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We compute the soft real photon emission rate from the QCD matter in the vicinity of the critical line at
moderate density and the temperature approaching the critical one from above. The obtained production
rate exhibits a steep rise close to Tc due to the formation of the slow fluctuation mode.
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I. INTRODUCTION

Heavy ion collision experiments carried out at the
Relativistic Heavy Ion Collider (RHIC) and LHC over
the last two decades brought about the discovery of a
new form of matter with unexpected properties. Several
probes are used to reveal its nature and characteristics.
A special role is played by direct photons. They are
produced at all stages of the fireball evolution and can
easily escape the collision region without reinteracting.
Photon and dilepton production has been studied both
experimentally and theoretically for quite a long time. The
basic theory concepts have their roots in the studies
performed several decades ago [1–5]. The current status
of the field is presented in the review article of Ref. [6].
In this work, we consider the real soft photon emission
rate from dense quark matter with the temperature
approaching the critical one from above. Real photons
means that q2 ¼ ω2 − q2 ¼ M2 ¼ 0, and soft corresponds
to ω ≪ T. For the dilepton production, M2 > 0 is the
invariant mass of the lepton pair. This process is not
considered in the present work. It is necessary to emphasize
that only the external photon is assumed to be soft but the
internal momenta in the self-energy diagram may be hard.
In a sense, the picture is reminiscent of the hard thermal
loop approximation. The role of high T is played by the
high chemical potential. The dominant contribution to the
photon polarization operator comes from the vicinity of
the Fermi surface. Up to now, the soft photon emission has
been predominantly studied for hot and low-density QGP.
In this region of the QCD phase diagram, perturbative
methods including the hard thermal loop are the adequate

research tools [7–11]. Results of several lattice calculations
at zero chemical potential are also available [12–14]. On the
other hand, during the last few years, it became clear that,
except for the high-temperature and low-density domain,
the quark matter is a strongly coupled medium [15]. There
are very few calculations of the photon production beyond,
or partly beyond, the perturbation theory [16–19].
The reason is that the finite-temperature retarded self-

energy of virtual photon is known only in perturbation
theory [20,21]. Probably the most intriguing region of the
phase diagram lies in the vicinity of the critical temperature
at nonzero density. The corresponding research program is
planned at NICA (Nuclotron Ion Collider Activity, Dubna,
Russia) and FAIR (Facility for Antiproton and Ion
Research, Darmstadt, Germany). In this domain, the
correlation functions are characterized by the presence of
a soft mode of the fluctuation field.
The importance of the collective mode in the precritical

region of the quark matter at finite density and its relevance
for the dilepton production was to our knowledge first
pointed out in Refs. [22,23].
It will be shown below that the propagator of the

fluctuation mode (FP) has the form

Lðq;ωÞ ¼ N
T−Tc
Tc

− iβωþ ξ2q2
: ð1Þ

The quantities N, β, and ξ2 will be determined in what
follows. One may recognize in (1) the linear response
function of the phase transition theory [24,25]. At small ω
and q2 and close to Tc, the FP (1) can be arbitrary large and
is rapidly varying due to the ðT − TcÞ=Tc term. We shall
evaluate the soft photon emission rate close to Tc using the
expression for the retarded self-energy containing two FPs.
This will lead to the enhanced soft photon production rate.
The organization of this paper is as follows. In Sec. II,

we show that there is a rather wide fluctuation region
above the critical line at moderate density. In Sec. III, using
the time-dependent Ginzburg-Landau functional with
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Langevin forces, we derive the propagator of the soft
collective mode. In Sec. IV, we address the retarded photon
self-energy in the fluctuation region. In Sec. V, we compute
the soft photon emissivity and confront it with the electrical
conductivity computation. We summarize and conclude
in Sec. VI.

