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Vacuum quantum fluctuations impose a fundamental limit on the sensitivity of gravitational-wave
interferometers, which rank among the most sensitive precision measurement devices ever built. The
injection of conventional squeezed vacuum reduces quantum noise in one quadrature at the expense of
increasing noise in the other. While this approach improved the sensitivity of the Advanced LIGO and
Advanced Virgo interferometers during their third observing run (O3), future improvements in arm power
and squeezing levels will bring radiation pressure noise to the forefront. Installation of a filter cavity for
frequency-dependent squeezing provides broadband reduction of quantum noise through the mitigation of
this radiation pressure noise, and it is the baseline approach planned for all of the future gravitational-wave
detectors currently conceived. The design and operation of a filter cavity requires careful consideration of
interferometer optomechanics as well as squeezing degradation processes. In this paper, we perform an in-
depth analysis to determine the optimal operating point of a filter cavity. We use our model alongside
numerical tools to study the implications for filter cavities to be installed in the upcoming “A+"" upgrade of

the Advanced LIGO detectors.
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I. INTRODUCTION

Gravitational-wave detectors represent the state-of-the-
art in precision metrology. Along with other high-precision
optomechanical experiments [1-6], they comprise a class
of extremely sensitive, quantum-noise-limited systems
[7-10]. Reduction of fundamental quantum noise with
the injection of squeezed light [11] has been recently
demonstrated in gravitational-wave detectors [12-14].
This technique has seen improvements in sensitivity of
up to ~3 dB in Advanced LIGO [15] and Virgo [16]
and 6 dB in GEO600 [17], enabling quantum-enhanced
detection of gravitational-wave events. Unfortunately,
Heisenberg’s uncertainty principle demands a correspond-
ing increase in noise in the quadrature orthogonal to the
squeezing—quantum radiation pressure noise. Quantum
radiation pressure noise already limits the useful squeezing
level in current gravitational-wave detectors [18,19].
Further increases in laser power and squeezing level—
such as those planned to be implemented in the upcoming
Advanced LIGO upgrade, “A+” [20]—will make its
impact even larger.

Frequency-dependent squeezing can overcome these
limitations [21-23] by suppressing both quantum radiation
pressure and shot noises, thereby achieving a broadband
reduction of quantum noise to surpass the standard
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quantum limit (SQL) [24]. A frequency-dependent rotation
of the squeezing angle may be realized using the frequency
response of an overcoupled cavity on reflection, called a
filter cavity. The filter cavity resonance is detuned with an
offset relative to the carrier frequency of the squeezed
vacuum state, thus impressing a differential phase shift to
the upper and lower sidebands of the squeezed field. Since
the squeezed quadrature angle at a given sideband fre-
quency is determined by the relative phase between the
upper and lower sidebands, the filter cavity rotates the
squeezed state for sideband frequencies that lie within
the cavity linewidth.

Table-top filter cavities have demonstrated frequency-
dependent squeezing in the MHz [25] and kHz regions
[26], with longer protptype filter cavities recently achieving
frequency-dependent squeezing at 100 Hz and below
[27,28]. Major upgrades to existing gravitational-wave
detectors, like A+ and Advanced Virgo+, will include a
filter cavity. Concepts for future gravitational-wave detec-
tors [29-32] also rely on filter cavities to achieve a
broadband reduction of quantum noise. Appropriately
choosing the filter cavity detuning is crucial to achieve
the correct rotation of the squeezed vacuum state to match
the interferometer response [21] and maximize the benefit
from frequency-dependent squeezing.

