

originally introduced in Ref. [12] for the spin-1
2
members of

the N ¼ 8 supermultiplet, in order to make their electric
charge assignments agree with those of three generations
of quarks and leptons (including right-chiral neutrinos). As
shown in Refs. [9–11], it is this latter shift which requires
enlarging the R symmetry to KðE10Þ, and which takes the
construction beyond N ¼ 8 supergravity and beyond the
confines of space-time-based field theory. All gravitinos are
assumed to be superheavy, with masses just below the
Planck mass. This assumption is plausible because in any
scheme avoiding low-energy supersymmetry and in the
absence of grand unification the Planck scale is the natural
scale for symmetry breaking. Despite their large mass all
gravitinos are stable against decays into Standard Model
matter, as a consequence of their peculiar quantum num-
bers: there is simply no final state in the Standard Model
into which they could possibly decay in compliance with
Eq. (1) and the residual unbroken SUð3Þc × Uð1Þem sym-
metry. This feature is essentially tied to the replacement of
the usual R symmetry by KðE10Þ, because in a standard
supergravity context a supermassive gravitino would not be
protected against decay into other particles.
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In the present paper we take a more pragmatic approach
by simply proceeding with the assignments (1) as the
starting point, but keeping in mind that this scheme is
strongly motivated by unification and a possible explan-
ation of the observed pattern of quark and lepton charge
quantum numbers, and thus not based on ad hoc choices. In
Refs. [20,21] we had already begun to explore the possible
astrophysical implications of supermassive gravitinos with
the above assignments. More specifically, in Ref. [20] we
have proposed the color-singlet gravitinos as novel dark
matter candidates, and discussed possible avenues to search
for them (in fact, even within the present scenario, this
proposal would hold up, in that the supermassive gravitinos
could make up a large part, or even all of dark matter, via
the black holes into which they would have been swal-
lowed). In subsequent work [21] we showed that the color-
triplet states in Eq. (1) can potentially explain the observed
ultra-high-energy cosmic-ray events with energies of up to
1021 eV via gravitino-antigravitino annihilation in the crust
of neutron stars. In this paper we now turn our attention
again to the color-singlet gravitinos of charge � 2

3
, to argue

that they can in addition play a key role in shedding light on
the origin of giant black holes in the early Universe.
The structure of this paper, then is as follows. In Sec. II we

show that quantum mechanically the wave function of a
multigravitino bound state is highly unstable against gravi-
tational collapse. In the following two sections we study
the formation and evolution of mini black holes during the
radiation era, also deriving numerical estimates. For the
evolution we employ a generalization of the McVittie
solution (on which there is already an ample literature;
see e.g., Refs. [22–28] and references therein). In the last
section we analyze the energy-momentum tensor for this
solution, and show that it has the right form expected for a
radiation-dominated universe. We also argue that the
“blanket” surrounding the primordial black hole can further
enhance the growth of massive black holes. These last two
sections may be of interest in their own right, independently
of the main line of development of this paper.

II. FORMATION OF MULTIGRAVITINO
BOUND STATES

The main new feature of our proposal is that, as a result
of the assumed large mass of the gravitinos, the combined
gravitational and electric forces between any arrangement
of gravitinos and antigravitinos is universally attractive.
In natural units we define the Bogomol’nyi-Prasad-
Sommerfield (BPS) mass MBPS for the (anti)gravitino to
be the one for which the electrostatic force between two
gravitinos with charges �Qg equals their gravitational
attraction (modulo sign)

Q2
g ¼ GM2

BPS; ð2Þ

we refer to MBPS as the “BPS mass” because it is the one
relevant for extremal Reissner-Nordström solutions. This
equality is written in units where 4πϵ0 ¼ μ0=ð4πÞ ¼ c ¼ 1
(here it is worthwhile to recall that these units, with the
addition of e ¼ MBPS ¼ 1, were introduced already in
1881 by Stoney, probably the first physicist who seriously
contemplated quantization of charge [29]; the electron was
discovered only 16 years later, while Planck units were
introduced 18 years later). As is well known, MBPS is not
the same as the (reduced) Planck massMPl, but differs from
it by a factor of the fine-structure constant α (always with
c ¼ 1 from now on):

M2
BPS ¼

Q2
g

G
¼ Q2

g

ℏ
·
ℏ
G
≡ αM2

Pl; ð3Þ

where α differs from the usual fine-structure constant αem
by a factor of 4

9
because of the fractional charge (see below).

We will assume that the gravitino mass lies between these
two values, i.e.,

MBPS < Mg < MPl: ð4Þ

The first of these inequalities is needed to ensure that the
force between same-charge gravitinos remains attractive;
forMg < MBPS we would have repulsion [because ð1 − β2Þ
in Eq. (13) becomes negative], and the proposed mecha-
nism would no longer work. Denoting the usual elementary
charge by e we can thus write for the gravitino charges

Qg ¼ � 2

3
e ¼ �βG

1
2Mg ð5Þ

with the “BPS parameter” β obeying 0 < β < 2
3
; we will

denote the (fixed) gravitino mass by Mg throughout this
paper, whereas generic black hole masses will be desig-
nated by the letter m, where m can also vary with time.
The total force between two (anti)gravitinos is thus
determined by the combined electric and gravitational
charges ð1� β2ÞGM2

g > 0, so that even for like charges
the force remains attractive because the gravitional attrac-
tion overwhelms the electrostatic repulsion (reflecting the
“almost BPS-like” nature of the gravitinos). In this paper
we hypothesize that it is this universal attraction that leads
to the formation of multigravitino bound states inside the
plasma of the radiation-dominated phase, starting from
small inhomogeneities in analogy with cluster formation of
galaxies. The main difference with the latter is that, prior to
gravitational collapse, we are here initially dealing with a
quantum-mechanical bound state, not one that can be
understood in terms of Newtonian physics. For two
gravitinos the bound state would be somewhat analogous
to positronium, however with the crucial difference that
“gravitinium” can be a longer-lived state because the
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annihilation cross section between two oppositely charged
(color-singlet) gravitinos is very small, of the order ∼M−2