II. CRITICAL FLUCTUATIONS

Our focus in this work is on the finite-density precritical
fluctuation region with T → Tc from above. Compre-
hensive study has shown that at high density and low
temperature the ground state of QCD is a color super-
conductor [26,27]. We consider the 2CS (two flavor color
superconductor) color superconducting phase when u and d
quarks participate in color antitriplet pairing but the den-
sity is not high enough to involve the heavier s quark.
The value of the quark chemical potential under consid-
eration is μ ≃ 300–400 MeV, and the critical temperature
is Tc ≃ 40–50 MeV. The corresponding density is two or
three times the normal nuclear density. Both numbers
should be considered as an educated guess since they rely
on model calculations. A similar choice of parameters has
been adopted in Ref. [22], namely, μ ≃ 400–500 MeV and
Tc ≃ 40–60 MeV. Prior to forming a condensate, the
system goes through the phase of the preformed fluctuation
quark pairs. In its basic features, this state is very different
from the fluctuation regime of the BCS (Bardeen-Cooper-
Schrieffer) superconductor [28]. In the BCS, the border
between the normal and the superconducting phases is very
sharp. In color superconductor, it is significantly smeared.
Two interrelated explanations of this difference may be
given. First, in the BCS, the characteristic pair correlation
length ξ is large, ξ ≃ 10−4 cm, so that n1=3e ξ ≫ 1, where
ne ∼ 1022 cm−3 is the electron density [29]. The pairs
strongly overlap. In color superconductor, the pairs which
form the condensate are much more compact and have a
small overlap (the Schafroth Pairs [30]). The role of the
correlation length ξ is taken by the root-mean-square radius
ϱ ∼ 1 fm of the quark pair. The 2SC quark matter density
nq is two or three times the normal nuclear density so that

n1=3q ϱ ∼ 1. Note that n1=3ξ is the BCS-BEC (Bose-Einstein
condensation) crossover parameter [31–36]. Therefore, one
may say that at μ ∼ 300–400 MeV, T ∼ 40–50 MeV the
system is in the crossover regime [28]. The second way to
reveal the difference between the BCS and color super-
conductor is to compare the relative values of the energy
parameters in the two theories. In the BCS, the scales
hierarchy holds, Δ∶ωD∶εF ≃ 1∶102∶104, where Δ ∼ Tc ∼
10−4 eV is the gap/critical temperature, ωD ∼ 10−2 eV is
the Debye energy, and εF ∼ 2 eV is the Fermi energy [29].
In color superconductor, the relation is very different,
Δ∶Λ∶μ ≃ 1∶8∶4, where Δ ∼ 0.1 GeV is the gap, Λ ∼
0.8 GeV is the UV cutoff, and μ ∼ 0.4 GeV is the quark
chemical potential [35]. The width of the fluctuation region

and the fluctuation contribution to the physical quantities
are characterized by the Ginzburg-Levanyuk parameter
[24,28,29,35,37–39]. There are several definitions of
this quantity in the literature [24,29,37]. The underlying
requirement is that the fluctuation corrections to the
physical quantities (e.g., the heat capacity and the electrical
conductivity) must be much smaller than the characteristic
values of these quantities. In the BCS theory the estimate of
the temperature interval dominated by fluctuations was first
given by Ginzburg [39] It is based on the heat capacity
contribution due to fluctuations and reads

Gi ≃
δT
Tc

∼
�
Tc

EF

�
4

; ð2Þ

where EF is the Fermi energy. To adjust this estimate to the
quark matter, we replace EF by μ, use the BCS theory
estimate ξ ∼ T−1

c [29,37], and then replace ξ by the quark
pair radius ϱ. It should be noted that the rigorous calcu-
lation of the pair size in the nonperturbative QCD region is
hardly possible. The energy spread of the correlated pair of
quarks is δE ∼ Δ ∼ 100 MeV. Since the quarks are rela-
tivistic, their momentum spread is of the same order
δp ∼ Δ. Therefore the pair size is ϱ ∼ 2 fm. Using the
Klein-Gordon equation for the quark pair [40], one can
obtain an estimate ϱ ≃ ð ffiffiffi

