
 

Gravitomagnetic resonance in the field of a gravitational wave
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Using the construction of the Fermi frame, the field of a gravitational wave can be described in terms of
gravitoelectromagnetic fields that are transverse to the propagation direction and orthogonal to each other.
In particular, the gravitomagnetic field acts on spinning particles and we show that, due to the action of the
gravitational-wave field, a new phenomenon—which we call gravitomagnetic resonance—may appear. We
give both a classical and a quantum description of this phenomenon and suggest that it can be used as the
basis for a new type of gravitational-wave detectors. Our results highlight the effectiveness of collective
spin excitations, e.g., spin waves in magnetized materials, in detecting high-frequency gravitational waves.
Here we suggest that, when gravitational waves induce a precession of the electron spin, power is released
in the ferromagnetic resonant mode endowed with quadrupole symmetry of a magnetized sphere.
This offers a possible path to the detection of the gravitomagnetic effects of a gravitational wave.
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I. INTRODUCTION

The recent detection of gravitational waves [1,2] by
means of the large interferometers confirms once again the
predictions of general relativity and the role of Einstein’s
theory as the best model of gravitational interactions, even
though large-scale astronomical observations keep chal-
lenging the Einsteinian paradigm with the problems of dark
matter and dark energy [3,4]. The measurement process
needs to be carefully analyzed in general relativity, since it
becomes meaningful only when the observer and the object
of observation are clearly identified [5]. This is of uttermost
importance when dealing with gravitational waves, since
their effects on terrestrial detectors are very small; mis-
conceptions may arise [6], or subtleties need to be properly
taken into account [7]. One possible approach is to use a
Fermi coordinate system, defined in the vicinity of the
world-line of an observer moving arbitrarily in spacetime.
Even though the interaction between gravitational waves
and detectors is usually studied using the so-called trans-
verse and traceless coordinates, other approaches are viable
[8]. In particular, Fermi coordinates have a direct opera-
tional meaning, since they are the coordinates an observer
would use to perform space and time measurements;
indeed, using these coordinates the metric tensor contains
(up to the required approximation level) only quantities that
are invariant under coordinate transformations internal to
the reference frame.
Actually, beyond the aforementioned difficulties for

Einstein’s theory deriving from cosmological observations,
it is a matter of fact that the interplay between general

relativity and quantum mechanics is currently unclear. How
could we reconcile the Standard Model of particle physics
with the geometrical description of the gravitational inter-
action? There are no conclusive answers from the theo-
retical point of view, and there are no observations whose
explanations require both general relativity and quantum
mechanics. In this context, spinning point-like particles
have an important role. In fact, while intrinsic spin is a
fundamentally quantum property, in Einstein’s theory spin
is present only at the classical level and derives from the
rotation of finite-size bodies [9]. So general relativity, as is,
does not explicitly describe the interaction of spacetime
with spinning point-like particles; in particular, a relevant
question is whether these particles undergo gravitomag-
netic effects [10]. As suggested by Mashhoon [11], this
question is related to the inertia of intrinsic spin; more
generally, the spin-gravity coupling is related to the spin-
rotation coupling, on the basis of Einstein’s principle of
equivalence. In a spacetime that is almost locally flat,
around the world-line of an observer this interaction can be
described in terms of coupling between the gravitomagnetic
field and the intrinsic spin, and it can also be obtained from
suitable limits of a Dirac-type equation [12]. Any experi-
ments aimed at testing effects of gravity on spinning
particles is indeed a test of the equivalence principle in
a new regime [13]. If we go beyond general relativity,
the theoretical possibilities increase; for instance, in the
Einstein-Cartan theory the role of spin is to generate
(nonpropagating) torsion, while mass and energy determine
curvature [14,15]. More generally, the spin-gravity inter-
action is peculiar in extended theories of gravity [16], and
there are many experiments of fundamental physics [17] in
which various theoretical possibilities are investigated.*matteo.ruggiero@polito.it
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It is thenmanifest that investigating the interactionbetween
gravity and spin could shed new light on the interplay
between our best model of gravitational interaction—general
relativity—and the StandardModel of particle physics,which
is based on quantum mechanics. In a previous paper [18] we
showed that the effects of a plane gravitational wave can be
described, in a Fermi coordinate system, in terms of a
gravitoelectromagnetic analogy. Namely, we illustrated that
the wave field is equivalent to the action of a gravitoelectric
and a gravitomagnetic field, which are transverse to the
propagation direction and orthogonal to each other. Hence,
the interaction with detectors is operationally defined by a
(tidal) gravitoelectromagnetic Lorentz force. In particular, all
current detectors (such as LIGO and VIRGO) or foreseeable
one (like LISA) are indeed aimed at revealing the interaction
of a system of masses with the electric-like component of the
field. However, due to the magnetic-like component, there is
an interaction with moving masses and spinning particles
[19]. This is not a surprise, since a gravitational wave
transports angular momentum. There have been recent
proposals to use spinning particles as a probe for gravitational
waves [20]; however, they are based on the tidal gravito-
electric effect and hence are quite similar to the detection
methods of the interferometers.
Here we propose a new effect: focusing on the interaction

