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The vacuum contribution to quark matter under a uniform magnetic field within the SU(3) version of the
Nambu–Jona-Lasinio model is studied. The standard regularization procedure is examined and a new
prescription is proposed. For this purpose analytic regularization and a subtraction scheme are used to deal
with divergencies depending on the magnetic intensity. This scheme is combined with the standard three
momentum cutoff recipe, and reduces to it for vanishing magnetic intensity. Furthermore, the effects of a
direct coupling between the anomalous magnetic moments of the quarks and the magnetic field is
considered. Single particle properties as well as bulk thermodynamical quantities are studied for a
configuration of matter found in neutron stars. Awide range of baryonic densities and magnetic intensities
are examined at zero temperature.
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I. INTRODUCTION

The study of dense matter under strong interaction is
usually carried out by employing effective models, due
to the intricacies of the fundamental theory. Within this
approach, the Nambu–Jona-Lasinio (NJL) model has
shown to be a useful conceptual tool to tackle different
problems. In particular, it has been widely used to describe
quarks interacting with magnetic fields [1–13]. Within this
versatile description a variety of issues have been analyzed
such as magnetic catalysis, magnetic oscillations [5], color
superconductivity [6,7,9,12], chiral density waves [8],
vector [10] and tensor [11] additional couplings, and quark
stars [13].
Multiple efforts have been made to extract physical

content from the vacuum of the strong interaction affected
by a magnetic field [14–18]. Reference [14] provides
general expressions for the effective action of a Dirac field
interacting with a magnetic field for intensities greater than
the mass scale. A description based on the chiral sigma
Lagrangian has been made in [15,18] uses the quark-meson
model, whereas in [16] the vacuum contribution to the
magnetization is evaluated in a one-loop approach to QCD
for very intense magnetic fields. Using the chiral quark
model and a Ginzburg-Landau expansion Ref. [17] has

found that different treatments of the divergences could
yield important modifications of the phase diagram.
The investigation of this issue has been particularly

active within the NJL model [3–5,19–26], since the con-
tribution coming from the Dirac sea of quarks is respon-
sible for the dynamical breaking of the chiral symmetry and
it is a crucial point of the NJL model. There exist several
prescriptions to deal with divergent contributions in the
NJL at zero magnetic field, all of them yield compatible
predictions. But it seems that it is not the case in the
presence of an external magnetic field, as was recently
pointed out in [23,24]. In these references it is mentioned
that the use of smooth form factors instead of a steep
cutoff could change drastically the physical predictions.
Particularly Ref. [24] points out that a reliable regulariza-
tion must clearly distinguish between the nonmagnetic
vacuum contribution from the magnetic one. A failure in
this point should be the cause of the inadequate behavior
found in different calculations, such as tachyonic poles in
the spectrum of light mesons and unphysical oscillations in
thermodynamical quantities.
Following the analytic regularization in terms of the

Hurwitz zeta function [14], a residue depending on the
squared magnetic intensity is found in [5]. To dispose of
this singularity, the authors propose a wave function
renormalization by associating it to the pure magnetic
contribution to the energy density. To deal with the
divergencies in the thermodynamic potential, in [19,20]
the pressure at zero baryonic density and finite B is
subtracted and added, in the former case still exhibiting
the undesirable divergency and in the latter one it has been
regularized in the 3-momentum cutoff scheme. While in the
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calculations of [25] a softening regulator is used to analyze
the effects of the AMM on the quark matter phase diagram,
in [26] a step function in momentum space is used with the
same purpose.
An interesting aspect to be taken into account for

Dirac particles in a magnetic field is the discrepancy of
the gyromagnetic factor from the ideal value 2. This can
happen in a quasiparticle scheme where the effects of some
interactions give rise to the anomalous magnetic moments
(AMM)[11,27,28]. As a reference one can take the pre-
diction of the nonrelativistic constituent quark model for
the magnetic moments of the light quarks. In order to adjust
the experimental values of the proton and neutron magnetic
moments, the gyromagnetic ratios g̃u ¼ 2μu=μN ¼ 3.7,
g̃d ¼ 2μd=μN ¼ −1.94 are obtained within this approach.
Given the constituent massM and the electric charge Qf ¼
qfe of a quark of flavor f, its AMM can be estimated as
af ¼ ðg̃fM=2qfMpÞ − 1, where e and Mp are the proton
charge and mass respectively.
The appearance of the AMM is closely related to the

breakdown of the chiral symmetry. For this reason the NJL
model with zero current quark mass have been used to
study the origin of the AMM [11,27,28]. To analyze the
feasibility of the dynamical generation of the AMM, in [27]
a one loop correction to the electromagnetic vertex is
evaluated within the one flavor NJL model, obtaining

g̃ ≈
2Mp

M

eq
e
½1 − ðM=ΛÞ2 logðΛ=MÞ�:

In a more sophisticated treatment they obtain g̃u ≈
3.72; g̃d ≈ −1.86, by choosing adequately the constituent
quark masses.
In the approach of [28] the AMM is extracted from the

low momentum electromagnetic current written in terms
of the kernel of the Ward identities. Assuming a four
momentum cutoff, they find zero AMM in a one flavor NJL
model. However, by using the two flavor version, the
authors obtain g̃u ≈ 3.813; g̃d ≈ −1.929, which differ from
the phenomenological expectations by less than 1%.
Furthermore, in the same work an schematic confining
potential for only one flavor is considered. By taking a
constituent quark mass M ¼ 330 MeV, typical of the NJL
model, the magnitude of the AMM predicted is as large
as 0.15.
Another point of view is developed in [11], where the

one flavor NJL model is supplemented with a four fermion
tensor interaction, which induces a condensate in the γ1γ2

channel. In this case the intrinsic relation between the
constituent quark mass and its AMM is explicitly exposed,
since the vacuum condensate which breaks the chiral
symmetry is also responsible for the occurrence of nonzero
AMM. As a consequence, the AMM has a nonperturbative
dependence on the magnetic intensity.
The necessity of the AMM of the quarks has been

emphasized in [29] in the context of the Karl-Sehgal

formula, which relates baryonic properties with the spin
configuration of the quarks composing them. By stating the
dynamical independency of the axial and tensorial quark
contributions to the baryonic intrinsic magnetism, the
AMM of the quarks are proposed as the parameters that
distinguish between them. Resorting to sound arguments,
the author propose au ¼ ad ≈ 0.38, as ≈ 0.2–0.38 as sig-
nificative values for the AMM for the lightest flavors.
Other investigations have focused on the consequences

of a linear coupling between the AMM of the quarks and
an external magnetic field [25,26,30]. For instance, [25]
analyze the phase diagram of the NJL at finite temperature,
with special emphasis on a possible chiral restoration due to
the nonzero AMM. Furthermore, the possibility of a
nonlinear coupling of the AMM of the quarks is consid-
ered. In this model the AMM is related to the quantum
correction to the electrodynamic vertex, and a nonpertur-
bative dependence on the magnetic field is introduced
through the effective constituent quark mass. The influence
of the AMM on the structure of the lightest scalar mesons is
analyzed in [26], while [30] is devoted to study their effects
on neutral and beta stable quark matter within a bag model.
The aim of the present work is to study the effects of a

uniformmagnetic field on the properties of matter of quarks
that have acquired AMM. In particular we focus on the
vacuum effects and we perform an analytical regularization
of the NJL that matches the standard three-momentum
cutoff scheme for vanishing magnetic intensity. For this
purpose, a fermion propagator is used which includes the
anomalous magnetic moments and the full interaction with
the external magnetic field [31,32]. This propagator has
been used to evaluate meson properties [32,33], and
the effect of the AMM within the NJL model [26].
Previous investigations have considered quarks with
AMM within this framework [25,26], but the divergent
one-dimensional integrals were treated with a momentum
cutoffwhich depends on themagnetic intensity. In the case of
[25] the cutoff parameter Λ is inspired by a covariant
4-momentum scheme Ensðp;BÞ < Λ, where Ensðp;BÞ rep-
resents the energy of the nth Landau level with spin
projection s along the direction of the uniform magnetic
field. Reference [26] instead uses a 3-momentum cutoff
p <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2 − Ensð0; BÞ2

p
.

In the present work a 3-flavor version of the NJL is used.
Most of the references just cited, in particular those
corresponding to the study of AMM, use the two-flavor
formulation. Thus we provide here an insight on the
dynamics of the strange degree of freedom. This is
particularly useful for applications to astrophysical studies,
as for instance the final stage of neutron stars, where quark
matter is electrically neutral and it is in equilibrium against
weak decay.
This work is organized as follows. In the next section a

summary of the NJL model is presented and a set of
prescriptions to deal with the divergent contributions of
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the Dirac sea of quarks with AMM is proposed. Some
numerical results are discussed in Sec. III, and the last
section is devoted to drawing the conclusions.

II. EFFECTS OF THE AMM ON THE VACUUM
PROPERTIES IN THE NJL MODEL

The SU(3) NJL model extended with an AMM term has
the Lagrangian density

LNJL ¼ ψ̄

�
i=D −M0 −

1

2
κσμνFμν

�
ψ

þG½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�
− K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ �;

where a summation over color and flavor is implicit and
the current mass matrix M0 ¼ diagðM0u;M0d;M0sÞ breaks
explicitly the chiral symmetry and the covariant derivative
Dμ ¼ ∂μ − iQeAμ=3 takes account of the uniform mag-
netic field, with Q ¼ diagð2;−1;−1Þ. The AMM are dis-
played in the matrix κ ¼ diagðκu; κd; κsÞ and the definition
σμν ¼ i½γμ; γnu�=2 is used. In the following only the zero
temperature case is considered.
Due to the presence of a vacuum condensate the quark

field acquires an enlarged constituent mass, a process that
in the usual Hartree approach is described by

Mi ¼ M0i − 4Ghψ̄ iψ ii þ 2Khψ̄ jψ jihψ̄kψki; ð1Þ

for i ≠ j ≠ k.

By using standard techniques [3,34,35] one finds the
grand partition function per unit volume Ω,

Ω ¼
X
f

½NcTf þ 2Ghψ̄fψfi2� − 4Khψ̄uψuihψ̄dψdihψ̄ sψ si:

ð2Þ
In the limit of zero temperature the first term between
square brackets can be decomposed as Tf ¼ T0f − μfnf,
where nf stands for the particle number density for a given
flavor f, and the Lagrange multipliers μf manifest the
simultaneous conservation of the electric charge and the
baryonic number. Alternatively, the kinetic contribution
T0f can be expressed as T0f ¼ hψ̄fiγ0∂0ψfi [3] and
eventually can be evaluated in terms of the single particle
Green function.
Both quantities hψ̄kψki and hψ̄kiγ0∂0ψki are ultraviolet

divergent and need to be interpreted adequately. There are
several standard recipes within the NJL model, such as the
non-covariant 3-momentum cutoff and the Lorentz invari-
ant procedures of Pauli-Villars and 4-momentum cutoff. In
the present work a regularization procedure is used which
reduces to the 3-momentum cutoff at vanishing magnetic
field. For this purpose a fermionic propagator is used
corresponding to an effective quark with constituent mass
and interacting with an uniform magnetic field through the
electric charge and the AMM. It has been deduced for
positively charged fermions in [31] within the real time
formalism of the thermal field theory thermo field dynam-
ics [36]. For the sake of completeness the results corre-
sponding to zero temperature are transcribed here