g

(as follows from inspection of the standard tree-level
Feynman diagram for annihilation into, say, a pair of
gravitons, with one intermediate gravitino propagator).
Note that in principle positronium can also be long lived,
provided the bound state is formed in a state of very large
radial quantum number [30] [see Eq. (19) below].
We wish to study the formation of bound states of

gravitinos during the radiation era in the very early
Universe. For a proper analysis, and as a first step, we
would now have to go through a first quantized analysis of
the massive Rarita-Schwinger equation in such a homo-
geneously and isotropically expanding background. This
task is substantially simplified by our main assumption (4)
which allows us to resort to the nonrelativistic limit, and by
the fact that this inequality also implies

Mg > HðtÞ ð6Þ

for the Hubble parameter during the radiation era, whence
we can also drop the usual friction term ∝ HðtÞ ¼
_aðtÞ=aðtÞ that would normally have to be included in
the equation of motion. It is therefore enough to consider
the free Rarita-Schwinger equation for a massive spin-3

2

complex vector spinor, which reads

iγμνρ∂νψρ þMgγ
μνψν ¼ 0: ð7Þ

From this one immediately deduces the Dirac and con-
straint equations

ðiγλ∂λ −MgÞψμ ¼ 0 and γμψμ ¼ ∂μψμ ¼ 0 ð8Þ

(see e.g., Ref. [31] for a more complete account). The latter
two equations imply a halving of the available degrees of
freedom, and tell us that the vector spinor ψμ carries
altogether four helicity degrees of freedom, with labels
σ; τ ∈ f� 1

2
;� 3

2
g for both gravitino and antigravitino. The

relevant expansion reads

ψμðxÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðpÞp ½eipxfþμ ðpÞuþðpÞ

þ eipxf−μ ðpÞu−ðpÞ þ e−ipxgþμ ðpÞvþðpÞ
þ e−ipxg−μ ðpÞv−ðpÞ� ð9Þ

where, of course, p2 þM2
g ¼ 0, and u�ðpÞ and v�ðpÞ are

the two positive- and negative-energy solutions of the Dirac
equation. The last constraint equations are solved by

f�μ ðpÞ ¼
X
i

b�i ðpÞεiμðpÞ; g�μ ðpÞ ¼
X
i

d�i ðpÞεiμðpÞ

ð10Þ

with the three linearly independent polarization vectors
εiμðpÞ satisfying pμεiμðpÞ ¼ 0. For the other constraint
equation we need to impose

X
i

γμεiμðpÞ½bþi ðpÞuþðpÞ þ b−i ðpÞu−ðpÞ� ¼! 0;
X
i

γμεiμðpÞ½dþi ðpÞvþðpÞ þ d−i ðpÞv−ðpÞ� ¼! 0; ð11Þ

thus eliminating four out of the 12 free coefficients b�i ðpÞ
and d�i ðpÞ, respectively, leaving us with four helicity wave
functions for gravitino and antigravitino each. As the spin
interactions are not relevant for our approximation there is
no need here to be any more specific about the para-
metrization of the helicity wave functions. However, each
gravitino degree of freedom is exposed to the gravitational
and electric background generated by the other gravitinos
(as well as the surrounding plasma which we can neglect).
In order to incorporate these interactions at lowest order,
one performs the standard Foldy-Wouthuysen transfor-
mation on each component of ψμ, which yields a non-
relativistic one-particle Hamiltonian for each gravitino
component.
The corresponding multiparticle Schrödinger Hamiltonian

therefore reads

H ¼ −
ℏ2

2Mg

X
i

ð△xi þ△yiÞ þ Vðx; yÞ ð12Þ

with the universally attractive potential (for β2 < 1)

Vðx; yÞ ¼ −ð1 − β2Þ
�X

i≠j

GM2
g

jxi − xjj
þ
X
i≠j

GM2
g

jyi − yjj
�

− ð1þ β2Þ
X
i;j

GM2
g

jxi − yjj
ð13Þ

where the positions of the gravitinos and antigravitinos
are designated by xi and yj, respectively. This Hamiltonian
acts on a fermionic wave function Ψðx1; σ1;…;xn; σp;
y1; τ1;…; yq; τqÞ which is antisymmetric under simultane-
ous interchange of the position and spin labels of the
gravitinos and antigravitinos, respectively. In writing this
Hamiltonian we have also neglected the fluctuating external
electric and magnetic fields in the radiation plasma.
Likewise, as we already explained, we ignore subleading
spin-orbit and spin-spin interactions that would follow from
the Rarita-Schwinger equation in a fully relativistic treatment
(and which would be very complicated). Finally, we can
neglect the effect of the protons and electrons from the
surrounding plasma (as well as all other Standard Model
particles); for them, the gravitational interactions are gov-
erned by the factors GMgme;GMgmp;… ≪ GM2

g, whence

KRZYSZTOF A. MEISSNER and HERMANN NICOLAI PHYS. REV. D 102, 103008 (2020)