of a gravitational wave with a spinning particle, we show
that—in analogy with what happens in electromagnetism—a
gravitomagnetic resonance phenomenonmay appear, and we
suggest that this effect can be exploited, in principle, to design
new types of detectors of gravitational waves.
The paper is organized as follows. In Sec. II we introduce

the gravitoelectromagnetic approach in the Fermi frame,
while in Sec. III we introduce the phenomenon of grav-
itomagnetic resonance for spinning particles in the field of a
gravitational wave. Conclusions are given in Sec. IV.

II. GRAVITOELECTROMAGNETIC FIELDS
IN THE FERMI FRAME

Fermi coordinates in the vicinity of an observer’s world-
line can be defined as follows [21,22]. In the background
spacetime describing the gravitational field, we consider a
set of coordinates1 xμ; accordingly, the world-line xμðτÞ of a
reference observer as function of the proper time τ is
determined by the equation Dxμ

dτ ¼ ẍμ þ Γμ
νσ _xν _xσ ¼ aμ,

where D stands for the covariant derivative along the
world-line, a dot means a derivative with respect to τ,
and aμ is the four-acceleration. In the tangent space along
the world-line xμðτÞwe define the orthonormal tetrad of the
observer eμðαÞðτÞ such that eμð0ÞðτÞ is the unit vector tangent

to their world-line and eμðiÞðτÞ (for i ¼ 1, 2, 3) are the spatial

vectors orthogonal to each other and orthogonal to eμð0ÞðτÞ.
The equation of motion of the tetrad is

DeμðαÞ
dτ ¼ −ΩμνeνðαÞ,

where Ωμν ¼ aμ _xν − aν _xμ þ _xαΩβϵ
αβμν. In the latter equa-

tion, Ωα is the four-rotation of the tetrad. In particular, we
notice that for a geodesic (aμ ¼ 0) and nonrotating
(Ωα ¼ 0) tetrad we have Ωμν ¼ 0; consequently, in this
case the tetrad is parallel transported. If Ω ¼ 0 and aμ ≠ 0,
the tetrad is Fermi-Walker transported; indeed, Fermi-
Walker transport enables to define the natural nonrotating
moving frame for an accelerated observer [21]. Fermi
coordinates are defined within a cylindrical spacetime
region of radius R, in the vicinity of the reference
world-line, where R is the spacetime radius of curvature:
the observer along the congruence measures time intervals
according to the proper time, so the time coordinate is
defined by T ¼ τ; the spatial coordinates X, Y, Z are
defined by space-like geodesics, with unit tangent vectors
nμ, whose components with respect to the orthonormal
tetrad are nðiÞ ¼nðiÞ ¼nμe

μ
ðiÞðτÞ and nð0Þ ¼ 0. The reference

observer’s frame equipped with Fermi coordinates is the
Fermi frame. Fermi coordinates in the vicinity of the world-
line of an observer in accelerated motion with rotating
tetrads were studied in Refs. [22–24]. It is possible to show
that the spacetime element in Fermi coordinates in the
vicinity of the observer’s world-line can be recast in terms
of the gravitoelectromagnetic potentials ðΦ;AÞ [11,18],

ds2 ¼ −
�
1 − 2

Φ
c2

�
c2dT2 −

4

c
ðA · dXÞdt

þ δijdXidXj; ð1Þ

and this peculiarity allows us to apply the corresponding
formalism to spinning particles.2 The gravitoelectromag-
netic potentials depend on both the inertial features of the
Fermi frame through a and Ω (i.e., the projection of the
observer’s acceleration and tetrad rotation onto the local
frame, respectively) and the spacetime curvature through
the Riemann curvature tensor. Here we are interested in the
gravitomagnetic effects: the gravitomagnetic potential is
AiðT;XÞ ¼ AI

