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We propose a conceptual distinction between hard and soft realizations of deconfinement from nuclear to
quark matter. In the high density region of hard deconfinement the repulsive hard cores of baryons overlap
each other and bulk thermodynamics is dominated by the core properties that can be experimentally
accessed in high-energy scattering experiments. We find that the equation of state estimated from a single
baryon core is fairly consistent with those empirically known from neutron star phenomenology. We next
discuss a novel concept of soft deconfinement, characterized by quantum percolation of quark wave
functions, at densities lower than the threshold for hard deconfinement. We make a brief review of quantum
percolation in the context of nuclear and quark matter and illustrate a possible scenario of quark
deconfinement at high baryon densities.
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I. INTRODUCTION

Microscopic mechanisms of the deconfinement phe-
nomenon from nuclear to quark matter are still veiled in
mystery. There are countless numbers of theoretical
attempts since the first speculation on quark matter in
Refs. [1,2], but we have not established any convincing
picture to understand deconfinement along the baryon
density axis (see Refs. [3–6] for reviews on the phase
diagram and various conceivable scenarios at high density,
see also Ref. [7] for a review on experimental efforts to
reveal the phase diagram). To gain a theoretical under-
standing, solving the first-principles theory, i.e., quantum
chromodynamics (QCD) is not necessarily a unique route
as it is severely hindered by the notorious sign problem
[8,9]. In this work we are proposing a novel viewpoint to
make a conceptual differentiation between hard and soft
realizations of deconfinement and interpret quark matter
based on a condensed-matter physics analogue.
To make our proposal clearer, it is instructive to start

with our understanding of deconfinement in a different

environment, at high temperature T and low baryon
density ρ, rather than high density and low temperature
of our current interest. The great advantage in such an
environment at high T and low ρ is that the lattice-QCD
simulations provide detailed quantitative information on
deconfinement along the T-axis as long as ρ is small. It is
known that deconfinement from hadronic matter to a quark-
gluon plasma (QGP) occurs continuously at physical quark
masses. In other words, there is no genuine phase transition
in a strict sense: physical degrees of freedom should be
smoothly connected from hadronic to QGP matter. We note
that there are several approximate and phenomenological
measures of quark deconfinement by means of fluctuations
[10,11]. Especially the quartic to quadratic ratio of the
baryon number fluctuation was first considered in this way
[12]. The lattice-QCD results including these fluctuations
gave us a guiding principle, but it is still nontrivial whether
gauge-invariant thermodynamic quantities can diagnose
contents of physical degrees of freedom. They should be
hadrons at low T and change to quarks and gluons at high
enough T, but these degrees of freedom should be con-
verted in an intermediate region without a phase transition.
The success of the hadron resonance gas (HRG) model

has been a milestone for studies on deconfinement [13–18].
Actually, in the large-Nc limit (where Nc denotes the
number of colors), mesons are noninteracting particles
and the deconfinement phenomenon of meson-dominated
matter is essentially a Hagedorn transition of mesons
[19–21], leading to blow-up behavior of thermodynamic
quantities. Later on, it has been demonstrated that the
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excluded volume effect would tame singular behavior of
thermodynamic quantities [22], which indicates that such a
transient state from hadronic matter to the QGP could be
approximated well by interacting mesons. This suggests
that interhadronic interactions are gradually taken over by
partonic degrees of freedom, i.e., quarks and gluons. Here,
let us emphasize two properties of high-T deconfinement:
(1) The fact that there is no sharp phase transition allows

for significant overlaps of the hadronic and the
partonic regimes. The duality in thermodynamics
between interacting hadrons and partons holds at
overlapping densities. The Polyakov loop is only an
approximate order parameter and there is no strict
order parameter for deconfinement in the presence of
dynamical quarks. One may think that the color
conductivity (which has been computed in weakly
coupled theories [23,24]) might play the role of an
order parameter, but its behavior is expected to be
smooth similarly to the Polyakov loop.

(2) Although there is no clear-cut separation, if thermo-
dynamic quantities are dominated by hadrons (or
partons), it would be reasonable to call such a state
the hadronic phase (or the QGP, respectively). In the
hadronic phase the color-singletness should be
imposed locally, but at high enough T more and
more multiple interactions would be involved and
gradual deconfinement can be possible effectively
even under the condition of color neutrality.

One might think that the intuitive understanding based
on the HRGmodel could apply to the high density matter as
well, but this expectation would not work straightfor-
wardly. The crucial difference is manifest especially in
the large-Nc limit: nucleons are heavy and their kinetic
energy is suppressed byNc, while their interaction energy is
enhanced as OðNcÞ [25]. Given such strong interactions, it
is far from trivial whether nucleons are really the relevant
degrees of freedom or not. In other words, we must revise
our notion of deconfinement due to interaction effects when
dense baryonic matter is concerned.
The invention of quarkyonic matter [26] has invoked a lot

of theoretical arguments along these lines. Quarkyonic
matter refers to baryonic matter whose pressure is OðNcÞ
from the enhanced interaction energy. At a microscopic level
baryonic interactions originate from Nc permutations of
color-singlet quark exchanges, and so onemaywell consider
that thisOðNcÞ pressure of baryonic matter is dominated by
quarks even in the confined phase inwhich excitations on top
of the Fermi surface should still be baryons. In this
theoretically idealized world with Nc → ∞ the picture of
quarkyonicmatter is well-defined. It is important to note that
not only two-body but all many-body color-singlet inter-
actions in quarkyonic matter are of the same order ∼OðNcÞ
according to the large-Nc counting [25].
Now, we must emphasize the importance of departing

