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The standard model of cosmology is underpinned by the assumption of the statistical isotropy of the
Universe. Observations of the cosmic microwave background, galaxy distributions, and supernovae,
among other media, support the assumption of isotropy at scales ≳100 Mpc. The recent detections of
gravitational waves from merging stellar-mass binary black holes provide a new probe of anisotropy;
complementary and independent of all other probes of the matter distribution in the Universe. We present
an analysis using a spherical harmonic model to determine the level of anisotropy in the first LIGO/Virgo
transient catalog. We find that the ten binary black hole mergers within the first transient catalog are
consistent with an isotropic distribution. We carry out a study of simulated events to assess the prospects for
future probes of anisotropy. Within a single year of operation, third-generation gravitational-wave
observatories will probe anisotropies with an angular scale of ∼36° at the level of ≲0.1%.
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I. INTRODUCTION

Two key assumptions in the standard Lambda cold dark
matter (ΛCDM)model ofmodern cosmology are the isotropy
and homogeneity of the Universe [1–3]. Since ΛCDM
cosmology underlies our current understanding of the
Universe, rigorous tests are required to validate these funda-
mental assumptions. The Universe has been observed to be
isotropic at scales ≳100 Mpc, with smaller-scale deviations
considered to be statistically isotropic on an overall homo-
geneous structure produced by phenomena such as baryon
acoustic oscillations or gravitational interactions [4–6].
Verifying the lack of large-scale anisotropy in the Universe
is important for the validity of the ΛCDM cosmology.
Evidence for large-scale isotropy of the Universe has

been presented through numerous observations of various
sources [6–14]. The most stringent measurements on the
anisotropy of the Universe come from the cosmic micro-
wave background, which generally show small-scale stat-
istical deviations on the order of 10−4–10−5 [13,14].
Meanwhile, multiple studies hint at the existence of
deviations from isotropy at large angular scales in the
cosmic microwave background [15,16], supernovae
[17,18] and galaxy [19,20] distributions, as well as large
bulk flows [21,22]. While these inferences are speculative
[e.g., [23–25] ], they can be supported or contradicted by
independent measures of the Universe’s isotropy using
gravitational-wave observations.

Studies of the gravitational-wave stochastic background
have placed limits of anisotropy from unresolved sources
[26–32], however observations of gravitational waves from
resolved binary black hole (BBH) mergers present another
tool to probe anisotropy. Prior to the third observing run,
Advanced LIGO (aLIGO) [33] and Advanced Virgo
(aVirgo) [34] released the details for ten binary black holes
over the first (O1) and second (O2) observing runs [35].
These observations are collated in the first gravitational-
wave transient catalog, GWTC-1. With the third observing
run (O3) complete, the total number of gravitational-wave
BBHmerger candidates has increased to more than 50 [36].
Furthermore, the addition of aVirgo for the entirety of O3
has already resulted in many well-localized sources (e.g.,
[37]), providing further motivation for utilizing BBH
mergers to study the anisotropy of the Universe.
In this paper, we use LIGO/Virgo data to probe anisot-

ropies in the distribution of BBH mergers, taking care to
handle selection bias associated with the detection of
gravitational-wave sources. We explore the future prospects
of anisotropy measurements with gravitational waves. In
Ref. [38], a HEALPix [39] basis was adopted to parametrize
the anisotropy of binary black hole mergers. In Ref. [40], a
two-dimensional correlation function was implemented,
where the angular power spectrum was inferred assuming
statistical isotropy of sources (see also [41–43]). Both
analyses find results consistent with isotropy. In contrast,
our method utilizes a spherical harmonic basis to define a
probability distribution, providing results in terms of typical
spherical harmonic functions. Our results are qualitatively*ethan.payne@ligo.org
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similar to those of [38,40]. However, there are some potential
advantages to the spherical harmonic approach: the method
lends itself straightforwardly to comparisonwith results from
the cosmic microwave background, and it could be argued
that at least some plausible deviations from anisotropy are
more clearly visible in the spherical harmonic basis than the
pixel basis, which emphasizes hot spots.
The remainder of the manuscript is structured as follows.

