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The detection of binary neutron star mergers represents one of the most important and complex
astrophysical discoveries of the recent years. One of the unclear aspects of the problem is the turbulent
magnetic field amplification, initially triggered by the Kelvin-Helmholtz instability at much smaller scales
than any reachable numerical resolution nowadays. Here we present numerical simulations of the first
10 milliseconds of a binary neutron star merger. First, we confirm in detail how the simulated amplification
depends on the numerical resolution and is distributed on a broad range of scales, as expected from
turbulent magnetohydrodynamics theory. We find that an initial large-scale magnetic field of 1011 G inside
each star is amplified in the remnant to root-mean-square values above 1016 G within the first
5 milliseconds for our highest-resolution run. Then, we run large eddy simulations, exploring the
performance of the subgrid-scale gradient model, already tested successfully in previous turbulent box
simulations. We show that the addition of this model is especially important in the induction equation, since
it leads to an amplification of the magnetic field comparable to a higher-resolution run, but with a greatly
reduced computational cost. In the first 10 milliseconds, there is no clear hint for an ordered, large-scale
magnetic field, which should indeed occur in longer timescales through magnetic winding and the
magnetorotational instability.

DOI: 10.1103/PhysRevD.102.103006

I. INTRODUCTION

The extraordinary multimessenger observations of
GW170817 [1,2] demonstrated that binary neutron star
(BNS) mergers can produce strong gravitational waves
(GW) signals and power bright electromagnetic (EM)
emissions across the spectrum [3–11]. These signals have
already served to put some constraints on the physical
properties of neutron stars (NSs) (see, e.g., [12–14]), such
as their radius and maximum mass, tidal deformability and
equation-of-state (EoS), among others.
Although the central aspects of BNS systems are

qualitatively understood, the details of the merger and
postmerger dynamics remain only poorly constrained, with
many important questions still open. In this paper we are
mainly concerned with one of such issues: the amplification
and large-scale (re)organization of the magnetic field,
arguably required to launch the successful jet outflows
associated to the short gamma-ray burst (SGRB). Despite
the recent progress of general-relativistic magnetohydro-
dynamics (GRMHD) simulations [15–26], the impact of

magnetic turbulence on the evolution of the hypermassive
neutron star (HMNS) remnant is highly uncertain, mostly
due to the lack of a spatial resolution able to capture all the
relevant scales. It has been recognized that the effects of
turbulent viscosity and dynamo (so far numerically under-
resolved), along with neutrino transport, can be crucial for
the redistribution of angular momentum, mass ejecta,
lifetime of the remnant and production of the jet (e.g., [27]).
Observationally, the typical range of magnetic field

strengths characterizing Gyr-old NSs (typical age at which
binaries can merge) is 108–11 G [28].1 Magnetic field
amplification occurs during and after merger through a
number of distinct MHD mechanisms, channeling a frac-
tion of the abundant orbital kinetic energy (∼1053 erg) of
the system. The Kelvin-Helmholtz instability (KHI),

1These values refer to the dipolar component at the NS surface,
while stronger field (by 1 order of magnitude or more) could be
expected at their interiors or due to higher multipole components
(see, e.g., [29,30]).
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originated in the shearing layer at the collision interface,
drastically enhances the magnetic field by stretching and
folding embedded field lines in a process known as small-
scale turbulent dynamo. Local special-relativistic MHD
simulations have shown that the development of the KHI
at merger can generate magnetar-level magnetic field
strengths within the first few milliseconds [31,32]. Later,
GRMHD simulations of BNS mergers of unprecedented
high-resolution (grid-spacing of 17.5 m) [18] showed that an
initial magnetic field of moderate strength 1013 G can be
amplified up to ∼1016 G within ∼5 ms after merger, reach-
ing magnetic saturation levels at energies EB ≳ 1050 erg.
However, no sign of numerical convergence was found,
meaning that the KHI is not yet fully resolved even at those
resolutions.
After the quick growth of the magnetic field due to the

KHI, there are two other mechanisms associated to the
differentially rotating HMNS that dominates on longer
timescales ≳10 ms: magnetic winding, which linearly
amplifies the toroidal components of the field from the
poloidal ones, and the magnetorotational instability (MRI).
For the latter, the wavelengths of the fastest growing modes
are proportional to the magnetic fields. Therefore, even the
highest-resolution GRMHD simulations to date cannot
resolve the MRI, unless artificially large initial magnetic
fields above 1013 G are adopted as to increase the associated
cutoff length scales. Even in this way, simulations are far
from capturing the turbulent cascade all the way down to the
viscous scale (determined by neutrino viscosity [33]), as it
would be required for a direct numerical simulation (DNS).
Finally, efficient MRI amplification is expected to continue
acting inside the accretion disk after the remnant collapses to
a black hole.
In the absence of computationally viable DNS to con-

sistently evolve all the phases of the magnetic dynamics
described above, different approaches were considered.
Many studies have imposed rather large initial premerger
(e.g., [21–25]) or postmerger ([26]) magnetic field
strengths∼1014–16 G, to compensate the inability to capture
the KHI amplification. However, the quantitative results
may not be fully reliable, since the amplification via KHI
happens over a broad range of scales and does not preserve
a large-scale ordered field.
One of the most promising alternatives is performing