3
p

ΔÞ−1 ∼ 1 fm. Equation (2)
describes the universal dependence of Gi on the super-
conductor physical parameters. Depending on the specific
properties of a given material, it should be supplemented by
an additional numerical factor [24,37]. The evaluation of
this factor for the quark matter is a difficult problem.
We shall not try to solve it since Eq. (2) contains a strong
fourth power dependence on Tc, μ, ϱ, and the overall
numerical coefficient is less important. As we discussed
above, the values of these parameters are not narrowly
limited. Replacing in (2) EF by μ and using the estimate
ϱ ∼ T−1

c , we write the following two complementary
expressions for the Ginzburg parameter:

Gi ≃
δT
Tc

≃
�
Tc

μ

�
4

≃ ðμϱÞ−4: ð3Þ

Because of the fourth power dependence on Tc, μ, and ϱ
and because of some uncertainty in their values, we can
estimate only the reliable interval of the Gi parameter. For
Tc ≃ ð40–50Þ MeV, μ ≃ ð300–400Þ MeV, ϱ ≃ ð1–2Þ fm,
the quantity Gi varies from 10−4 to 10−2. We remind the
reader that for the ordinary superconductors Gi ∼ 10−14 −
10−12 [29,37]. In the next section, we shall discuss the
bound on Gi from below.

III. COLLECTIVE MODE PROPAGATOR

The FP of the form (1) may be derived in several ways. In
Ref. [41], it was obtained by solving the Dyson equation
with relativistic Matsubara quark propagators. Here, we
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shall use the time-dependent Ginzburg-Landau (GL) func-
tional [42,43] with the stochastic Langevin forces. The
approximations and omissions in the derivation to follow
will be discussed at the end of this section. In absence of the
external electromagnetic field, the time-dependent GL
equation for the fluctuating pair field Ψðr; tÞ reads

−γ
∂
∂tΨðr; tÞ ¼

δF½Ψ�
δΨ� þ ηðr; tÞ: ð4Þ

Here, γ is the order parameter relaxation constant, and
ηðr; tÞ are the Langevin forces. The GL functional with the
quartic term dropped (see below) has the form [24,29,37]

F½Ψ� ¼ ν

Z
½εjΨðr; tÞj2 þ ξ2j∇Ψðr; tÞj2�dVdt; ð5Þ

where ν ¼ μpF=π2 is the relativistic density of states at the
Fermi surface [28,41], ε ¼ ðT − TcÞ=Tc, and ξ is the
coherence length which may be expressed in terms of
the diffusion coefficient as ξ2 ¼ π

8T D [37,41]. Referring the
readers to the above references, we present a sketch of the
derivation. The starting point is the QCD partition function.
Expanding it in powers of jΨj2, one arrives at the needed
GL expression. The term ξ2j∇Ψj2 in (5) enters into this
expression with the coefficient equal to [28]

ξ2 ¼ 7ζð3Þv2F
48π2T2

χ

�
1

2πTτ

�
: ð6Þ

Here, τ is the momentum relaxation time. The function
χðzÞ is

χðzÞ ¼ 8

7ζð3Þ
X∞
n¼0

1

ð2nþ 1Þ2ð2nþ 1þ zÞ

→

�
1; z → 0;

π2

7ζð3Þ z
−1; z ≫ 1:

ð7Þ

The relaxation time τ depends on the temperature,
density, and quark flavor. It can be also identified with
the mean free path time, or the relaxation time in the
Boltzmann approximation. The reliable estimation of τ is
absent even for μ ¼ 0. For example, in Ref. [44], it varies at
μ ¼ 0 in the interval τ ≃ ð0.1 − 0.9Þ fm. Therefore, let us
consider the two limiting cases, namely, 2πTτ ≪ 1 and
2πTτ ≫ 1. For the critical temperature under considera-
tion, Tc ≃ ð40 − 50Þ MeV, the two limits take place at τ ≲
0.3 fm and τ ≳ 2 fm correspondingly. Based on our expe-
rience in the calculation of the quark matter conductivity
[41], we consider the choice τ ≲ 0.3 fm more realistic. In
the above two limits, one obtains correspondingly

