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We generalize a forward light-by-light scattering sum rule to the case of heavy quarkonium radiative
transitions. We apply such a sum rule to the bottomonium states, and use available data on radiative
transitions in its evaluation. For the transitions that are not known experimentally, we provide theoretical
estimates within a potential model, and consider the spread between similar approaches in the literature as
an estimate for the model error. For the T(1S), T(2S), and Y(3S) states we observe that, due to a
cancellation between transitions involving yo,x51, and y, states, the sum rule is satisfied within
experimental and theoretical error estimates. Having tested this sum rule for the low-lying bottomonium
states, it may be used as a tool to investigate the nature of exotic states in the charmonium and bottomonium

spectrum through the corresponding radiative transitions.
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I. INTRODUCTION

Several model-independent sum rules were derived for
the forward light-by-light scattering, and were exactly
verified at leading order in scalar and spinor QED [1-5].
Such sum rules are valid for the case when at least one
photon is real and the other is spacelike or below the first
particle production threshold, i.e., for photon virtualities
g3 < 50, g5 = 0, where s, is the particle production thresh-
old. Three of these sum rules have the form of a super-
convergence relation, for which an integral over an
experimentally measurable quantity yields zero [5]. One
of these is a helicity sum rule of the form

A)oo% (02— Go)quo =0, (1)

2
S =4

where 6 and o, are the total helicity cross sections for the
y*y — X processes for total helicity 0 and 2, respectively,
where X denotes the sum over all allowed final states. Such
light-by-light sum rules have been applied within different
field theories in both perturbative and nonperturbative
settings [4—6]. Furthermore, their application to the y*y
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production of light-quark mesons has been discussed in
Refs. [5,7], and the application to the yy production of
charmonium states was discussed in Ref. [8]. For the
pseudoscalar, scalar, axial-vector, and tensor mesons,
where y*y — X data are available, these sum rules were
verified within 10-30% experimental accuracy [7].

In the present work we investigate the extension of such
sum rules, when one of the virtual photons is replaced by a
vector quarkonium state. For the conventional heavy-quark
Q0 bound states, radiative transitions have been measured
quite extensively in the past decades by collaborations at
the charm and B factories CLEO@CESR, BABAR@PEP-II,
Belle @ KEKB, and BESIII@BEPCII, and will be studied in
the near future by Belle-I1.

The study of light-by-light sum rules in the heavy
quarkonium sector may also be worthwhile in light of
the plethora of new states—so-called XYZ states—that
have been found in recent years above open heavy flavor
thresholds at all of these facilities; see, e.g., Refs. [9-11] for
some recent reviews and references therein. Such sum rule
relations have the potential to reveal how much of the
radiative decay strength from or into vector quarkonium
states results from possible exotic mesons. An example is
the X(3872) state with JPC€ = 1", which sits right at the
DD* threshold, for which the radiative transitions y.J /y and
yyw’ have been proposed as a diagnostic tool for studying
the nature of this state [12], shedding light on its hybrid
charmonium-molecular nature. Rare decays of X(3872)
will be an important part of the PANDA [13] scientific
program where such studies are feasible even at the start of
data taking. Also, at BESIII the first radiative transition
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between two exotic mesons has been observed in the
process Y(4260) — yX(3872) [14], and detailed studies
of radiative transitions can be expected from Belle-II in the
near future [15].

The outline of this work is as follows. In Sec. II we
introduce the helicity sum rule that we will study in this
work for radiative transitions between quarkonium states,
of which one has J”¢ = 1=~ quantum numbers. In Sec. III
we describe the potential model adopted from Refs. [16,17]
to reproduce heavy quarkonium wave functions. In Sec. IV
we review the formalism to evaluate the leading radiative
transitions between quarkonium states with defined total
helicity, and make a comparison between available exper-
imental values and theoretical results in the literature. In
Sec. V we make use of experimental information on the
radiative transitions Y(mS) — yy,;(nP) for m > n, as well
as theoretical estimates for y,;(nP) — yY(mS) for n > m,
and evaluate the derived helicity sum rule. We provide a
quantitative discussion for the Y(1S), Y(2S), and Y(35)
states. Finally, a summary and outlook is given in Sec. VI.