Here we study the optimal detuning of filter cavities for
gravitational-wave detection. Previous works have consid-
ered a variety of schemes for frequency-dependent squeez-
ing [21,33-36] and compared them with numerical
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optimization of filter cavity parameters as a function of
length [37]. Our work focuses on the single input filter
cavity scheme being considered for current and future
gravitational-wave detectors. We present new, concise
forms for the interferometer quantum noise expressions.
We also run in-depth numerical optimization for the 300 m
A+ filter cavity currently being installed, including both
optical loss and detuning fluctuations, the main degradation
mechanisms that limit frequency-dependent squeezing
[38]. This work allows us to answer many important
questions in the quest to deliver frequency-dependent
squeezing to current-era gravitational-wave detectors:
how to choose the filter cavity detuning for given round-
trip losses, how to adapt the filter cavity detuning to
changing interferometer arm powers, and how to optimize
the filter cavity parameters to maximize the benefit from
frequency-dependent squeezing. While these questions are
easily answerable given ideal conditions and perfect
rotation matching, incorporating realistic degradations with
frequency-dependent effects muddies the picture. In this
paper, we aim to bridge the gap between previous theo-
retical treatments of frequency-dependent squeezing and
how we optimize a realistic interferometer for gravitational-
wave detection.

We begin by giving a general description of the optimal
filter cavity detuning for frequency-dependent squeezing.
We first derive concise analytical formulas for the quantum
noise spectrum with and without optimal phase matching
between the filter cavity and interferometer, incorporating
the effects of round-trip loss and detuning fluctuations in
the filter cavity. Next, we allow the input transmissivity and
round-trip loss of the filter cavity to vary freely and
calculate the corresponding optimal detunings from an
integrated quantum noise spectrum. Finally, we apply our
findings to A+.

II. MODEL

We start by calculating the optimal input mirror trans-
missivity and optimal detuning for a low-loss filter cavity.
Here, low loss implies a round-trip loss A much smaller
than the input mirror transmissivity 75, i.e. A < Tj,.

For a given sideband frequency €, the optical field
reflectivity of the filter cavity can be written as

i 2
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are the coupler-limited bandwidth and loss-limited band-
width respectively. The loss-limited bandwidth is related to
the frequently-used loss-per-length, differing only by a

factor of ¢/4. Awy, is the cavity detuning with respect to
the carrier frequency. The phase of a reflected sideband is
given by
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The quadrature rotation angle of the input light after
reflection from the cavity is calculated as
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From our low-loss assumption, the coupler-limited band-
width is much larger than the loss-limited one (y > 1). This
permits rewriting y> 4+ 4> ~ y?> — 42 and subsequently sim-
plifies the expression for the rotation significantly,

1 A
a, ~ Earctan (B 202 = ,12)QZ>

= arctan 2rAwx
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(7)

The objective of the filter cavity is to apply an appropriate
rotation to the squeezed state such that the ponderomotive
action of the interferometer results in reduced noise rather
than enhanced radiation pressure noise [21]. The ponder-
omotive effect of the interferometer is characterized by the
interaction strength,

K = QSQL 2 yizfo (8)
L Q) Q4P
ifo
2
= )
=

where the standard quantum limit (SQL) frequency Qgqy, is
the scale factor at which /C ~ 1 and is characteristic of the
interferometer configuration [see Eq. (B1)]. The approxi-
mation for K holds when the interferometer bandwidth
Yifo > L2501, in which case a single filter cavity is sufficient
for achieving optimal rotation [37]. The desired rotation to
counteract this is then given by @), = arctan(KC). Setting the
cavity rotation equal to that required to cancel the ponder-
omotive rotation gives
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Solving this equation finds the filter cavity parameters
required for phase matching at all frequencies,

{ 2yAwp = Qo (11)
y =22 - Awl = 0.

Thus, the optimal input transmissivity and detuning for
matching a low-loss filter cavity to an interferometer with a

known Qgqp, can be written in terms of the filter cavity loss-
limited bandwidth A as
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Equation (12) explicitly states the optimal phase-matching
conditions of a filter cavity in the low-loss limit. However,
the generality of these equations remain in question.
Further, given some fixed y that does not necessarily
follow Eq. (12), how should Awy, be refined? We aim to
address these concerns in the rest of this paper.

Next, we go beyond the low-loss limit and optimal
phase-matching conditions to derive the sensitivity
enhancement from squeezing by a factor e™ in a more
general parameter space. We break this calculation down
into the contributions of the squeezing, antisqueezing, and
unsqueezed vacuum terms to the total quantum noise.