from the idealized setup and refine the deconfinement

picture for Nc < ∞. The idea of quarkyonic matter has
posed an interesting question that was considered long ago
in nuclear physics: the short-range repulsive hard-core
interaction between nucleons can be viewed as arising
from quark exchanges exactly in the same way as in the
quarkyonic matter argument, while the long-range inter-
action via meson exchanges also involves quark-antiquark
exchange mechanisms at a microscopic level.1 So, on the
one hand, there appears to be no principal difference
between these two types of interactions. On the other
hand, as we shall point out, the separation between short-
and long-distance nuclear interactions has its correspon-
dence in a delineation of hard and soft scales in the
structure of the nucleon itself, and this is the baseline
for our subsequent discussion of “hard” and “soft”
deconfinement.
Let us visualize our Gedankenexperiment of deconfine-

ment. Nucleons at low energy can be viewed approximately
as composed of a hard core surrounded by meson (or quark-
antiquark pair) clouds as picturized in Fig. 1. Typically, the
core radius is around ∼0.5 fm, while the radius of meson
clouds is around ∼1 fm as will be substantiated further in
the next section. If the baryon density is so high that the
hard cores begin to overlap, quark matter is unambiguously
realized. We shall call this hard deconfinement of quark
matter. Once hard deconfinement occurs, we can infer
quantitative properties of such dense quark matter from
the internal nucleon structures, as we will demonstrate
for the construction of the equation of state (EoS) in the
present work.
One may also identify hard deconfinement with

“valence” quark deconfinement. The baryon number dis-
tribution in a single nucleon is localized in the core region:
the Nc valence quarks in the core add up to the net baryon
number. In this way, especially in the large-Nc limit, hard
deconfinement can be clearly defined in terms of baryon
transport: in the confined phase the baryon number trans-
port is suppressed by heavy baryon masses, while quarks
can transport the baryon number once hard deconfinement
occurs. Meson clouds, on the other hand, carry no net
baryon number. The baryon number conductivity can be

FIG. 1. Nucleons are characterized by two scales, rhard repre-
senting the hard core radius, and rsoft representing the size of the
surrounding meson clouds.

1In this context pions are special because of their role as chiral
Nambu-Goldstone bosons.
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interpreted as the heat conductivity which can therefore act
as an approximate order parameter for hard deconfinement.
We point out that hard deconfinement is based on hard-

core dominance. The condition for the hard-core domi-
nance is stronger than needed for deconfinement in a more
conventional sense as conjectured by the notion of quark
mobility. Let us consider decreasing the baryon density and
explore how the quark mobility would change. It appears
that quarks (accompanied by antiquarks) can still hop from
one nucleon to another through the exchange of mesons.
This situation can be intuitively understood as overlaps of
meson clouds as illustrated in Fig. 2. Such an interpretation
of the quark mobility is, however, too naïve. The equilib-
rium binding of nuclear matter at the saturation density is
sustained mainly by mesonic exchanges, but needless to
say, nuclear matter at the saturation density is not quark
matter yet. Quark exchanges inevitably occur together with
antiquarks to form color-singlets, and connected blocks of
meson clouds do not really signify quark liberation.
The question that we would like to address in this work is

the following: there is supposedly another mechanism of
quark deconfinement at lower density than hard deconfine-
ment, which we refer to as soft deconfinement. The
question is; in other words, when does a picture of
individual meson exchanges between nucleons lose its
meaning? If the system is in the confined hadronic phase
at low density, the exchange of color-singlet mesons
characterizes baryon interactions. The contraposition of
this statement is that, if a meson-exchange based descrip-
tion is blurred, the system should be out of the confined
phase. Interestingly, this argument suggests a possible
relationship between soft deconfinement and quarkyonic
matter. As mentioned before, quarkyonic matter has the
potential energy ∼OðNcÞ and all n-body interactions are of
the same order. This is exactly the situation expected in an
intermediate state between nuclear and quark matter in the
three-window scenario description of neutron stars [27].
Even in the real world with Nc ¼ 3 we can still adopt this
characterization of quarkyonic matter, namely, matter with
comparable strengths of all n-body interactions among
nucleons. From the microscopic point of view such n-body
forces could be mediated by multimeson exchanges as
sketched in Fig. 3. In this way we may well identify

quarkyonic matter in the Nc ¼ 3 real world as multibody
interacting matter, and we could also adopt this identifi-
cation for soft deconfinement.
The regime of soft deconfinement can thus be viewed as

clustering of nucleons connected by strong n-body inter-
actions. Large n would imply large clusters. More pre-
cisely, the clusters should be formulated in terms of wave
functions of quarks and antiquarks. Mesonic clouds are to
be interpreted as “sea” quarks which do not carry net
baryon charge. The corresponding wave functions of
quarks and antiquarks are equally distributed in space.
Such a spatial extension of wave functions is quite

analogous to those of electrons in a tight-binding model.
Here, based on an analogy with condensed matter physics,
we are proposing a novel scenario of deconfinement. In
the metallic state conduction electrons are extended in
space, but a larger concentration of impurity increases the
electric resistivity, and eventually the system under impu-
rity disturbances behaves as an insulator. Then, the electron
wave functions are localized in the insulating state, for
which the physical mechanism is known as Anderson loca-
lization. As a matter of fact, the idea of the Anderson
localization applies to the percolation problem. We empha-
size that connected blocks of meson clouds in Fig. 2 are
percolating classically, but this classical percolation does
not necessarily lead to physical percolation of wave
functions at the quantum level.
It is easily understood that the critical concentration for

the onset of percolation should be larger for quantum
percolation than for classical percolation. The interaction
via meson exchanges opens a classical path for quarks and
antiquarks to hop between nucleon sites. To build a model
in the simplest way, let us consider a lattice system as
schematically shown in Fig. 4. We simplify the interaction
clouds into bonds connecting neighboring sites and place
static nucleons (which is justified in the large-Nc limit)
on sites. The bonds should be color-singlets, and this

FIG. 2. If the interaction clouds are classically percolated, the
quark mobility seems not restricted and quarks may classically
flow over connected blocks of meson clouds.