II. SUM RULE FOR QUARKONIUM
RADIATIVE TRANSITIONS

In the case when one photon in Eq. (1) is replaced by a
vector quarkonium state, one needs to take into account its
nonpointlike structure. In full analogy to the original
Gerasimov-Drell-Hearn sum rule [1-3], it gives the relation
to the anomalous magnetic moment ay . Therefore, for the
states below the BB threshold (m} < 4m3%) it holds that

SR = / T imm M., ,,)
~J —md) MMy - = IMM oy )20
a

= 4x° mil‘z\:[ a, (2)
where we expressed the helicity cross sections in Eq. (1) in
terms of the yV — yV helicity amplitudes M LA 4 Ay The
integral in Eq. (2) extends over both bound states and open-
flavor states. In principle, all neutral intermediate quarko-
nium states with even C parity can contribute to this sum
rule; see Fig. 1. These are not only scalar J°¢ = 0*™,
pseudoscalar 0™, axial-vector 1", and tensor 2*" mes-
ons, but also quarkonium states that can carry exotic
quantum numbers, such as, e.g., 17" and 27". In our
analysis, we limit ourselves to the states that correspond to
conventional quantum numbers and that are expected to be
dominant ones below the BB threshold. Furthermore, all of
the transitions to pseudoscalar 0~* mesons corresponding
with magnetic dipole transitions (M1) turn out to be
strongly suppressed for the bottomonium transitions, as
compared to the transitions to 0T+, 11+, 27+ . which
correspond predominantly to electric dipole transitions
(E1), as discussed below. For bottomonia the anomalous
magnetic moment is a small quantity and has been
estimated as [18]

"=V

-
s

Y2 =7

Yo =

e W __.

FIG. 1. Light-by-light forward scattering involving one virtual
(V) and one on-shell (y) photon. We associate V with a vector
quarkonium state. As a result of the optical theorem (dashed cut),
intermediate quarkonium states X with JP¢ =0~ 0t 17+,
27+, ... contribute to the forward scattering.

_ Q'as (mb) .

a7 (3)

dy

Using such a value, the sum rule of Eq. (2) should yield
almost zero for bottomonia, i.e., SR ~ 8 nb.

Unitarity allows us to relate the imaginary part of the
yV — yV helicity amplitude M 22,4y 1O the X — yV (for
my > my)orV — yX (for my > my) transition amplitudes

Maa iz

2ImM 50, = Z / dUx (27)*6*(q1 + g2 — px)
X

X M, (41523 P) M 1 (915923 Py)
(4)

where A = 4, — 4y denotes the helicity of the quarkonium
state X, with 4y (4,) being the helicity of the vector
quarkonium state V (photon). In the narrow-resonance
approximation, Eq. (4) can be written as

2

9’

ImM,_,_ = Z”‘S(s —mg) My 10
X

2

ImM., = Z”é(s —mg) Mo 111/ (5)
X

which allows us to rewrite the sum rule (2) in terms of the
helicity-dependent radiative widths I'y_,, for either the
X —yV or V — yX transitions. For the X — yV transi-
tions, the helicity radiative widths are given by

1 k 1

(X)) = — = = 2

0( ) 4ﬂm§2]x+1| 0.+1+1|
1 k 1

NX)=— = 2

(80 = g el

TEM(X) =3 Th(X), (6)
A

where the photon energy is given by k= (m% —

m?)/(2my) and TEM(X) is the unpolarized radiative width
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of the corresponding transition. The corresponding expres-
sions for the helicity radiative widths for the V — yX
transitions are obtained from expressions analogous to
Eq. (6) with the replacement X < V.

Substituting Egs. (5) and (6) into the sum rule (2) yields
the master formula that we will use in this work:

VorX

> b i )) (r2(X) = ro(X))P(X)
Y 8% (12(X) = ro(X))I™(X) =0,

(7)

where we neglected the term proportional to a} as well as
the continuum contribution from the open-flavor channels.
The latter was estimated using the quark-hadron duality
argument [19] in total analogy to [5,8]. It gives a negligible
contribution in the range of ~0.3-7.3 nb, depending on
V =17(15),Y(2S), Y(3S). Furthermore, in Eq. (7) we
introduced the helicity ratios

A(X)
LN (X ) = FET(X) (8)
which (as will be shown below) are universal constants in

the case of El transitions, and depend only on the total
angular momentum of the state X.