large eddy simulations (LESs), in which the evolution
equations are modified in order to account for the unre-
solved subgrid-scale (SGS) dynamics [34]. This method
was applied, in the present context, by including new terms
(chosen proportional to the fluid vorticity) into the induc-
tion equation [19,20,35]. While the results of these studies
show an effective growth of the magnetic field, they do not
match the physical MHD dynamics and rely on arbitrarily
tuning and switching “by hand” of the extra terms. Other
approaches have, instead, centered their attention on the

turbulent viscous effect during the postmerger phase,
evolving viscous hydrodynamics (HD) in substitution of
the MHD equations [36–39]. These models are however
unable, by construction, to capture the dynamo mechanism
and depend on parameters to be calibrated via very high
resolution GRMHD simulations (e.g., [40]).
A more sophisticated alternative, based on the so-called

gradient SGS model [41,42], has been proposed recently
for Newtonian, special and general relativistic MHD,
respectively in [43–45]. It was proven to have very good
performance (in terms of capturing the magnetic amplifi-
cation especially) in box simulations of the KHI, for a
variety of initial conditions and resolutions, but it was not
yet implemented in BNS mergers. The advantage of this
approach is that it relies on the mathematical expansion of
the fields involved in the dynamics, with no a priori
physical assumptions. In that sense, this SGS model is
conceptually similar to high-order reconstruction methods
used in finite-volume numerical schemes.
In this paper we perform BNS merger simulations,

focusing on the magnetic field amplification due to the
KHI during the first ∼10 ms after merger. In contrast to
previous studies, our simulations begin with each star having
realistic magnetic field strength values of about 1011 G. We
use high-order numerical methods and the elaborated gra-
dient SGS model already presented for GRMHD box
simulations of the KHI [45], which is applied for the first
time to the BNS merger scenario.
This article is organized as follows: our LES approach

for GRMHD is briefly revisited on Sec. II. The general
setup, as well as the numerical methods, is described on
Sec. III. The results of the simulations are presented and
analyzed in Sec. IV. Conclusions are drawn on Sec. V.

II. LARGE EDDY SIMULATIONS IN GRMHD

The concept and the mathematical foundations behind
the explicit LES with a gradient SGS approach have been
extensively explained in our previous works (and refer-
ences within) in the context of Newtonian [43] and
relativistic MHD [44,45], to which we refer for details
and further previous references. In brief, the space discre-
tization in any numerical simulation can be seen as a
filtering of the continuous solution, with an implicit kernel
(numerical-method-dependent) having the size of the
numerical grid, Δ. The evolved numerical values of the
fields can be then formally interpreted as weighted averages
(or filtered) over the numerical cell. Seen in this way, the
subgrid deviations of the field values from their averages
causes a loss of information at small scales, for those terms
which are nonlinear functions of the evolved variables.
SGS terms obtained from the gradient model are added to
the equations in order to partially compensate such loss.
Under the 3þ 1 decomposition framework [46], the line

element can be written as
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ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α is the lapse function, βi is the shift vector, and γij is
the induced metric on each spatial foliation, with determi-
nant

ffiffiffi
γ

p
. We use the covariant conformal Z4 formulation

[47,48] to evolve the Einstein equations. A summary of the
final set of evolution equation for the spacetime fields,
together with the gauge conditions setting the choice of
coordinates, can be found e.g. in [49].
The GRMHD equations for a magnetized, nonviscous

and perfectly conducting fluid [20] (in units
G ¼ c ¼ M⊙ ¼ 1) consider the set of conserved variables
f ffiffiffi

γ
p

D;
ffiffiffi
γ

p
Si;

ffiffiffi
γ

p
U;

ffiffiffi
γ

p
Big. They are functions of the rest-

mass density ρ, the specific internal energy ϵ, the velocity
vector vi and the magnetic field Bi (primitive fields), as
follows:

D ¼ ρW; ð2Þ

Si ¼ðhW2 þ B2Þvi − ðBkvkÞBi; ð3Þ

U ¼ hW2 − pþ B2 −
1

2

�
ðBkvkÞ2 þ

B2

W2

�
; ð4Þ

whereW ¼ ð1 − v2Þ−1=2 is the Lorentz factor. The pressure
p is defined through the EoS detailed in Sec. III. The
discretized evolution equations, including the hyperbolic
divergence cleaning via damping of the field ϕ [49], can
be written as follows2:

∂tð
ffiffiffi
γ

p
DÞþ∂k½−βk

ffiffiffi
γ

p
Dþα

ffiffiffi
γ

p ðNk−τkNÞ�¼0;

∂tð ffiffiffi
γ

p
SiÞþ∂k½−βk ffiffiffi

γ
p

Siþα
ffiffiffi
γ

p ðTk
i −γijτ

jk
T Þ�¼

ffiffiffi
γ

p
RS

i;

∂tð ffiffiffi
γ

p
UÞþ∂k½−βk ffiffiffi

γ
p

Uþα
ffiffiffi
γ

p
Sk�¼ ffiffiffi

γ
p

RU;