FIG. 3. Schematic picture of matter with comparable strengths
of all n-body interactions. Extended wave functions are for
quarks and antiquarks. For larger n a picture of individual meson
exchanges would become more obscured. At short distances core
interactions are mediated by quark exchanges.
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constraint reduces the strength of the interaction from
OðN2

cÞ to OðNcÞ. Furthermore, quarks and antiquarks
are equally distributed, reflecting the nature of sea quarks
associated with mesonic clouds.
We increase the baryon density by filling sites randomly,

and then, soft deconfinement can be modeled as the site
quantum percolation. In Fig. 4 we see a bond connected
path from the left to the right edge and the classical
percolation would allow quarks and antiquarks to float.
In quantum physics, however, we should solve the quark
and antiquark wave functions and they could be more
localized than the classical path depending on the corre-
sponding eigenenergy of the Hamiltonian. This can be
easily understood from familiar examples of quantum wave
functions that can have nodes. Such a prominent distinction
between the classical and the quantum percolations is
nicely explained in Ref. [28]. Furthermore, one essential
feature of the quantum percolation is that we should
consider deconfinement of sea quarks and antiquarks
mode-by-mode with different eigenenergies. Therefore,
our proposed quantum percolation scenario leads to a
picture similar to a momentum-shell model of confinement
and deconfinement as proposed in Refs. [29,30].
This paper is organized as follows. In Sec. II B we

discuss the hard core and the soft surface in the nucleon
structures. We introduce a chiral soliton model to demon-
strate quantitative analyses. As an application we estimate
the EoS of dense quark matter inferred from hard core
regions of nucleon in Sec. III. Then, we shall proceed to
discussions on soft deconfinement in Sec. IV. In the present
paper we limit ourselves to discuss general properties of
quantum percolation and make a speculative scenario of
mode-by-mode soft deconfinement. Section V is devoted to
conclusions.

II. HARD AND SOFT SCALES IN THE NUCLEON

As a preliminary exercise we shall review the internal
structure of nucleon. We utilize a chiral soliton model to
quantify the hard-core region where the baryon density is

localized, and the soft-tail region where the meson clouds
spread.

A. Empirical facts and phenomenology

At this point it is useful to give a brief summary of what
is known about scales and sizes of the nucleon, in terms of
the empirical radii determined by various nucleon form
factors. Key quantities in this context are the proton and
neutron electromagnetic form factors and their slopes at
zero momentum transfer which define the mean squared
charge radii. A recent new electron-proton scattering
measurement [31] gives the r.m.s. proton charge radius,
hr2pi1=2 ¼ 0.831� 0.014 fm. A precision analysis of deu-
teron form factors using chiral effective field theory [32]
determines the slope of the neutron electric form factor as
hr2ni ¼ −0.106� 0.006 fm2. The isoscalar and isovector
radii of the nucleon, given by

hr2S;Vi ¼ hr2pi � hr2ni; ð1Þ

have the resulting values:

ffiffiffiffiffiffiffiffi
hr2Si

q
≈ 0.77 fm;

ffiffiffiffiffiffiffiffiffi
hr2Vi

q
≈ 0.89 fm: ð2Þ

The isovector charge radius reflects the interacting two-
pion cloud of the nucleon with its spectrum governed by the
ρ meson and a low-mass tail extending down to the ππ
threshold. The isoscalar charge radius is related to the three-
pion spectrum [33] that is strongly dominated by the ω
meson with its mass, mV ¼ 783 MeV, and its narrow
width, Γ ¼ 8.5 MeV. The isoscalar electromagnetic current
of the nucleon is well described by the vector meson
dominance phenomenology. The vector meson dominance
relates the electric form factor, GE

S ðq2Þ (with GE
S ð0Þ ¼ 1),

to a combination of FBðq2Þ (i.e., the form factor of the
baryon number distribution in the nucleon core) and the ω
field propagation (for which the baryon density acts as a
source):

GE
S ðq2Þ ¼

FBðq2Þ
1þ jq2j=m2

ω
: ð3Þ

This implies,

hr2Si ¼ hr2Bi þ
6

m2
ω

ð4Þ

with the mean squared radius,

hr2Bi ¼ −6
dFBðq2Þ
dq2

����
q2¼0

ð5Þ

of the baryon density distribution. With the empirical input
one finds,

FIG. 4. Schematic picture of the classical and the quantum
percolation between nucleons. Neighboring nucleons are linked
by interactions shown by red bonds. The path connected by
interaction bonds does not necessarily guarantee extending wave
functions at the quantum level. The square lattice is only for
graphical simplicity.
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ffiffiffiffiffiffiffiffiffi
hr2Bi

q
≈ 0.45 fm: ð6Þ

The characteristic smallness of the radius of the baryon
density distribution as compared to radius of the charge
distribution underlines the proposed delineation of hard and
soft scales in the nucleon: the valence quarks carrying
baryon number are localized in the compact ∼0.5 fm core,
while quark-antiquark pairs with no net baryon number
form the meson cloud at the nucleon surface.
The sizes and scales just outlined above refer to the

vector currents of quarks in the nucleon. Another quantity
of interest is the scalar quark density and the corresponding
scalar-isoscalar form factor denoted as σðq2Þ. Its value at
q2 ¼ 0 is identified with the pion-nucleon sigma term, σπN ,
i.e., the measure of quark mass contributions to the nucleon
mass. The dispersion relation representation of σðq2Þ
involves the two-pion spectral function related to the
s-wave isoscalar ππ scattering amplitude in combination
with pion-nucleon scattering. While details of a series
of investigations of σðq2Þ over several decades [34–37]
depend on the precise value of σπN , there is agreement that
the radius associated with the scalar-isoscalar two-pion
cloud of the nucleon is as large as hr2σi1=2 ≈ 1.0–1.2 fm.
The core-plus-cloud picture of the nucleon just discussed

and sketched in Fig. 1 actually arises as a natural conse-
quence of the spontaneously broken chiral symmetry of
QCD at low energies [38]. The compact hard core hosting
the valence quarks, and the surrounding soft surface
composed of Nambu-Goldstone bosons (the multipion
cloud), are the basic components of a variety of chiral
models of the nucleon [39], ranging from different versions
of chiral and cloudy bag models to chiral solitons. We will
use the latter for orientation in order to quantify the hard
and soft scales in the nucleon.