High loss and detuning noise

Moderate loss and detuning noise

Defining two new parameters as

_ rfc(+Q)J2rr>fkc(_Q')’ (13)

— rfC(+Q) - r?c(_g)
2 9

(14)

the power from quantum noise measured at the detection
port of a gravitational-wave interferometer can be written as

Niot = Cyq€™ + Cani€® + Cioss, (15)
where
Csqr = |Kv + p|? (16)
Cani = | = K+ v, (17)
Cioss = (1= |l = [v]?) (K + 1). (18)

These equations can be used to estimate the enhancement
for any input transmissivity, loss, and detuning. We
henceforth refer to these results as our analytical model.

We now numerically compute the overall sensitivity
enhancement resulting from frequency-dependent squeez-
ing as a function of these three parameters: y/Qgqr, £ =
A/QsqL and Awg/Qgqr. The enhancement factor is
defined using a frequency-weighted integral of N, from
Eq. (15), normalized by the same frequency-weighted
integration of quantum noise with frequency-independent
squeezing. It can be written as

No loss and detuning noise

Sensitivity enhancement [dB]
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FIG. 1.

Sensitivity enhancement for the detection of binary inspirals relative to using frequency-independent squeezing for various

cavity detunings and input transmissivities. From left to right, the three plots have round-trip losses and detuning fluctuations of
(,&) =(0.5,0.2), (0.15,0.1), and (0,0). The enhancement factors are calculated by integrating the quantum noise spectrum over
frequency, weighted by the gravitational-wave spectrum [Eq. (19)]. The injected squeezing level is 10 dB (e72° = 0.1). The gray point in
each plot shows the input transmissivity and detuning calculated from the phase-matching condition [Eq. (12)], which assumes low loss,
for the given parameters. The black points mark the numerical maxima.
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An integration weighted by Q~7/3 can be used as a proxy

for the enhancement of the signal-to-noise (SNR) ratio
for gravitational waves detected from a binary inspiral.
The —7/3 frequency exponent comes directly from the
power spectrum of a binary inspiral [39]. In these calcu-
lations, we now also incorporate detuning fluctuations as a
squeezed state degradation mechanism. These fluctuations
arise from residual cavity length noise and create a form of
frequency-dependent phase noise. We give this noise in a
dimensionless form & = dwy,/Qgqr by normalizing the
detuning fluctuation dw;. by the SQL frequency. See also
Appendix A for an extension of our analytical model that
incorporates these effects.

Figure 1 shows the enhancement factor with varying
Awy, and y, while fixing the loss # and detuning fluctuation
£. An optical loss as large as £ = 0.5 limits the sensitivity
enhancement to below 1 dB and should remain smaller than
0.15 in order to achieve around 3 dB. When # < 0.15 is
enforced, the optimal input transmissivity and detuning
given by Eq. (12)—for which the low-loss and low-noise
limit is assumed—is very close to the numerical maximum.

2.0

------ Optimal detuning (numerical)

—— Optimal detuning (analytical)

-3.0

o
fen)
Sensitivity enhancement [dB]

|
-
[

|
&
o

0.0 0.5 1.0 1.5 2.0
/\/QSQL

FIG. 2. Sensitivity enhancement factor for binary inspirals
[Eq. (19)] using filter cavities with various detunings and losses
at a given input transmissivity y/Qgq = 1/ V2 and detuning
fluctuation £ = 0.1. The black and gray lines represent the best
detuning at a given optical loss from numerical optimization and
Eq. (12) respectively. The lower panel shows the ratio between
the numerically optimized and analytically optimized sensitivity
enhancements, calculated along each of the curves in the
top panel. The optimal detuning decreases with larger losses.
We also find that the detuning derived from the analytical
equation gives almost the same factor of improvement as the
numerical maximum.

In order to investigate the flexibility of a filter cavity with
a fixed input transmissivity, we calculate the enhancement
factor with changing Awy, and 4 in Fig. 2. The lossless filter
cavity with Awg/QgqL = 1/ /2 gives the most squeezing.
The black dashed line shows the optimal detuning of the
cavity at each optical loss. The optimal detuning decreases
with increasing optical losses. This trend is continuous
toward a zero-detuning cavity: namely, the “amplitude filter
cavity”, which operates by replacing the squeezed state by
unsqueezed vacuum at low frequencies [33,40]. The gray
line shows the analytical optimal detuning in Eq. (12).
Despite deriving our analytical model assuming ideal
conditions, it also appears valid in more general scenarios
of filter cavity operation.

