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We generalize a forward light-by-light scattering sum rule to the case of heavy quarkonium radiative
transitions. We apply such a sum rule to the bottomonium states, and use available data on radiative
transitions in its evaluation. For the transitions that are not known experimentally, we provide theoretical
estimates within a potential model, and consider the spread between similar approaches in the literature as
an estimate for the model error. For the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states we observe that, due to a
cancellation between transitions involving χb0; χb1, and χb2 states, the sum rule is satisfied within
experimental and theoretical error estimates. Having tested this sum rule for the low-lying bottomonium
states, it may be used as a tool to investigate the nature of exotic states in the charmonium and bottomonium
spectrum through the corresponding radiative transitions.

DOI: 10.1103/PhysRevD.102.096019

I. INTRODUCTION

Several model-independent sum rules were derived for
the forward light-by-light scattering, and were exactly
verified at leading order in scalar and spinor QED [1–5].
Such sum rules are valid for the case when at least one
photon is real and the other is spacelike or below the first
particle production threshold, i.e., for photon virtualities
q21 ≤ s0, q22 ¼ 0, where s0 is the particle production thresh-
old. Three of these sum rules have the form of a super-
convergence relation, for which an integral over an
experimentally measurable quantity yields zero [5]. One
of these is a helicity sum rule of the form

Z
∞

s0

ds
ðs − q21Þ

ðσ2 − σ0Þq2
2
¼0 ¼ 0; ð1Þ

where σ0 and σ2 are the total helicity cross sections for the
γ�γ → X processes for total helicity 0 and 2, respectively,
where X denotes the sum over all allowed final states. Such
light-by-light sum rules have been applied within different
field theories in both perturbative and nonperturbative
settings [4–6]. Furthermore, their application to the γ�γ

production of light-quark mesons has been discussed in
Refs. [5,7], and the application to the γγ production of
charmonium states was discussed in Ref. [8]. For the
pseudoscalar, scalar, axial-vector, and tensor mesons,
where γ�γ → X data are available, these sum rules were
verified within 10–30% experimental accuracy [7].
In the present work we investigate the extension of such

sum rules, when one of the virtual photons is replaced by a
vector quarkonium state. For the conventional heavy-quark
QQ̄ bound states, radiative transitions have been measured
quite extensively in the past decades by collaborations at
the charm and B factories CLEO@CESR, BABAR@PEP-II,
Belle@KEKB, and BESIII@BEPCII, and will be studied in
the near future by Belle-II.
The study of light-by-light sum rules in the heavy

quarkonium sector may also be worthwhile in light of
the plethora of new states—so-called XYZ states—that
have been found in recent years above open heavy flavor
thresholds at all of these facilities; see, e.g., Refs. [9–11] for
some recent reviews and references therein. Such sum rule
relations have the potential to reveal how much of the
radiative decay strength from or into vector quarkonium
states results from possible exotic mesons. An example is
the Xð3872Þ state with JPC ¼ 1þþ, which sits right at the
DD̄� threshold, for which the radiative transitions γJ=ψ and
γψ 0 have been proposed as a diagnostic tool for studying
the nature of this state [12], shedding light on its hybrid
charmonium-molecular nature. Rare decays of Xð3872Þ
will be an important part of the PANDA [13] scientific
program where such studies are feasible even at the start of
data taking. Also, at BESIII the first radiative transition
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between two exotic mesons has been observed in the
process Yð4260Þ → γXð3872Þ [14], and detailed studies
of radiative transitions can be expected from Belle-II in the
near future [15].
The outline of this work is as follows. In Sec. II we

introduce the helicity sum rule that we will study in this
work for radiative transitions between quarkonium states,
of which one has JPC ¼ 1−− quantum numbers. In Sec. III
we describe the potential model adopted from Refs. [16,17]
to reproduce heavy quarkonium wave functions. In Sec. IV
we review the formalism to evaluate the leading radiative
transitions between quarkonium states with defined total
helicity, and make a comparison between available exper-
imental values and theoretical results in the literature. In
Sec. V we make use of experimental information on the
radiative transitionsϒðmSÞ → γχbJðnPÞ form > n, as well
as theoretical estimates for χbJðnPÞ → γϒðmSÞ for n ≥ m,
and evaluate the derived helicity sum rule. We provide a
quantitative discussion for the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ
states. Finally, a summary and outlook is given in Sec. VI.