∂tð ffiffiffi
γ

p
BiÞþ∂k½ ffiffiffi

γ
p ð−βkBiþβiBkÞ

þα
ffiffiffi
γ

p ðγkiϕþMki−τkiMÞ�¼
ffiffiffi
γ

p
RB

i;

∂tð ffiffiffi
γ

p
ϕÞþ∂k½−βk ffiffiffi

γ
p

ϕþαc2h
ffiffiffi
γ

p
Bk�¼ ffiffiffi

γ
p

Rϕ: ð5Þ

The fluxes consist of the following standard terms:

Nk ¼ vkD; ð6Þ

Mki ¼ Bivk − Bkvi; ð7Þ

Tki ¼ hW2vkvi − EkEi − BkBi þ γki
�
pþ 1

2
ðE2 þ B2Þ

�

¼ 1

2
ðviSj þ vjSiÞ þ γijp −

1

W2

�
BiBj −

1

2
γijB2

�

−
1

2
ðBkvkÞ½Bivj þ Bjvi − γijðBmvmÞ�; ð8Þ

(where Ei ¼ −ϵijkvjBk), and of the additional SGS terms:

τkN ¼ −CNξHk
N;

τkiT ¼ −CTξHki
T ;

τkiM ¼ −CMξHki
M: ð9Þ

The cumbersome expressions of the tensors H have been
obtained in detail for the special [44] and general relativ-
istic [45] cases. Here we apply the latter, following the
expressions reported in the Appendix A. The coefficient
ξ ¼ γ1=3Δ2=24 has the proportionality to the spatial grid
squared, which is typical of SGS models and ensures by
construction the convergence to the continuous limit
(vanishing SGS terms for an infinite resolution).
Importantly, for each equation there is a precoefficient
Ci, which is meant to be of order one for a numerical
scheme having a mathematically ideal Gaussian filter
kernel and neglecting higher-order corrections. However,
finite-difference numerical methods are usually more dis-
sipative (and dispersive). Therefore, as shown in [43–45],
the value that best mimics the feedback of small scales onto
the large scales in a LES can differ depending partially
on the numerical methods employed and on the specific
problem. In practice, one needs a calibration of the different
SGS parameters to maximize the effectiveness of the
gradient model.
Finally, the set of source terms in (5), fRU; RS

i ; R
i
B; R

ϕg,
written already as a function of conformal variables, can be
found explicitly in [45]. SGS terms are applied to the fluid
equation only, considering the full general relativistic
setting, with the assumption that the metric components
are smooth and slowly varying, as compared to the
turbulent and shocked matter fields (see [45] for a
discussion).

III. NUMERICAL SETUP

A. Numerical methods

As in our previous works, we use the code MHDUET,
generated by the platform SIMFLOWNY [50,51] and based
on the SAMRAI infrastructure [52,53], which provides the
parallelization and the mesh refinement. The code has been
deeply tested for different scenarios [45,49,54,55], includ-
ing basic tests of MHD and GR. Briefly, it uses the
following: fourth-order-accurate operators for the spatial
derivatives in the SGS terms and in the Einstein equations

2Comparing with our previous works [43–45] where the entire
formalism was presented, we have hereafter simplified the
notation by removing the tildes and bars from the filtered fields
and fluxes, for the sake of clarity. All fields in the equations are
implicitly meant to be the filtered values (i.e., simply resolved by
the discretized equations, as in any simulation).
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(the latter are supplemented with sixth-order Kreiss-Oliger
dissipation); a high-resolution shock-capturing method for
the fluid, based on the Lax-Friedrich flux splitting formula
[56] and the fifth-order reconstruction method MP5 [57]; a
fourth-order Runge-Kutta scheme with a small enough time
step Δt ≤ 0.4Δ; and an efficient and accurate treatment of
the refinement boundaries when subcycling in time [58,59].
A complete assessment of the implemented numerical
methods can be found in [49,54].

B. EoS and conversion to primitive variables

We consider a hybrid EoS during the evolution, with two
contributions to the pressure. On one side, we use the
piecewise polytrope fit to the SLy zero-temperature EoS
[60], defined by p ¼ Kiρ

Γi, where i ¼ 0, 1, 2, 3 indicates
each of the four segments delineated by the transition
density values logρ¼f14.165;14.7;15.0g, Γi¼f1.35692;
3.005;2.988;2.851g and K0 ¼ 3.59389 × 1013 (all in cgs
units). On the other hand, thermal effects are modeled by an
additional pressure contribution given by the ideal gas EoS,
with adiabatic index Γth ¼ 1.75 [61].
The conversion from the evolved or conserved fields to the

primitive or physical ones is performed by using the
procedure described in our previous works [45,55]. An
exception is the highest resolution simulation, for which
the strong magnetic fields developed in low-density regions
forced us to use a more robust procedure [62]. To minimize
further failures on the recovery procedure outside the dense
regions, we impose aminimum density of 6.1 × 107 g cm−3,
with the regions having such values referred hereafter as
atmosphere. Moreover, we apply the SGS terms only in
regionswhere the density is higher than 6.1 × 1011 g cm−3 in
order to avoid spurious effects near the stellar surface. Since
the remnant’s maximum density is above 1015 g cm−3, the
SGSmodel is accounted for only in themost dense regions of
the star.