III. POTENTIAL MODEL

Since the relativistic effects in bottomonia are expected
to be small, the spectrum and wave functions can be
calculated with the help of the Schrédinger equation and a
conventional heavy quarkonium potential,

22
How ) = |2 V(1) |w(7) = B (7).
V(r) = Vy(r) + Vsp(r),
Vsp(r) = Vss(r) + Vis(r) + V(r), )

where the Cornell potential V, is the sum of one-gluon
exchange (V) and linear scalar confining (V) parts [20],

40(5

Vo(r) =Vy(r) + Vg(r) = _§_+ br, (10)

while Vgp is a spin-dependent part which splits into the
spin-spin (Vgg), spin-orbit (V;g), and tensor (V) poten-
tials. Up to order 1/ mlz,, they are given by

32ra
Vss(r) = 9 = 8(F)5) - 5.
mb
dvy dv -
Vis(r ( _V__S> 3
2m
»"
1dvy  d*vy
H
T 12m] (r dr r2> T
2
HT_6( 7) —-28% (11)

where L is the relative orbital momentum operator and S =
5, + 5, is the total spin operator of the quark-antiquark
system. Typically, the spin-dependent terms are treated
using the leading-order perturbation theory. However, in
the present work we follow Deng et al. [16,17] and account
for them nonperturbatively. In order to do that, several
modifications are needed.

First of all, one needs to take the matrix elements over
operators in the |L,S,J,j) basis (where j is the spin
projection of J on a fixed axis),

o1 3

(51-5,) = ES(S+1) R

(L-8) =3 (0 +1) = LL+1) = S(S+1))
4(SPL*=3L-S-3(L-5)?)

() (2L +1)(2L - 1) ’ (12)

and regularize a 1/r° behavior in the terms Vg and Vg
when r — 0. The most obvious way to do this is to saturate
these potentials at some low-distance scale r¢, i.e., set
VT(r) = VT(rC) and VLc(r) = VLv(rC> when r < re [17]

Second, the physical hyperfine interaction corresponds
to a smeared & function [21],

where 1/ is a radius of order o« 1/m,,.

Finally, in order to effectively account for the creation of
virtual light gg pairs in the Wilson loop, one considers a
screening of the confining potential at large distances
r>1/u:

b ur
br—);(l—e ). (13)

The unknown parameters were determined in Ref. [17]
by fitting the spectrum. A fairly good description of the
energy levels was achieved with the following choice of
parameters:
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ag = 0.368,
my, = 4.757 GeV,
b = 0.206 GeV?,
o =3.10 GeV,
4 = 0.056 GeV,
re = 0.060 fm. (14)

In our work we were able to reproduce the results of
Ref. [17] to an accuracy of less than 1 MeV in the energy
levels and use these results for the masses of the yet
unmeasured y,o(3P) and y,,(3P) states, as well as to
evaluate the radiative transition matrix elements.

IV. E1 RADIATIVE TRANSITIONS

The helicity amplitudes entering Eq. (6) can be
expressed, choosing the Coulomb gauge, as

= \/QE\/EMﬂ (15)

My = [ @5 F e - T@). (6

Miaay

with the definition A = 4, — Ay, where J(R) is the electro-
magnetic current operator, and where we introduced the
labels i (initial) and f (final) instead of X and V to keep
further calculations independent of the direction of the
transition. Here the initial and final internal states are
labeled by |w;) = |n,L;S;J;j;) and |wy) = [nsLpSsJfjy)s
where j;, j are the spin projections on a fixed axis. By
going to the rest frame of the decaying state, we can orient
the quantization axis along the photon momentum direction
k and identify the spin projections in terms of helicities,
e.g., for the X — yV transitions, as j; = A, j; = —4y. Note
that in the matrix element of Eq. (16) we use the covariant
normalization for the electromagnetic field, but initial and
final quarkonium states are normalized nonrelativistically.
A multipole expansion of the electromagnetic field
allows to express the matrix element of Eq. (16) as