II. SUM RULE FOR QUARKONIUM
RADIATIVE TRANSITIONS

In the case when one photon in Eq. (1) is replaced by a
vector quarkonium state, one needs to take into account its
nonpointlike structure. In full analogy to the original
Gerasimov-Drell-Hearn sum rule [1–3], it gives the relation
to the anomalous magnetic moment aV . Therefore, for the
states below the BB̄ threshold (m2

V < 4m2
B) it holds that

SR≡
Z

∞

0

ds
ðs −m2

VÞ2
ðImMþ−;þ− − ImMþþ;þþÞq2

2
¼0

¼ 4π2
αEM
m2

V
a2V; ð2Þ

where we expressed the helicity cross sections in Eq. (1) in
terms of the γV → γV helicity amplitudes Mλ0γλ0V ;λγλV

. The
integral in Eq. (2) extends over both bound states and open-
flavor states. In principle, all neutral intermediate quarko-
nium states with even C parity can contribute to this sum
rule; see Fig. 1. These are not only scalar JPC ¼ 0þþ,
pseudoscalar 0−þ, axial-vector 1þþ, and tensor 2þþ mes-
ons, but also quarkonium states that can carry exotic
quantum numbers, such as, e.g., 1−þ and 2−þ. In our
analysis, we limit ourselves to the states that correspond to
conventional quantum numbers and that are expected to be
dominant ones below the BB̄ threshold. Furthermore, all of
the transitions to pseudoscalar 0−þ mesons corresponding
with magnetic dipole transitions (M1) turn out to be
strongly suppressed for the bottomonium transitions, as
compared to the transitions to 0þþ; 1þþ; 2þþ;…, which
correspond predominantly to electric dipole transitions
(E1), as discussed below. For bottomonia the anomalous
magnetic moment is a small quantity and has been
estimated as [18]

aV ¼ 2αsðmbÞ
3π

: ð3Þ

Using such a value, the sum rule of Eq. (2) should yield
almost zero for bottomonia, i.e., SR ∼ 8 nb.
Unitarity allows us to relate the imaginary part of the

γV → γV helicity amplitude Mλ0γλ0V ;λγλV
to the X → γV (for

mX > mV) or V → γX (formV > mX) transition amplitudes
MΛ;λγλV ,

2 ImMλ0γλ0V ;λγλV
¼
X
X

Z
dΓXð2πÞ4δ4ðq1 þ q2 −pXÞ

×MΛ;λγλV ðq1; q2;pxÞM�
Λ;λ0γλ0V

ðq1; q2;pxÞ;
ð4Þ

where Λ ¼ λγ − λV denotes the helicity of the quarkonium
state X, with λV (λγ) being the helicity of the vector
quarkonium state V (photon). In the narrow-resonance
approximation, Eq. (4) can be written as

ImMþ−;þ− ¼
X
X

πδðs −m2
XÞjM2;þ1−1j2;

ImMþþ;þþ ¼
X
X

πδðs −m2
XÞjM0;þ1þ1j2; ð5Þ

which allows us to rewrite the sum rule (2) in terms of the
helicity-dependent radiative widths ΓΛ¼0;2 for either the
X → γV or V → γX transitions. For the X → γV transi-
tions, the helicity radiative widths are given by

Γ0ðXÞ ¼
1

4π

k
m2

X

1

2JX þ 1
jM0;þ1þ1j2;

Γ2ðXÞ ¼
1

4π

k
m2

X

1

2JX þ 1
jM2;þ1−1j2;

ΓEMðXÞ ¼
X
Λ
ΓΛðXÞ; ð6Þ

where the photon energy is given by k ¼ ðm2
X −

m2
VÞ=ð2mXÞ and ΓEMðXÞ is the unpolarized radiative width

FIG. 1. Light-by-light forward scattering involving one virtual
(V) and one on-shell (γ) photon. We associate V with a vector
quarkonium state. As a result of the optical theorem (dashed cut),
intermediate quarkonium states X with JPC ¼ 0−þ; 0þþ; 1þþ;
2þþ, ... contribute to the forward scattering.
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of the corresponding transition. The corresponding expres-
sions for the helicity radiative widths for the V → γX
transitions are obtained from expressions analogous to
Eq. (6) with the replacement X ↔ V.
Substituting Eqs. (5) and (6) into the sum rule (2) yields

the master formula that we will use in this work:

XV→γX

X

8π2
ð2JV þ 1Þm3

V

ðm2
V −m2

XÞ3
ðr2ðXÞ − r0ðXÞÞΓEMðXÞ

þ
XX→γV

X

8π2
ð2JX þ 1Þm3

X

ðm2
X −m2

VÞ3
ðr2ðXÞ − r0ðXÞÞΓEMðXÞ ≃ 0;

ð7Þ

where we neglected the term proportional to a2V as well as
the continuum contribution from the open-flavor channels.
The latter was estimated using the quark-hadron duality
argument [19] in total analogy to [5,8]. It gives a negligible
contribution in the range of ∼0.3–7.3 nb, depending on
V ¼ ϒð1SÞ;ϒð2SÞ;ϒð3SÞ. Furthermore, in Eq. (7) we
introduced the helicity ratios

rΛðXÞ ¼
ΓΛðXÞ
ΓEMðXÞ ; ð8Þ

which (as will be shown below) are universal constants in
the case of E1 transitions, and depend only on the total
angular momentum of the state X.