Gfðx0; xÞ ¼ eiΦ
Z

d4p
ð2πÞ4 e

−ipμðx0μ−xμÞ
h
Gf0ðpÞ þ e−p

2⊥=βf
X
n;s

ð−1ÞnGfnsðpÞ
i

ð3Þ

where

Gf0ðpÞ ¼ e−p
2⊥=βfð=uþMf − KfÞð1þ iγ1γ2ÞΞ0s; ð4Þ

GfnsðpÞ ¼
Δn þ sMf

2Δn

�
ð=u − Kf þ sΔnÞð1þ iγ1γ2ÞLnð2p2⊥=βfÞ − ð=uþ Kf − sΔnÞ

× ð1 − iγ1γ2Þ sΔn −Mf

sΔn þMf
Ln−1ð2p2⊥=βfÞ þ ð=uiγ1γ2 þ sΔn − KfÞ=v

sΔn −Mf

p2⊥

× ½Lnð2p2⊥=βfÞ − Ln−1ð2p2⊥=βfÞ�
�
Ξns; ð5Þ

Ξns ¼
1

p2
0 − E2

fns þ iϵ
þ 2πinFðp0Þδðp2

0 − E2
fnsÞ: ð6Þ

A similar expansion holds for negatively charged par-
ticles. In these expressions the index s ¼ �1 describes the
spin projection on the direction of the uniform magnetic

field. Equation (4) propagates the lowest Landau level with
the unique projection s ¼ 1 for the u flavor and s ¼ −1 for
the s, d cases. The sum over the index n ≥ 1 takes account
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of the higher Landau levels, and the following notation is
used βf ¼ ejQfjB=3, Kf ¼ κfB, =u ¼ p0γ

0 − pzγ
3,

=v ¼ −pxγ
1 − pyγ

2, p2⊥ ¼ p2
x þ p2

y, Lm stands for the
Laguerre polynomial of order m, and

Efns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðΔn − sKfÞ2

q

Δn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2nβf
q

Furthermore, nFðp0Þ ¼ Θðμf − EfnsÞ stands for the
canonical statistical distribution function for fermions in
thermodynamical equilibrium. Finally, the phase factor
Φ ¼ βfðxþ x0Þðy0 − yÞ=2 embodies the gauge fixing.
Using the propagator of Eq. (3) the quark condensates

and the kinetic contributions are evaluated as [3]

hψ̄fψfi ¼ −i lim
t0→tþ

TrfGfðt; r⃗; t0; r⃗Þg; ð7Þ

hψ̄fiγ0∂0ψfi ¼ −i lim
t0→tþ

Tr

�
iγ0

∂
∂t Gfðt; r⃗; t0; r⃗Þ

�
; ð8Þ

together with

hψ̄fγ
νψfi ¼ −i lim

t0→tþ
TrfγνGfðt; r⃗; t0; r⃗Þg: ð9Þ

The principle of thermodynamical consistency can be
imposed through the relation 0 ¼ ∂Ω=∂M0f [37].
As already mentioned, these quantities have divergent

vacuum contributions. In the Appendix a regularization
procedure is applied that ensures null vacuum contributions
at zero magnetic intensity. This requisite is used to match
the 3-momentum cutoff procedure, by simply adding the
standard expressions in terms of the cutoff parameter Λ.
Thus at the regularization point these quantities reduce to
the commonly used vacuum values. But for any other
conditions, finite contributions depending on the density
and the magnetic intensity are extracted from the vacuum.
Equation (9) represents the density of baryonic current,
which for infinite homogeneous matter has zero vacuum
value. In the Appendix the derivation of the regularized
Dirac sea terms of Eq. (8) is shown. That expression
reduces to

hψ̄fiγ0∂0ψfiD − hψ̄fiγ0∂0ψfiNJL → −
Ncβ

2
f

2π2

�
ζ0ð−1; xÞ − 1

2

�
x2 − xþ 1

6

�
lnðxÞ þ x̃2

4

�
þ Ncβ

2
f

48π2

þ Ncβ
2
f

4π2

�
x2 þ xþ 1

6

�
ln

�
ν

M2
f

�
−
Ncβ

2
f

4π2

�
3x̃2 − x̃þ 1

6

�
ln

�
ν

M̃2
f

�
ð10Þ

for κf → 0. The notation x ¼ M2
f=ð2βfÞ and x̃ ¼

M̃2
f=ð2βfÞ has been used, where M̃f stands for the

constituent mass at finite baryonic density and B ¼ 0. In
this form, it can be compared with previous results, as for
instance [5]

−
Ncβ

2

2π2

�
ζ0ð−1; xÞ − 1

2
ðx2 − xÞ lnðxÞ þ x2

4

�

The first term of Eq. (10) resembles the last equation.
However, they differ in two points. First, the polynomial
multiplying the logarithm has an extra term, which comes
from the definition of ζð−1; xÞ. Furthermore in the last term
between square brackets the quantities M̃ and M are taken
as identical. The remaining terms of Eq. (10) are missing in
the mentioned approach. The difference can be minimized
by choosing ν ¼ M2

f. In such case, the third term of
Eq. (10) becomes null, and the last one would also be
zero if one identifies M̃ ¼ M. For this reason we adopt in
the following ν ¼ M2

f, but the distinction between Mf and

M̃f will be kept.
Furthermore, Eqs. (7)–(9) receives finite contributions

from the Fermi sea

hψ̄fψfiF ¼ Nc

2π2
βfMf

X
n;s

0 Δn − sKf

Δn
ln

�
μf þ pfns

Δn − sKf

�
;