B. Hard core and soft surface in a
chiral soliton model

We shall now look into the baryon structure more
quantitatively. To this end we choose a chiral soliton model
with π, ρ, and ω fields. For simplicity we will not quantize
the soliton but rescale the results by a mass discrepancy as
we will explain later. According to Refs. [40,41], we can
construct baryons as the Skyrmions of π field which is
stabilized by not the Skyrme term but the coupling with ρ
and ω vector mesons as first considered in Ref. [42]
followed shortly by Ref. [43]. We introduce the chiral
fields and the vector fields as

UðrÞ ¼ eiτ·r̂FðrÞ; ð7Þ

ρi;aðrÞ ¼ ϵikar̂k
GðrÞ
gr

; ð8Þ

ωμðrÞ ¼ δμ0ωðrÞ: ð9Þ

We determine these fields to minimize the energy, i.e., these
fields should satisfy a set of equations as

F00 ¼ −
2

r
F0 þ 1

r2
½4ðGþ 1Þ sinF − sin 2F�

þ m̃2
π sinF −

3g
4π2r2

ω0sin2F; ð10Þ

G00 ¼ 2g2ðGþ 1 − cosFÞ þ 1

r2
GðGþ 1ÞðGþ 2Þ; ð11Þ

ω00 ¼ −
2

r
ω0 þ 2g2ω −

3g
4π2r2

F0sin2F: ð12Þ

In what follows below we combine r, ω, and mπ with fπ to
make them dimensionless (where the dimensionless pion
mass is specifically denoted by m̃π). In the above equations
only one mass scale independent of fπ is the pion mass
mπ , while the vector meson masses, m2

ρ ¼ m2
ω ¼ 2g2f2π ,

follow from the KSFR (Kawarabayashi-Suzuki [44] and
Fayyazuddin-Riazuddin [45]) relation and they scale with
fπ . From the KSFR relation we can fix g ¼ mω=ð

ffiffiffi
2

p
fπÞ ¼

6.0 (with
ffiffiffi
2

p
fπ ¼ 130.41 MeV and mω ¼ 783 MeV). We

solve these differential equations under the boundary
conditions:

Fð0Þ ¼ π; Fð∞Þ ¼ 0; ð13Þ

which is required to quantize the baryon number B ¼ 1.
The vector mesons should satisfy the following boundary
conditions:

Gð0Þ ¼ −2; Gð∞Þ ¼ 0;

ω0ð0Þ ¼ 0; ωð∞Þ ¼ 0: ð14Þ

We note that Fð0Þ, Gð0Þ, and ω0ð0Þ are initial conditions
and we adjust the rest of initial conditions, F0ð0Þ, G0ð0Þ,
and ωð0Þ, to realize the asymptotic behavior, Fð∞Þ, Gð∞Þ,
ωð∞Þ → 0. We show the numerical solutions for FðrÞ,
−GðrÞ > 0, and (dimensionlessly scaled) ω=fπ in Fig. 5.
With these field profiles we can immediately compute

physical quantities. In this way we can concretely dem-
onstrate the baryon structure and exemplify a hard core
surrounded by a soft tail. The baryon number density ρBðrÞ
should be localized in the hard core region and we can see
this from an explicit expression:

ρBðrÞ ¼ −
1

2π2r2
F0ðrÞsin2FðrÞ; ð15Þ

which leads to the properly quantized baryon number;
B ¼ 4π

R
drr2ρBðrÞ ¼ 1. The pion clouds can be charac-

terized by the isoscalar charge density given by

HARD-CORE DECONFINEMENT AND SOFT-SURFACE … PHYS. REV. D 102, 096017 (2020)

096017-5



ρSðrÞ ¼ −2gf2πω: ð16Þ

We show the numerical behavior of 4πr2ρBðrÞ and
4πr2ρSðrÞ in Fig. 6, where ρBðrÞ gives the information
on the core extension and ρSðrÞ has a longer tail which
behaves asymptotically as ∼e−3mπr. Using these distribu-
tions we can estimate the r.m.s. radii as

ffiffiffiffiffiffiffiffiffi
hr2Bi

q
¼

�R∞
0 drr4ρBðrÞR∞
0 drr2ρBðrÞ

�
1=2

≈ 0.49 fm; ð17Þ

ffiffiffiffiffiffiffiffi
hr2Si

q
¼

�R∞
0 drr4ρSðrÞR
∞
0 drr2ρSðrÞ

�
1=2

≈ 1.03 fm: ð18Þ

These numbers are close to those of Eqs. (2) and (6). It is
conceivable to relate

ffiffiffiffiffiffiffiffiffi
hr2Bi

p
to rhard and

ffiffiffiffiffiffiffiffi
hr2Si

p
to rsoft.

It should be noted here that ρBðrÞ represents the net
baryon distribution and thus the hard core should be
dominated by “valence” quark degrees of freedom, as
already mentioned. In contrast, the interaction clouds carry
no net baryon charge, and the interaction tail should be
dominated by “sea” quark degrees of freedom. This differ-
ence is a key ingredient to distinguish two states of
deconfinement in later discussions.

III. HARD DECONFINEMENT AND THE
EQUATION OF STATE

Here we discuss the nature of hard deconfinement and its
implication to the EoS of dense quark matter. As we already
mentioned, the quark mobility itself could be enhanced
even before the hard cores touch each other, and strictly
speaking, there is no transition of deconfinement associated
with hard deconfinement. Still, it is convenient to think of
matter in the regime of hard deconfinement.