III. POTENTIAL MODEL

Since the relativistic effects in bottomonia are expected
to be small, the spectrum and wave functions can be
calculated with the help of the Schrödinger equation and a
conventional heavy quarkonium potential,

H0ψðr⃗Þ ¼
� ˆp⃗2

mb
þ VðrÞ

�
ψðr⃗Þ ¼ Eψðr⃗Þ;

VðrÞ ¼ V0ðrÞ þ VSDðrÞ;
VSDðrÞ ¼ VSSðrÞ þ VLSðrÞ þ VTðrÞ; ð9Þ

where the Cornell potential V0 is the sum of one-gluon
exchange (VV) and linear scalar confining (VS) parts [20],

V0ðrÞ ¼ VVðrÞ þ VSðrÞ ¼ −
4

3

αS
r
þ br; ð10Þ

while VSD is a spin-dependent part which splits into the
spin-spin (VSS), spin-orbit (VLS), and tensor (VT) poten-
tials. Up to order 1=m2

b, they are given by

VSSðrÞ ¼
32παS
9m2

b

δðr⃗Þs⃗1 · s⃗2;

VLSðrÞ ¼
1

2m2
br

�
3
dVV

dr
−
dVS

dr

�
L⃗ · S⃗;

VTðrÞ ¼
1

12m2
b

�
1

r
dVV

dr
−
d2VV

dr2

�
HT;

HT ≡ 6
ðS⃗ · r⃗Þ2
r2

− 2S⃗2; ð11Þ

where L⃗ is the relative orbital momentum operator and S⃗ ¼
s⃗1 þ s⃗2 is the total spin operator of the quark-antiquark
system. Typically, the spin-dependent terms are treated
using the leading-order perturbation theory. However, in
the present work we follow Deng et al. [16,17] and account
for them nonperturbatively. In order to do that, several
modifications are needed.
First of all, one needs to take the matrix elements over

operators in the jL; S; J; ji basis (where j is the spin
projection of J on a fixed axis),

hs⃗1 · s⃗2i ¼
1

2
SðSþ 1Þ − 3

4
;

hL⃗ · S⃗i ¼ 1

2
ðJðJ þ 1Þ − LðLþ 1Þ − SðSþ 1ÞÞ;

hHTi ¼
4hS⃗2L⃗2 − 3

2
L⃗ · S⃗ − 3ðL⃗ · S⃗Þ2i

ð2Lþ 1Þð2L − 1Þ ; ð12Þ

and regularize a 1=r3 behavior in the terms VLS and VT
when r → 0. The most obvious way to do this is to saturate
these potentials at some low-distance scale rC, i.e., set
VTðrÞ ¼ VTðrcÞ and VLCðrÞ ¼ VLVðrcÞ when r < rC [17].
Second, the physical hyperfine interaction corresponds

to a smeared δ function [21],

δðr⃗Þ →
�

σffiffiffi
π

p
�

3

e−σ
2r2 ;

where 1=σ is a radius of order ∝1=mb.
Finally, in order to effectively account for the creation of

virtual light qq̄ pairs in the Wilson loop, one considers a
screening of the confining potential at large distances
r ≫ 1=μ:

br →
b
μ
ð1 − e−μrÞ: ð13Þ

The unknown parameters were determined in Ref. [17]
by fitting the spectrum. A fairly good description of the
energy levels was achieved with the following choice of
parameters:
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αS ¼ 0.368;

mb ¼ 4.757 GeV;

b ¼ 0.206 GeV2;

σ ¼ 3.10 GeV;

μ ¼ 0.056 GeV;

rC ¼ 0.060 fm: ð14Þ

In our work we were able to reproduce the results of
Ref. [17] to an accuracy of less than 1 MeV in the energy
levels and use these results for the masses of the yet
unmeasured χb0ð3PÞ and χb2ð3PÞ states, as well as to
evaluate the radiative transition matrix elements.

IV. E1 RADIATIVE TRANSITIONS

The helicity amplitudes entering Eq. (6) can be
expressed, choosing the Coulomb gauge, as

MΛ;λγλV ≡
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2Ef

p
Mfi ð15Þ

Mfi ¼
Z

d3x⃗e−ik⃗·x⃗hψfjε⃗�λγ · J⃗ðx⃗Þjψ ii; ð16Þ

with the definition Λ≡ λγ − λV , where J⃗ðx⃗Þ is the electro-
magnetic current operator, and where we introduced the
labels i (initial) and f (final) instead of X and V to keep
further calculations independent of the direction of the
transition. Here the initial and final internal states are
labeled by jψ ii ¼ jniLiSiJijii and jψfi ¼ jnfLfSfJfjfi,
where ji, jf are the spin projections on a fixed axis. By
going to the rest frame of the decaying state, we can orient
the quantization axis along the photon momentum direction
k⃗ and identify the spin projections in terms of helicities,
e.g., for the X → γV transitions, as ji ¼ Λ, jf ¼ −λV . Note
that in the matrix element of Eq. (16) we use the covariant
normalization for the electromagnetic field, but initial and
final quarkonium states are normalized nonrelativistically.
A multipole expansion of the electromagnetic field