ð11Þ

hψ̄fiγ0∂0ψfiF

¼ Nc

2π2
X
n;s

0
�
μfpfns þ ðΔn − sKfÞ2 ln

�
μf þ pfns

Δn − sKf

��
;

ð12Þ

nνf ¼ hψ̄fγ
νψfiF ¼ δν0

Nc

6π2
βf
X
n;s

0pfns; ð13Þ

where the primed sum indicates that for n ¼ 0 only one
spin projection must be considered as explained pre-
viously. The highest occupied Landau level N is defined
by the condition μ2f − ðΔN − sKfÞ2 ≥ 0. The Lagrange
multipliers μf are determined by the conserved charges,

and pfns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f − ðΔN − sKfÞ2

q
.

The magnetization per unit volume is given by the
equationM ¼ −∂Ω=∂B, which can be simplified by using
the stationary point conditions [22,38],
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M ¼ Nc

8π2B

X
f

�
Df þ 2βf

X
n;s

0F ns

�
;

where

Df ¼ 8β2fζ
0ð−1;ωfÞ − 2βf½M2

f − K2
f� ln

�
ΓðωfÞffiffiffiffiffiffi

2π
p

�
−
�
2K2

fðK2
f þM2

f − βfÞ − βf

�
M2

f þ K2
f −

βf
3

��
ln

�
Mf

2βf

�

þ 2βfðMf þ KfÞðMf þ 3KfÞ ln
�
1þ Kf

Mf

�
− 4

�
K2

fðK2
f þ M̃2

fÞ þ βf

�
2M̃fKf þ

βf
3

��
ln

�
M̃f

2βf

�

−
1

2
ðM2

f − K2
fÞ2 −

β2f
3
− 2βfKfð2M̃f −MfÞ; ð14Þ

F fns ¼ μfpfns − ðsΔn − KfÞ
�
2sΔn − 3Kf − s

Mf

Δn

�
ln

�
μf þ pfns

jsΔn − Kfj
�
:

The pressure and energy density are given by the canonical results, P ¼ −Ω; E=V ¼ P
f μfnf − P and the transversal

component of the stress tensor is defined as P⊥ ¼ P −MB.
Following a common practice, the quantum corrections to the leptonic properties are neglected, as well as the effects of

their AMM, so that they contribute with

nl ¼
βl
2π2

X
n;s

0plns; ð15Þ

Pl ¼
βl
4π2

X
n;s

0

2
64μlplns − ðm2

l þ 2nβlÞ ln

0
B@ μl þ plnsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
l þ 2nβl

q
1
CA
3
75; ð16Þ

Ml ¼
βl
4π2

X
n;s

0

2
64ðm2

l þ 4βlnÞ ln

0
B@ μl þ plnsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
l þ 2nβl

q
1
CA − μlplns

3
75; ð17Þ

to the particle number density, pressure and magnetization,

respectively. The definition plns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l −m2

l − 2nβl
q

is

used.

III. RESULTS AND DISCUSSION

In this section the effects of the AMM of the quarks are
studied for the case of electrically neutral matter and in
equilibrium against weak decay, so it is necessary to
include leptons in this description. The leptons get a
chemical potential μl associated with the local conservation
of the electric charge,
As it is usual, the conditions for the conservation of the

baryonic charge nB ¼ ðnu þ nd þ nsÞ=3 and electric neu-
trality 2nu − nd − ns − 3nl ¼ 0 are imposed. The baryonic
density of quarks is given by Eq. (13).
In the present calculations the following NJL parameters

are used: Mu0 ¼ Md0 ¼ 5.5 MeV, Ms0 ¼ 135.7 MeV,
Λ¼631.4MeV, G¼1.835=Λ2;K¼9.29=Λ5 [34]. For the
total magnetic moments the prescription μu¼ð4μpþμnÞ=5;

μd¼ðμpþμnÞ=5;μs¼μΛ of the constituent quark model is
adopted. Taking the experimental values of the baryonic
magnetic moments together with constituent masses esti-
mated within the same framework Mu ¼ Md ¼ 363 MeV
andMs ¼ 538 MeV the following AMM are obtained κu ¼
0.074; κd ¼ 0.127; κs ¼ 0.053 in units of the nuclear mag-
neton, this set will be denoted in the following as AMM1.
The values so obtained are small in comparison with other
predictions [28,29], therefore the alternative set κu ¼ κd ¼
0.38; κs ¼ 0.25 is also considered. It is compatible with the
results of [29], and will be recognized as set AMM2.
The range of magnetic intensities studied 1015 ≤ B ≤