VxS (i) / ¢

x (g iV + 1y (KIFDY (%)

~VIj (KFDYS, ()] - T (&)

V2T Ly (KEN Y (3) - T @)l (17)

where j; (k|X|) denote the spherical Bessel functions, and

Y szJ,( ) is the vector spherical harmonic function, defined in
terms of the product of spherical harmonics Y, (%) with
the photon polarization vector €, as

M, %)
YLJ X)

ZZ LM 1AIM,)Y 1y, (R)E,. (18)

Furthermore, in Eq. (17) the first term, proportional to the
squared bracket, corresponds to the electric multipole
transitions, whereas the last term corresponds to the
magnetic multipole transitions.

The long-wavelength limit is governed by kr < 1, where
r = |X| is the size of the bottomonium system. Because
jr(kr) ~ (kr)E in this limit, the helicity amplitude in
Eq. (17) will be dominated by the lowest multipoles.
Out of these multipoles, the dominant one corresponds
to the electric dipole (E1) radiative transitions, i.e., for
J = 1, due to the behavior of the j,(kr) term. The magnetic
dipole transition (M1) as well as higher multipoles are all
suppressed by extra powers of (kr). For the sum rule tests
for the bottomonium system considered in this paper,
where we envisage a numerical precision in the 5-10%
range, we can therefore use the nonrelativistic electromag-

netic current operator J(¥) as

mQ mQ

where mg = mg = my,, ey = —ep = —1/3e is the bottom
quark charge, 7 is the relative vector between quark and
antiquark positions, and p, and pp are the momentum

operators for the quark and antiquark, respectively. This
yields the E1 matrix element from Eq. (17):

. (kr\ 5 p .
—ir [ — Y5 ()| - ——=wi(F), 20
J2(2> 21 (”)] mQ/ZWl(r) (20)
where ﬁ = ( ﬁQ - 3@)/ 2 is the relative momentum oper-

ator in the quarkonium system.

Furthermore, to describe the E1 radiative transitions for
the bottomonium states with n; = n (and to a lesser extent
transitions of nearby n; and ny), the long-wavelength limit
provides a rather good approximation. As will be shown
below, these transitions give the dominant contributions to
the sum rule. In this limit the matrix element of Eq. (20) is
given by

A
_,

M?zl <Wf|

d - -
="¢g dt (wslFlwi) - €-),

/2 ‘l//l> —/1/

= —ieg{wy|[Ho. llwi) - -,
=ieg(m; —mg)(wy|7- g—ﬂy|l//i>7 (21)

096019-4



LIGHT-BY-LIGHT SCATTERING SUM RULE FOR RADIATIVE ...

PHYS. REV. D 102, 096019 (2020)

where we used the Ehrenfest theorem in the transition from
the first to the second line. In result, the nonrelativistic
(NRel) expression for the E1 radiative transition width is
given by

ez 2F
. Y f
rﬁ{?el(l - y\f) = 47[k3<ml' )

x 2Ji1-|— 1 Z DD HwylF -2y lwa)l

JiJp At

(22)

where the mass difference m; — m; was approximated by
the photon energy k.

As we will only consider transitions from L; =1 —
L;=0 or L;=0—-L;=1 spin-triplet states (S; =
Sy =1) in the following, Eq. (22) reduces to

nglel ps(niP) — VT(”fS))

e2 4 (E,; o
_ -0 /
=1 K3 5 <ml> / drr3Rf(r)Ri(r)

0
where R; and R denote the radial wave functions of initial
and final states. Note that, for the actual calculations, we
account for finite-size corrections to the nonrelativistic E1
result by the replacement [19]

2
. (23)

ol = Sl (5 ) 29

which are practically only important for the subdominant
contributions to the sum rule.