C. Initial conditions

The initial data are created with the LORENE package
[63], using the same piecewise polytropic EoS described
above. We consider an equal-mass BNS in a quasicircular
orbit, with an irrotational configuration having a separation
of 37.7 km and an angular frequency of 2254 rad s−1. The
total mass of the system is M ¼ 2.67 M⊙.
Each star initially has a purely poloidal magnetic field

confined in its interior, calculated from a vector potential
Aϕ ∝ r2ðP − PcutÞ, where Pcut is a hundred times the
pressure of the atmosphere and r the distance to the axis
perpendicular to the orbital plane passing through the
center of each star. The maximum magnetic intensity (at
the centres) is 5 × 1011 G, orders of magnitude lower than
the large initial fields of other simulations (e.g., [18,21–
25]) and compatible with the upper range of the expected
realistic intensities for old NSs. Such values are also at the

lower border of the computational feasibility, since the
accurate evolution for too small ratios of magnetic-to-
kinetic pressure is hampered by round-off errors.

IV. RESULTS

We consider a numerical cubic domain, ranging from
½−384; 384� km along each direction, large enough to
reduce contamination from the boundaries. Our initial
binary system evolves for 2–3 orbits before merging and
forming a differentially rotating remnant that relaxes to an
hypermassive-neutron star (HMNS) in a few milliseconds.
We follow such inspiral with five nested levels of fixed
mesh refinement (FMR), each being a cube doubling the
resolution of the previous one. The smallest and finest of
them is 70 km wide; thus it encloses the stars during the
inspiral and the forming remnant. At the merger time
(hereafter, t ¼ 0), we have then considered different
simulations, summarized in Table I.
First, we present standard simulation without SGS terms

(Ci ¼ 0), also called implicit LES3 (iLES, denoted by C0
hereafter), with grid spacing corresponding to low (LR,
finest level: 147 m), medium (MR, 74 m) and high
resolution (HR, 37 m). The LR case has five FMR levels,
like in the inspiral. In the MR and HR cases, we activate one
and two additional adaptive mesh refinement (AMR) levels
(again doubling the resolution of the previous level),
respectively, describing the regions exceeding certain
density thresholds properly set, in order to better resolve
the remnant.
Secondly, we perform LES with LR including the SGS

models. Here we report the cases with a fixed CM ¼ 8,
spanning CT ¼ CN ¼ f0; 1; 2; 4; 8g. Other combinations
of parameters with CM ¼ CT ¼ CN > 2 have been tested,
but they produced an excessive dissipation in the momen-
tum equation, leading to unrealistic results. Notice, also,
that increasing these parameters CT and CN above 2 tends
to considerably reduce the magnetic energy amplifica-
tion. In our previous box-simulation studies the optimal
results were found for more aggressive choices like
CM ¼ CT ¼ CN ¼ 8. However, in the BNS merger sce-
nario, we find that although a large value CM ¼ 8 in the
induction equation is indeed crucial to better capture the
turbulent-dynamo effect, taking equally aggressive values
for CT and CN inhibits the dynamo mechanism and could
even lead to an artificial dynamics. Also, we have consid-
ered the nonrelativistic limit of the SGS term in the
induction equation proposed in [45] [i.e., neglecting the
Hk

v contribution in Eq. (A3)]. In contrast to the box

3The definition of an iLES applies actually to any standard
simulation and comes from the fact that any numerical scheme
has some dissipative and dispersive character which implicitly
enters in the discretized equations. However, such implicit SGS
modeling is not trivial to be assessed and is virtually impossible
to be controlled or calibrated.
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simulations results in [45], we see that the relativistic
corrections on these SGS terms produce here a significant
increase of the magnetic field amplification, so we have
kept the full expressions for our simulations. From now on,
we will refer to the LES simulations by labeling them in a
schematic way according to the Ci values, as indicated in
Table I.

A. Results with different resolutions

First, we consider the three iLES cases. In Fig. 1 we
show the density and the magnitude of the magnetic field,
in the equatorial plane z ¼ 0, for the three resolutions
(different rows) at t ¼ f2.5; 5; 10g ms (different columns)
after the merger. In agreement with previous results [22],
the magnetic field grows on small structures especially in
the outermost, less dense layers of the remnant, where
plasma is closer to an equipartition between magnetic and
kinetic energy. As expected, this amplification is enhanced
by a finer grid, since smaller wavelengths grow faster in the
KHI. At t ¼ 2.5 ms, the two cores are still clearly dis-
tinguishable, indicating that the remnant has not relaxed to
a HMNS yet. At this early stage, magnetic fields locally
exceed ∼1017 G only in the HR simulation, with fine
structures clearly visible. At t ¼ 5 ms, the remnant and
surrounding disk are forming and turbulence drives the
magnetic field amplification to maximum values of ∼5 ×
1017 G in the HR, dropping 1 order of magnitude in the MR
simulation and another one for the LR case (see a
quantitative comparison of magnetic energy evolution
below). It can be seen how the magnetic field is mostly
confined to the outermost layers of the remnant, since the
dense core is less prone to turbulent motions. At t ¼ 10 ms,
the strong magnetic fields has started to penetrate into the
dense core of the remnant in the HR run, while a significant
overall increase in the field strength is also noticeable for
the lower resolutions. At this time, although small-scale