iðXÞ þ AC
i ðT;XÞ, where the inertial contri-

bution is AI
iðXÞ ¼ −ðΩc

2
∧ XÞi and the curvature contri-

bution is AC
i ðT;XÞ ¼ 1

3
R0jikðTÞXjXk. Accordingly, it is

possible to define the gravitomagnetic field B ¼ BI þ BC,
where

BI
i ¼ −Ωic; BC

i ðT;RÞ ¼ −
c2

2
ϵijkR

jk
0lðTÞXl: ð2Þ

1Greek indices refer to spacetime coordinates, and assume the
values 0,1,2,3, while latin indices refer to spatial coordinates and
assume the values 1,2,3, usually corresponding to the coordinates
x, y, z.

2Here and henceforth X is the position vector in the Fermi
frame.

MATTEO LUCA RUGGIERO and ANTONELLO ORTOLAN PHYS. REV. D 102, 101501 (2020)

101501-2



III. GRAVITOMAGNETIC RESONANCE

Exploiting the gravitoelectromagnetic analogy, we may
say that a test spinning particle with mass m and spin S has
a gravitomagnetic charge qB ¼ −2m and, as a conse-
quence, it possesses a gravitomagnetic dipole moment
μg ¼ − S

c [11]. Hence, in an external gravitomagnetic field
B, its evolution equation is

dS
dT

¼ μg ×B ¼ −
1

c
S ×B ¼ 1

c
B × S: ð3Þ

Now, let us consider a spinning particle interacting with
the wave gravitomagnetic field. In the Fermi frame, we
consider the coordinates T, X, Y, Z defined as above, with a
set of unit vectors fuX;uY;uZg, and we suppose that the
plane gravitational wave propagates along the X axis (see
Fig. 1). As discussed in Ref. [18], the curvature part of the
gravitomagnetic field (2) has the following components:

BC
X ¼ 0; BY ¼ −

ω2

2
½−A× cos ðωTÞY þ Aþ sin ðωTÞZ�;

BZ ¼ −
ω2

2
½Aþ sin ðωTÞY þ A× cos ðωTÞZ�: ð4Þ

In the above definitions, Aþ and A× are the amplitudes of
the wave in the two polarization states, while ω is its
frequency. In order to evaluate the effects, we consider a
circularly polarized wave, so that Aþ ¼ A× ¼ A and the
field (4) becomes

BC
X ¼ 0; BY ¼ −

Aω2

2
½− cos ðωTÞY þ sin ðωTÞZ�;

BZ ¼ −
Aω2

2
½sin ðωTÞY þ cos ðωTÞZ�: ð5Þ

If we consider a frame rotating clockwise in the YZ plane
with the wave frequency ω, its basis vectors are given by

uX0 ¼uX, uY 0 ðTÞ¼cosðωTÞuY−sinðωTÞuZ, and uZ0 ðTÞ ¼
sin ðωTÞuY þ cos ðωTÞuZ (see Fig. 1). The above field (5)
can be written in the form

BCðTÞ ¼ Aω2

2
½YuY 0 ðTÞ − ZuZ0 ðTÞ�: ð6Þ

The magnitude of this field is BC ¼ Aω2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ Z2

p
¼ Aω2

2
L,

where L is the distance from the origin of the frame; the
gravitomagnetic field BC is rotating clockwise with the
wave frequency ω, but is a static field in the considered
rotating frame.
As we have seen, in the Fermi frame the total grav-

itomagnetic field is B ¼ BI þBC, where BI ¼ −Ωc and it
is simply proportional to the rotation rate Ω of the frame.
We suppose that the latter field is static and that the
frame rotates along the direction of propagation of the
wave; hence, we may write BI ¼ −BIuX, where BI ¼ Ωc.
Accordingly, the evolution of a spinning test particle is
determined by Eq. (3), which in this case becomes

dS
dT

¼ 1

c
½BCðTÞ þ BI� × S: ð7Þ

If we consider the frame corotating with BCðTÞ, since
ω ¼ −ωuX is the rotation rate, the time derivatives in the
two frames are related by