III. APPLICATION TO THE A + FILTER CAVITY

Here we apply the above formalism to A+ as a worked
example. The upgrade to Advanced LIGO will deploy a
300 m long filter cavity with a budgeted 60 ppm round-trip
loss. An input optic with 1000 ppm transmissivity was chosen
to optimize detector performance up to the target A+ arm
power of 750 kW. We now explore this choice of input
coupler, as well as the optimal detuning of the filter cavity. We
use the binary neutron star (BNS) inspiral range of the
detector as our metric of performance, defined as the distance
to a coalescence of two 1.4 M neutron stars that is detected
by the interferometer with an SNR of 8, averaged over the
entire sky [41]. A+ is designed to reach a BNS range of
345 Mpc. Similar to Eq. (19) used in Figs. 1 and 2, this metric
uses an Q~7/3-weighted integration, but now casts the result in
an astrophysical context. We now also include the full array of
A+ classical noise curves alongside the varying quantum
noise. We present this as a percentage improvement over the
range of an equivalent interferometer with only frequency-
independent squeezing: a 100% increase in range corresponds
to a 6 dB enhancement of sensitivity.

We first explore the selection of a filter cavity input
transmissivity. Figure 3 shows the optimal choice for
varying interferometer arm powers and, correspondingly,
SQL frequencies. The range improvement for a given arm
power and input coupler is calculated by optimizing the
filter cavity detuning and squeezing level. This plot is
particularly relevant for interferometers undergoing itera-
tions of upgrades; the usage of highly transmissive input
couplers to target high-power operation penalizes operation
at lower powers. For Advanced LIGO progressing into A+,
we see that a choice of 1000 ppm is within 5% of optimal
BNS range for arm powers in the range 400-800 kW. We
also consider this choice with a signal recycling cavity
adjusted for higher power in Appendix B. Upon realizing
the A+ design, the filter cavity input optic can be optimized
for long-term observation at the final interferometer con-
figuration. Finally, we note that the analytical solution from
Eq. (12) is valid in this regime.
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FIG. 3. The relative percentage range improvement obtained

with the installation of a filter cavity in A+ for various filter
cavity input transmissivities and SQL frequencies. The arm
power corresponding to each SQL frequency is shown in the
twin axis. We assume the A+ budgeted round-trip loss
A = 60 ppm. The dashed black line indicates the optimal trans-
missivity at each arm power, while the gray line shows that
derived from Eq. (12). The yellow star indicates the A+ design,
using a filter cavity with T;, = 1000 ppm and a 750 kW arm
power. The cyan star marks the minimal operating power planned
for the fourth observing run (O4), 400 kW, at least twice that
measured for O3. This plot shows that a 1000 ppm input coupler
is close to optimal for a wide range of prospective arm powers.

Suppose we use Fig. 3 to design our filter cavity and
arrive at the A+ design input transmissivity of 1000 ppm
with a budgeted loss of 60 ppm and a 300 m filter cavity
(0.2 ppm/m). We now consider sensitivities achieved from
the application of this fixed filter cavity to interferometers
with varying SQL frequencies. Figure 4 shows how the
filter cavity detuning should be adjusted to compensate for
interferometer powers for which the cavity was not
designed. The detuning must change to approximately
offset the varying interferometer rotation frequency. As
expected, the greatest improvement in performance—
nearly doubling the BNS inspiral range—is reserved for
the designed interferometer power.