1019 G greatly exceeds the phenomenology of strongly
magnetized compact stars.
As a first step, different prescriptions for the regulari-

zation of the NJL immersed in a uniform magnetic field are
considered. A comparison between the present approach
and the commonly used procedure as described for instance
in [5], is made here. In the following the last approach is
referred as case C, while the label AMM0 is used for the
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results of this work when the AMM are zero. In Fig. 1 the
constituent quark masses at zero baryonic density are
shown as a function of B, the wide range of magnetic
intensities has the purpose of comparison with previously
published works. To appreciate the low intensity behavior a
small figure is inserted in the upper panel, restricted to
B < 1019 G. All the approaches agree to predict increasing
quark masses, but the rate of growth is always greater in the
case C. A comparison between this case and the AMM0
one shows that the difference is accentuated as the magnetic
intensity grows, and it is considerable at extreme inten-
sities. However, a regime of qualitative coincidence is
found for B < 2 × 1018 G.
It can be appreciated that the increase of the AMM has

opposite effects on the u flavor as compared to the d, s
cases. A progressive increase in the magnitude of the AMM
enhances the rate of growth for Mu, while it attenuates the
changes inMd,Ms. Due to the smallness of the set AMM1

their results are closer to the AMM0 than to the AMM2.
Calculations of the light quark masses at finite temperature
including AMMhave been presented in [26]. A comparison
with these results is risky because they have been obtained
in different conditions, i.e., equal particle number of u and
d flavors and finite temperature. However, the curves for
temperatures below T ¼ 100 MeV seems to behave sim-
ilarly. In Fig. 4 of this reference the variation of the quark
mass for B < 1020G shows quick oscillations around a
decreasing mean value when AMM are included, and a
slightly decreasing trend is obtained for zero AMM. In
contrast, [25] found and almost monotonous increasing
trend at zero temperature, and to the greater AMM (set κ1)
corresponds a weaker growth.
The influence of the regularization scheme on the

vacuum contribution to the energy density is examined
in Fig. 2. In both AMM0 and C approaches a decreasing
energy is expected within the range considered here.
However in the first case the variation is only of a few
MeV, while it exceeds 10MeV for intensities slightly above
1019 G in the last instance.
In conclusion, one can say that there is a qualitative

agreement between these procedures in the low magnetic
intensity regime, but the discrepancies become important
for B > 1019 G.
In Fig. 3 the density dependence of the constituent

masses is shown at fixed intensity B ¼ 1019 G. The figure
extends up to baryonic densities n ¼ 7n0, a density which
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FIG. 1. The constituent quark mass as a function of the
magnetic intensity at zero baryonic density. Two different
regularization schemes, and results with or without AMM are
compared as explained in the main text. In the case of the u flavor
an insertion shows details for the restricted range B < 1019 G.
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is feasible in the core of magnetars. The reference value
n0 ¼ 0.15 fm−3 corresponds to the saturation density of
nuclear matter. A monotonously decreasing behavior is
obtained for all the flavors. In the case of Mu there is an
almost linear trend at low density till the point R ≈ 1.3
where the first excited Landau level starts to be occupied.
Here a noticeable change of slope takes place. The curve
for Ms shows a shoulder shape, after a plateau for 3 <
n=n0 < 4.5 a change of slope together with an inflexion
point occurs around n=n0 ¼ 4.2. At this density the strange
quark comes out to the Fermi sea. The effect of the AMM is
almost indistinguishable at the scale shown, but the
numerical increments are at most of 10 MeV for the u
flavor and around 0.1MeV for the s quark. The influence of
the AMM on the masses of the quarks decreases quickly
with the magnetic intensity, so that for B < 5 × 1018 G all
the corrections diminish about 30%.
To take a view of the density effects in the interior of a

magnetar a model of the variation of the magnetic field with

the density is considered [39]. It is given in terms of the
ratio R ¼ n=n0 by the formula

BðnÞ ¼ Bs þ B0½1 − expð−βRγÞ�; ð18Þ

where Bs ¼ 1015 G is the intensity on the star surface,
and the remaining parameters have been chosen as B0 ¼
5 × 1018 G, β ¼ 0.01, γ ¼ 3. The maximum strength 5 ×
1018 G corresponds to asymptotic high densities and could
not be reached in a realistic description, hence by the facts
just discussed one could expect that the effective quark
masses do not manifest the details of the model. For this
reason some thermodynamical quantities are examined.
The thermodynamical pressure at zero temperature as a
function of the baryonic density is exhibited in Fig. 4(a) for
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FIG. 3. The constituent quark mass as a function of the
baryonic density for a fixed magnetic intensity B ¼ 1019 G.
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FIG. 4. The thermodynamical pressure (a) and the energy per
particle (b) as functions of the baryonic density. Results for a
model of the variation of the magnetic intensity in the interior of a
magnetar (case D) and the results at constant B ¼ 1017 Gwith the
three set of AMM are included in the first case. In the lower panel
the case D is compared with results corresponding to the set
AMM1 and different magnetic intensities.
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a range which covers from the surface to medium depths of
a typical neutron star. In the same figure the calculations
corresponding to fixed B ¼ 1017 G and the three sets of the
AMM are included. Only small differences are found and at
the scale shown all the results seem to coincide. A regime
of thermodynamical instability extends for low densities
until R ≈ 1.5 giving rise to the hadronization process. For
higher densities R > 3 the pressure grows almost linearly.
The lower panel, Fig. 4(b), is devoted to the energy per
particle as a function of the density. In this figure a contrast
between the model of density dependent intensity of
Eq. (18) (case D)and the results of the set AMM1 at
different intensities B is presented. For a given density an
increase of the magnetic intensity lessens the energy per
particle within the set AMM1. As expected, the outcome
of the case D lies between the curves of 1017 G and
5 × 1018 G of the parametrization AMM1.