In Sec. II, we outline a method of hierarchically analyzing
binary black hole mergers to determine the level of
anisotropy, including a parametrization of the distribution
of BBH merger events in spherical harmonics and a
discussion of the observational selection biases. The
analysis of the previously observed BBH events in
GWTC-1 is presented in Sec. III. In Sec. IV, we look to
the near future by demonstrating the recovery of an
isotropic and anisotropic universe with simulated gravita-
tional-wave events. We conclude with an investigation into
the future of using gravitational waves as an indicator for
anisotropy in the matter distribution of the Universe and the
associated implications.

II. METHODOLOGY

In order to test the assumption of an isotropic universe
with gravitational-wave observations, we employ a spheri-
cal harmonic basis. We do not employ a linear spherical
harmonic basis expansion as this can result in a negative
probability density. Instead, we employ a nonlinear spheri-
cal harmonic basis to guarantee positivity (see also [44]).We
write the probability density function for mergers πðΩÞ as

πðΩjfblmgÞ ¼
1P

lmjblmj2
�X

lm
blmYlmðΩÞ

�
2

; ð1Þ

where

X
lm

≡Xlmax

l¼0

Xl
m¼−l

: ð2Þ

Here,Ω is the sky position unit vector, YlmðΩÞ are spherical
harmonics, and fblmg is the set of coefficients, up to
l ¼ lmax, that parametrize the anisotropyof the distribution.
The total number of parameters for a given model is
lmaxðlmax þ 2Þ, where we set the monopole term to b00¼1
without loss of generality. The maximum resolvable l is
related to the angular size of individual events and the
angular separation within the population. Analyses limited
by the angular resolution of individual detections cannot
resolve spherical harmonics with l≳ 30 [40]. However, we
also need to consider the effect of the number of events
limiting our analysis. If the minimum angular separation
between detected events exceeds the typical angular scale of
the ðl; mÞ spherical harmonic, 180°=l, then the spherical
harmonic can never be resolved. For Oð100Þ events, the

l ¼ 5 harmonics can be resolved. Furthermore, by restrict-
ing lmax, we also target the larger angular sizes of specu-
lative anisotropies [15–22]. Therefore, in this manuscript,
we restrict our analysis to lmax ≤ 5.
Note that πðΩÞ is given not as a linear combination of

spherical harmonic coefficients, but as the square of this
sum. Coupled with,

bl;−m ≡ ð−1Þmb�lm; ð3Þ
implying the blm are complex for m ≠ 0 and that the bl0
are real, we ensure that the probability density function is
positive definite. Since the m < 0 modes are uniquely
determined from the m > 0 modes, we consider the set of
parameters (which we sample over to be) fblmg with
l ≥ 1, m ≥ 0, but all summations occur over the full range
of allowed m’s.
The orthogonality of spherical harmonics allows us to

express πðΩÞ as a linear combination of spherical harmon-
ics

πðΩÞ ¼
X
LM

aLMYLMðΩÞ: ð4Þ

The alm’s are related to the blm by Clebsch-Gordan
coefficients:

aLM ¼ 1P
lmjblmj2

X
lm

X
l0m0

βLMlm;l0m0blmbl0m0 ; ð5Þ

where

βLMlm;l0m0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

4πð2Lþ 1Þ

s
CLM
lm;l0m0CL0

l0;l00: ð6Þ

Here, CLM
lm;l0m0 is the set of well-known Clebsch Gordan

coefficients [45,46]. The reconstructed values of alm ’s
extend up to 2lmax. Throughout the manuscript, lmax refers
to the l’s of the blm’s.
The relation of the blm to the alm can be further

simplified in the limit of small deviations from isotropy,
blm=b00 ≪ 1, to

aLM ¼ bLMffiffiffi
π

p
b00

þOðb2lm=b200Þ: ð7Þ

where the monopole is always a00 ¼ 1=
ffiffiffiffiffiffi
4π

p
. Equation (7)

is not used for any calculations in this manuscript, but it is
useful for understanding the relationship between the blm
and alm. With this model, we aim to measure the posterior
distributions of the alm’s, where nonzero values imply the
existence of an anisotropic BBH merger distribution.
In order to fit the blm’s, we employ hierarchical inference