ξ2 ≃
π

8T

�
1

3
v2Fτ

�
≡ π

8T
D1; ð8Þ

ξ2 ≃
π

8T

�
v2F
6πT

�
≡ π

8T
D2: ð9Þ

The quantityD1 is a standard diffusion coefficient D1 ∼ vl.
The coefficient D2 has a meaning of a diffusion coefficient
in the quasifree ballistic regime [37]. It can be obtained
from (8) by the replacement τ → ð2πTÞ−1. We consider a
rather dense quark matter. It is in a collisional “dirty”
regime, not in a ballistic one. Therefore, in our calculations,
we shall take ξ2 in the form (8), omit the lower subscript,
and slightly vary the parameter τ.
Now, we perform a Fourier transform to momentum

space,

Ψðr; tÞ ¼
Z

dq
ð2πÞ3

dω
2π

eiqr−iωtϕðq;ωÞ: ð10Þ

The GL functional in momentum space reads

F½ϕ� ¼ ν

Z
dq

ð2πÞ3
dω
2π

��
εþ π

8T
Dq2

�
jϕðq;ωÞj2

�
: ð11Þ

The time-dependent Eq. (4) takes the following form in
momentum space:

−
�
−iγωþ ν

�
εþ π

8T
Dq2

��
ϕðq;ωÞ ¼ ηðq;ωÞ: ð12Þ

The solution of (12) may be written as

ϕðq;ωÞ ¼ Lðq;ωÞηðq;ωÞ; ð13Þ

where

Lðq;ωÞ ¼ −ð−iγωþ ΩqÞ−1 ð14Þ

withΩq ¼ νðεþ π
8T Dq2Þ. To ascertain that L is actually the

fluctuation mode propagator, we must verify that it satisfies
the fluctuation-dissipation theorem [24,45]. The theorem
states that the equal time correlator hΨðr; tÞΨ�ðr0; tÞi is
expressed via the retarded propagator. The solution (13)
satisfies this requirement, provided the correlator of the
Langevin forces have a Gaussian white noise form in the
coordinate space

hηðr; tÞη�ðr0; t0Þi ¼ 2Tγδðr − r0Þδðt − t0Þ: ð15Þ

Then,

hηðr; tÞη�ðr0; tÞi ¼ 2Tγ
Z

dq
ð2πÞ3 e

−iqðr−r0Þ
Z

dω
2π

; ð16Þ

and
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hΨðr; tÞΨ�ðr0; tÞi ¼ 2Tγ
Z

dq
ð2πÞ3 e

iqðr−r0Þ

×
Z

∞

−∞

dω
2π

Lðq;ωÞL�ðq;ωÞ: ð17Þ

Therefore, hΨðr; tÞΨ�ðr0; tÞi in momentum space is

hΨðr; tÞΨ�ðr0; tÞip ¼ 2Tγ
Z

∞

−∞

dω
2π

Lðq;ωÞL�ðq;ωÞ

¼ −
Z

dω
2π

2T
ω

ImLðq;ωÞ: ð18Þ

Thus, Lðq;ωÞ given by (14) meets the needed requirement.
The last step is to express the coefficient γ in terms of other
parameters. From (12), it follows that the relaxation time of
fluctuations with momentum q2 is

τ ¼ γ

νðεþ π
8T Dq2Þ : ð19Þ

Keeping in the denominator of (19) only the term νε, which
is equivalent to retaining only the term εjψ j2 in (5), and
comparing the result with the GL decay time τGL ¼
π½8ðT − TcÞ�−1 [29,37], we obtain γ ¼ πν=8Tc. This com-
pletes the derivation of the FP:

Lðq;ωÞ ¼ −
1

ν½εþ π
8T ð−iωþDq2Þ� : ð20Þ

We note that, since we consider the temperature interval
ε≲ 10−2, the temperature T in (20) may be replaced by Tc
without a noticeable loss of accuracy. We do not find this
simplification necessary. The way the above results were
obtained may raise questions about the validity of the
employed approximations.
Let us discuss the debatable points. The electromagnetic

field was not included in Eq. (5). It is well known that the
external magnetic field applied to the superconductor gives
rise to important phenomena like theMeissner effect. It also
influences the physics of fluctuations in ordinary super-
conductors [37] as well as in color superconductors [28].
Quark matter may be embedded into magnetic field when
it is produced in the peripheral collisions of the ultra-
relativistic heavy ions collisions at the RHIC and LHC [46].
Quark-gluon matter formed in such collisions has high
temperature and low density, which excludes the formation
of the color quark confinement. The present investigation
may be important for the future experiments at NICA and
FAIR where the sizable magnetic field, if any, will not be
generated. The omission of the fourth-order term in (5) is a
subtle question. Without this term, Eq. (5) corresponds to
the Gaussian fluctuations with no interaction between
them. In the immediate vicinity of Tc at ε≲ Gi, this
approximation breaks down [24,29,37]. Here, one encoun-
ters a difficult problem. The renormalization group method

is used in this critical region [24,37]. However, in the three-
dimensional case, the complete solution is lacking, and we
shall not dwell on that. Based on the values of Gi obtained
in the previous section, we shall present the results down
to ε ≃ 10−4, keeping in mind that below ε ≃ 10−2 the
corrections due to the interaction between fluctuations
may come into play.

IV. PHOTON PRECRITICAL SELF-ENERGY

To calculate the photon emission rate, we have to
construct the photon self-energy operator in the precritical
region. Intensive studies since the 1960s have resulted in a
fairly complete picture of the fluctuation effects near Tc—
see Ref. [37] and a long list of references therein. Three
basic papers [47–49] should be singled out of this list.
Worth mentioning also Ref. [50], in which the fluctuation
conductivity has been studied in the strong coupling limit.
The quark pairs under study in this work are in the strong
coupling regime close to the BCS-BEC crossover [28,36].
According to the diagram calculus, the self-energy

Πðq;ωÞ in the precritical region can be constructed from
the two kinds of the building blocks. These are the quark
Matsubara Green’s functions Gðp; εnÞ (see below) and the
fluctuating field pair average represented by the FP (20).
The GL functional (5) without the fourth-order term
describes an almost free field. For the free field, the
Wick theorem states that the higher-order correlators are
expressed as products of the pair averages, i.e., the FPs.
Therefore, we are really left with the two above building
blocks. Attributing the solid lines to the quark propagators
and the wavy lines to the FPs, we come to the set of
diagrams for the photon self-energy (the retarded Green’s
function). The possible diagrams have been discussed in a
vast number of works; see Ref. [37] for the review and
Refs. [47–49] for the original results. The two diagrams
which were compared in a number of publications are the
Aslamazov-Larkin [47] and the Maki-Thompson [48,49]
ones. It is beyond the scope of this paper to reproduce their
comparative analysis [29,37,51]. The bottom line is that
the theoretical arguments supported by the experimental
data [52] allow us to conclude that the dominant role is
played by the celebrated Aslamazov-Larkin (AL) diagram
[37,47,51] shown in Fig. 1.

FIG. 1. The AL diagram for the polarization operator. The solid
lines correspond to the Matsubara quark Green’s functions, and
the wavy lines correspond to the FPs.
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It consists of two quark loops connected by FPs and
reads