103008-4



their interactions are completely dominated by the purely
electromagnetic forces. The latter are, however, screened out
because of the overall electric neutrality of the plasma, and
can thus be ignored.
Evidently the above considerations only apply to super-

heavy particles obeying Eqs. (4) and (6), and would not
make any sense at all for ordinary (Standard Model)
particles. For the latter all masses and binding energies
are far below the temperature of the surrounding plasma, that
is me;mp;… ≪ Trad, and also below the Hubble parameter,
me;mp;… ≪ H. In that case, the stationary Schrödinger
equation would have to be replaced by a relativistic equation
in a time-dependent background, and the friction term
involving the Hubble parameter H would lead to immediate
decay of the wave function (as unitarity in the naive sense is
violated in a time-dependent background).
We will not attempt here to investigate in any detail the

multiparticle Schrödinger equation based on Eq. (12),
which would amount to a quantum analog of the compu-
tations performed in connection with galaxy structure
formation. Nevertheless, we can still make some rigorous
statements relying on well-known estimates (see e.g.,
Ref. [32]). Namely, it is a rigorous result [33] that for a
system of fermions (that is, particles obeying the Pauli
principle with a fully antisymmetric wave function) the
lowest-energy eigenvalue of the N-particle Hamiltonian

E0ðNÞ ≔ inf
jjΨjj¼1

hΨjHjΨi ð14Þ

(where N is the combined number of gravitinos and
antigravitinos) is subject to the upper and lower bounds

− ANðN − 1Þ43G2M5
gℏ−2

≤ E0ðNÞ ≤ −BN1
3ðN − 1Þ2G2M5

gℏ−2 ð15Þ

with strictly positive constants A > B > 0. Consequently
the lowest energy per particle E0ðNÞ=N decreases as
∝ − N4=3 with N, signaling an instability. For a bosonic
wave function the falloff would be even faster with
E0ðNÞ=N ∝ −N2 [33]. Therefore the inclusion of spin
degrees of freedom (where one combines a partially
symmetric wave function in the space coordinates with
an antisymmetric wave function in spin space) cannot
improve the situation. The estimate (15) tells us that the
system is unstable, and for sufficiently large N will thus
undergo gravitational collapse, as the fermionic degeneracy
pressure is not enough to sustain the system in a stable
equilibrium. Because of Eq. (6) the basic instability
estimate (15) is not affected by the cosmological expansion
either.
Now if we consider a bound state of just two gravitinos

(a hydrogen-like system) the associated “Bohr radius” is
only a few orders of magnitude away from the Planck
length, to wit

aB ∼
ℏ2

GM3
g

ð16Þ

which is not too far from the Schwarzschild radius. If the
formation of such bound states took place in vacuum, and
the relaxation to the ground state proceeded too fast, the
resulting mini black holes would immediately evaporate by
Hawking radiation according to the well-known formula
(see e.g., Ref. [34])

tevap ∼ tPl

�
m
MPl

�
3

∼ 10−42 s

�
m

10−9 kg

�
3

ð17Þ

which follows from the Stefan-Boltzmann law upon sub-
stitution of the Hawking temperature

THawking ¼
ℏ

8πGm
: ð18Þ

In order to prevent this from happening, and in order to
create bigger black holes that can survive for longer and
start growing, it is therefore necessary for the bound states
to persist long enough to accrete a sufficiently large number
of gravitinos before gravitational collapse. Metastability
can be ensured if the initial energy of the bound state is
much larger than E0ðNÞ, and consequently its overall
extension stays well above its Schwarzschild radius for a
sufficiently long time. Of course, the bound state will
eventually relax to lower-lying bound states by the sponta-
neous emission of photons and gravitons, but this process
will take some time. For instance, for positronium the
average lifetime τ of a bound state as a function of the
principal quantum number n scales as [see e.g., Ref. [35],
Eqs. (7)–(9)]

τ ∼ n4: ð19Þ

In comparison with positronium which has a large anni-
hilation cross section, the mutual annihilation of (color-
singlet) gravitinos and antigravitinos is further delayed by
their small annihilation cross section ∼M−2

g , which was
already highlighted above. Extrapolating the above formula
to the present case thus suggests that, with sufficiently large
n at the time of formation, we can get lifetimes long enough
to bind a large number of gravitinos into a metastable
configuration before the collapse can occur. We also note
that at this stage (that is, prior to the formation of a black
hole) the absorption of protons and electrons from the
ambient plasma plays no role, as these particles, unlike the
gravitinos, will be only very weakly bound.

III. COLLAPSE OF GRAVITINO LUMPS
AND MINI BLACK HOLES

At this point we have lumps, each corresponding to a
quantum-mechanical multigravitino bound state, which are
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scattered throughout the radiation plasma. Because of the
density fluctuations and inhomogeneities in the plasma,
and as a result of their strong gravitional attraction these
lumps will eventually coalesce before collapsing into
small black holes, a microscopic analogue of the clumping
of dust into galaxies and stellar matter. In a first approxi-
mation the ensemble of massive lumps can be treated
classically (i.e., need not be considered as a single coherent
wave function). In order to arrive at a rough estimate of the
initial mass of the resulting black holes we first estimate the
total number of gravitinos contained in a coalesced lump of
gravitino matter. Treating them classically with an average
kinetic energy per particle equal to the temperature of the
plasma we have

hEkinðtÞi ∼ NTradðtÞ ¼ NTeq

�
teq
t

�
1=2

ð20Þ

where Teq ∼ 1 eV and teq ∼ 40000 yr ∼ 1012 s (we find it
convenient to refer to all quantities in terms of equilibrium
time teq rather than Planck units). The potential energy ofN
gravitinos and antigravitinos is given by

hEpotðtÞi ∼ −N2
GM2

g

hdðtÞi ð21Þ

where for numerical estimates we take Mg ∼MBPS. The
average separation hdðtÞi between gravitinos and antigra-
vitinos at time t is given by