A more systematic inclusion of relativistic effects in
calculating the El1 decay widths of heavy quarkonia
requires estimating the relativistic corrections to the wave
functions, in addition to the recoil and finite-size effects.
Such early estimates of the relativistic corrections to the
heavy quarkonium E1 decay rates in an expansion up to
order v?/c* were performed using different potential
models, including a Richardson type of potential [22], a
Coulomb-plus-linear Cornell type potential for r = 0.1 fm,
modified to saturate for » < 0.1 fm [23], and a Buchmiiller-
Tye potential with a scalar confining part [24]. To compare
the first-order relativistic corrections between different
approaches, we express the relativistic (Rel) calculations
of the E1 decay widths of bottomonia as

Try(i = 7f) =Rga(i = vf)(1 +6). (25)

In Table I we compare the relativistic correction factor 6 for
the y,;(1P) — yY(1S) and y,;(2P) — yY(2S) decays in
the three above-mentioned calculations. For the decays
shown in Table I, the bulk of the relativistic corrections
comes from the relativistic modifications to the wave

TABLE 1. First-order relativistic correction 6 to the dominant
xps(nP) = yY(nS) (for n = 1, 2) El radiative widths, according
to Eq. (25), in different approaches.

5 [22] [23] [24]

1r0(1P) = yT(18) +0.09 +0.11 —-0.14
11 (1P) = yY(18) +0.06 +0.11 —-0.17
xn(1P) = yY(1S) +0.05 +0.11 —-0.20
X00(2P) = yY(25) +0.04 +0.32 —-0.12
1 (2P) = yY(2S) -0.06 +0.06 —-0.24
1n(2P) —» yT(2S) —-0.10 —0.11 —-0.35

functions, and obviously depends on the choice of the
potential. For example, for the y,;(1P) — yY(1S) decay
rates, Refs. [22,23] found corrections of order § ~ +10%,
whereas Ref. [24] reported corrections of order 6 ~ —20%
to —15% for the same transitions.

In view of the expected corrections in the 10-20% range
for the lower bottomonium states, our strategy in minimiz-
ing the model uncertainties in the sum rule estimates is to
use the experimental values of the El decay widths
wherever possible. The latter are available for the
Y(2S) = yyps(1P), Y(3S) = yxp;(2P), and Y(3S) —
vxps(1P) transitions. For the y,;(nP) — yY(nS) transi-
tions (for n = 1, 2, 3), for which the absolute El decay
widths are not known empirically at present, we will
compare their calculated values between five different
realistic models that are fit to the spectrum. The spread
in the I'®! model predictions will be taken as an estimate of
the error on the El decay width.

To evaluate the sum rule (7), besides the unpolarized
radiative width, we also need the helicity ratios ry_g,(X).
We will work in the E1 approximation, i.e., neglect the M2
transition for y,,(n;P) = Y(n;S) and the M2 and E3
transitions for y,,(n;P) = Y(n;S). In the E1 approxima-
tion, the coefficients r,(X) can be expressed as ratios of
Clebsch-Gordan coefficients and do not depend on the
internal structure of the mesons. Their values are shown in
Table II.

Note that in the extreme nonrelativistic limit where the
fine structure is neglected, i.e., when the three y,;(nP)
states (for J =0, 1, 2) are degenerate, the corresponding
helicity radiative widths all become proportional to the
same El squared matrix element. As a consequence, the
helicity-0 and helicity-2 sum rule contributions of the three
xps(nP) states are given by

TABLEIL. Helicity ratios r,(X) for A = 0,2,and Jy =0, 1, 2.
Jx ro(X) r(X)
0 1 0

1 1/2 0

2 1/10 3/5
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oo ~ {rorso) + 3ro(rm) + 570 (xs2) kel
3 1
= {143+ 5 i = 318
oy ~ SrZOKhZ)FE%{eI = 3F1]§1§e1’ (26)

which shows that in this extreme limit the sum rule holds
exactly for the radiative transitions originating from each
shell separately. When calculating with realistic potentials
below, where the degeneracy between the three y;;(nP)
states is lifted, we will nevertheless observe an approximate
cancellation between these states. However, the sum rule of
Eq. (7) in general only holds when summing over all
radiative transitions to or from a given Y (nS) state.