[47,48]. We marginalize over Ω to obtain “hyper-
likelihoods” for the data given theblm. The hyper-likelihood
for a set of data from N events, fdig, is
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LðfdigjfblmgÞ

¼ 1

pdetðfblmgjNÞ
YN
i

ZisoðdiÞ
ni

Xni
k

πðΩk
i jfblmgÞ

πðΩk
i jisoÞ

: ð8Þ

Here, fblmg are the spherical harmonic coefficients for
the anisotropic model in Eq. (1), up to l ¼ lmax, and
pdetðfblmgjNÞ is the probability of detection given a set of
hyper-parameters. The isotropic probability distribution is
defined as πðΩjisoÞ, defined as blm ¼ 0 for l ≥ 1, ZisoðdiÞ
is the ith event’s evidence assuming the isotropic sky location
probability distribution, and ni is the total number of samples
in the ith event’s posterior distribution. We note that this
implementation does not account for false positive detections
of BBH mergers. Procedures to include the possibility of
falsely identified sources rely heavily on theprobability that a
given event was astrophysical [49]. These probabilities vary
between pipelines [35], and therefore we have assumed all
detections are astrophysical in origin for simplicity. The
detection probability term depends on the selection bias of
the interferometers and is discussed in depth below.
We use the samples and Bayesian evidence from

astrophysical inference of gravitational-wave events. By
default, the evidence for event i is calculated assuming an
isotropic distribution, ZisoðdiÞ. The total evidence for
isotropy, Ziso, is simply the product of all individual event
evidences. The hyper-posterior is

pðfblmgjfdigÞ ¼
LðfdigjfblmgÞπðfblmgÞ

Zani
; ð9Þ

where Zani is the evidence for the anisotropic model,

Zani ¼
Z

LðfdigjfblmgÞπðfblmgÞdfblmg; ð10Þ

and πðfblmgÞ is our hyper-prior.
To present the predicted BBH merger sky position

probability density function, we calculate the posterior
predictive distribution (PPD)

pPPDðΩÞ ¼
Z

πðΩjfblmgÞpðfblmgjfdigÞdfblmg: ð11Þ

The PPD predicts the angular distribution given the
previously observed events and can be approximated
numerically from the hyper-posterior samples. We note
that although the PPD allows visualization of the average
posterior, it does not capture the full details of the posterior,
hiding the full range of possible distributions. We use the
Bayes factor

BFaniiso ≡ Zani

Ziso
; ð12Þ

to determine if one model is preferred relative to another.
We adopt a threshold of ln BFaniiso ¼ 8 for a statistically
significant signature of anisotropy.

Gravitational-wave observatories do not observe the sky
with an isotropic sensitivity. The detector response is
characterized by an “antenna factor,” which varies depend-
ing on the sky position of the source relative to the L-shaped
geometry of the interferometer [50]. During a sidereal day,
this antenna pattern function is swept about right ascension.
Additionally, gravitational-wave observatories are more
likely to be operating during the night due to reduced
anthropogenic activity [51]. Furthermore, even when the
observatories are operating during the day, the noise power
spectral density is on average higher than at night.
In order to account for selection effects, we first calculate

the detection probability as a function of the sky position of
the source, denoted pdetðΩÞ. We calculate the detection
probability by determining the fraction of binaries detected
at a particular distance, time, and sky position [52],

pdetðΩÞ ¼ 1

V totT

Z
t0þT

t0

Z
zmax

0

dVc

dz
1

1þ z
fðz;Ω; tÞdzdt:

ð13Þ

Here, V tot is the total volume of our population model

V tot ¼
Z

zmax

0

dVc

dz
1

1þ z
dz: ð14Þ

The variable, Vc is the comoving volume, fðz;Ω; tÞ is the
selection function determining the fraction of binaries
observed at a given sky position, time, and redshift z.
Finally the variables t0 and T correspond to the start of the
observing period and the duration respectively. We margin-
alize over timewithin the network to ensure that the detection
probability accounts for all possible times during observing
runs when a BBH merger event could be detected.
The selection function is calculated by simulating

gravitational-wave events from an astrophysically moti-
vated population distribution, πpopðθÞ, and determining the
fraction of detected events from their signal-to-noise ratio
(SNR). For each simulated event, we calculate the SNR for
individual observatories ρifo and for the entire network ρnet.
The expectation value of the matched-filter SNR within a
single interferometer for a particular event is [53]

ρ2ifo ≡ 4

Z
∞

0

jFþðΩ; ι;ψÞhþðfÞ þ F×ðΩ; ι;ψÞh×ðfÞj2
SnðfÞ

df:

ð15Þ

This is often referred to as the “optimal” signal-to-noise
ratio. Here, Fþ;× denote the antenna pattern function for
plus and cross polarizations, hþ;× are the associated
gravitational-wave strains for each polarization, and
SnðfÞ denotes the noise power spectral density (PSD) of
the interferometer. For a network with Nifo interferometers,
the network signal-to-noise ratio is
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ρ2net ¼
XNifo

i

ρ2i : ð16Þ

We adopt the criteria that a signal is detected if ρifo > 8
or ρnet > 12.
For the population distribution, we assume a power law

distribution for the source frame masses of the binary
systems as given in Ref. [54] with a primary mass power
law of πpopðm1Þ ∝ m−1.6

1 , and a minimum and maximum
mass of 7.9 M⊙ and 42.0 M⊙, respectively. The mass ratio
distribution is assumed to be πpopðqÞ ∝ q6.7. We assume a
uniform prior in dimensionless spin magnitude between
(0,0.9) with isotropic spin orientations. We employ stan-
dard priors for extrinsic parameters with a uniform-in-
source-frame volume prior for distance. The choice of the
population distribution predominantly affects the overall
scaling of the detection probability. In contrast, the con-
figuration of the detector network establishes its angular
structure.
We useMonteCarlo integration to calculate the integral in

Eq. (13), which yieldspdetðΩÞ. We generate 104 realizations
of the noise power spectral density for observatories in our
network. Each realization is assigned a random time from
the O1/O2 observing runs. Using this set of PSDs, we
calculate the detection probability, pdetðΩ; tiÞ, as a function
of sky position at each time ti. The calculation is carried out
using a 3072-pixel HEALPix [39] grid, which provides a
sufficiently fine resolution relative to the angular scale of
l ≤ 5 spherical harmonic functions. The fraction of events
from theBBH injections that exceed the signal-to-noise ratio
detection threshold at each sky position determines
pdetðΩ; tiÞ. All realizations of the detection probability at
different times are then averaged to determine pdetðΩÞ.
Figure 1 presents the detection probabilities (a) for a

particular instant in time, (b) marginalized over the first
observing run, and (c) marginalized over both the first and
second observing runs. Then detection probability at any
given time, as seen in Fig. 1(a), is dominated by the antenna
pattern functions of the interferometers. The marginalized
detection probability skymaps in Figs. 1(b) and 1(c),
present more nontrivial behavior due to the interplay of
the antenna factors with the time dependence of the
detectors’ performance. In general, the probability of
detection is smeared over the sky over extended periods
of times, suppressing the lobe structure due to the antenna
pattern function. Within our analysis of GWTC-1, only the
combined detection probability is utilized. However the O1
detection probability is presented to highlight the strong
selection bias present in O1 analysis. This was primarily
due to both LIGO interferometers preferring a mid-
declination due to their antenna pattern function maxima,
and the consistency of a diurnal cycle during the first
observing run [51]. These features are less clear in
the combined detection probability due to the duration
of the second observing run and improved duty cycle.