structures still dominate, the rotation has acquired a visible
imprint on the magnetic field distribution, developing
spirallike filaments at the outermost layers.
This visual inspection can be quantified by the study of

the energy spectral distribution (see Appendix B for
definitions and calculations), as shown in Fig. 2 for
t ¼ f5; 10g ms. Note that, in general, we can identify
the inertial range between scales much larger than Δ
(around which numerical dissipation acts) and smaller than
the energy-injection scales (set in this case by the rotation).
In such a range, the kinetic and magnetic spectra approx-
imately follow the Kolmogorov (k−5=3) and Kazantsev
(k3=2) slopes (dotted black lines in the figures hereafter),
as expected in turbulent MHD scenarios [64].
The kinetic energy distribution is dominated by large

scales, so that the resolution has a lower impact on it.
Instead, the absence of a peak in the magnetic energy at low
k (at least until 10 ms) means that there is no hint, at these
times, for the creation of a strong, large-scale, ordered
magnetic field. Small scales are the main form of magnetic
energy storage, hence the importance of the numerical
resolution. This can be clearly observed, especially at early
times (5 ms, left panel): the higher the resolution, the larger
the growth of the magnetic energy is, even though the
spectra have the same profiles. At later times (10 ms, right
panel), the difference between different resolutions greatly
decreases, especially at large scales. Thus, pointing to a
saturation of the KHI, achieved by all the three resolutions.
The magnetic amplification here illustrated presents the

typical dynamical stages of the KHI, described e.g. in [32]
as follows: an initial start-up transient associated to the full
development of the turbulent cascade (triggered at the
merger); the kinematic phase, in which the magnetic fields
are still subdominant but grow exponentially, driven by an
essentially hydrodynamical turbulent mechanism as in
Kazantzev’s theory [65]; the approach to saturation when
the magnetic field becomes strong enough as to backreact
on the fluid motion and establish a dynamical balance
signaled by kinetic/magnetic spectral equipartition at small
scales. Generally speaking, the magnetic saturation levels
are expected to converge (at least above certain threshold
resolution [32]), while the growth rates and timescales of
each dynamical phase are highly sensitive to the numerical
resolution.
Note that the drop in the spectra for high k (approaching

the upper limit set by π=Δ) is due to the intrinsic numerical
dissipation of the numerical scheme (spectral methods
should not show it). Overall, the same behavior was
observed in our box simulations of the KHI [43,45]: a
rising of the magnetic energy as smaller and smaller eddies
develop, finally reaching equipartition of the spectral
distribution at small scales (high k), while at large scales
(low k) the kinetic energy always dominates.
It is also interesting to consider how is the relation

between magnetic and fluid pressure across the different

TABLE I. Parameters of the simulations: Different resolutions,
mesh refinement setup (with the finest grid spacing Δ) and values
of Ci. Each setup is adopted at the merger time, while the inspiral
phase is common to all of them and is run under the C0 LR
configuration. The domain of the finest AMR grid for the MR and
HR cases changes with time, so that the values here indicated are
only approximated.

Case CM CT ¼ CN
Refinement

levels
Domain of

finest grid (km)
Finest
Δ (m)

C0 LR 0 0 5 FMR [−35, 35] 147
C0 MR 0 0 5 FMRþ 1AMR [−18, 18] 74
C0 HR 0 0 5 FMRþ 2AMR [−9, 9] 37
CM8 8 0 5 FMR [−35, 35] 147
CM8C1 8 1 5 FMR [−35, 35] 147
CM8C2 8 2 5 FMR [−35, 35] 147
CM8C4 8 4 5 FMR [−35, 35] 147
C8 8 8 5 FMR [−35, 35] 147
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regions of the remnant. To that end, we show in Fig. 3 the
distribution of β−1 ¼ B2=2P along the orbital plane (z ¼ 0)
at t ¼ 10 ms. The plot shows that, as expected, the
magnetization is very low in most of the domain.
Equipartition of magnetic/kinetic energy is expected to
occur only at the smallest scales and has indeed already
been achieved by this time for the C0 HR run (see Fig. 2).
Only in a band near the remnant’s envelope we can see

small regions with values of β ∼ 1, perhaps indicating
where the turbulent-dynamo is acting more efficiently.
It is also interesting to look separately at the magnetic

components. In Fig. 4, we show the evolution of the
component perpendicular to the orbital plane (top) and
of the azimuthal one, again at t ¼ f2.5; 5; 10g ms. At the
beginning, both components show very similar small
structures, indicating a high degree of isotropy, proper of