The term hard deconfinement is used to consider a state
of matter dominated by properties of the baryon hard cores.
Let us first give a rough estimate of the relevant density for
hard deconfinement. We shall assume the closest packed
state, i.e., either the hexagonal close-packed (hcp) or the
face-centered cubic (fcc) lattice, in which the filling rate is
74%. As we read from Fig. 6 the hard core radius is around
rhard ∼ 0.5 fm. When the closest packed state occurs, the
baryon density corresponding to the filling fraction is

∼0.74 ×
�
4

3
πr3hard

�
−1

≃ 1.4 fm−3; ð19Þ

which is ∼8.3ρ0 in the unit of the normal nuclear density;
ρ0 ∼ 0.17 fm−3. We note that this density, ∼8.3ρ0, is
estimated for the closest packed state, and so this should
be taken as the limiting value below which hard deconfine-
ment should be realized. It is a sufficient condition that the
hard cores (as rigid spheres) touch each other in the static
closest packed state. In reality nucleons have Fermi motion,
and their hard cores are to be replaced by continuous
distributions as seen in Fig. 6. The critical density for hard
deconfinement as a continuous transition can thus be lower
than Eq. (19) by some factor.
Hard deconfinement provides us with an interesting

opportunity to make a quantitative assessment of bulk
matter from a single baryon. It is conceivable for thermo-
dynamic pressure of bulk matter to be approximated by
mechanical pressure in a hard core, pðxÞ ¼ hNjTiiðxÞjNi,
where jNi is a nucleon state and Tμν is the energy
momentum tensor. To separate the surface effects specific
to an isolated nucleon, we focus on the pressure near the
center of the hard core. Within the framework of the model
explained in Sec. II B, we can compute the pressure and the
energy density. Their expressions (made dimensionless
divided by f4π) are found to be

FIG. 6. Baryon and isoscalar charge density distributions as
functions of r multiplied by 4πr2.

FIG. 5. Numerical solutions of FðrÞ (solid curve),GðrÞ (dashed
curve), and ωðrÞ (dot-dashed curve) scaled dimensionlessly
with fπ .
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pðrÞ ¼ −
1

6
F02 −

sin2F
3r2

−
2

3

ðGþ 1 − cosFÞ2
r2

þ g2ω2 þ 1

6
ω02 þ G02

3g2r2
þ G2ðGþ 2Þ2

6g2r4
− m̃2

πð1 − cosFÞ; ð20Þ

ϵðrÞ ¼ 1

2
F02 þ sin2F

r2
þ 2

ðGþ 1 − cosFÞ2
r2

− g2ω2 −
1

2
ω02 þ G02

g2r2
þG2ðGþ 2Þ2

2g2r4
þ 3g
4π2r2

ωF0sin2F þ m̃2
πð1 − cosFÞ:

ð21Þ

We can check from the Virial theorem that the above
pressure satisfies;

R
drr3pðrÞ ¼ 0 as it should. We per-

formed numerical calculations and present pðrÞ and ϵðrÞ
(multiplied by 4πr2) in Fig. 7 where we rescaled the energy
density by a factor 0.1 to make it comparable to the
pressure. The characteristic feature of the pressure distri-
bution inside the nucleon is its combination of a positive
core pressure and a negative pressure at the surface [46,47],
adding up to overall zero pressure to maintain equilibrium
in the nucleon ground state. Such a pressure profile is
verified, at least qualitatively, in deeply virtual Compton
scattering measurements [48].
From these results one can infer the relation between the

mechanical pressure and energy density in the core region
of the nucleon, which may serve as a reasonable approxi-
mation for the EoS of quark matter near the closest packed
density (19). One might care about differences between
symmetric nuclear matter and neutron matter, but in such an
extremely high-density regime of our interest the physical
properties are to be dominated by the strong interaction and
the β-equilibrium condition would be not essential.
In the present framework we must be careful of the mass

scale in executing this program for the EoS construction.
As discussed in the previous work [40,41], this chiral
soliton model overestimates the baryon mass which is
given by the integration of the energy density. It is known
that this mass discrepancy would be reduced if the soliton is

quantized (i.e., rotated with spin and isospin). Here, our
main purpose is not to study the chiral soliton model itself
but to demonstrate the idea, so we shall adopt a quick
prescription: we rescale the results simply by the ratio, χ,
between the physical nucleon mass and the model output.
That is, we introduce a ratio parameter as

χ ¼ ðphysical massÞ
ðmodel massÞ ≈

940 MeV
1460 MeV

≈ 0.64: ð22Þ

Then, we should make the following rescaling:

ϵðrÞ → χϵðrÞ; pðrÞ → χ−1pðrÞ: ð23Þ

The above is the consistent rescaling in such a way not to
modify the form factors. In other words, given the nucleon
form factors Aðq2Þ and Dðq2Þ associated with the compo-
nents of the energy-momentum tensor, the energy density is
proportional to the mass, while the pressure is inversely
proportional to the mass (see a review [49] for explicit
expressions). One might have thought that the model
parameters can be readjusted to fit the baryon mass, but
this would significantly affect the charge radius. If the form
factors stay intact leaving the charge radius unchanged, the
rescaling procedure should yield physically more sensible
results than readjusting the model parameters.
Figure 8 presents our results for the equation of state,

pðϵÞ, of dense quark matter in the hard core region of the
nucleon, compared to several proposed EoSs that are
consistent with empirical properties of neutron star matter.
We label our results, the rescaled pðrÞ and ϵðrÞ, as
“Nucleon EoS” and mark different radial coordinate scales
in the nucleon core, r ¼ 0.2 fm to 0.5 fm, with crosses in
Fig. 8. The fast-dropping behavior at r≳ 0.5 fm reflects the
negative pressure at the nucleon surface, physically inter-
preted as resulting from confining forces and the inward-
bound pressure of the meson cloud.
For the neutron star based equations-of-state in Fig. 8,

χEFT refers to the EoS from the chiral effective theory [50]
and QHC18 from Ref. [27], and SLy4 from Ref. [51]. DL
shows the EoS deduced from the observation data analyses
using the deep learning [52]. The EoS data labelled by
χFRG is taken from Refs. [53,54]. We note that the EoS
bound from the deeply virtual Compton scattering on the
proton was previously discussed in a similar way in