dS
dT

¼
�
dS
dT

�
rot

þω × S ¼
�
dS
dT

�
rot

− ωuX0 × S: ð8Þ

Then, if we set ω − 1
c B

I ¼ ω −Ω ¼ Δω the spin evolution
equation in the rotating frame turns out to be

�
dS
dT

�
rot

¼
�
ΔωuX0 þ 1

c
BC

�
× S ¼ 1

c
Beff × S: ð9Þ

In summary, in the rotating frame the spinning particle
undergoes a precession around the static effective grav-
itomagnetic field Beff ¼ c½ΔωuX0 þ 1

cB
C�. Let us define

1
c B

C ¼ ω�; then, Eq. (9) suggests that if Δω ≫ ω�, the
precession is in practice around uX0 , but if Δω ≃ 0, i.e., if
the resonance condition is satisfied, the spin precession is
around the direction of BC, which is in any case in the YZ
plane, so the precession may flip the spin completely. This
condition is obtained when the rotation rate of the frame is
equal to the frequency of the gravitational wave. In this
case, the spin precesses with frequency ω�. Notice that all
precessions are referred with respect to the reference
spinning particle [19] at the origin of the Fermi frame
so, in any case, we are talking about a relative precession.
The above description is analogous to the classical

dynamics of a magnetic moment μ in a magnetic field
BðtÞ ¼ B0 þ B1ðtÞ that is the sum of a static field B0

and a field B1ðtÞ rotating with frequency ω in a plane

FIG. 1. The Fermi frame is equipped with spatial coordinates X,
Y, Z, with unit vectors fuX;uY;uZg; the unit vectors fu0

Y;u
0
Zg

are rotating with frequency ω.
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perpendicular to B0. The description of this electromag-
netic interaction can be formulated in quantum terms (see,
e.g., Ref. [25]) as follows. Let us suppose that jg > and
je > are the two eigenvectors, respectively, of the ground
and excited states of the projection of the spinning particle
along the X axis; the eigenvalues of the spin operator SX are
þℏ=2 and −ℏ=2, respectively. The Hamiltonian operator is
H ¼ −μ · ½B0 þB1ðtÞ� ¼ −γS · ½B0 þB1ðtÞ�, where γ is
the gyromagnetic ratio. We set ω0 ¼ −γB0, ω1 ¼ −γB1. If
we suppose that a spin is, at t ¼ 0, in the ground state jgi,
the probability of transition to the excited state jei at time t
is given by Rabi’s formula

Pg→eðtÞ¼
ðω1Þ2

ðω1Þ2þðω−ω0Þ2
sin2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1Þ2þðω−ω0Þ2

q t
2

�
:

ð10Þ

We see that for jω − ω0j ≫ jω1j the probability is almost
equal to zero; however, whenω ¼ ω0 we have the magnetic
resonance phenomenon, since Pg→e ¼ 1 for t ¼ 2nþ1

ðω1Þ π. In
other words, at resonance the oscillation probability does
not depend on the rotating magnetic field B1ðtÞ and even a
weak field can provoke the flip of the spin direction. We
emphasize that in this approach the magnetic field acts as a
purely classical quantity.
According to our approach, in the gravitational-wave

spacetime there is a gravitomagnetic field B¼BIþBCðTÞ.
It is possible to show [11,26] that the interaction
Hamiltonian of a spin S with the gravitomagnetic field
B isH ¼ 1

cS · B, and this result can also be extended to the
intrinsic spin of particles [12,27]. As a consequence, we
may introduce a probability transition for spinning particles
in the field of a gravitational wave. Accordingly, we obtain

Pg→eðTÞ ¼
ðω�Þ2

ðω�Þ2 þ Δω2
sin2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω�Þ2 þ Δω2

q T
2

�
: ð11Þ

Again, at resonance, i.e., when Δω ¼ 0 or ω ¼ Ω, even a
weak gravitational field can reverse the direction of the
spin: the probability of transition is equal to 1 independently
of the strength of the gravitomagnetic field for T ¼ 2nþ1

ðω�Þ π.
The resonance condition is obtained by combining the

gravitomagnetic field of the wave with a rotation field with
the same frequency. Since rotations of the frame cannot be
obtained for arbitrary frequencies (it is quite impossible to
exceed 103 Hz for macroscopic systems), if we are dealing
with charged spinning particles we may get an equivalent
situation by using a true magnetic field, on the basis of the
Larmor theorem, which states the equivalence between a
system of electric charges in a magnetic field, and the same
system rotating with the Larmor frequency. If B denotes the
magnitude of the magnetic field, the Larmor frequency for
electrons is ωL ¼ μB

ℏ B, where μB is the Bohr magneton.