FIG. 1. iLES of the BNS merger with three different resolutions. Evolution of the solution on the orbital plane for LR (top), MR
(middle) and HR (bottom) at t ¼ 2.5 ms (left), t ¼ 5 ms (center) and t ¼ 10 ms (right) after the merger. The rainbow and brownish color
scales represent the values of density and magnetic field in cgs units, while the length is given in geometrical units (corresponding
to 1.47 km).
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a developing turbulence that stretches and twists the
initially weak large-scale magnetic seed. At later times,
when differential rotation starts to dominate the kinematics,
the magnetic structures tend to follow the rotation, partially
losing the isotropy. In particular, at t ¼ 10 ms, the toroidal
field is slightly predominant over the other components,
although still highly turbulent.
More quantitatively, Fig. 5 shows the toroidal magnetic

spectra, defined as the azimuthal component of the field (in
simple words, the direction identified by the remnant’s bulk
rotation), and the poloidal one, defined by the remaining
directions (the naming of such decomposition is strictly

correct only in axial symmetry, but we adopt it here for
simplicity). At t ¼ 5 ms these two components are very
similar for all resolutions. However, at later times, the
toroidal field starts to grow more in the HR case, in
agreement with the above-mentioned intuition from
Fig. 4. The isotropy of the KHI-induced turbulence at
early stages and the hints for a gradual ordering in the
azimuthal direction at t ¼ 10 ms are consistent with
previous results by [22], who showed how magnetic
winding start to play an important role at this stage.
Figure 6 further summarizes the main results. The top

panel shows the amplification of the total integrated
magnetic energy for all simulations specified on Table I.
Let us first focus on the iLESs (solid lines). The HR case
grows much faster, since smaller scales are excited by the
KHI. This qualitatively agrees with the exponential growth
rate ∝ 1=Δ predicted by the KHI analytical theory [66] and
seen in previous GRMHD results [18]. At t ¼ 5 ms after
merger, only the C0 HR run has reached magnetic satu-
ration, approximately at 2 × 1050 erg. At this time, the
magnetic energy of the three iLESs are separated by more
than an order of magnitude among them. Later on, at
t ¼ 10 ms, the difference on the magnetic energy between
the three resolutions is reduced almost by half, suggesting
similar saturation levels of the magnetic field at late times.
The bottom panel displays the root mean square (rms)

magnetic field for the three resolution iLES and for the LES
simulation with the optimal parameters, CM8, that will be
discussed in the next subsection. The rms is computed on
regions with ρ > ρX g cm−3, being ρA ¼ 6 × 109, ρB ¼
6 × 1010 and ρC ¼ 6 × 1011, and taking ρB for the magnetic
energy in the top panel. The run C0 HR shows mean values
of 1015 G when considering only the most dense part of the
star (i.e., ρ > ρC), but increases to 1016 G when also the
outer envelope is taken into account (i.e., ρ > ρA).

FIG. 2. Energy spectra for simulations with different resolutions. Kinetic (solid line) and magnetic (dashed line) spectral energy
distributions as function of the angular wave number, for the three different resolutions, at t ¼ 5 ms (left) and t ¼ 10 ms (right). The
solid and dotted black lines represent the Kolmogorov (k−5=3) and Kazantsev (k3=2) slopes, respectively. The energy spectra hereafter are
in arbitrary units.

FIG. 3. Magnetization of the remnant. Ratio between magnetic
and gas pressure for the C0 HR simulation in the orbital plane
(z ¼ 0) at t ¼ 10 ms after the merger. Clearly, the fluid pressure
largely dominates in the core, while that the magnetic pressure
becomes more relevant in the remnant’s outer envelope.
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FIG. 4. Evolution of magnetic field components. Evolution of the HR case of density and components of the magnetic field, indicated
in blue-red scale (colors saturate at�1016 G) at z ¼ 0: the one perpendicular to the orbital plane (top) and the azimuthal one (bottom), at
t ¼ 2.5 ms (left), t ¼ 5 ms (center) and t ¼ 10 ms (right) after the merger. Units and color scale of the density as in Fig. 1.

FIG. 5. Magnetic energy spectra by components. Magnetic poloidal (solid line) and toroidal (dashed line) spectra of LR, MR and HR
cases at t ¼ 5ms (left) and t ¼ 10 ms (right). The two components have similar profiles, although at t ¼ 10 ms the toroidal component
is slightly larger than the poloidal one for the high resolution cases MR and HR.
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B. LESs with gradient SGS model

Let us now turn to the effects of including the SGSmodel
(LESs), and continue our analysis of Fig. 6. We shall stress
that the aim of the SGS model, applied on the LR setup (at
this particular stage of the merger evolution), is to repro-
duce the magnetic field amplification observed on the
higher resolution simulations C0 MR/HR.
All the LR LESs with CM ¼ 8 show an enhanced growth

in magnetic energy compared to the C0 LR. However, we
find that increasing the value of CT tends to reduce the

observed magnetic field amplification, presumably due to
an additional effective viscosity included in the momentum
equation. The magnetic growth is thus more prominent in
the CM8 (i.e., when SGS terms are included only in the
induction equation), with its integrated energy being as
high as the C0 MR run at t ¼ 5 ms. The rms magnetic field
for the CM8 case is comparable to C0 MR for most of the
times, and significantly larger than the C0 LR at t ¼ 5 ms,
although all the simulations seems to reach comparable
values at t ¼ 10 ms, as it occurred with the total integrated
magnetic energy. Notice that the effect of the gradient SGS
model is most pronounced on the initial start-up stage of the
KHI, whereas the magnetic growth-rates on the kinematic
phase does not seem to deviate much from the C0 LR, as it
can be observed at t ¼ 10 ms.
In the simulations CM8, CM8C1 and CM8C2, the remnant