The second derivative of range with respect to detuning
gives a scale for the loss of sensitivity due to detuning
noise. We can use the narrow region of optimum perfor-
mance in Fig. 4, centered on the dashed line, to infer a
detuning noise requirement for the filter cavity. For
instance, if we demand that the standard deviation of the
detuning remains within 1% of the maximum range, we
derive an upper limit for the detuning noise RMS of 1.2 Hz
(1.3 Hz) for A+ (O4), or equivalently an effective length
noise RMS of 1.3 pm (1.4 pm). The A+ filter cavity design
chooses a detuning noise constraint that limits the injected
anti-squeezing noise to be no greater than the squeezed shot
noise itself, leading to a slightly more restrictive length
noise upper bound of 0.8 pm [42]. Reference [38] discusses

Arm power [kW]

250 500 750 1000 1250 1500

BNS-optimized detuning
A+ design
04

Awi /27 [Hz]

|
e
o

o
BNS range improvement %]

|
=)
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%
S

0 20 40 60 80
Qsqu/2m [Hz

FIG. 4. Relative percentage binary neutron star (BNS) inspiral
range improvement gained by installing a filter cavity with A+
parameters (7, = 1000 ppm, A = 60 ppm) at various interfer-
ometer SQL frequencies. The arm power corresponding to each
SQL frequency is shown in the twin axis. The vertical axis
explores possible filter cavity detunings, with the black dashed
line highlighting the optimal such value for each Qgq . The
yellow star marks the designed A+ arm power. We see that small
adjustments in operating point can be used to mostly compensate
for deviations from the designed arm power from 50 Hz to 70 Hz
SQL frequencies.

detuning noise requirements based on the resulting fre-
quency-dependent phase noise in more detail.

We additionally explore the required detuning shifts to
compensate for more severe squeezing degradation. In
particular, Fig. 5 shows the required change in filter cavity
detuning given varying round-trip loss and detuning fluc-
tuations. In general, we find that worse filter cavities
require operation closer to resonance. This is consistent
with the trend shown in Fig. 2 toward amplitude filter

w
(o)

Optimal detuning [Hz]

w
D

1
A/ L. [ppm/m]

FIG. 5. The required detuning to accommodate increasing
losses or detuning fluctuations. The yellow star marks the budget
for the A+ filter cavity design. For any realistic round-trip loss or
detuning noise, only small changes in Awy, are required.
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cavity operation: the greater the mismatch between the
filter cavity and interferometer rotations, the more one
benefits from running the cavity as a high-pass filter.
Further, we note that the A+ design filter cavity is highly
tolerant of a range of degradations, requiring a detuning
shift of only a few Hz for losses of up to a few hundred ppm
and ~15 Hz of detuning noise. Compare these to the
measured values of 19 ppm and 12 Hz measured using a
16 m filter cavity with a comparable bandwidth in
Ref. [27].

IV. CONCLUSIONS

Present-era gravitational-wave detectors are just now
beginning to become radiation pressure noise limited.
Frequency-dependent squeezing upgrades will imminently
allow us to circumvent this limit and achieve a broadband
reduction in quantum noise. The design and operation
of a filter cavity requires a careful treatment of noise terms
and degradation mechanisms. In this paper, we report
on a more general and simplified expression of the sensiti-
vity improvement possible with frequency-dependent
squeezing.

We also explore the parameter space of filter cavities to
determine an optimal operating point given some budgeted
loss, maximizing on an inspiral-weighted integrated spec-
trum. With the full A+ design in mind, we similarly study
detuning changes to compensate for mismatched rotation
frequencies, as well as excess loss and length noise. This
study aims to be valuable when operating a filter cavity
throughout a phased upgrade from current to future
detectors with more arm power and stronger squeezing.
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APPENDIX A: ANALYTICAL FORMULA

Here we derive new analytical formulas that now
incorporate both optical loss and detuning fluctuations.
We follow the approach of Ref. [38] in averaging over these
fluctuations. The phase matching condition in Eq. (12) is
used in order to determine the optimal detuning and
transmissivity. Assuming ¢, & <1 and K ~ (QgqL/Q)%
the overall change of quantum noise relative to that without
injecting squeezed vacuum, given by s = 1 + K2, can be
represented as

Nt _ 20, 2V2K(1 +K)

_ a—20
s T dmee
CP(L+K) 50 o
(1+K2)? (¥ —e™)¢
4K2 )
v o _ 1
+ (1 + K?)? Kl )

+ (K2 +3K +1)(e™2 - 1)]¢?