hdðtÞi ∼
�
Mg

ρðtÞ
�

1=3
∼ ð102 mÞ

�
t
teq

�
1=2

ð22Þ

where we estimate the gravitino density ρðtÞ at time t by
scaling back the known density at the equilibrium time teq
(with 8πGρrad ¼ 8πGρmat ∼ 4 × 10−25 s−2), with the fur-
ther assumption that at t ¼ teq, most of the matter consisted
of supermassive gravitinos, in line with our previous dark
matter proposal [20]. For this estimate we also need to keep
in mind that matter density scales as aðtÞ−3 also during the
radiation era [while the radiation density scales as aðtÞ−4].
Gravitational collapse is expected to occur if the total

energy is negative:

hEkinðtÞiþhEpotðtÞi<0⇒N>
Teq ·102m

GM2
g

∼1012: ð23Þ

Importantly, the time t drops out of this relation because the
temperature and the inverse average distance decrease in
the same manner as a function of t during the radiation era.
Let us stress that this is only a very rough estimate: if the
bound state is metastable, the collapse can be delayed in
such a way that a larger number of (anti)gravitinos can be
accrued. With Eq. (23) the mass of the resulting mini black
hole comes out to be

minitial ∼ 1012Mg ∼ 1012MBPS ∼ 103 kg: ð24Þ

By Eq. (17) the Hawking evaporation time for a black hole
of this mass would be

tevapðminitialÞ ∼ 10−7s: ð25Þ

However, it is important now that Hawking evaporation is
not the only process that must be taken into account. There
is a competing process which can in fact stabilize the mini
black holes and their further evolution: it is the presence of
the dense and hot plasma surrounding the black hole that
can feed the growth of small black holes. More precisely,
Hawking evaporation competes with accretion according to
the following equation:

dmðtÞ
dt

¼ C0G2ρradðtÞ ·m2ðtÞ − C1

M3
Pl

tPl
·

1

m2ðtÞ ð26Þ

where C0 and C1 are constants of Oð1Þ. The first term on
the rhs originates from the flux of the infalling radiation
from the surrounding plasma, which is ∝ 4πR2ðtÞρradðtÞc
(with c ¼ 1) for a (time-dependent) black hole of radius
RðtÞ ¼ 2GmðtÞ [a “fudge factor” C0 ¼ Oð4πÞ can be
included to account for the fact that not all the surrounding
radiation falls in radially, but this is not essential for our
argument]. The second term in Eq. (26) governs Hawking
evaporation. For Hawking evaporation taking place in
empty space we can ignore the first term on the rhs of
Eq. (26), and Eq. (17) follows directly. In that case any
microscopic black hole would disappear, and not be able to
grow into a macroscopic black hole. The crucial difference
with this standard scenario is embodied in the first term on
the rhs of Eq. (26) (which is usually disregarded in
discussions of Hawking evaporation). This term takes into
account the fact that the decay takes place in an extremely
hot surrounding plasma whose density varies with time as
8πGρradðtÞ ¼ 3=4t2. At the initially extremely high temper-
atures of the radiation era the accretion can thus outcompete
Hawking evaporation even for very small black holes.
In terms of temperature with the break-even point at
Trad ¼ THawking where the radiation temperature TradðtÞ
at time t can be read off from Eq. (20). The simple criterion
for black hole accretion to overcome the rate for Hawking
radiation reads

Trad > THawking: ð27Þ

This inequality is easy to achieve in the initially very dense
and hot plasma where Trad ∼ 1017 GeV. Later, it is a
delicate issue because from Eq. (26) it follows that mðtÞ
can run away in either direction. This can also be directly
seen by setting to zero the rhs of Eq. (26): at time t the
break-even point occurs for
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m4
0ðtÞ ∼

M3
Pl

tPl
·

1

G2ρradðtÞ
∝ t2 ð28Þ

where we have used ρrad ¼ 3
32πG t

−2. Hence, a mini black
hole of initial size minitialðtÞ > m0ðtÞ will be able to survive
and can start growing, whereas those of smaller mass decay.
Consequently, the earlier the bound state is formed, the
smaller its initial mass can be. From these considerations
and the time-independent estimate (24) we can also derive a
rough upper bound on the formation time, after which the
radiation temperature is too low to stabilize mini black
holes against Hawking evaporation. The maximal time tmax

is found by equating m0ðtmaxÞ ∼ 103 kg from Eq. (24),
which yields the value

tmax ¼ 10−20 s: ð29Þ

Mini black holes formed after this time can be expected to
decay by Hawking radiation because TradðtÞ < THawking for
t > tmax. In summary, the usual argument that small black
holes would quickly decay via Eq. (17) no longer applies as
long as the inequality (27) is obeyed.
Note that we invoke the “empirical” formula (26) mainly

to argue that mini black holes can form in such a way as to
remain stable against Hawking evaporation at early times.
In fact, this reasoning can be made more quantitative by
substituting ρrad ¼ 3

32πG t
−2 into Eq. (26) which turns this

equation into a simple differential equation that can be
studied numerically. However, because this formula is only
approximate, and once the stability of the mini black hole is
ensured, we can switch to a classical description by means
of an exact solution of Einstein’s equations describing
a Schwarzschild black hole in a radiatively expanding
universe, to describe its further evolution. This will be
explained in the next section.