Hence, a true magnetic field can be used to produce the
gravitomagnetic field BI .
This interesting resonance condition between Larmor

and gravitational-wave frequencies occurring for spinning
particles can be easily translated into a resonance of the
magnetization of a ferro-/ferrimagnetic material. In fact, if
the sample is a sphere of a cubic crystal magnetized
along its symmetry axis, then its magnetization exhibits
magnetostatic modes (MSMs) with fundamental frequency
ω0ðB0Þ ¼ γB0, with γ ¼ 2π28 GHz=T. The fundamental
mode is also known as the Kittel mode and corresponds to
ferromagnetic resonance with a uniform magnetization.
Clearly, this spin-0 mode does not couple to the gravito-
magnetic field of the wave. However, higher MSM modes
known as spin waves have nonuniform magnetization.
The MSM resonant frequencies can be derived from the
solution of the magnetostatic equation [28] of a sphere in
terms of the associated Legendre functions Pm

n ðω; B0Þ. In
particular, for modes with n ¼ jmj the relation between the
resonant frequency of MSMs and the external magnetic
field is linear and reads [29]

ωm;m;0 ¼ωHþ m
2mþ1

ωM≡ γHe0þ γ
4π

3

m−1

2mþ1
M0 ð12Þ

in terms of the steady field He0 and magnetization M0,
which is supposed to be along the X axis. Accordingly, for
n ¼ m ¼ 2 the spatial dependence of the magnetization
components turns out to be [29]

mY ¼ Y − iZ; mZ ¼ iY þ Z: ð13Þ

We notice the quadrupolar-like behavior for this mode
and the correspondence with the precession determined by
the quadrupolar gravitomagnetic field of the wave (5).
A possible approach to the detection of these effects
could be obtained by considering the hybridization of
microwave-frequency cavity modes with collective spin
excitations, such as the interaction among the magnetiza-
tion precession modes in a small magnetically saturated
YIG (Yttrium Iron Garnet) sphere and the microwave
electromagnetic modes resonating in a radio frequency
cavity [30].

IV. CONCLUSIONS

The construction of the Fermi frame enables to describe
the field of a gravitational wave in terms of a gravitoelec-
tromagnetic analogy; in other words, the wave field is
equivalent to the action of tidal gravitoelectric and grav-
itomagnetic fields, which are transverse to the propagation
direction and orthogonal to each other. As for the grav-
itomagnetic part of the wave field, it acts on moving or
spinning particles; in particular, we have shown that, in
analogy with what happens in electromagnetism, a gravi-
tational magnetic resonance phenomenon may appear.
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Namely, in the Fermi frame the total gravitomagnetic field
is made of a curvature contribution (due to the gravitational
wave) and an inertial contribution (due to the rotation rate
of the frame). The gravitomagnetic resonance is produced
when the frame rotates along the direction of propagation
of the wave and the rotation rate is equal to the wave
frequency. Since the precession frequency is proportional
to the square of the wave frequency, high-frequency waves
(of the order of GHz) are favored. If we are dealing with a
quantum description of spinning particles, the resonance
phenomenon means that the transition probability reaches
the value 1 at suitable times; moreover, this probability
does not depend on the gravitomagnetic field, and even a
weak field can provoke the flip of the spin direction.
However, since it is not possible to have physical rotations
for arbitrary frequencies, we suggested that an equivalent

situation can be obtained by using a true magnetic field, on
the basis of the Larmor theorem. Hence, a static magnetic
field acting on the probe can mimic the action of a rotating
frame. Just like in a magnetic resonance phenomenon, it is
not the spin of a single particle that can be observed, but
that of a great number of identical particles. For instance,
the precession induced by the gravitational wave can
modify the magnetization of a sample. We suggested that
the hybridization of microwave-frequency cavity modes
with collective spin excitations could be used to measure
these effects. However, such an analysis is beyond the
scope of this paper, whose aim was just to suggest the
possibility of considering the phenomenon of gravitomag-
netic resonance as the basis of new gravitational-wave
detection techniques.
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