The abundance of particles relative to the total number of
quarks is displayed in Fig. 5 as a function of the baryonic
density for the fixed intensity B ¼ 5 × 1018 G. There are no
appreciable discrepancies between the different treatments.
The inclusion of the AMM produce a slight shift to lower
density of the rise of the strange quark population. The
population of the strange flavor shows sudden changes of
slope, which are noticeable for the sets AMM0 and AMM1,
coincident with the occupation of a higher Landau level.
The magnetization is a measure of the response of the

system to the magnetic excitation, it is shown in Fig. 6 as a
function of the density. Since this is a very small quantity,
the results are scaled with the proton charge, which is
appropriate for the range of intensities examined here. In
the present case the magnetization receives contributions
from the electrons and from the three quark flavors in a
proportion determined by the local charge neutrality con-
dition. Different curves corresponding to the constant
intensities B ¼ 1017 G and B ¼ 5 × 1018 G and the three
sets of AMM are displayed. The bottom of this figure is
occupied by the lowest intensity results. Because of
their similar behavior, the high frequency and the small
amplitude of their oscillations, the results of the three
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FIG. 5. The relative number of particles as a function of the
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parametrizations coalesce into a band. In such conditions
the system is essentially diamagnetic for almost all den-
sities. Four different regimes can be clearly distinguished,
the limit of zero density with vanishing values of M but a
steep negative slope. The second one corresponds to low
density and extends approximately over the thermody-
namic instability region. Here the mean value of the
magnetization takes medium values jM=ej < 0.08 fm−2.
For intermediate densities up to the threshold of arising into
the Fermi sea of the strange flavor, where themean of jM=ej
has their lowest values and remains almost stationary. Finally
the high density domain starts with a sudden decrease of the
magnetization, which stabilizes asymptotically around the
value M=e ≈ −0.14 fm−2. When the magnetic intensity is
increased to B ¼ 5 × 1018 the pattern just described is kept
but other significative differences become apparent. The
oscillations have greater amplitudes and do not show a quasi-
periodic distribution. This is a manifestation of a coherent
dynamics, more favorable at higher intensity due to the
smaller number of accessible Landau levels. Furthermore,
in the medium density regime the system is definitely

paramagnetic while for the higher densities is only moder-
ately diamagnetic. For the model of variable intensity
of Eq. (18) the magnetization follows approximately the
behavior of the case B ¼ 1017 G until R ≈ 2 where it
increases abruptly developing quasi periodic oscillations
of decreasing frequency and increasing amplitude. In the
high density domain it acquires features similar to the
case B ¼ 5 × 1018 G.
In Fig. 1 the effects of the magnetic intensity on the

quark masses in vacuum has been shown. In order to study
how the density influence the magnetic dependence, a
detail of the results obtained for these masses for nonzero
baryonic number is presented in Fig 7. The values chosen
for the density, R ¼ 4 and R ¼ 7, correspond to situations
where quark matter is stable and the s quark is only virtual
or is able to exist in the Fermi shell, respectively. A well
distinguishable behavior is obtained for the three flavors.
The light quarks show a monotonous behavior for the
selected densities and the full range of intensities. An
increase in the magnitude of the AMM implies an increase
for Mu independently of the density chosen. Thus the
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slightly decreasing trend for the set AMM0 becomes
moderately increasing for the AMM1 one, and definitely
increasing for the AMM2 case. For the d flavor instead,
the influence of the AMM is only light at R ¼ 4 and
negligible at R ¼ 7. For most of the cases it does not have
the strength enough to change considerably the almost
constant behavior obtained for zero AMM. The mass of the
strange quark does not show considerable variations,
wherever the values of the AMM. At medium densities
R ¼ 4 it varies monotonously, while for the higher density
R ¼ 7 it exhibits fluctuations whose amplitude increases
with B, but do not exceed 2 MeV.
Finally, in Fig. 8 the magnetization as a function of the

magnetic intensity is shown for the fixed baryonic densities
R ¼ 4 and R ¼ 7. The typical oscillatory behavior is
obtained, whose amplitude as well as mean value increase
with B. It is interesting to note that for the lower density the
system is always paramagnetic, whereas for n=n0 ¼ 7 there
is a change of regime and for B > 7.5 × 1018 G becomes
definitely paramagnetic.

IV. SUMMARY AND CONCLUSIONS

In this work a procedure to remove divergences in the
1=Nc approach to the SU(3) NJL model under a uniform
magnetic field B has been proposed. The calculations have
been made by using a covariant propagator for the quarks
with constituent mass, which takes account of the full effect
of the magnetic field as well as the effect of the anomalous
magnetic moment. There are divergencies which depend on
the magnetic intensity. Since the interaction used is an
effective model of the strong interaction, a full renormal-
ization is meaningless. Therefore the divergent terms are
not ascribed to the renormalization of the external magnetic
field since, within the model used, it is not a dynamical
variable. In this work a systematic procedure to deal with
such kind of divergencies is proposed, instead. To obtain
physically meaningful results from the divergent contribu-
tions an analytical regularization has been proposed which
recovers the standard three momentum cutoff scheme at
B ¼ 0 and arbitrary baryonic density. For this purpose a
subtraction of fourth order in the vertices qfB and κfB is
performed in the grand potential. Since the regularization
point is chosen at B ¼ 0 and fixed baryonic density, the
regularized quantities depend on the quark masses M̃q

evaluated in such conditions. The present approach com-
plements previous work, as for instance [5], since it
includes B dependent terms not considered before as well
as the additional coupling of the AMM of the quarks. The
regularization scale parameter, typical of the dimensional
regularization, has been chosen so as to maximize the
agreement with previous studies.
The regularized model has been used to study quark

matter in equilibrium against weak decay and electrically
neutral, as can be found in the composition of magnetars.
A range of magnetic intensities 1015 G ≤ B ≤ 1019 G