allows to express the matrix element of Eq. (16) as

Mfi ¼ −
ffiffiffiffiffiffi
2π

p X∞
J¼1

ð−iÞJ
Z

d3x⃗

× hψfji½
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

p
jJ−1ðkjx⃗jÞY⃗−λγ

J−1Jðx̂Þ
−

ffiffiffi
J

p
jJþ1ðkjx⃗jÞY⃗−λγ

Jþ1Jðx̂Þ� · J⃗ðx⃗Þ
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J þ 1
p

λγjJðkjx⃗jÞY⃗−λγ
JJ ðx̂Þ · J⃗ðx⃗Þjψ ii; ð17Þ

where jLðkjx⃗jÞ denote the spherical Bessel functions, and
Y⃗MJ
LJ ðx̂Þ is the vector spherical harmonic function, defined in

terms of the product of spherical harmonics YLML
ðx̂Þ with

the photon polarization vector ε⃗λ as

Y⃗MJ
LJ ðx̂Þ ¼

X
ML

X
λ

hLML; 1λjJMJiYLML
ðx̂Þε⃗λ: ð18Þ

Furthermore, in Eq. (17) the first term, proportional to the
squared bracket, corresponds to the electric multipole
transitions, whereas the last term corresponds to the
magnetic multipole transitions.
The long-wavelength limit is governed by kr ≪ 1, where

r ¼ jx⃗j is the size of the bottomonium system. Because
jLðkrÞ ∼ ðkrÞL in this limit, the helicity amplitude in
Eq. (17) will be dominated by the lowest multipoles.
Out of these multipoles, the dominant one corresponds
to the electric dipole (E1) radiative transitions, i.e., for
J ¼ 1, due to the behavior of the j0ðkrÞ term. The magnetic
dipole transition (M1) as well as higher multipoles are all
suppressed by extra powers of ðkrÞ. For the sum rule tests
for the bottomonium system considered in this paper,
where we envisage a numerical precision in the 5–10%
range, we can therefore use the nonrelativistic electromag-
netic current operator J⃗ðx⃗Þ as

J⃗ðx⃗Þ ¼ eQδ3
�
x⃗ −

r⃗
2

� ˆp⃗Q

mQ
þ eQ̄δ

3

�
x⃗þ r⃗

2

� ˆp⃗Q̄

mQ̄
; ð19Þ

where mQ ¼ mQ̄ ¼ mb, eQ ¼ −eQ̄ ¼ −1=3e is the bottom
quark charge, r⃗ is the relative vector between quark and
antiquark positions, and ˆp⃗Q and ˆp⃗Q̄ are the momentum
operators for the quark and antiquark, respectively. This
yields the E1 matrix element from Eq. (17):

ME1
fi ¼ −

ffiffiffiffiffiffi
2π

p
eQ

Z
d3r⃗ψ�

fðr⃗Þ
� ffiffiffi

2
p

j0

�
kr
2

�
Y⃗
−λγ
01 ðr̂Þ

−j2
�
kr
2

�
Y⃗
−λγ
21 ðr̂Þ

�
·

ˆp⃗
mQ=2

ψ iðr⃗Þ; ð20Þ

where ˆp⃗ ¼ ð ˆp⃗Q − ˆp⃗Q̄Þ=2 is the relative momentum oper-
ator in the quarkonium system.
Furthermore, to describe the E1 radiative transitions for

the bottomonium states with ni ¼ nf (and to a lesser extent
transitions of nearby ni and nf), the long-wavelength limit
provides a rather good approximation. As will be shown
below, these transitions give the dominant contributions to
the sum rule. In this limit the matrix element of Eq. (20) is
given by

ME1
fi ≃ −eQhψfj

ˆp⃗
mQ=2

jψ ii · ε⃗−λγ

¼ −eQ
d
dt

hψfjr⃗jψ ii · ε⃗−λγ
¼ −ieQhψfj½H0; r⃗�jψ ii · ε⃗−λγ
¼ ieQðmi −mfÞhψfjr⃗ · ε⃗−λγ jψ ii; ð21Þ
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where we used the Ehrenfest theorem in the transition from
the first to the second line. In result, the nonrelativistic
(NRel) expression for the E1 radiative transition width is
given by

ΓE1
NRelði → γfÞ ¼ e2Q

4π
k3
�
2Ef

mi

�

×
1

2Ji þ 1

X
ji

X
jf

X
λγ�1

jhψfjr⃗ · ε⃗−λγ jψ iij2;

ð22Þ

where the mass difference mi −mf was approximated by
the photon energy k.
As we will only consider transitions from Li ¼ 1 →

Lf ¼ 0 or Li ¼ 0 → Lf ¼ 1 spin-triplet states (Si ¼
Sf ¼ 1) in the following, Eq. (22) reduces to