approaches a quasistationary stage at late times. Instead,
CM8C4 and C8 show a different qualitative behavior and
collapse to a black hole only after few milliseconds after the
merger. This dependence on to the parameters of the SGS
model is analogous to the sensitivity of the collapse time for
short-lived HMNSs with numerical resolution, which has
been observed previously both in HD [67,68] and MHD
[69] simulations. Notice also that increasing these param-
eters CT and CN above 2 reduce the growth of the magnetic
field energy.
Analyzing more in depth what the SGS model actually

does, Fig. 7 displays the density and the magnetic field
magnitude in the orbital plane z ¼ 0, for the CM8 (top) and
CM8C1 (bottom) cases, at t ¼ f2.5; 5; 10g ms (from left to
right). In both cases, the LR by construction does not allow
the formation of very fine structures like the ones of HR (see
bottom panels of Fig. 1). However, despite the lack of
resolution, the SGS model is able to provide a growth of the
maximum value of the magnetic field up to local maximum
values of ∼1016 G at t ¼ 5 ms, earlier than in the C0 LR.
Also for these cases, filamentary structures start to appear at
about t ¼ 10 ms.
A comparison among the spectra is shown in Fig. 8, for

CM8, CM8C1 and C0 LR, at t ¼ f5; 10g ms after merger.
Overall, these profiles are similar to those of iLESs, with
the main difference given by their integrated values (i.e., the
total magnetic energy). This again shows that at t ¼ 5 ms
CM8 is the most amplified one among the LR cases,
between 2 and 3 orders of magnitude higher than the
others for all wave numbers (except the very high ones,
which are dominated by numerical dissipation). The
CM8C1 case exhibit a moderate growth of the magnetic
energy spectra with respect to the C0 LR run, but consid-
erably smaller than CM8. At t ¼ 10 ms, the spectral
distribution for these three cases is quite similar and very
close to equipartition at large wave numbers. This is again
consistent with Fig. 6, where these low-resolution simu-
lations reach nearly the same magnetic energy values at late

FIG. 6. Comparison of iLES and LES. Top: Integrated magnetic
energy as a function of time since the merger of the BNS system.
The circles indicate the collapse of the remnant, forming a black
hole. Bottom: rms value of the magnetic field for the iLES with
different resolutions and for the most favourable LES case CM8.
The rms magnetic field of the high-resolution case, C0 HR, is
calculated in different regions with ρ > ρX g cm−3, being
ρA ¼ 6 × 109, ρB ¼ 6 × 1010 (value used for the top panel)
and ρC ¼ 6 × 1011.
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times. This behavior on the magnetic energy spectra
of LES was also found in our bounding-box simulations
[43–45].

In summary, the LR LES that have a closer resemblance
to the higher-resolution iLES (i.e., C0 MR/HR), at least at
these early times, is CM8.

FIG. 7. LES with different values of Ci. Magnetic field of CM8 (top) and CM8C1 (bottom) at t ¼ 2.5 ms (left), t ¼ 5 ms (center) and
t ¼ 10 ms (right) after the merger. Notice the spourious shock in the front is because an accidental change of the floor density (and not
related to the SGS model) in that particular simulation, and without any influence in the posterior remnant’s dynamics.

FIG. 8. Spectra for LESs. Magnetic and kinetic spectra of C0 LR, CM8 and CM8C1 at t ¼ 5 ms (left) and t ¼ 10 ms. Units and black
slopes as in Fig. 2.
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V. CONCLUSIONS

In this article, we showed the first results from LESs of
BNS with the extended gradient model, already presented
for nonrelativistic [43], special [44] and general relativistic
[45] MHD box simulations of the KHI; here it has been
implemented in a full GRMHD code in order to study the
BNS merger scenario. Moreover, our code implements
overall fourth-order accurate numerical schemes, while
most existing GRMHD simulations rely on second-order
accurate approaches (see advantages in the use of fourth-
order schemes in [70]).
We have focused on the magnetic field amplification

within the first ∼10 ms after the BNS merger. And
analyzed the role of numerical resolution in capturing
these MHD turbulent-dynamo effects. With our best-
resolved run reaching a grid-spacing of Δ ∼ 37 m (in the
finest level) and relying on the use of high-order numerical
methods, for our highest resolution simulation we were
able to demonstrate an amplification of rms values between
1015 G, in the densest regions of the remnant, and 1016 G,
when the less dense outer envelope is also considered.
We have tested the gradient SGS model, by studying

different values of its precoefficients Ci, one in each
equation. We show that the SGS terms on the induction
equation acting in a moderate resolution (with Δ ∼ 147 m)
are able to mimic at least the magnetic growth of a better-
resolved simulation (with Δ ∼ 74 m).
In our previous works [43,45] we observed that the best