and baryonic densities n ≤ 1 fm−3 have been analyzed,
which are adequate to describe such situation. A model
for the magnetic intensity in the interior of a magnetar [39]
has been considered to test the results at finite density.
For this model the intensity B is parametrized in terms of
the baryonic density and ranges between 1015 G ≤ B ≤
5 × 1018 G.
The results at zero baryonic density have been compared

with those obtained with the commonly used prescription of
[5]. In general terms a qualitative agreement is obtained for
low intensities, but discrepancies become significative for
strong magnetic fields B > 5 × 1018 G. Hence one can con-
clude that the study of magnetars will probably not evidence
completely these differences as in physical situations where
the magnetic field manifests with stronger intensity.
A contrast of the results with or without AMM shows

that the constituent mass of the u flavor is the more sen-
sitive quantity to these effects, particularly in the medium to
high density regime. The magnetization, instead, does not
show clear evidence of the influence of the AMM.
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APPENDIX: REGULARIZATION OF THE
VACUUM CONTRIBUTION TO THE
THERMODYNAMICAL POTENTIAL

In this section the Dirac sea contribution to Eq. (8) is
regularized, i.e., the contribution coming from the first term
of Eq. (6).
In momentum coordinates Eq. (8) can be rewritten as

hψ̄fiγ0∂0ψfi ¼ −i lim
ϵ→0þ

Z
d4p
ð2πÞ4 e

−iϵp0p0Trfγ0GfðpÞg

ðA1Þ
Keeping only those terms corresponding to the Dirac sea it
reduces to

−
2i

ð2πÞ4
X
n;s

0 ð−1Þn
Δn

Z
d4p

p2
0e

−p2⊥=βf

u2p − ðΔn − sKfÞ2 þ iε

× ½ðΔn þ sMfÞLn − ðΔn − sMfÞLn−1�
where the argument of the Laguerre functions Lk is 2p2⊥=βf
and the primed sum has the same meaning as in the
main text.
As usual in analytic regularization, an undetermined

scale factor ν can be introduced [40]. After a Wick rotation
in the p0pz space, the denominator in the previous equation
can be rewritten in exponential form by the well-known
procedure of introducing a new integration on the variable τ
which is well defined in the Euclidean space
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2ν−1

ð2πÞ4
X
n;s

0 ð−1Þn
Δn

Z
d2p⊥d2pEp2

4e
−p2⊥=βf ½ðΔn þ sMfÞLn − ðΔn − sMfÞLn−1�

Z
∞

0

dτe−τ½p2
EþðΔn−sKfÞ2�=ν

where d2pE ¼ dp4dpz ¼ dθdpEpE and p4 ¼ pE cos θ. Changing the order, the integration over d2pE can be performed
first obtaining πν2=2τ2. As the next step one can integrate over d2p⊥ using polar coordinates and with the help of formulas
(7.414 6) of [41]. Thus the following expression is obtained

νβf
8π2

Z
∞

0

dτ
τ2

�
e−τðMf−KfÞ2=ν þ

X
n¼1;s

e−τðΔn−sKfÞ2=ν
�
¼ νβf

8π2

Z
∞

0

dτ
τ2

�X
n¼0;s

e−τðΔn−sKfÞ2=ν − e−τðMfþKfÞ2=ν
�

¼ lim
ϵ→0

νβf
8π2

Z
∞

0

dττϵ−2
�X

n;s

e−τðΔn−sKfÞ2=ν − e−τðmþKfÞ2=ν
�

In the last line a vanishing parameter ϵ has been introduced in order to isolate the pole at τ ¼ 0. By making a trivial change
of integration variable, but different for each term between square brackets one arrives to

νβf
8π2

lim
ϵ→0

�X
s;n¼0

�ðΔn − sKfÞ2
ν

�
1−ϵ

−
�ðmþ KfÞ2

ν

�
1−ϵ�Z

∞

0

dttϵ−2e−t ðA2Þ

The integral can be identified as Γðϵ − 1Þ. To put the double summation in a simpler form, and bearing in mind that for
ϵ ¼ 0 it reduces to

X
s;n¼0

ðΔn − sKfÞ2
ν

¼ 1

ν

X
s;n¼0

ðΔ2
n þ K2

fÞ ¼
2βf
ν

X
s;n¼0

�
nþM2

f þ K2
f

2βf

�
¼

X
s

2βf
ν

ζð−1;ωfÞ

where the series expansion for the zeta function was used, see for instance Sec. 9.52 of Ref. [41], and
ωf ¼ ðM2

f þ K2
fÞ=ð2βfÞ. Thus, the following approximation is proposed

X
s;n¼0

�ðΔn − sKfÞ2
ν

�
1−ϵ

≈
X
s

�
2βf
ν

�
1−ϵ

ζðϵ − 1;ωfÞ ðA3Þ

By inserting Eq. (A3) into Eq. (A2) and making a Laurent expansion around ϵ ¼ 0 of the resulting expression one obtains

−
1

8π2
lim
ϵ→0

��
1

ϵ
þ 1 − γ

�
½4β2fζð−1;ωfÞ − βfðMf þ KfÞ2� þ 4β2f

∂
∂z ζðz ¼ −1;ωfÞ

− 4β2fζð−1;ωfÞ ln
�
2βf
ν

�
þ βfðMf þ KfÞ2 ln

�ðMf þ KfÞ2
ν

�
þOðϵÞ

�
ðA4Þ

Here a simple pole is evident, whose residue is a polynomial of fourth order in B. As B → 0 this expression goes as

m4

8π2

�
1

ϵ
þ 3

2
− γ

�
ðA5Þ

that is, the typical behavior for a Dirac particle is obtained. The last divergence is usually tackled within this model by the
introduction of a constant 3-momentum cutoff Λ. In this way the following finite contribution is assigned to it

hψ̄fiγ0∂0ψfiNJL ¼ Nc

8π2

�
M4

f ln

�
Λþ EΛ

Mf

�
− ΛEΛðΛ2 þ E2

ΛÞ
�
; ðA6Þ

where EΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
.