IV. GROWTH OF BLACK HOLES IN
RADIATION-DOMINATED UNIVERSE

Having motivated the assumption that small black holes
stable against Hawking evaporation have formed in suffi-
cient numbers early in the radiation-dominated era we
can proceed to study their evolution in this background.
For this purpose we employ an exact solution of the
Einstein equations, rather than the “phenomenological”
formula (26). This solution can be regarded as a variant of
the so-called McVittie solution [22]; for more recent
literature, see e.g., Refs. [23–28] and references therein.
The solution that we require here is conveniently presented
in terms of conformal coordinates, by starting from the
general Ansatz

ds2 ¼ aðηÞ2
�
−Cðη; rÞdη2 þ dr2

Cðη; rÞ þ r2dΩ2

�
ð30Þ

where η is conformal time, which we use from now on as
the time coordinate. aðηÞ is the scale factor andC ¼ Cðη; rÞ
is some function to be specified. We will discuss the
equations for the general Ansatz elsewhere, but for the
present purposes it is enough to restrict to the special case,
where C depends only on the radial coordinate, i.e.,
Cðη; rÞ≡ CðrÞ. Furthermore, since we are here mainly
interested in perfect fluids, for which aðtÞ ∼ t2=3ðwþ1Þ ∼
η2=ð3wþ1Þ, and more specifically, a radiation-dominated
universe, we right away specialize the scale factor to be

aðηÞ ¼ Aη ⇔ t ¼ 1

2
Aη2; ð31Þ

where in our Universe A ∼ 4 × 10−5 s−1 [while aðηÞ is
dimensionless]. With these assumptions it is straight-
forward to compute the nonvanishing components of the
Einstein tensor, and hence the components of the energy-
momentum tensor, with the result

8πGTttðη; rÞ

¼ −
1

η2r2
ðCðrÞC0ðrÞrη2 þ C2ðrÞη2 − CðrÞη2 − 3r2Þ;

8πGTtrðη; rÞ ¼
C0ðrÞ
ηCðrÞ ;

8πGTrrðη; rÞ

¼ 1

CðrÞ2r2η2 ðCðrÞC
0ðrÞrη2 þ CðrÞ2η2 − CðrÞη2 þ r2Þ;

8πGTθθðη; rÞ

¼ 1

2CðrÞη2 ðCðrÞC
00ðrÞr2η2 þ 2CðrÞC0ðrÞrη2 þ 2r2Þ;

8πGTφφðη; rÞ ¼ 8πG sin2 θTθθðη; rÞ ð32Þ

where, of course, C0ðrÞ≡ dCðrÞ=dr, etc. At this point, this
is just an identity (the so-called “Synge trick” [36]); in fact,
such solutions trivially exist for any profile of the scale
factor aðηÞ. The nontrivial part of the exercise is therefore
in ascertaining that the energy-momentum tensor resulting
from this calculation does make sense physically. The
requisite condition for a radiation-dominated universe,
stated in the most general and coordinate-independent
way, is the vanishing of the trace of the energy-momentum
tensor, viz.

Tμ
μðη; rÞ ¼

1

A2η2r2

�
d2

dr2
ðr2CðrÞÞ − 2

�
¼! 0: ð33Þ

This condition is solved by

CðrÞ ¼ 1 −
2Gm
r

þGQ2

r2
ð34Þ

SUPERMASSIVE GRAVITINOS AND GIANT PRIMORDIAL … PHYS. REV. D 102, 103008 (2020)

103008-7



with two integration constants m (mass) and Q (charge).
Remarkably, the metric (30) comes out to be conformal to
the Reissner-Nordström metric not as a result of imposing
the Einstein equations with an electromagnetic point charge
source, but with the weaker and more general conformality
constraint (33)! Taking Q ¼ 0 for simplicity (and also
because we do not expect these black holes to carry
significant amounts of electrical charge), the resulting
solution describes the exterior region (r > 2Gm) of a
Schwarzschild black hole in a radiation-dominated uni-
verse. We emphasize that there is absolutely no issue with
the causal structure of this solution, because the conformal
equivalence ensures that (for η > 0) the global structure
of the space-time outside the would-be horizon r ¼ 2Gm
is the same as for the Schwarzschild solution, and the
tracelessness of the energy-momentum tensor holds right
up to the would-be horizon (the black hole interpretation
is also supported by the arguments in Refs. [26,27]).
However, there are some subtleties (apart from issues
related to de Sitter space and cosmological horizons
discussed in Refs. [23–27], which are of no concern
here) which have to do with the structure of the energy-
momentum tensor. Namely, as we show in the following
section, closer inspection reveals the existence of an
apparent “superluminal barrier” surrounding the surface
r ¼ 2Gm, and shielding the would-be horizon from the
outside observer.
For the physical mass of the black hole we take the

formula

1

2π

Z
dθaðηÞrjr¼2Gm ¼ 2GmaðηÞ ⇒ mðηÞ ¼ maðηÞ ð35Þ

keeping in mind that the observer at infinity will in addition
measure the integrated matter density outside the apparent
horizon, so the above formula is really a lower bound on
the total mass accretion. The total mass therefore grows
(at least) linearly with the scale factor, and this is also
consistent with the fact that Ttr ≠ 0. The formula (35) gives
(with η ¼ ηinitial)

m ¼ minitial

ainitial
ð36Þ

where minitial is any value compatible with the lower bound
following from Eq. (28), and ainitial is the scale factor at the
time when the black hole forms. The mass accretion
described by Eq. (35) is also evident from the nonvanishing
mixed component Ttr in Eq. (32) which states that there is
energy flow into the black hole from the surrounding
radiative medium. During the radiation era there is, in fact,
an unlimited supply of “food” for the black hole to swallow.
This supply will dry up only when inhomogeneities are
formed, after which the accretion works in the more
standard form.