V. RESULTS AND DISCUSSION

The central objects in the evaluation of the sum rule of
Eq. (7) are the radiative transitions of either X — Vy or
V — yX. Several of these transitions have been studied
by the Crystal Ball, ARGUS, CLEO, BABAR, and Belle
collaborations, as summarized by the Particle Data Group
(PDG) [25]. Absolute radiative widths are known for the
transitions of Y (mS) — yy,,;(nP) states when m > n, and
are given in Tables III and I'V. For the opposite transitions of
xps(nP) = yY(mS) when n > m only branching fractions
Br(y,;(nP) - yY(mS)) have been measured. In the
absence of the total widths these results cannot be con-
verted into partial widths. For these transitions we will use
the results of the potential model, based on Ref. [17], and

TABLE III. Results for bottomonium radiative transitions
T(2S) = yyxpy(1P) in the quark potential model outlined in
Secs. Il and IV, compared with experimental values [25]. For ;!
we include the spread between different predictions [21,26-29] as
our error estimate.

Vv =T(25) my, MeV]  TE [keV] Ty [keV]
V = rxn(1P) 9912 2587090 2294030
V= v (1P) 9893 2281017 2214031
V = 720(1P) 9859 1194043 1224023

TABLE IV. Same as in Table III for the radiative transitions
Y(3S) = yyp, (2P, 1P).

V =7(3S) m,,, [MeV]  TEl [keV] T, [keV]
V = 1n(2P) 10269 3187000 2.66+0.57
V = 7261 (2P) 10255 2661090 256048
V = 720 (2P) 10233 1317008 1204023
V= rxn(1P) 9912 02011, 020+0.04
V= rxn(1P) 9893 0.00:0k 0.02£0.01
V = rxw(1P) 9859 0.12:09 0.06+0.01

0.6

BN Y(25) > xb2(1P)
Y(2S) - xp1(1P)
EEm Y(25) > Xpo(1P)

0.4

Fexp
o o
o N
P
| _o——

rmodel - rexp
|
)
N
—_—
e
—
|
|
IV
— e

. Y(35) > xp2(2P)
Y(3S) > Xp1(2P)
N Y(3S) - Xbo(2P)

I—madel - rexp
Fexp
S o
[N} o
—
JRO—
— o

-0.6
This work EFG GM SOEF LC

FIG. 2. Relative comparison between different theoretical and
experimental results for the T(2S) — yy;,(1P) (upper panel) and
Y(3S) = yx,s(2P) (lower panel) radiative widths. Besides the
calculation performed here, the models shown are EFG [29], GM
[28], SOEF [27], and LC [26].

outlined in Secs. III and IV. To account for the theory
uncertainty in the E1 radiative transitions, we include the
spread between different theory predictions as our error
estimate on this quantity. For the nonrelativistic models, we
include the predictions from Refs. [21,26,27], which
mainly differ in the form of the potential. The result of
Ref. [26] corresponds to the first-order relativistically
corrected wave function with a screened potential model.
As for the relativized quark model, we refer to Refs. [21,28]
where the spinless Salpeter equation was solved, and to
Ref. [29] which relied on the relativized quasipotential
approach.

We start by comparing the theoretical E1 radiative widths
for the Y(28) = yy,,(1P) and Y(3S) — yy,,(2P) tran-
sitions with their experimental results in Tables III and 1V,
respectively. We see that for nearly all of these transitions
the central values (calculated as explained in Secs. III and
IV) agree with experiment to within 15%. The spread
between the different theoretical values is also in this range,
as is illustrated in Fig. 2. We therefore feel confident that
we can estimate the unknown radiative widths
xps(nP) = yY(mS), for m =1, 2, 3, with an accuracy
at the 20% level or better.

Having compared the theoretical results for the radiative
widths of the bound T states with available data, we are
now in the position to quantitatively verify the sum rule (7).
In Table V we show the sum rule evaluation for the YT (1)
state. As the absolute radiative widths for the y,;(nP) —
yY(18) transitions are not known, we are using our model
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TABLE V. Bottomonium sum rule of Eq. (7) for the radiative
transitions involving the Y(1S) state. Here my is the mass of the
state X, I is the corresponding radiative decay width to the T(15)
state, and SR is the contribution of the corresponding transition to
the sum rule. The subscript “th” indicates that the theoretical
estimate is used.