FIG. 7. Pressure and energy density distributions as functions
of r multiplied by 4πr2. To make the comparison easier, the
energy density is rescaled by a factor 0.1.
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Ref. [55]. For r < 0.5 fm, remarkable agreement is seen
between our (free) nucleon EoS and the sets of dense
neutron star matter equations-of-state. Assuming that the
onset of hard deconfinement appears at r-scales in the range
r ¼ 0.5–0.4 fm (corresponding to baryon densities ∼4–7ρ0
according to Fig. 6), this implies that hard deconfinement
can occur at significantly lower density than the limiting
estimate (19).
Before closing this section we mention the possibility of

partial chiral symmetry restoration at high density. So far
we have been looking at single baryon properties in
vacuum, but interactions with surrounding baryons are
expected to change its properties in a high-density envi-
ronment. The simplest way to implement this effect is to
reduce the chiral order parameter, fπ, in the chiral soliton
model. Although the model has two independent mass
scales, fπ and mπ , we numerically found that the solutions
of the chiral soliton model scale with fπ in a good
approximation. This means that, if fπ decreases to f�π in
a medium, ϵðrÞ and pðrÞ change as

ϵðrÞ →
�
f�π
fπ

�
4

ϵðrÞ; pðrÞ →
�
f�π
fπ

�
2

pðrÞ: ð24Þ

In Fig. 8 these modifications shift ϵðrÞ by a factor along the
horizontal axis, while the vertical axis is given by the
logarithmic scale and the vertical shift of the nucleon EoS
curve is not by a factor but nearly by an offset. Therefore,
the EoS would be stiffer if in-medium f�π gets smaller with
increasing density. This stiffening, with f�π ∼ 0.8fπ for
example, improves the agreement between “nucleon EoS”
and the others in the high density region in Fig. 8. We note
that the ratio χ might in principle also be density dependent,
but this dependence should be approximately negligible.
This is because both the physical mass and the model mass
should be affected by partial chiral symmetry restoration
and their ratio is expected to be unchanged.

IV. SOFT DECONFINEMENT AS QUANTUM
PERCOLATION

In this section we discuss the scenario of soft decon-
finement. We begin with a brief description of classical
percolation and then proceed to a concrete model of
quantum percolation. We summarize the basic properties
of quantum percolation and translate them in the context of
quark liberation in dense baryonic matter. Most important
is the observation of energy dependent percolation which
leads to a novel picture of mode-by-mode delocalization of
quark wave functions, akin to a recently proposed momen-
tum-shell model in the quarkyonic matter picture.

A. Classical percolation

As we did previously for hard deconfinement, we shall
begin with an order estimate for the critical concentration in
percolating baryonic matter. The idea to interpret quark
deconfinement as percolating baryons is traced back to
pioneering works, see Ref. [56] for example, in which the
“hadron solid” could be considered in terms of weakly
coupled quark matter. This is a prototype of the percolation
model of quark deconfinement. A more refined picture was
discussed in Ref. [57], in which the percolating density was
estimated as ∼5.5ρ0. The Nc dependence of percolation for
tightly packed baryons was discussed in Ref. [58]. In our
language these percolation models with hard cores rather
correspond to hard deconfinement.
The characteristic scale in the soft deconfinement sce-

nario is given by a typical length scale of the mesonic
clouds rather than the hard cores. Such a picture was
also considered, for example, in Ref. [59]. The essential
argument in Ref. [59] is that the relative importance of
multibody interactions is given parametrically by n=ð2mπÞ3
where n represents the baryon density, and this approaches
∼Oð1Þ when n gets larger, which is also emphasized in the
recent review [27]. We note, however, that the relevant
length scale is not necessarily ∼1=ð2mπÞ in reality, and the
multibody interactions in the χEFT suggest that the relevant
scale should be 1.1–1.3 fm [60], which is consistent with
the r.m.s. radius of the scalar-isoscalar nucleon form factor
[35] (depending on the value of the pion-nucleon sigma
term). Also, if the relevant scale is related to the Compton
wavelength corresponding to a spectral maximum in the
scalar-isoscalar channel, it would be 1=mσ ∼ 0.4 fm. The
soft scale has the largest uncertainty in this picture and in
the present consideration we shall choose rsoft ∼ 0.7 fm for
the moment, close to the value in Eq. (2).
Now, let us concretize the percolation picture by the

following modeling. We assume the Born-Oppenheimer
approximation; (i) Baryons move at velocity pF=mB ∼
OðN−1

c Þ, much slower than quarks at velocity of Oð1Þ.
(ii) Quark wave functions solved for a given quasistatic
configuration of baryons. (iii) Physical quantities estimated
as a result of averaging over the slow baryon dynamics.
For simplicity we replace the time averaging procedure in
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FIG. 8. EoS of dense quark matter from the hard deconfinement
scenario (Nucleon EoS) and empirical EoSs from other
approaches.
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(iii) by the ensemble average. Within this framework we
shall give a quick estimate of the critical percolating density
adopting a three-dimensional model of sphere percolation.
In this model there are sites connected by networks (i.e.,
connected bonds), and each site is either occupied by a
particle (baryon) with the probability p, or empty with the
probability 1 − p. We note that the model allows one
baryon per site and this feature is consistent with the hard
core repulsion. The probability p can be easily translated
into the particle density.
The classical percolation in this three-dimensional

model is characterized by the existence of connecting
networks between different boundaries of the whole sys-
tem. The critical filling fraction pc is defined by a condition
that a cluster connecting two boundaries (e.g., x ¼ −∞ and
x ¼ þ∞) begins to be formed. It is known from Ref. [61]
that the critical filling fraction is pc ∼ 0.34 in this model
(other types of lattice models take a similar value of the
critical filling fraction). Thus, the critical density for
classical percolation would be