ΓE1
NRelðχbJðniPÞ → γϒðnfSÞÞ

¼ e2Q
4π

k3
4

9

�
Ef

mi

�����
Z

∞

0

drr3RfðrÞRiðrÞ
����
2

; ð23Þ

where Ri and Rf denote the radial wave functions of initial
and final states. Note that, for the actual calculations, we
account for finite-size corrections to the nonrelativistic E1
result by the replacement [19]

hψfjrjψ ii →
6

k
hψfjj1

�
kr
2

�
jψ ii; ð24Þ

which are practically only important for the subdominant
contributions to the sum rule.
A more systematic inclusion of relativistic effects in

calculating the E1 decay widths of heavy quarkonia
requires estimating the relativistic corrections to the wave
functions, in addition to the recoil and finite-size effects.
Such early estimates of the relativistic corrections to the
heavy quarkonium E1 decay rates in an expansion up to
order v2=c2 were performed using different potential
models, including a Richardson type of potential [22], a
Coulomb-plus-linear Cornell type potential for r≳ 0.1 fm,
modified to saturate for r≲ 0.1 fm [23], and a Buchmüller-
Tye potential with a scalar confining part [24]. To compare
the first-order relativistic corrections between different
approaches, we express the relativistic (Rel) calculations
of the E1 decay widths of bottomonia as

ΓE1
Relði → γfÞ≡ ΓE1

NRelði → γfÞð1þ δÞ: ð25Þ

In Table I we compare the relativistic correction factor δ for
the χbJð1PÞ → γϒð1SÞ and χbJð2PÞ → γϒð2SÞ decays in
the three above-mentioned calculations. For the decays
shown in Table I, the bulk of the relativistic corrections
comes from the relativistic modifications to the wave

functions, and obviously depends on the choice of the
potential. For example, for the χbJð1PÞ → γϒð1SÞ decay
rates, Refs. [22,23] found corrections of order δ ∼þ10%,
whereas Ref. [24] reported corrections of order δ ∼ −20%
to −15% for the same transitions.
In view of the expected corrections in the 10–20% range

for the lower bottomonium states, our strategy in minimiz-
ing the model uncertainties in the sum rule estimates is to
use the experimental values of the E1 decay widths
wherever possible. The latter are available for the
ϒð2SÞ → γχbJð1PÞ, ϒð3SÞ → γχbJð2PÞ, and ϒð3SÞ →
γχbJð1PÞ transitions. For the χbJðnPÞ → γϒðnSÞ transi-
tions (for n ¼ 1, 2, 3), for which the absolute E1 decay
widths are not known empirically at present, we will
compare their calculated values between five different
realistic models that are fit to the spectrum. The spread
in the ΓE1 model predictions will be taken as an estimate of
the error on the E1 decay width.
To evaluate the sum rule (7), besides the unpolarized

radiative width, we also need the helicity ratios rΛ¼0;2ðXÞ.
We will work in the E1 approximation, i.e., neglect the M2
transition for χb1ðniPÞ → ϒðnfSÞ and the M2 and E3
transitions for χb2ðniPÞ → ϒðnfSÞ. In the E1 approxima-
tion, the coefficients rΛðXÞ can be expressed as ratios of
Clebsch-Gordan coefficients and do not depend on the
internal structure of the mesons. Their values are shown in
Table II.
Note that in the extreme nonrelativistic limit where the

fine structure is neglected, i.e., when the three χbJðnPÞ
states (for J ¼ 0, 1, 2) are degenerate, the corresponding
helicity radiative widths all become proportional to the
same E1 squared matrix element. As a consequence, the
helicity-0 and helicity-2 sum rule contributions of the three
χbJðnPÞ states are given by

TABLE I. First-order relativistic correction δ to the dominant
χbJðnPÞ → γϒðnSÞ (for n ¼ 1, 2) E1 radiative widths, according
to Eq. (25), in different approaches.

δ [22] [23] [24]

χb0ð1PÞ → γϒð1SÞ þ0.09 þ0.11 −0.14
χb1ð1PÞ → γϒð1SÞ þ0.06 þ0.11 −0.17
χb2ð1PÞ → γϒð1SÞ þ0.05 þ0.11 −0.20

χb0ð2PÞ → γϒð2SÞ þ0.04 þ0.32 −0.12
χb1ð2PÞ → γϒð2SÞ −0.06 þ0.06 −0.24
χb2ð2PÞ → γϒð2SÞ −0.10 −0.11 −0.35

TABLE II. Helicity ratios rΛðXÞ for Λ ¼ 0, 2, and JX ¼ 0, 1, 2.

JX r0ðXÞ r2ðXÞ
0 1 0
1 1=2 0
2 1=10 3=5
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σ0 ∼ fr0ðχb0Þ þ 3r0ðχb1Þ þ 5r0ðχb2ÞgΓE1
NRel

¼
�
1þ 3

2
þ 1

2

	
ΓE1
NRel ¼ 3ΓE1

NRel;

σ2 ∼ 5r2ðχb2ÞΓE1
NRel ¼ 3ΓE1

NRel; ð26Þ

which shows that in this extreme limit the sum rule holds
exactly for the radiative transitions originating from each
shell separately. When calculating with realistic potentials
below, where the degeneracy between the three χbJðnPÞ
states is lifted, we will nevertheless observe an approximate
cancellation between these states. However, the sum rule of
Eq. (7) in general only holds when summing over all
radiative transitions to or from a given ϒðnSÞ state.