Process my [MeV] I' [keV] SR [ub]
1u0(1P) = yY(1S) 9859 242050 —1.6%00
21 (1P) = yY(1S) 9893 30.2567 —2.3%04
Xin(1P) = yY(1S) 9912 361733 +4.0107
Subtotal 0.2175
200(2P) = yY(15) 10233 44175 —0.04190%5
201(2P) = yY(15) 10255 107509 —0.145040
2 (2P) > yY(1S) 10269 169700 4035507
Subtotal 0.1703%.
200(3P) = yY(15) 10491 14106 —0.017560
201(3P) = yY(15) 10512 5509 —0.03*055.
202 (3P) = yY(15) 10528 107599 +0.10500

0.03

Subtotal 0-061—0408[}\

Total 0. 4+]0.57
—1-9th

estimates to evaluate the sum rule. As theoretical uncer-
tainty in the sum rule evaluation we take the spread among
the different models discussed above, and tested on the
known radiative widths in Fig. 2. From Table V we observe
a hierarchy of the y;,;(nP) — yY(1S) contributions for
different shells n. As different bottomonia contribute to
Eq. (7) with a weighting proportional to the inverse of the
third power of the mass difference between the participat-
ing bottomonium states, one sees that the individual sum
rule contributions from the 1P states are more than an order
of magnitude larger than those from the 2P states, which
are about a factor of 4 more important than the 3P state
contributions. This observed hierarchy also shows that
states with n > 4 are expected to contribute in the few-
percent range at most. One also notices that for each shell
(n=1, 2, 3) the sum rule is satisfied well within the
theoretical error. For the dominant n = 1 transitions, the
sum rule result is around 5% of the dominant helicity-2
contribution from the y,,(1P) state. The cancellation
between helicity-0 and helicity-2 contributions for each
shell was already discussed following Eq. (26), being exact
in the extreme nonrelativistic limit when the fine structure
is neglected. We now see that when using realistic
potentials, for which the degeneracy is lifted within each
shell, the cancellation is still quite accurate numerically. For
the total sum rule, we have an agreement at the 10% level of
the dominant helicity-2 contribution.

In Tables VI and VII we show the corresponding results
for the YT(2S) and Y(3S) states, respectively. For these

TABLE VI. Bottomonium sum rule of Eq. (7) for the radiative
transitions involving the Y(2S) state. We took data for the
radiative transitions from the PDG [25] where available, indicated
by the subscript “exp.” For the transitions where the absolute
radiative widths are not known, we use the predictions based on
the model described in this work, indicated by the subscript “th.”
For the latter, we show the spread in the theoretical calculations as
an estimate of the theoretical model error.

Process my [MeV] T [keV] SR [ub]
T(2S) = rxpo(1P) 9859  1.22+0.23,, -3.3+0.6,,
T(2S) = yxp(1P) 9893 221 +£031,, -58=+038,,
T(2S) = yxm(1P) 9912 229 +£0.30,, +9.8+ 1.3,
Subtotal 0.7 &+ 1.6¢4,
20(2P) — yY(28) 10233 132799 ~5.7550
201(2P) = yT(28) 10255 153108 ~7.3:93,
20 (2P) = yY(25) 10269 16.7:9% +11.2798
Subtotal -1.733%.
100(3P) = yY(28) 10491 2'2351 —0.09j8;862m
2n(3P) = yY(2S) 10512 50104 ~0.27°989
2(3P) = yY(25) 10528 75190, +0.60709%

Subtotal o,zsjg-;ih

26
Total —0.877% & 1.6cy,

states we have partial experimental information available
on the radiative transitions. We are thus able to also test the
sum rule in a more model-independent way when using
only experimental data. Besides, for the transitions that are
not known experimentally, we are using the theory esti-
mates with their model error range as discussed above.

For the Y(2S) state, as shown in Table VI, the transitions
to the y,;(1P) states are all known experimentally to
around 15% precision. The sum rule is seen to hold
experimentally for this shell at the 10% level of the
dominant helicity-2 contribution ( 0.7 ub vs 9.8 ub). The
same quality of agreement is also found for the second
dominant shell in this case, n = 2, based on the theoretical
estimates for the y,,;(2P) — yY(2S) transitions. When
evaluating the sum rule for the first three shells, one finds
an agreement of better than 5% of the total helicity-2
contribution, concluding again that this sum rule is well
satisfied within the theoretical and experimental error
estimates.