Πlmðω ¼ iωk ¼ jkjÞ

¼ −3Q2T
X
Ωj

Z
dq

ð2πÞ3 Blðk;q;Ωj;ωkÞ

× Lðkþ q;Ωj þ ωkÞBmðk;q;Ωj;ωkÞLðq;ΩjÞ: ð21Þ

Here, ωk and Ωj are the Matsubara frequencies. The
prefactor 3 in (21) comes from three colors of quarks,Q2 ¼
5
9
e2 for two flavors, e2 ¼ 4πα. The trace over the Dirac

indices is included in the 3-vector B with components Bl
and Bm. The factor B corresponds to the three Green’s
functions block. Two points concerning Eq. (21) deserve an
explanation. The first one is that the dependence of the
quark loop B on k can be dropped out and therefore the
self-energy Π is a function of ω ¼ jkj as it should be for
real photons. Second, the 3-vector B is by symmetry
arguments proportional to q, B ∼ q. The quark loop B
is given by the following expression:

Bðk;q;Ωj;ωkÞ
¼ T

X
εn

λðq; εn þ ωk;Ωj − εnÞλðq; εn;Ωj − εnÞ

·
Z

dp
ð2πÞ3 trD½γ⃗Gðp; ε̃nÞGðpþ k; ε̃n þ ωkÞ

×Gðq − p;Ωj − ε̃nÞ�: ð22Þ

The Matsubara propagators in (21) have the form

Gðp; ε̃nÞ ¼
1

γ0ðiε̃n þ μÞ − γ⃗p −m
; ð23Þ

where ε̃n ¼ εn þ 1
2τ sgn εn, εn ¼ πTð2nþ 1Þ, where τ is the

momentum relaxation time. This quantity was already
introduced in Sec. III. Alternatively, τ may be called the
mean free path time. It enters into the Drude formula for the
quark matter conductivity and into the Boltzmann equation
in the relaxation time approximation [41]. From the formal
point of view, τ regulates the pinch (collinear) singularities.
The factors λ are the vertex renormalization corrections
[37,51]. At q → 0, ωk → 0, the product of the two λs takes
the limiting value j2ε̃nj2=jεnj2 [41,51]. The quark loop (22)
is calculated under the following conditions: (i) jkj ≪ jpj
and (ii) T ≪ μ. The first condition is easily recognized as
the hard thermal loops approximation (HTL). The external
momentum k is assumed to be soft since we are interested
in the soft photon emission, but internal momentum p is
hard. However, in our case, this is not due to the high
temperature as in the standard HTL but due to the fact
that the dominant contribution to the above integral comes
from the vicinity of the Fermi surface with p ∼ μ, and
μ ≃ 300–400 MeV, i.e., high. Therefore, we replace in (22)

Gðpþ k; ε̃n þ ωkÞ ≃Gðp; ε̃n þ ωkÞ, and B becomes k
independent. By symmetry arguments, B ∼ q. Integration
in (22) is performed using the Fermi surface integration
measure

Z
dp

ð2πÞ3 ¼
ν

2

Z
dΩp

4π

Z
∞

−∞
dt; ð24Þ

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
− μ, ν ¼ μpF

π2
. In the vicinity of Tc,

the FP (20) has a pole structure due to the ε term. The
dependence of Lðq;ΩjÞ and Lðq;Ωj − ωkÞ onΩj and ωk is
much stronger than the dependence of the Green’s func-
tions on the same quantities. We shall keep in the
propagators entering into Bðq;Ωj;ωkÞ only the depend-
ence on the fermionic frequencies ε̃n and evaluate
Bðq;Ωj ¼ ωk ¼ 0Þ. Expanding Gðq − p;−ε̃nÞ in (22) at
q → 0, one has

Gðq − p;−ε̃nÞ ≃Gð−p;−ε̃nÞ þ q
∂
∂pGð−p;−ε̃nÞ

¼ Gð−p;−ε̃nÞ þ
ðqpÞ
μ

∂
∂t Gð−p;−ε̃nÞ:

ð25Þ
Substituting (25) in (22), one easily observes that the
angular integration kills the contribution of the first term of
(25). The second term yields

BðqÞ ¼ −νT
X
εn

j2ε̃nj2
jεnj2

Z
dΩp

4π

ðqpÞp
μ2

Z
∞

−∞

dy
ðy2 þ ε̃2nÞ2

:

ð26Þ
Performing the integration and using (7)–(9), one gets

BðqÞ ¼ −q
7ζð3Þ
12

ν

π2T2

p2

μ2
χ

�
1

2πTτ

�
¼ −4q

πν

8T
D; ð27Þ

where D are the diffusion coefficients defined by (8). From
(21) and (27), we have

ΠlmðωkÞ ¼ −12Q2T

�
πν

8T

�
2

D2
X
Ωj

Z
dq

ð2πÞ3 qlqmLðq;ΩjÞ

× Lðq;Ωj þ ωkÞ: ð28Þ

To evaluate the sum in (28), we can use a technique of
replacing the summation (28) by the contour integration
(the so-called Eliashberg trick) [37,53]

T
X
Ωj

fðΩjÞ ¼
1

4πi

I
dz coth

z
2T

fð−izÞ; ð29Þ

where z ¼ iΩj. The contour of integration is depicted in the
original work [53] and in Ref. [37]. In (28), the FPs are
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defined over the discrete bosonic Matsubara frequencies.
We have to perform the analytic continuation of the FPs.
The retarded one, LRðq;−izÞ, is analytic in the upper
half-plane Imz > 0, and the advanced one, LAðq;−izÞ,
does not have singularities in the lower half-plane. Note
that the FP given by (20) is the LR one. The LA is obtained
by replacing in (20) ω → −ω. Performing the contour
integration [37,53], one gets

ΠðωÞ ¼ −
πQ2ν2D2

32T2

Z
dq

ð2πÞ3 q
2

Z
∞

−∞
dz coth

z
2T

× ½LRðq;−iz − iωÞ þ LAðq;−izþ iωÞ�
× ImLRðq;−izÞ: ð30Þ

Next, we expand the integrand in powers of ω and subtract
the zeroth-order term. This may be regarded as imposing
the Ward identity. The term linear in ω reads

LRðq;−iz − iωÞ þ LAðq;−izþ iωÞ

¼ −ω
d
dz

ðLRðq;−izÞ − LAðq;−izÞÞ

¼ −2iω
d
dz

ImLRðq;−izÞ: ð31Þ

Substituting (31) into (30) and integrating by parts, we
obtain

ΠðωÞ ¼ −iω
πQ2ν2D2

32T3

Z
dq

ð2πÞ3 q
2

Z
∞

−∞
dz

½ImLRðq;−izÞ�2
sh2 z

4T

:

ð32Þ

Expanding sh2 z
4T at z ≪ 4T and integrating over dz, we

obtain

ΠðωÞ ¼ −iω
π3Q2D2

128T2

Z
dq

ð2πÞ3
q2

ðεþ π
8T Dq2Þ3

¼ −iω
3Q2

64

�
8T
πD

�
1=2

ε−1=2: ð33Þ

As expected, the polarization operator is a singular
function at T → Tc with the ð T

T−Tc
Þ1=2 singularity.

V. PHOTON EMISSION RATE

The thermal emission rate of soft photons with energy ω
is related to the retarded photon self-energy as [54]

ω
dR
d3k

¼ −
2

ð2πÞ3 ImΠðωÞ 1

eω=T − 1
: ð34Þ

Here, ΠðωÞ is the transverse projection of Πμ
μ, and the

longitudinal projection vanishes at k ¼ 0. Using (33) for
ΠðωÞ, we obtain

ω
dR
d3k

¼ 3Q2T
28π3

�
8T
πD

�
1=2

ε−1=2: ð35Þ

Equation (34) is valid to order e2 in electromagnetic
interaction and to all orders in strong interaction.
Expression (35) corresponds to the diagram shown in
Fig. 1. It describes the emission of soft real photons with
ω ≪ T and is applicable within the precritical region
10−4 < δT=Tc ≪ 1. As was explained in Sec. III, correc-
tions due to nonlinearity of fluctuations may come into play
at δT=Tc ≃ 10−4. In Fig. 2, the photon production rate is
plotted as a function of ε for Tc ¼ 40 MeV and Tc ¼
50 MeV and τ ¼ 0.1 fm and τ ¼ 0.3 fm. The main feature
of the emission rate (35) is its steep rise approaching Tc
from above. The dependence on τ is rather weak and on Tc
is not very pronounced.
As we mentioned in the Introduction, there are very few

calculations of the photon emissivity at finite density. There
are some common points between our results and that of