To determine the detection probability as a function of the
hyper-parameters, we compute

pdetðfblmgjNÞ ∝
�Z

pdetðΩÞπðΩjfblmgÞdΩ
�

N
; ð17Þ

where N is the number of events observed [55].
We implement the method outlined above with the

Bayesian inference library, Bilby [56], using the nested
sampling algorithm, Dynesty [57]. To implement the
spherical harmonic model in the nested sampler, we sample
in blm=b00 for l > 0 without loss of generality. To first
order, blm=b00 ≈ alm=2a00, implying sampling in blm=b00
directly presents the degree of anisotropy in the distribu-
tion. For each spherical harmonic coefficient, we define a
uniform hyper-prior on the magnitude from 0 to 1=

ffiffiffi
2

p
. For

m ¼ 0 modes, this applies to the coefficient blm=b00,
sampling uniformly over ½−1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p �. For m > 0
modes, we sample in the magnitude and phase of
blm=b00 using the uniform magnitude prior and a uniform
phase prior. The prior distributions are constructed to fully
span the alm parameter range for l ≤ lmax, while limiting
the magnitude of alm ’s for l > lmax. This significantly

(a)

(b)

(c)

FIG. 1. Probability of detection for a number of different
scenarios. (a) Detection probability as a function of sky position
at 10:10:20 14th September, 2015. (b) Detection probability over
the entire first observing run. (c) Detection probability over the
first and second observing runs.
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reduces multimodality of the likelihood, ensuring improved
convergence of the nested sampling algorithm.

III. GWTC-1

We apply the above methodology using lmax ¼ 1
through 5 to data from GWTC-1 [35], utilizing the samples
from [58] and reweighting to use the population distribu-
tion as our prior. We down-sample to 3000 individual

samples for each event to make the calculation more
tractable. We apply the detection probability skymap calcu-
lated for the combination of O1 and O2; see Fig. 1(c). The
Bayes factors between anisotropy and isotropy (blm ¼ 0
for all l > 0) for the different models are reported in
Table I.
We find the isotropic model is preferred over the aniso-

tropic models with the Bayes factors ranging from lnBF ¼
−0.45 for lmax ¼ 1 to −0.12 for lmax ¼ 5. We present the
posterior distributions of alm=a00 for l ≤ 2 for the lmax ¼ 2
anisotropy model in Fig. 2. The real and imaginary compo-
nents are shown for the m ≠ 0 spherical harmonic coeffi-
cients. The posterior distributions for the other models are
presented in the Appendix. The posterior distribution for all
anisotropy models differ from the prior distribution, indicat-
ing that the ten events in GWTC-1 do provide some
information about the overall sky distribution of events.
However, the posterior distributions are still consistent with
an isotropic universe (alm ¼ 0 for l ≥ 1). There this support
for all alm ¼ 0 present to at least the 95% level.

TABLE I. Natural log Bayes factors for each of the different
anisotropic models used to analyze GWTC-1 comparing the
anisotropic hypothesis to the isotropic hypothesis. We find no
evidence for a preference of an anisotropic model over isotropy.

lmax ln BFaniiso

1 −0.45
2 −0.32
3 −0.14
4 −0.15
5 −0.12

FIG. 2. Posterior probability distribution showing the 95% credible intervals (left) and posterior predictive distribution (right) of the
analysis of GWTC-1 with the lmax ¼ 2 anisotropy model. The posterior distribution includes the real and imaginary components for the
m ≠ 0 spherical harmonic coefficients. The prior distribution (grey) is determined from the reconstruction of alms from the uniform blm
priors. This results in notable features such as the a20 posterior peaking away from a20 ¼ 0. These effects are suppressed with increasing
lmax. While the corner plot does not meaningfully exclude zero, the posterior predictive distribution does present regions of higher
probability as Ref. [38] has also observed. However, isotropy is not excluded by this result and the Bayes factor for lmax ¼ 2 anisotropy
does not prefer either model. The white contours in the posterior predictive distribution correspond to the 95% confidence intervals for
the locations of all BBH merger events in GWTC-1.
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We also present the posterior predictive distribution for
the lmax ¼ 2 anisotropic analysis in Fig. 2. Although there
is no preference for the lmax ¼ 2 anisotropic model, the
posterior predictive distribution illustrates what the
anisotropy may look like with the anisotropic model if it
was detected in GWTC-1. These results are qualitatively
similar to Ref. [38], where similar preferences for BBH sky
positions are observed using a HEALPix [39] based model
with 12 individual pixels, and three rotation angles. They
report mild support for isotropy.