Similar conclusions can also be reached for the T(35)
state, shown in Table VII. The two dominant shells
contributing in this case are n =2 and n = 3, with the
Y(3S) — yyps(2P) decays widths being known experi-
mentally, and the y,;(3P) — yY(3S) being estimated
theoretically. One sees for the transitions to the n =2
shell that the sum rule is seen to hold experimentally to
around 5% of the dominant helicity-2 contribution ( 1.3 ub
vs 24.0 ub). For the n =3 shell contribution, the
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TABLE VII. Same as Table VI for the bottomonium sum rule of Eq. (7) for the radiative transitions involving the
T(3S) state.

Process my [MeV] I' [keV] SR [ub]
Y(3S) = yxpo(1P) 9859.44 0.055 £ 0.013, —0.0056 £ 0.0013,,,
T(3S) = vy (1P) 9892.78 0.018 £ 0.012, —0.0011 £ 0.0007,,
T (3S) = yyp(1P) 9912.21 0.201 + 0.043,,,, +0.0142 = 0.0030¢,
Subtotal 0.0075 + 0.0034..,,
T (3S) = yxpo(2P) 10232.50 1.20 £ 0.23, =7.6 = 1.5,
Y(3S) = yxp (2P) 10255.46 2.56 & 0.48., =15.1 £ 2.8,
T(3S) = vy (2P) 10268.65 2.66 £ 0.57., +24.0 £5. 16y
Subtotal 1.3 4 6.0cp,
200(3P) = yY(39) 10491.40 7.6209, —11.87 15
251(3P) = yY(3S) 10512.00 9.408 —14.3%3.

2 (3P) > yT(3S) 10528.24 11.2509. +21.3790
Subtotal _4'832-‘96[1\

Total

2.6
~3.6128 46.0.,

theoretical estimate shows this to hold at the 20% level.
When again evaluating the sum rule for the first three
shells, one finds an agreement of better than 10% of the
total helicity-2 contribution, concluding again that this sum
rule is well satisfied within the theoretical and experimental
error estimates.

VI. CONCLUSION

In this work we generalized a forward light-by-light
scattering sum rule to the case of radiative transitions
between quarkonium states with defined total helicity, of
which one has JP¢ = 17~ quantum numbers. The sum rule
requires data on radiative transitions in its evaluation. We
tested this sum rule on bottomonium vector states. For the
transitions of Y(mS) — yy,,;(nP) states with m > n, for
which absolute radiative widths are known, we used those
data in the sum rule evaluation. For the transitions of
Xy (nP) = yX(mS) when n > m, for which only branch-
ing fractions have been measured, we provided theoretical
estimates within a potential model. We considered the
spread between similar approaches in the literature as an
estimate for the model error. We checked the potential
model on the known Y(2S) — yy,,(1P) and Y(3S) —
Yxps(2P) transitions and found that the theoretical esti-
mates agree with experiment to within 15%. We then tested
the helicity sum rule for the Y(1S), Y(2S), and Y(3S)
states. For all three cases we observed that, due to a
cancellation between transitions involving y;0,xp1, and
Xpo states, the sum rule is satisfied within experimental
and theoretical error estimates. For the total sum rule, a

cancellation at the 5-10% level of the dominant helicity-2
contribution was observed. Furthermore, we also observed
that for each shell (n = 1, 2, 3) the sum rule is satisfied well
within the theoretical error. Having tested this sum rule for
the low-lying bottomonium states, it may now be applied to
charmonia, where one expects relativistic corrections to
potential model results to be more important. Furthermore,
as a next step such a sum rule may be used as a tool to
investigate the nature of exotic states in the charmonium
and bottomonium spectrum, as the radiative transitions
involving exotic states containing heavy quarks are propor-
tional to the overlap of initial and final wave functions. In a
future extension to the charmonium sector, we plan to
include in our analysis first radiative transitions for exotic
states which have already been observed at BABAR, Belle,
BESIII, and LHCb—the X(3872)— yJ/yw [30,31],
X(3872) - yyp(2S) [32,33], and Y(4260) — yX(3872)
transitions [l14]—as well as anticipated systematic mea-
surements of these radiative transitions from Belle II [15].
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