In the following we apply to Eq. (A4) a procedure that gets rid of the pole term and simultaneously ensures the
convergence to Eq. (A6) as B → 0.
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In Eq. (A4) it can be observed that the magnetic dependence of the residue reduces to order two for κf ¼ 0, hence the
AMM is the cause of new divergencies depending on B.
It must be pointed out that this residue satisfies

FðM; βf; KÞ ¼ 4β2fζ

�
−1;

λ

2βf

�
− βfðM þ KÞ2

¼
�X2

k¼0

Xk
j¼0

βk−j

ðk − jÞ!
Kj

j!
∂k−j

∂βk−j
∂j

∂Kj þ
K4

4!

∂4

∂K4

�
FðM; 0; 0Þ ðA7Þ

Based on this feature the following subtraction procedure is proposed

hψ̄fiγ0∂0ψfiD ¼ hψ̄fiγ0∂0ψfiNJL þ
�
1 −

X2
k¼0

Xk
j¼0

βk−jf

ðk − jÞ!
Kj

f

j!

� ∂k−j

∂βk−jf

∂j

∂Kj
f

�
0

−
K4

4!

� ∂4

∂K4
f

�
0

�
hψ̄fiγ0∂0ψfi ðA8Þ

where the subindex 0 means that the derivatives must be evaluated at βf ¼ 0; Kf ¼ 0. In this way the divergent term cancels
out and a finite contribution is generated as ϵ → 0. The last one depends on the effective quark masses M̃ evaluated at the
regularization point. In the present investigation this point is taken at a fixed baryonic number and zero magnetic intensity.
This notation is used to stress that M̃ does not participate of the self-consistent approach defined by Eq. (1). For the
properties of the derivatives of the Hurwitz zeta function, see for instance [42].
Thus, the final expression is

hψ̄fiγ0∂0ψfiD ¼ hψ̄fiγ0∂0ψfiNJL −
Nc

8π2

�
4β2f

∂
∂z ζðz ¼ −1;ωfÞ þ 4β2fζð−1;ωfÞ ln

�
ν

2βf

�
− 4β2fζð−1; ω̃fÞ ln

�
ν

M̃2
f

�

þ βfðMf þ KfÞ2 ln
�ðMf þ KfÞ2

ν

�
þ M̃4

f

4
−
K4

f

2
−
β2f
3
− 2βfKf þ βfðM̃f þ KfÞ2 ln

�
ν

M̃2
f

��
ðA9Þ

where ω̃f is obtained from ωf by replacing Mf by M̃f.

As explained in the main text, if ν ¼ M2
f is adopted the last equation becomes

hψ̄fiγ0∂0ψfiD ¼ hψ̄fiγ0∂0ψfiNJL −
Nc

8π2

�
4β2f

∂
∂z ζðz ¼ −1;ωfÞ þ 4β2fζð−1;ωfÞ ln

�
M2

f

2βf

�
− 8β2fζð−1; ω̃fÞ ln

�
Mf

M̃f

�

þ 2βfðMf þ KfÞ2 ln
�
1þ Kf

Mf

�
þ M̃4

f

4
−
K4

f

2
−
β2f
3
− 2βfKf þ 2βfðM̃f þ KfÞ2 ln

�
Mf

M̃f

��
ðA10Þ

Using Eqs. (2), (12) and (A10) one obtains the regularized thermodynamic potential by taking

hψ̄fiγ0∂0ψfi ¼ hψ̄fiγ0∂0ψfiD þ hψ̄fiγ0∂0ψfiF:

Furthermore, the quark condensates are evaluated within the linearized approach [3,34,35,43] simply as given by Eq. (7)

hψ̄fψfi ¼ hψ̄fψfiF þ hψ̄fψfiD

The last term is evaluated by following the same steps as described above. Thus one obtains

hψ̄fψfi ¼ −
Nc

4π2

��
1

ϵ
þ γ

��
βfKf −

M3
f

2

�
þ 2βfMf ln

�
ΓðωfÞffiffiffi

2
p

π

�
−MfðM2

f − βfÞ ln
�
M2

f

2βf

�

þ 2βfðMf þ KfÞ ln
�
1þ Kf

Mf

�
þOðϵÞ

�
ðA11Þ
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To get rid of the divergent term, the following subtraction scheme is performed before taking the limit ϵ → 0

hψ̄fψfiD ¼ hψ̄fψfiNJL þ hψ̄fψfi −
�
1þ βfKf

∂2

∂βf∂Kf

�
hψ̄fψfi0

where

hψ̄fψfiNJL ¼ Nc

2π2
Mf

�
M2

f ln

�
Λþ EΛ

Mf

�
− ΛEΛ

�

The following result is obtained finally

hψ̄fψfiD ¼ hψ̄fψfiNJL −
Nc

4π2

�
2βfMf ln

�
ΓðωfÞffiffiffi

2
p

π

�
−MfðM2

f − βfÞ ln
�
M2

f

2βf

�

þ 2βfðMf þ KfÞ ln
�
1þ Kf

Mf

�
þ M̃3

f

�
ðA12Þ
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