Evolving the initial mass (4) with the formula (35) we
calculate the final mass at the equilibrium time (assuming
that ηinitial ∼ ηPl)

mfinal ∼minitial

�
ηeq
ηPl

�
∼ 1030 kg ∼M⊙ ð37Þ

with ηeq ∼ 2 × 108 s and ηPl ∼ 10−19 s. This estimate
applies to mini black holes formed very early in the
radiation era (for η ≪ ηmax). The same calculation for a
mini black hole at the latest possible time ηmax given by
Eq. (29) also yields a lower bound for the final mass of the
primordial black hole upon exit from the radiation era,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minitialMPl

p
< mfinal < MPl

�
ηeq
ηPl

�
ð38Þ

or

1011 kg < mfinal < M⊙: ð39Þ

This inequality restricts the possible mass range for
primordial black holes at the equilibrium time.
The above analysis can be repeated for matter-dominated

and exponentially expanding universes, respectively. In this
case we need the angular Killing vectors kμθ∂μ and kμφ∂μ to
state the pertinent conditions in a generally covariant way.
In the matter-dominated era we have

aðηÞ ¼ B2η2;

Tμνk
μ
θk

ν
θ ¼ Tμνk

μ
ϕk

ν
ϕ ¼ 0 ⇒ CðrÞ ¼ 1 −

2Gm
r

ð40Þ

where we utilize the Killing vectors to state the condition
of vanishing pressure. Because this solution does not allow
for a nonvanishing charge, this provides another reason for
setting Q ¼ 0 in Eq. (34), in order to allow for a smooth
transition from the radiation-dominated to the matter-
dominated phase. From this we see that the primordial
black holes will continue to grow with the scale factor also
in the early part of the matter-dominated phase, absorbing
radiation and matter, as long as there are no significant
inhomogeneities. After the distribution of matter develops
inhomogeneities, the further evolution of black holes
proceeds in the standard fashion. In other words, the range
of mass values in Eq. (38) corresponding to time t ¼ teq,
only represent a lower limit, as the black holes will continue
to accrete mass in significant amounts until inhomogene-
ities start forming.
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Finally, for an exponentially expanding universe we have

aðηÞ¼ 1

Hðη∞−ηÞ ;

Tμ
μ¼2ðTμνk

μ
θk

ν
θþTμνk

μ
ϕk

ν
ϕÞ⇒CðrÞ¼1−

2Gm
r

−CHr2:

ð41Þ

Please note that for CH ≠ 0 this is not the well-known
Kottler solution (that is, de Sitter space in static coordi-
nates). We stress again that for Cðη; rÞ ¼ CðrÞ and with
Q ¼ 0 and CH ¼ 0 the causal structure of the space-time is
the same as for an ordinary black hole space-time, and only
in this case we can have a smooth transition between all
phases.

V. ENERGY-MOMENTUM TENSOR

To gain further insight into the physical properties of our
solution let us examine the energy-momentum tensor (32) a
bit more closely. Following Ref. [37] we parametrize the
latter as

Tμν ¼ pgμν þ ðpþ ρÞuμuν − ΠμρQρuν − ΠνρQρuμ

− ζ1Πμ
ρΠν

σ

�
∇ρuσ þ∇σuρ −

2

3
gρσ∇λuλ

�
− ζ2Πμν∇λuλ ð42Þ

where uμuμ ¼ −1, Qμ is the heat flow, and ζ1 and ζ2 are
the shear and bulk viscosity, respectively. All variables
are assumed to depend on η and r only. The projector is
defined by

Πμν ¼ gμν þ uμuν: ð43Þ

We will now match the energy-momentum tensor (32) to
this formula. For simplicity we assume

ζ1 ¼ ζ2 ¼ 0: ð44Þ

We also write qμ ≡ ΠμνQν (so that uμqμ ¼ 0), so that the
energy-momentum tensor simplifies to

Tμν ¼ pgμν þ ðpþ ρÞuμuν − qμuν − qνuμ: ð45Þ

The assumption of vanishing viscosity coefficients (44) is
certainly justified after baryogenesis (that is t > 10−12 s),
when the number of photons by far exceeds the number of
other particles in the plasma (for instance, nγ ∼ 1010 nb).
While the condition (33) leaves ζ1 undetermined, we could
in principle also admit a nonvanishing ζ2 ≠ 0, that is, self-
interacting conformal matter (e.g., self-interacting massless
scalar fields). In that case the relation ρ ¼ 3p derived below
would no longer hold even with vanishing Tμ

μ.
For the comparison we write out Eq. (32) explicitly for

the solution (34) (with Q ¼ 0), which gives

8πGTtt ¼
3_a2

a2
¼ 3

η2
;

8πGTrr ¼
r2ð−2aäþ _a2Þ
a2ðr − 2GmÞ2 ¼ r2

η2ðr − 2GmÞ2 ;

8πGTrt ¼
2Gm _a

arðr − 2GmÞ ¼
2Gm

rηðr − 2GmÞ ;

Tθθ ¼ r2Trr; Tφφ ¼ r2sin2θTrr: ð46Þ

Comparing Eqs. (46) and (45) we read off the unknown
quantities on the rhs of Eq. (45); we find

uμðη; rÞ ¼ Aη

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2Gm

r

r
cosh ξ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r − 2Gm

r
sinh ξ; 0; 0

!
;

qμðη; rÞ ¼ Aηqðη; rÞ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r − 2Gm
r

r
sinh ξ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r − 2Gm

r
cosh ξ; 0; 0

!
ð47Þ

where

tanh ξ ¼ Gmη

r2
; ð⇒ ξ > 0Þ ð48Þ

and

qðη; rÞ ¼ 2pðη; rÞ tanh ξ ð49Þ

(with m≡minitial). The density and pressure are given by

ρðη;rÞ¼3pðη;rÞ with pðη;rÞ¼ r
A2η2ðr−2GmÞ ð50Þ

as expected for a radiation-dominated universe. We stress
that there are no pathologies here of the kind encountered in
some of the previous literature on McVittie-type solutions.
In particular, the energy density ρðη; rÞ is strictly positive
for r > 2Gm and at all times η > 0. Moreover, because q is
positive from Eq. (49), the radial component of qμ in
Eq. (47) is also positive, which means that the radial heat
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flow is inward directed, explaining why the mass of the
black hole grows with time.
To keep ξ real we must demand