V. RESULTS AND DISCUSSION

The central objects in the evaluation of the sum rule of
Eq. (7) are the radiative transitions of either X → Vγ or
V → γX. Several of these transitions have been studied
by the Crystal Ball, ARGUS, CLEO, BABAR, and Belle
collaborations, as summarized by the Particle Data Group
(PDG) [25]. Absolute radiative widths are known for the
transitions of ϒðmSÞ → γχbJðnPÞ states when m > n, and
are given in Tables III and IV. For the opposite transitions of
χbJðnPÞ → γϒðmSÞ when n ≥ m only branching fractions
BrðχbJðnPÞ → γϒðmSÞÞ have been measured. In the
absence of the total widths these results cannot be con-
verted into partial widths. For these transitions we will use
the results of the potential model, based on Ref. [17], and

outlined in Secs. III and IV. To account for the theory
uncertainty in the E1 radiative transitions, we include the
spread between different theory predictions as our error
estimate on this quantity. For the nonrelativistic models, we
include the predictions from Refs. [21,26,27], which
mainly differ in the form of the potential. The result of
Ref. [26] corresponds to the first-order relativistically
corrected wave function with a screened potential model.
As for the relativized quark model, we refer to Refs. [21,28]
where the spinless Salpeter equation was solved, and to
Ref. [29] which relied on the relativized quasipotential
approach.
We start by comparing the theoretical E1 radiative widths

for the ϒð2SÞ → γχbJð1PÞ and ϒð3SÞ → γχbJð2PÞ tran-
sitions with their experimental results in Tables III and IV,
respectively. We see that for nearly all of these transitions
the central values (calculated as explained in Secs. III and
IV) agree with experiment to within 15%. The spread
between the different theoretical values is also in this range,
as is illustrated in Fig. 2. We therefore feel confident that
we can estimate the unknown radiative widths
χbJðnPÞ → γϒðmSÞ, for m ¼ 1, 2, 3, with an accuracy
at the 20% level or better.
Having compared the theoretical results for the radiative

widths of the bound ϒ states with available data, we are
now in the position to quantitatively verify the sum rule (7).
In Table V we show the sum rule evaluation for the ϒð1SÞ
state. As the absolute radiative widths for the χbJðnPÞ →
γϒð1SÞ transitions are not known, we are using our model

TABLE III. Results for bottomonium radiative transitions
ϒð2SÞ → γχbJð1PÞ in the quark potential model outlined in
Secs. III and IV, compared with experimental values [25]. For ΓE1

th
we include the spread between different predictions [21,26–29] as
our error estimate.

V ¼ ϒð2SÞ mχbJ [MeV] ΓE1
th [keV] Γexp [keV]

V → γχb2ð1PÞ 9912 2.58þ0.00
−0.70 2.29� 0.30

V → γχb1ð1PÞ 9893 2.28þ0.17
−0.65 2.21� 0.31

V → γχb0ð1PÞ 9859 1.19þ0.43
−0.28 1.22� 0.23

TABLE IV. Same as in Table III for the radiative transitions
ϒð3SÞ → γχbJð2P; 1PÞ.
V ¼ ϒð3SÞ mχbJ [MeV] ΓE1

th [keV] Γexp [keV]

V → γχb2ð2PÞ 10269 3.18þ0.00
−0.88 2.66� 0.57

V → γχb1ð2PÞ 10255 2.66þ0.00
−0.75 2.56� 0.48

V → γχb0ð2PÞ 10233 1.31þ0.18
−0.28 1.20� 0.23

V → γχb2ð1PÞ 9912 0.20þ1.1
−0.10 0.20� 0.04

V → γχb1ð1PÞ 9893 0.00þ0.16
−0.00 0.02� 0.01

V → γχb0ð1PÞ 9859 0.12þ0.03
−0.11 0.06� 0.01

FIG. 2. Relative comparison between different theoretical and
experimental results for theϒð2SÞ → γχbJð1PÞ (upper panel) and
ϒð3SÞ → γχbJð2PÞ (lower panel) radiative widths. Besides the
calculation performed here, the models shown are EFG [29], GM
[28], SOEF [27], and LC [26].
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estimates to evaluate the sum rule. As theoretical uncer-
tainty in the sum rule evaluation we take the spread among
the different models discussed above, and tested on the
known radiative widths in Fig. 2. From Table V we observe
a hierarchy of the χbJðnPÞ → γϒð1SÞ contributions for
different shells n. As different bottomonia contribute to
Eq. (7) with a weighting proportional to the inverse of the
third power of the mass difference between the participat-
ing bottomonium states, one sees that the individual sum
rule contributions from the 1P states are more than an order
of magnitude larger than those from the 2P states, which
are about a factor of 4 more important than the 3P state
contributions. This observed hierarchy also shows that
states with n ≥ 4 are expected to contribute in the few-
percent range at most. One also notices that for each shell
(n ¼ 1, 2, 3) the sum rule is satisfied well within the
theoretical error. For the dominant n ¼ 1 transitions, the
sum rule result is around 5% of the dominant helicity-2
contribution from the χb2ð1PÞ state. The cancellation
between helicity-0 and helicity-2 contributions for each
shell was already discussed following Eq. (26), being exact
in the extreme nonrelativistic limit when the fine structure
is neglected. We now see that when using realistic
potentials, for which the degeneracy is lifted within each
shell, the cancellation is still quite accurate numerically. For
the total sum rule, we have an agreement at the 10% level of
the dominant helicity-2 contribution.
In Tables VI and VII we show the corresponding results