(a) (b)

FIG. 2. Precritical soft photon emission rate. Panel (a): τ ¼ 0.1 fm; panel (b): τ ¼ 0.3 fm. The solid lines in both panels represent
Tc ¼ 40 MeV, and the dotted lines represent Tc ¼ 50 MeV.
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Ref. [16]. The difference is that in Ref. [16] the quark
matter is supposed to be in a color superconducting color
flavor locked phase with quarks of three flavors u, d, and s
participating in pairing. In this work, we consider the
precursor virtual pairing of u and d quarks at the temper-
ature just above the critical one for the formation of the
condensate. The bird’s-eye view is that in Ref. [16]
the characteristic soft photon emission rate is around
10−4 fm−4 GeV−2 (see Fig. 12 of Ref. [16]), while in
our work, it is approximately 10−3 fm−4 GeV−2. It means
that the slow fluctuation mode present in our study
enhances the photon emissivity.
The soft photon radiation is closely related to the

electrical conductivity of quark matter [12–14,55,56].
One can write the following equation for the electric
current [57]:

jðxÞ ¼ −
Z

Πðx − yÞAðyÞd4y: ð36Þ

Replacing in Fourier transform of (36) Aðk;ωÞ ¼
Eðk;ωÞ=iω and comparing with j ¼ σE, we obtain
[37,57]

σðωÞ ¼ −
1

ω
ImΠðωÞ: ð37Þ

Comparison of (35) and (37) gives

ω
dR
d3k

¼ 2

ð2πÞ3 TσðωÞ: ð38Þ

Note that σðωÞ is of the same order α in electromagnetic
interaction as the photon emissivity ωdR=d3k. The appear-
ance of an additional factor α in the right-hand side of
Eq. (II.16) of Ref. [13], Eq. (7) of Ref. [55], and Eq. (25) of
Ref. [14] is unclear to the present author. Possibly, this is
some problem of notations. One finds a large number of the
quark matter electrical conductivity calculations in the
literature; see, e.g., Ref. [41] and references therein.

Equations (35) and (38) yield for σ at T ¼ 0.05 GeV,
τ ¼ 0.2 fm, and ε−1=2 ¼ 20 the result σ ¼ 0.09 fm−1. This
value was previously obtained in our paper [41] dedicated
to the electrical conductivity of quark matter.

VI. CONCLUSIONS

In this paper, we have investigated the soft photon
emission rate from dense quark matter in the precritical
region. This region of the QCD phase diagram is not up to
now thoughtfully investigated both experimentally and
theoretically. We pursued the approach based on the
Aslamazov-Larkin diagram, which proved to be very
successful in condensed matter theory. For quark matter,
this attitude allowed us to describe the transport anomalies
near the phase transition temperature [58,59]. In particular,
the bulk viscosity diverges near Tc as ζ ∼ ε−3=2 [58]. This
is close to the critical behavior ζ ∼ ε−zνþα, z ≃ 3, ν ≃ 0.6,
α ¼ 0.11 predicted in d ¼ 4 − ε renormalization, modes
coupling, or isomorphism between the quark fluid and
three-dimensional Ising system [60–63].
The most important feature of the soft photon emissivity

rate is its rise when the temperature approaches Tc from
above. Close to Tc, the fluctuation radiation rate exceeds by
an order of magnitude the rate from the color super-
conducting rate [16]. The origin of this phenomenon is
the formation of the slow fluctuation made in the quark
matter. This excitation is described by the fluctuation
propagator, which is singular at Tc in the limit ω → 0,
k → 0. The enhancement of the soft photon production
near Tc may be a tentative proposal for the NICA/FAIR
investigation.
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