∼0.34 ×
�
4

3
πr3soft

�
−1

≃ 0.24 fm−3; ð25Þ

assuming rsoft ∼ 0.7 fm. We emphasize that this estimate
is just for qualitative considerations: if rsoft were slightly
changed by hand, the above number would quantitatively
differ. With this caution in mind, using Eq. (25) the critical
density for percolation would be ∼1.4ρ0. It is obviously
unlikely to expect quark matter to appear at such low
density.
We note that the meson clouds saturate the system at

p ¼ 1 which corresponds to ρ ∼ 4.2ρ0. At this density
baryons may be still nonrelativistic, provided that meson
clouds do not strongly limit the motion of hard cores.2

Toward hard deconfinement at ρ ∼ 8.3ρ0, hard core repul-
sions exclude volumes available for a baryon and lifts
up the momenta, making the baryon relativistic. This is
beyond the Born-Oppenheimer descriptions. The exclu-
ded volume thermodynamics for baryons was discussed
in Ref. [30].

B. Quantum percolation

Quantum mechanically, the availability of classical
quark paths would not guarantee percolated wave func-
tions, i.e., wave functions delocalized in one arbitrary
direction connecting two boundaries. This is because there
may be destructive interferences and nodes appearing in
quantum amplitudes. To consider such quantum effects,
let us briefly review a simple quantum percolation model

(see Ref. [62] for a comprehensive book; we refer to results
in Ref. [63]). A typical toy model is defined by the
following Hamiltonian of the tight binding model:

H ¼
X
n

jniεnhnj þ
X
n≠m

jniVnmhmj; ð26Þ

where jni denotes a state with a quark occupying site n. The
term involving Vnm describes quark hopping between sites
n and m. For the site percolation problem the simplest
choice would be Vnm ¼ −VðV > 0Þ for the nearest neigh-
bor sites and Vnm ¼ 0 otherwise. The background baryon
distribution is treated classically and specified by εn. Each
site n is occupied by a baryon with the probability p or
left empty with the probability 1 − p. The site energies of
quarks, εn, depend on whether the site n is occupied by the
baryon or not. Let us introduce a notation εon to represent
the site energy of quarks at occupied site, that is, a quark
energy as a part of placed baryon. If the site is left empty,
the site energy is εoff . In this way, εn is generated by the
following probability distribution:

PðεnÞ ¼ pδðεn − εonÞ þ ð1 − pÞδðεn − εoffÞ: ð27Þ

We set εoff → ∞ with which quarks cannot penetrate into
empty sites. We note that this limit is common in quantum
percolation problems (for large but finite εoff , see, e.g.,
Refs. [28,63]). Under this limit the classical percolation
should be a necessary condition for the quantum percola-
tion; the critical concentration for quantum percolation, pc,
must satisfy pq ≥ pc. The eigenenergyE of the Hamiltonian
for this single particle problem is to be regarded as the kinetic
energy of a (nonrelativistic) quark. The kinetic energy thus
depends on the baryon cluster size. Let us consider two
extreme examples. For a quark localized in a single baryon
the eigenenergy is εon and from the uncertainty relation this is
the high energetic case. Conversely, for completely perco-
lated baryons with p ¼ 1, the eigenstates are plane-waves
and the eigenenergies are EðkÞ ¼ εon − 2V

P
i¼x;y;z cosðkiÞ.

Here, let us choose the energy offset so that εon ¼ 6V and
EðkÞ ¼ 4V

P
i¼x;y;z sin

2ðki=2Þ. This choice is physically
reasonable for our purpose and the kinetic energy vanishes
as ki → 0, while εon ¼ 0 is a usual choice in condensed
matter literatures on quantum percolation.
Since the quantum interference is sensitive to the wave-

length, pq is a function of E=V and further depends on
geometrical site structures (i.e., square lattice, triangular
lattice, continuum spheres, etc). In Fig. 9, we illustrate
simple examples to exemplify a “localized” wave function.
For a clear demonstration purpose let us consider one-
dimensionally aligned baryons from one to three. The
numbers attached to each site are the amplitudes of the
quark wave functions. When the amplitudes of two
neighboring domains have opposite signs, there must be
a node between them. For example, with the two baryon

2For the combined effects of scalar-isoscalar (σ) boson and ω
meson clouds, each contribution is OðNcÞ, but they largely
cancel. Hence we assume that short-range repulsion sets in at the
hard scale ∼rhard.
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background (as shown in the middle of Fig. 9) the quark
wave functions have zero and one node, respectively, with
the eigenenergies 5V and 7V. Then, we would call such a
state with E ¼ 7V, which is partitioned into two, the
“localized” state. More precisely speaking, we define
localized states as a finite-amplitude domain surrounded
by vanishing amplitudes (or exponentially suppressed
amplitudes for more general continuum models). If the
whole system is just three sites and all three sites are
occupied by baryons, the quark state as shown in the left
bottom in Fig. 9 is delocalized over the whole system and
this is our definition of soft deconfinement. In the bottom of
Fig. 9 the central figure shows a “localized” state with one
node. Interestingly, this state has E ¼ εon ¼ 6V, the same
energy as the isolated single baryon case (as shown in the
top of Fig. 9). The far-right figure is the most energetic state
with two nodes. Again, we emphasize that the quantum

interference of reflected waves with boundaries is essential
to create the zeros in the wave functions.
Shown in Fig. 10 are schematic histograms of quark

eigenstates for various baryon configurations, namely, the
density of states ρðEÞ as a function of the eigenenergy E.
We note that a sum rule,