for the ϒð2SÞ and ϒð3SÞ states, respectively. For these

states we have partial experimental information available
on the radiative transitions. We are thus able to also test the
sum rule in a more model-independent way when using
only experimental data. Besides, for the transitions that are
not known experimentally, we are using the theory esti-
mates with their model error range as discussed above.
For theϒð2SÞ state, as shown in Table VI, the transitions

to the χbJð1PÞ states are all known experimentally to
around 15% precision. The sum rule is seen to hold
experimentally for this shell at the 10% level of the
dominant helicity-2 contribution ( 0.7 μb vs 9.8 μb). The
same quality of agreement is also found for the second
dominant shell in this case, n ¼ 2, based on the theoretical
estimates for the χbJð2PÞ → γϒð2SÞ transitions. When
evaluating the sum rule for the first three shells, one finds
an agreement of better than 5% of the total helicity-2
contribution, concluding again that this sum rule is well
satisfied within the theoretical and experimental error
estimates.
Similar conclusions can also be reached for the ϒð3SÞ

state, shown in Table VII. The two dominant shells
contributing in this case are n ¼ 2 and n ¼ 3, with the
ϒð3SÞ → γχbJð2PÞ decays widths being known experi-
mentally, and the χbJð3PÞ → γϒð3SÞ being estimated
theoretically. One sees for the transitions to the n ¼ 2
shell that the sum rule is seen to hold experimentally to
around 5% of the dominant helicity-2 contribution ( 1.3 μb
vs 24.0 μb). For the n ¼ 3 shell contribution, the

TABLE V. Bottomonium sum rule of Eq. (7) for the radiative
transitions involving the ϒð1SÞ state. Here mX is the mass of the
state X, Γ is the corresponding radiative decay width to theϒð1SÞ
state, and SR is the contribution of the corresponding transition to
the sum rule. The subscript “th” indicates that the theoretical
estimate is used.

Process mX [MeV] Γ [keV] SR [μb]

χb0ð1PÞ → γϒð1SÞ 9859 24.2þ5.7
−0.4th −1.6þ0.0

−0.4th
χb1ð1PÞ → γϒð1SÞ 9893 30.2þ6.4

−0.7th −2.3þ0.1
−0.5th

χb2ð1PÞ → γϒð1SÞ 9912 36.1þ4.1
−3.5th þ4.0þ0.5

−0.4th

Subtotal 0.2þ0.5
−1.2th

χb0ð2PÞ → γϒð1SÞ 10233 4.4þ2.3
−1.9th −0.04þ0.02

−0.02th
χb1ð2PÞ → γϒð1SÞ 10255 10.7þ0.0

−5.2th −0.14þ0.07
−0.00th

χb2ð2PÞ → γϒð1SÞ 10269 16.9þ0.0
−8.9th þ0.35þ0.00

−0.18th

Subtotal 0.17þ0.09
−0.21th

χb0ð3PÞ → γϒð1SÞ 10491 1.4þ0.6
−1.1th −0.01þ0.00

−0.00th
χb1ð3PÞ → γϒð1SÞ 10512 5.5þ0.0

−4.2th −0.03þ0.02
−0.00th

χb2ð3PÞ → γϒð1SÞ 10528 10.7þ0.0
−7.9th þ0.10þ0.00

−0.07th

Subtotal 0.06þ0.03
−0.08th

Total 0.4þ0.7
−1.5th

TABLE VI. Bottomonium sum rule of Eq. (7) for the radiative
transitions involving the ϒð2SÞ state. We took data for the
radiative transitions from the PDG [25] where available, indicated
by the subscript “exp.” For the transitions where the absolute
radiative widths are not known, we use the predictions based on
the model described in this work, indicated by the subscript “th.”
For the latter, we show the spread in the theoretical calculations as
an estimate of the theoretical model error.