tanh ξ ¼ Gmη

r2
< 1 ⇒ r >

ffiffiffiffiffiffiffiffiffiffi
Gmη

p
ð>2GmÞ: ð51Þ

For r2 → Gmη the average velocity of the infalling matter
reaches the speed of light, and the expansion (42) in powers
of uμ and its derivatives breaks down. Consequently, while
the solution (30) remains valid down to r ¼ 2Gm, the
expressions (47), (49), and (50) become meaningless in the
region 2Gm < r <

ffiffiffiffiffiffiffiffiffiffi
Gmη

p
because of apparently super-

luminal propagation (similar conclusions regarding super-
luminality were already reached in Ref. [23]). Likewise the
components of the heat flow qμ diverge for tanh ξ → 1,
indicating an apparent divergence of the temperature in this
limit. This is also an unphysical feature in view of the
breakdown of the expansion (42). Physically it is tempting
to interpret this result as implying that the would-be horizon
is shielded from the outside observer by a “blanket” at
r ¼ ffiffiffiffiffiffiffiffiffiffi

Gmη
p

, whose extension grows with cosmic time η.
However, in recent work [38] it was argued that the gradient
expansion (42) must be replaced by a different expansion;
adapting these arguments to the present case we conclude
that the solution can, in fact, remain meaningful all the
way down to r ¼ 2Gm. Because of the breakdown of the
expansion (42), also the apparent “firewall” (≡ divergent
energy density ρ) on the would-be horizon r ¼ 2Gm is an
unphysical feature [we have checked that by reinstating the
η dependence in the metric coefficient Cðη; rÞ and setting
up an appropriate expansion near the would-be horizon one
can eliminate this divergence]. This is just as well, because
otherwise the total mass at infinity (which includes the
integrated energy density for r > 2Gm) would diverge, as
ρðη; rÞ has a nonintegrable singularity at r ¼ 2Gm. At any
rate these arguments show that the actual mass value for the

black hole will exceed the estimated value (37) if the
matter contributions outside the horizon are taken into
account, thus further enhancing the growth of primordial
black holes.

VI. CONCLUSIONS

In this paper we have proposed a new mechanism to
explain the emergence of supermassive primordial black
holes during the radiation period. The key element here is
the conjectured existence of very massive particles stable
against decay into Standard Model matter, that can
“condense” into bound states sufficiently early in the
radiation period which can subsequently collapse to black
holes. Our proposal is chiefly motivated by the possible
explanation of the observed spectrum of 48 spin-1

2
fermions

in the Standard Model that was put forward in our previous
work [9–11], and is thus subject to independent falsifica-
tion if any new fundamental spin-1

2
fermions were to show

up in future collider searches. In addition, we have derived
a new solution of Einstein’s equations describing the
growth of black holes in a dense and hot plasma through
inflow of radiation. This exact solution could be useful also
in other contexts.

ACKNOWLEDGMENTS

We would like to thank B. F. Schutz for correspondence
and helpful comments and the referee for suggesting
several improvements in the original version. K. A.M.
thanks AEI for hospitality and support; he was partially
supported by the Polish National Science Center Grant
No. DEC-2017/25/B/ST2/00165. The work of H. N. has
received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 740209).

[1] E. Banados et al., Nature (London) 553, 473 (2018).
[2] https://www.scientificamerican.com/article/zeroing-in-on-

how-supermassive-black-holes-formed1/.
[3] K. Inayoshi, E. Visbal, and Z. Haiman, Astropart. J. 887,

233 (2019).
[4] P. J. A. Segual, D. R. G. Schleicher, T. C. N. Boekhold, M.

Fellhauer, and R. S. Klessen, Mon. Not. R. Astron. Soc.
493, 2352 (2020).

[5] B. Trakhtenbrot, arXiv:2002.00972.
[6] B. Carr, K. Kohri, Y. Sendonds, and J. Yokoyama, arXiv:

2002.12778.
[7] H. Deng, A. Vilenkin, and M. Yamada, J. Cosmol. Astro-

part. Phys. 07 (2018) 059.

[8] H. Deng, J. Cosmol. Astropart. Phys. 09 (2020) 023.
[9] K. A. Meissner and H. Nicolai, Phys. Rev. D 91, 065029

(2015).
[10] K. A. Meissner and H. Nicolai, Phys. Rev. Lett. 121, 091601

(2018).
[11] A. Kleinschmidt and H. Nicolai, Phys. Lett. B 747, 251

(2015).
[12] M. Gell-Mann, in Proceedings of the 1983 Shelter Island

Conference on Quantum Field Theory and the Fundamental
Problems of Physics, edited by R. Jackiw, N. N. Khuri, S.
Weinberg, and E. Witten (Dover Publications, Mineola, NY,
1985).

[13] H. Nicolai and N. P. Warner, Nucl. Phys. B259, 412 (1985).