IV. SIMULATED EVENT ANALYSIS

In this section, we assess how future observations will be
able to probe anisotropy of compact binary mergers. We
consider a network consisting of two aLIGO observatories

and one aVirgo observatory, all operating at design sensi-
tivity. We assume this network operates with a 100% duty
cycle. The detection probability skymap is calculated
following an identical procedure to the analysis of
GWTC-1, except there is no downtime and we assume
stationary Gaussian noise. We simulate gravitational-wave
signals from binary black hole mergers with parameters
distributed according to the aforementioned model over the
course of one year of three-detector coincident operation.
We create simulated data for three angular distributions:

isotropic, dipolar (a11=a00 ¼ 0.51), and quadrupolar
(a22=a00 ¼ 0.51) distributions with all other alm ¼ 0 for
l ≠ 0. In each case, we draw 269 random binary black hole
events. For the remainder of the manuscript, all analyses
focus on the lmax ¼ 5 model, as it is not currently
computationally practical to include more than the 35

(a)

(b)

(c)

FIG. 3. Injectedbinaryblackholemerger skydistribution (left) and theassociated recoveredposteriorpredictivedistribution (right), for (a) an
isotropic universe, (b) a universe with an a11=a00 ¼ 0.51 dipolar anisotropy, and (c) a universe with an a22=a00 ¼ 0.51 quadrupolar
anisotropy. The sky distribution is recovered from 269 events drawn from the population prior. All events are drawn such that they exceed the
detection threshold of the three detector network.Wedetermine the detectionprobability as a functionof signal position to remove this selection
bias. We recover an approximately similar sky distribution to the injected distribution, demonstrating the accurate recovery of anisotropy.
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parameters required for lmax ¼ 5. We recover the injected
sky distribution, shown in Fig. 3. The posterior predictive
distribution in the right column closely matches the true
distribution, with smaller angular resolution deviations
from the true population distribution. These deviations
are not significant. We report the Bayes factors for each of
these scenarios in Table II.
In order to study the detectability of anisotropy with a

large numbers of events, we simulate thousands of events
with perfectly reconstructed sky position, from 100 differ-
ent realizations of a universe. By analyzing this idealized
injection set, we can measure the “cosmic variance” in our
measurements of the blm—the uncertainty arising from the
finite number of detections. The total uncertainty, of course,
includes contributions from the uncertain sky localization
as well as cosmic variance. Thus, this study yields an
optimistic view of what might be possible in the future.
In Fig. 4, we plot ln BFaniiso as a function of the number of

detections N. The shaded regions indicate 1σ confidence
intervals. Since an isotropic model is a subset of the general
anisotropic model, as more events are added, the Bayes
factor can provide support for the model with a more
compact parameter space, until enough evidence mounts
for the anisotropic model. Therefore, we cannot use a
method such as this to “prove” isotropy; rather we may
provide an increasingly stringent limit on anisotropy. In
Fig. 5 we plot the 99.7% upper limit on alm=a00 found in
each analysis as a function of the number of events N,
ðalm=a00ÞUL. For a low number of events, ðalm=a00ÞUL
slowly decreases with the number of events before reaching
a consistent power law relation in the high event region. We
find that ðalm=a00ÞUL scales as ∼N−1=2 at high number of
detected events (≥ 400 events).