Process mX [MeV] Γ [keV] SR [μb]

ϒð2SÞ → γχb0ð1PÞ 9859 1.22� 0.23exp −3.3� 0.6exp
ϒð2SÞ → γχb1ð1PÞ 9893 2.21� 0.31exp −5.8� 0.8exp
ϒð2SÞ → γχb2ð1PÞ 9912 2.29� 0.30exp þ9.8� 1.3exp

Subtotal 0.7� 1.6exp
χb0ð2PÞ → γϒð2SÞ 10233 13.2þ0.0

−2.3th −5.7þ1.0
−0.0th

χb1ð2PÞ → γϒð2SÞ 10255 15.3þ0.6
−2.0th −7.3þ0.9

−0.3th
χb2ð2PÞ → γϒð2SÞ 10269 16.7þ0.8

−2.5th þ11.2þ0.6
−1.7th

Subtotal −1.7þ2.5
−2.0th

χb0ð3PÞ → γϒð2SÞ 10491 2.2þ1.5
−0.5th

−0.09þ0.02
−0.06th

χb1ð3PÞ → γϒð2SÞ 10512 5.0þ0.4
−1.9th −0.27þ0.10

−0.02th
χb2ð3PÞ → γϒð2SÞ 10528 7.5þ0.0

−3.0th þ0.60þ0.00
−0.24th

Subtotal 0.25þ0.12
−0.32th

Total −0.8þ2.6
−2.3th � 1.6exp
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theoretical estimate shows this to hold at the 20% level.
When again evaluating the sum rule for the first three
shells, one finds an agreement of better than 10% of the
total helicity-2 contribution, concluding again that this sum
rule is well satisfied within the theoretical and experimental
error estimates.

VI. CONCLUSION

In this work we generalized a forward light-by-light
scattering sum rule to the case of radiative transitions
between quarkonium states with defined total helicity, of
which one has JPC ¼ 1−− quantum numbers. The sum rule
requires data on radiative transitions in its evaluation. We
tested this sum rule on bottomonium vector states. For the
transitions of ϒðmSÞ → γχbJðnPÞ states with m > n, for
which absolute radiative widths are known, we used those
data in the sum rule evaluation. For the transitions of
χbJðnPÞ → γϒðmSÞ when n ≥ m, for which only branch-
ing fractions have been measured, we provided theoretical
estimates within a potential model. We considered the
spread between similar approaches in the literature as an
estimate for the model error. We checked the potential
model on the known ϒð2SÞ → γχbJð1PÞ and ϒð3SÞ →
γχbJð2PÞ transitions and found that the theoretical esti-
mates agree with experiment to within 15%. We then tested
the helicity sum rule for the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ
states. For all three cases we observed that, due to a
cancellation between transitions involving χb0; χb1, and
χb2 states, the sum rule is satisfied within experimental
and theoretical error estimates. For the total sum rule, a

cancellation at the 5–10% level of the dominant helicity-2
contribution was observed. Furthermore, we also observed
that for each shell (n ¼ 1, 2, 3) the sum rule is satisfied well
within the theoretical error. Having tested this sum rule for
the low-lying bottomonium states, it may now be applied to
charmonia, where one expects relativistic corrections to
potential model results to be more important. Furthermore,
as a next step such a sum rule may be used as a tool to
investigate the nature of exotic states in the charmonium
and bottomonium spectrum, as the radiative transitions
involving exotic states containing heavy quarks are propor-
tional to the overlap of initial and final wave functions. In a
future extension to the charmonium sector, we plan to
include in our analysis first radiative transitions for exotic
states which have already been observed at BABAR, Belle,
BESIII, and LHCb—the Xð3872Þ → γJ=ψ [30,31],
Xð3872Þ → γψð2SÞ [32,33], and Yð4260Þ → γXð3872Þ
transitions [14]—as well as anticipated systematic mea-
surements of these radiative transitions from Belle II [15].
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TABLE VII. Same as Table VI for the bottomonium sum rule of Eq. (7) for the radiative transitions involving the
ϒð3SÞ state.
Process mX [MeV] Γ [keV] SR [μb]

ϒð3SÞ → γχb0ð1PÞ 9859.44 0.055� 0.013exp −0.0056� 0.0013exp
ϒð3SÞ → γχb1ð1PÞ 9892.78 0.018� 0.012exp −0.0011� 0.0007exp
ϒð3SÞ → γχb2ð1PÞ 9912.21 0.201� 0.043exp þ0.0142� 0.0030exp

Subtotal 0.0075� 0.0034exp
ϒð3SÞ → γχb0ð2PÞ 10232.50 1.20� 0.23exp −7.6� 1.5exp
ϒð3SÞ → γχb1ð2PÞ 10255.46 2.56� 0.48exp −15.1� 2.8exp
ϒð3SÞ → γχb2ð2PÞ 10268.65 2.66� 0.57exp þ24.0� 5.1exp

Subtotal 1.3� 6.0exp
χb0ð3PÞ → γϒð3SÞ 10491.40 7.6þ0.9

−0.7th −11.8þ1.1
−1.4th

χb1ð3PÞ → γϒð3SÞ 10512.00 9.4þ0.6
−1.0th −14.3þ1.5

−0.9th
χb2ð3PÞ → γϒð3SÞ 10528.24 11.2þ0.0

−1.9th þ21.3þ0.0
−3.6th

Subtotal −4.8þ2.6
−5.9th

Total −3.6þ2.6
−5.9th � 6.0exp
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