KRZYSZTOF A. MEISSNER and HERMANN NICOLAI PHYS. REV. D 102, 103008 (2020)

103008-10

https://doi.org/10.1038/nature25180
https://www.scientificamerican.com/article/zeroing-in-on-how-supermassive-black-holes-formed1/
https://www.scientificamerican.com/article/zeroing-in-on-how-supermassive-black-holes-formed1/
https://www.scientificamerican.com/article/zeroing-in-on-how-supermassive-black-holes-formed1/
https://www.scientificamerican.com/article/zeroing-in-on-how-supermassive-black-holes-formed1/
https://doi.org/10.3847/1538-4357/ab5804
https://doi.org/10.3847/1538-4357/ab5804
https://doi.org/10.1093/mnras/staa456
https://doi.org/10.1093/mnras/staa456
https://arXiv.org/abs/2002.00972
https://arXiv.org/abs/2002.12778
https://arXiv.org/abs/2002.12778
https://doi.org/10.1088/1475-7516/2018/07/059
https://doi.org/10.1088/1475-7516/2018/07/059
https://doi.org/10.1088/1475-7516/2020/09/023
https://doi.org/10.1103/PhysRevD.91.065029
https://doi.org/10.1103/PhysRevD.91.065029
https://doi.org/10.1103/PhysRevLett.121.091601
https://doi.org/10.1103/PhysRevLett.121.091601
https://doi.org/10.1016/j.physletb.2015.06.005
https://doi.org/10.1016/j.physletb.2015.06.005
https://doi.org/10.1016/0550-3213(85)90643-1


[14] T. Damour and M. Henneaux, Phys. Rev. Lett. 86, 4749
(2001).

[15] T. Damour, M. Henneaux, and H. Nicolai, Classical Quan-
tum Gravity 20, R145 (2003).

[16] T. Damour, M. Henneaux, and H. Nicolai, Phys. Rev. Lett.
89, 221601 (2002).

[17] T. Damour, A. Kleinschmidt, and H. Nicolai, J. High Energy
Phys. 08 (2006) 046.

[18] S. de Buyl, M. Henneaux, and L. Paulot, J. High Energy
Phys. 02 (2006) 056.

[19] A. Kleinschmidt, H. Nicolai, and A. Viganò, arXiv:1811
.11659.

[20] K. A. Meissner and H. Nicolai, Phys. Rev. D 100, 035001
(2019).

[21] K. A. Meissner and H. Nicolai, J. Cosmol. Astropart. Phys.
09 (2019) 041.

[22] G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933).
[23] B. C. Nolan, Classical Quantum Gravity 16, 1227 (1999).
[24] V. Faraoni and A. Jacques, Phys. Rev. D 76, 063510 (2007).
[25] C. Gao, X. Chen, V. Faraoni, and Y. G. Shen, Phys. Rev. D

78, 024008 (2008).
[26] N. Kaloper, M. Kleban, and D. Martin, Phys. Rev. D 81,

104044 (2010).

[27] K. Lake and M. Abdelqader, Phys. Rev. D 84, 044045
(2011).

[28] S.-W. Kim and Y. Kang, Int. J. Mod. Phys. 12, 320 (2012).
[29] See e.g. https://en.wikipedia.org/wiki/GeorgeJohnstone

Stoney.
[30] D. N. Page and R. McKee, Phys. Rev. D 24, 1458 (1981).
[31] B. de Wit and D. Z. Freedman, Supergravity—The basics

and beyond, in Supersymmetry, edited. K. Dietz et al.,
NATO ASI Series, Physics Vol. 125 (Plenum Press,
New York, 1984).

[32] E. H. Lieb and R. Seiringer, The Stability of Matter
in Quantum Mechanics (Cambridge University Press,
Cambridge, England, 2010).

[33] J. M. Levy-Leblond, J. Math. Phys. (N.Y.) 10, 806
(1969).

[34] T. Damour, arXiv:hep-th/0401160.
[35] A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and

D. B. Cassidy, Phys. Rev. A 93, 062513 (2016).
[36] G. F. R. Ellis (private communication).
[37] S. Weinberg, Gravitation and Cosmology (John Wiley and

Sons, New York, 1972).
[38] M. P. Heller and M. Spaliński, Phys. Rev. Lett. 115, 072501

(2015).

SUPERMASSIVE GRAVITINOS AND GIANT PRIMORDIAL … PHYS. REV. D 102, 103008 (2020)

103008-11

https://doi.org/10.1103/PhysRevLett.86.4749
https://doi.org/10.1103/PhysRevLett.86.4749
https://doi.org/10.1088/0264-9381/20/9/201
https://doi.org/10.1088/0264-9381/20/9/201
https://doi.org/10.1103/PhysRevLett.89.221601
https://doi.org/10.1103/PhysRevLett.89.221601
https://doi.org/10.1088/1126-6708/2006/08/046
https://doi.org/10.1088/1126-6708/2006/08/046
https://doi.org/10.1088/1126-6708/2006/02/056
https://doi.org/10.1088/1126-6708/2006/02/056
https://arXiv.org/abs/1811.11659
https://arXiv.org/abs/1811.11659
https://doi.org/10.1103/PhysRevD.100.035001
https://doi.org/10.1103/PhysRevD.100.035001
https://doi.org/10.1088/1475-7516/2019/09/041
https://doi.org/10.1088/1475-7516/2019/09/041
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1088/0264-9381/16/4/012
https://doi.org/10.1103/PhysRevD.76.063510
https://doi.org/10.1103/PhysRevD.78.024008
https://doi.org/10.1103/PhysRevD.78.024008
https://doi.org/10.1103/PhysRevD.81.104044
https://doi.org/10.1103/PhysRevD.81.104044
https://doi.org/10.1103/PhysRevD.84.044045
https://doi.org/10.1103/PhysRevD.84.044045
https://doi.org/10.1142/S2010194512006526
https://en.wikipedia.org/wiki/GeorgeJohnstoneStoney
https://en.wikipedia.org/wiki/GeorgeJohnstoneStoney
https://en.wikipedia.org/wiki/GeorgeJohnstoneStoney
https://en.wikipedia.org/wiki/GeorgeJohnstoneStoney
https://doi.org/10.1103/PhysRevD.24.1458
https://doi.org/10.1063/1.1664909
https://doi.org/10.1063/1.1664909
https://arXiv.org/abs/hep-th/0401160
https://doi.org/10.1103/PhysRevA.93.062513
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501