+ O(£8) + O(%) + O(&Y). (A1)
Equation (A1) goes to unity when the injected light is
vacuum (o = 0), regardless of £ and £. The leading term of
each coefficient in Egs. (16)—(18) on ¢ and ¢ is given by

Coqr = 1, (A2)
21+ K)? ,
Canti - Wg ’ (A3)
_ 2V2K(1+K)
loss — Wﬁ (A4)

While C,; =0 for an ideal cavity with optimal
phase matching, we see here that the detuning noise
mixes in some antisqueezing into the quantum noise
spectrum. Both C,,; and Cj. are maximal at [Cyor =
V2 + 1, which indicates that the degradation of squeez-
ing by the optical loss and detuning fluctuation is largest

atQ=1/vv2+ 1Qgq1, = 0.64Qgq;.. In Fig. 6, quantum
noise relative to coherent vacuum is plotted to compare
Eq. (Al) with the exact numerical calculations. In the

----- Total (exact)
—— Total (analytical)

QN relative to coherent vacuum [dB]

-8 — Detuning noise (analytical)
Loss (analytical) .
~10 —=
0.1 10

1
0/Qs0L

FIG. 6. Quantum noise relative to coherent vacuum calculated
to only each leading order term alongside the exact numerical
simulations. Parameters used are the same as those in the middle
panel of Fig. 1:e72° = 0.1, £ = 0.15, and & = 0.1. The analytical
equation shows better agreement with the exact result at frequen-
cies higher than Qg , while it overestimates the noise at lower
frequencies.
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analytical equation, we consider the terms up to #> and
neglect higher-order ones. It approximately reconstructs
the exact solution at frequencies higher than the SQL
frequency. At lower frequencies, the approximated ana-
lytical calculation gives an over-estimated result, which
implies that higher-order terms suppress the degradation
more.

APPENDIX B: CHOICE OF SIGNAL
RECYCLING MIRROR

The existing signal recycling mirror (SRM) in Advanced
LIGO was chosen to optimize for a low power operation.
Moving from 400 kW to 750 kW, the detector becomes
more limited by quantum noise than thermal noise in the
~100 Hz region. Insofar as it is quantum noise limited, the
range hits a maximum as radiation pressure noise and shot
noise trade off due to the €25 nearing merger frequencies.

Furthermore, while we can reduce the quantum noise
with frequency-dependent squeezing, quantum radiation
pressure noise also acts to enhance any optical scattering
noises above the squeezed vacuum, scaling with €2gq; . This
effect motivates lowering Qgqp, to diminish the impact of
technical noises. Such a change amounts to modifying the
interferometer bandwidth, in turn changing Qgq;, as

) )
QgoL = 4 T am®0
cmLarinfo

where P, is the intracavity arm power, @, is the carrier
frequency, m is the test mass and L, is the arm length.
These factors additionally manifest in the overall differ-
ential displacement due to quantum noise as [18]

(B1)

Arm power [kW]

250 500 750 1000 1250 1500
1400
1200 Ns
1000 . 60 ?g
) ‘ 502
Z 800 2
A 40 Z
& 600 — =
--------- BNS-optimized T;, 30 2
400 < —— Optimal T}, (analytical) 20 ‘2
g Y A+ design
200 M
* o4 10
0% 30 140 50 60 0
Qsqu/2m [Hz

FIG.7. The range improvement as a function of arm power and
filter cavity input transmissivity, now using an SRM trans-
missivity of 20%. We see that 1000 ppm is again a good choice
for this configuration, giving near-optimal range improvement for
powers at and extending beyond the A+ design goal.

Y, + Q% el
Yifo 4'a)OPaIm ‘

Ax*(Q) = Ny (B2)

At design power, the SRM transmission is planned to
decrease from 35% to 20% [7], bringing the interferometer
bandwidth from 427 Hz to 751 Hz. As a result, Qgq is
shifted from 65 Hz down to 49 Hz. In Fig. 7, we show that
the choice of T;, = 1000 ppm similarly achieves great
range improvement for the A+ design in this configuration,
as well as even higher arm powers.
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