results, with the gradient SGS model and our numerical
schemes, were achieved by setting the constants Ci approx-
imately up to 1 order of magnitude larger than their
theoretical values Ci ¼ 1. We concluded this was due to
the intrinsic dissipation of our numerical scheme. However,
in the present context, we found that if we set all Ci ¼ 8
there is an excessive dissipation in the momentum equation
which prevents a rapid growth of the magnetic field during
the turbulent regime, whereas it accelerates the collapse to a
black hole of the remnant. Taking this into account, we
have found that the best calibration (in terms of reproducing
the higher-resolution magnetic field amplification) consists
in rather high values CM ¼ 8 but CT ¼ CN ∼ 0–2. The
reason for this remain to be clarified and probably lies in the
presence of two scales in the system. First, a fairly well
resolved hydrodynamical one which includes the differ-
ential rotation and convection within the remnant. Second,
a much smaller MHD scale, involving the turbulent
dynamics originated by the KHI, which is still far from
being resolved. As a consequence, only the coefficients for
the magnetic field evolution needs to be artificially
enhanced from their theoretical values, in order to maxi-
mize the effect of the SGS model to approach the results
obtained with higher resolution simulations. Introducing
too large contributions of the SGS model in the momentum
equation leads to a higher effective viscosity which finally
hampers the turbulence, partially suppressing the magnetic

field amplification. In order to understand better the details
and to disentangle the numerical and physical reasons for
this, it would be helpful to implement and test our SGS
model in other codes, for different numerical methods and/
or scenarios.
Regardless on the details of the SGS modeling, we have

shown how the energy and magnetic spectra follow,
respectively, the expected Kolmogorov (k−5=3) and
Kazantsev (k3=2) slopes, as in our iLES simulations. The
magnetic spectra have a peak at small k, very different from
a large-scale ordered field. Therefore, we warn against the
widespread argument that an initially strong large-scale
magnetic field can compensate the lack of ability to follow
the KHI growth: the latter is intrinsically turbulent and can
easily provide local maximum values exceeding 1017 G,
but contained in very small structures.
This is also consistent with the fact that at early times

where the kinetic dynamics deriving from the collision of the
two cores is still dominating. The KHI triggers a quite
isotropic turbulence, which destroys any large-scale weak
field. Only at later times, the dominating differential rotation
should provide (via winding and MRI) the necessary energy
injection at large scales which could partially order such
strong but finely structured magnetic field. This can happen
via inverse cascade and isotropy breaking favoring in
particular the stretching of magnetic field lines in the
azimuthal direction. We hope that our approach, which is
applicable to any GRMHD problem, can be used in the near
future to explore the postmerger phase dynamics. Given its
potential in capturing the turbulent-dynamo effect at a much
lower computational costs, it could be useful to further assess
the production of large-scale fields that is required for the jet
formation associated to the SGRB.
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APPENDIX A: EXPLICIT FORM OF THE
GRADIENT SUBGRID TENSORS

The explicit expression of the H tensors appearing in the
SGS gradient terms were first obtained in Ref. [44], and
then extended to GR in Ref. [45]. They can be written as
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where h ¼ ρð1þ ϵÞ þ p is the enthalpy, E ¼ hW2, Θ ¼ E þ B2, and the two gradients ∇ (on each term) symbolize spatial
partial derivatives ∂i (and ∂j), with “·” indicating contraction among them with the spatial metric γij.

APPENDIX B: SPECTRA CALCULATION

It is illustrative to compute the radially averaged spec-
trum of the kinetic and magnetic energy [43,71]. For a
given field f defined in a periodic box of side L, we use
common python functions to calculate its discrete fast

Fourier transform f̂ðk⃗Þ ¼ Σx⃗fðx⃗Þe−ik⃗·x⃗, where the sum is
performed over the N3 points equally spaced in each
direction, with kj ¼ nΔk, where Δk ¼ 2π

L and n ∈
½0; N=2� is an integer. Then, we calculate the solid-
angle-averaged values 4πhk2jfj2ik over the radial bins in
the Fourier space, centered at k ¼ fnΔkg, which represent
the power density per unit of angular wave number. This
defines the kinetic and magnetic spectra,

EkðkÞ ¼
L34π

ð2πÞ3N6
hk2j ffîffiffi

ρ
p

v⃗j2ðk⃗Þik;

EmðkÞ ¼
L34π

ð2πÞ3N6
hk2j ˆB⃗j2ðk⃗Þik; ðB1Þ

that we define for simplicity as in the nonrelativistic case.

The calculation of the spectra is done by choosing the
same 70-km-wide cube of the fifth FMR level, which
encloses the remnant (i.e., almost the totality of the kinetic
and magnetic energy of the system). Within this domain,
the information analyzed is the one of the finest grid
available. Since the domains of the AMR levels in the MR
and HR cases are smaller than such domain over which
spectra are calculated, we interpolate the values of the fields
from the coarser levels, filling a regular mesh with the same
grid spacing as the highest level present in that simulation.
By construction, such interpolation have effects on the
spectra limited to the smallest scales (highest k), which are
not resolved outside the AMR levels. In addition, and in
order to reduce the contamination from the rarefied
atmosphere, the spectra are computed by considering only
the velocity and magnetic fields in the regions with density
larger than 6 × 109 g cm−3, setting them to zero otherwise.
This cutoff is quite conservative, and most of the fluid in
the box considered satisfies this density threshold. We tried
with different cutoff values and found very similar results,
suggesting that this sharp cutoff does not create significant
spurious high-frequency power in the spectra.
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