V. IMPLICATIONS

Looking to the future, as the gravitational-wave network
improves in sensitivity, the number of binary black hole
events observedwill significantly increase. Furthermore, the
fraction of the thosewith improved sky localizationwill also
improve [59]. This will allow for increasing improvements
to the estimates of the anisotropy of the binary black hole
gravitational-wave sky location distribution. Given that
upper limit in the estimate of anisotropy scales as ∼N−1=2

(Fig. 5) in the regime of many events, we can estimate that
within one year of operation of third-generation detectors,
such asCosmic Explorer and the Einstein Telescope [59,60],

gravitational waves will be able to probe anisotropies at the
∼0.1% level. Coupled with the precise location of sources,
this will enable a precise measurement of the anisotropy of
the stellar-mass binary hole distribution in the Universe. We
stress that the inference of (an)isotropy complements (but in
no way replaces) the measurements of anisotropy from the
cosmic microwave background, which is associated with a
very different time in the history of the Universe.
Gravitational-wave observations will provide an additional
method to probe the large-scale distribution of stellar-mass
binary black hole mergers within the Universe.
This analysis provides an approachable way to search for

the anisotropy of the stellar-mass binary black hole sky
distribution. The results presented in Ref. [38] qualitatively
agree for the predicted population distribution for the sky
position of stellar-mass binary black holes. Our results
demonstrate similar probability overdensities with an inde-
pendent method and parametrization of the anisotropic
distribution.We also demonstrate the study of both simulated
binary black hole mergers and point estimate sources to

TABLE II. Bayes factors for each of the simulated event
analyses.

Scenario ln BFaniiso

Isotropic −33.6
Dipolar (a11=a00 ¼ 0.51) 20.0
Quadrupolar (a22=a00 ¼ 0.51) 37.6

FIG. 4. Recovered Bayes factors as a function of the number of
binary black hole events observed. The plus markers correspond
to the injection study of simulated binary black hole sky positions
from full parameter estimation of the source. The bounded
regions correspond to the 68% confidence intervals for the log
Bayes factors recovered from point source estimates. We observe
the ln BFaniiso trend for the simulated binary injections to approx-
imately follow the point source estimates. Since isotropy is a
compact subset of anisotropic models, the Bayes factor will
prefer isotropy until enough events are observed. This is observed
in the behavior of the alm=a00 ¼ 0.10 results.
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determine an approximate scaling relation of the inferred
maximum anisotropy as a function of the number of detected
BBH events.
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Center (https://www.gw-openscience.org), a service of
LIGO Laboratory, the LIGO Scientific Collaboration and
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APPENDIX: GWTC-1 WITH DIFFERENT MODELS

In Figs. 6–9, we present the additional posterior
distributions from the analysis of GWTC-1 undertaken

FIG. 5. Inferred maximum 99.7% upper limits on the
anisotropy present in the simulated point source analyses given
a number of events. The maximum anisotropy is presented for
five different scenarios analyzed for 100 different realizations
with lmax ¼ 5 anisotropic models. In the regime of a high number
of detected events, the maximum anisotropy follows a ∼N−1=2

relation. As the number of events increases, the maximum
anisotropy measured plateaus towards the true anisotropy.

FIG. 6. Posterior distribution and posterior predictive distribution for GWTC-1 using a lmax ¼ 1 anisotropy model.
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FIG. 7. Posterior distribution and posterior predictive distribution for GWTC-1 using a lmax ¼ 3 anisotropy model.

FIG. 8. Posterior distribution and posterior predictive distribution for GWTC-1 using a lmax ¼ 4 anisotropy model.

SEARCHING FOR ANISOTROPY IN THE DISTRIBUTION OF … PHYS. REV. D 102, 102004 (2020)

102004-9



in Sec. III. Posteriors of alm=a00 for l ≤ 2 are shown.
We note that for the lmax ¼ 1 model, a2m=a00 posteriors
are constructed from Eq. (5) which, for any given model,

will generate alm’s up to l ¼ 2lmax. All priors have
support at alm=a00 ¼ 0 for all spherical harmonics up
to lmax.
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