R
dEρðEÞ ¼ 1, should hold for a

single particle state. In the dilute regime at p ∼ 0 most
baryons are isolated, and eigenstates with the energy E ≃
εon ¼ 6V are dominant. The first nontrivial baryon con-
figuration is a two-baryon cluster for which the eigene-
nergy is εon � V ¼ 6V � V. Hence, the histogram is
expected to have peaks around 5V and 7V (in Fig. 10
the E > 6V region is not shown as it should be symmetric
from the reference at E ¼ 6V). As p increases (i.e., the
baryon density increases), configurations with isolated
baryons would be less populated, but subclusters of wave
function are formed within the classical baryon clusters.
Some of subclusters make contributions to E ¼ 6V and the
peak at E ¼ 6V should persist up to p ∼ 1.
As long as subclusters appear, quarks are still localized,

even though they could flow from one baryon to another.
Therefore, soft seconfinement is defined as complete
delocalization of the quark wave function. For εoff → ∞
as is the case here, it has been conjectured that localized
states should appear at E ¼ 6V until the concentration
reaches p → 1. In contrast, for εoff < ∞ that allows for
quantum tunneling, the E ¼ 6V state could be completely
delocalized at p < 1.
When the baryon density or p gets larger, the typical

spatial extension of baryon clusters and thus quark wave
functions would be larger. This means that the lowest
eigenenergy can be lowered and softer quark components
would be involved at larger baryon density. Eventually, at
the critical value of density or p, the wave function is
delocalized in an arbitrary direction. The eigenenergy
reaches E ¼ 0 when quarks are delocalized in all direc-
tions, and this is possible only for p ¼ 1, as states with
p < 1 are accompanied by vacancy of baryon clusters and
it would lift up ki from zero and thus E > 0 inevitably.
Figure 11 shows a schematic phase diagram of perco-

lation (for recent numerical studies, for example, see Fig. 3
in Ref. [64]); the critical concentration of quantum perco-
lation, pqðEÞ, as a function of the eigenenergy E and its
classical counterpart, pc, which is independent of E but
solely determined by the geometrical site-bond networks.
For a given density or p, modes with p < pqðEÞ are
localized (they may be extended over a wider range than a
single baryon, but not delocalized over the whole system),
while modes with p > pqðEÞ can be delocalized and
deconfined. As we mentioned before, the modes at E ¼
0 and 6V are somewhat special and can get delocalized only
at p → 1. The behavior of pqðEÞ in the small E region is
called the mobility edge trajectory and a relation between
pqðEÞ and ρðEÞ are known [65]. The minimum plateau of
pqðEÞ away from E ¼ 0; 6V reads pqðEÞ ≳ 1.3pc

FIG. 9. Examples of single particle states for one-dimensionally
aligned baryon configurations. The numbers attached to sites are
the quantum amplitudes. The quark eigenenergy on an isolated
baryon is εon ¼ 6V. With two-baryon connected cluster (as
shown in the middle row) a more extended wave function is
allowed and the lowest quark eigenenergy is lowered. The three-
baryon cluster (as shown in the bottom) has a state of eigenenergy
6V for which a node separates the cluster into two “localized”
wave functions.

FIG. 10. Schematic histograms of ρðEÞ for various baryon
configurations as a function of eigenenergy E. For dilute systems
with p ∼ 0, isolated single baryons are dominant and states with
E ¼ εon ¼ 6V are found the most frequently. For larger p the
baryon cluster size grows up and states at smaller E with larger
spatial extension develop.
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typically. Therefore, if we adopt Eq. (25) for the critical
density ∼1.4ρ0 in the classical percolation picture, the
quantum effects would raise it up to ≳1.8ρ0.
Here, let us summarize our considerations based on the

quantum percolation model in the context of nuclear and
quark matter. Actually, the quantum percolation model
provides us with useful insights as follows.
First, the histograms of ρðEÞ as in Fig. 10 quantify

how the quark eigenstates change as baryon clusters merge
at various baryon densities. This way of understanding
matter implicitly assumes duality between baryons and
quarks. The point is that ρðEÞ carries information on quarks
for such many-body systems of baryons. As the density
increases, the average kinetic energy of baryons should
increase, and at the same time, a larger baryon cluster
would allow for quarks with smaller average kinetic
energies. For soft deconfinement quark momentum eigen-
states would form natural bases to characterize the nature of
localization/delocalization of quarks. It is likely that the
changes in ρðEÞ occur continuously with increasing den-
sity, so that the quantum percolation takes place mode-by-
mode gradually. This is a microscopic description of the
quark-hadron continuity (apart from symmetries and gap
energies). Because ρðEÞ is positive definite, the gauge
average would not wash ρðEÞ out, and a gauge-invariant
characterization would be in principle possible.
Second, localization over baryon clusters can be driven

by quantum interference effects. This observation happens
to be consistent with a conventional view of quark confine-
ment. In QCD it has been established that the strong
coupling limit of the theory should confine quarks due to

randomness of gluons. In the present study we saw that
simple configurations as in Fig. 9 exhibit rich contents in
physics at the quantum level. There are various sources for
randomness on top of baryon configurations, and it would
deserve more investigations whether gluon fluctuations
strengthen/weaken our proposed scenario. This question
is beyond our current scope, and we just mention possibly
related preceding works, Refs. [66–68], in which chiral
symmetry breaking and Anderson localization have been
discussed.

C. Clustering and delocalization

Finally we mention a possibility of the quantum perco-
lation picture to give us a clue to understand quarkyonic
matter [26] better from the nuclear point of view.
Quarkyonic matter is well defined only in the limit of
Nc → ∞ in which gluons are unscreened due to 1=Nc
suppression of quark loops and quarks are still confined.
Then, one may encounter a conceptual question; the baryon
Fermi sea or the quark Fermi sea, which of them should be a
more suitable starting point for quantitative estimates. The
presence of confining forces via unscreened gluons would
suggest the baryonic description, but the pressure turns out to
be OðNcÞ, and one should account for quark degrees of
freedom while keeping track of the identity of baryons. For
this reason with two seemingly conflicting aspects, it has
been argued that the Fermi sea should be composed of
quarks, and any excitations on top of it should be confined.
It is indeed possible to form a color-singlet Fermi sea

by filling all colored states with quarks. The quarkyonic
matter scenario presumes Nc-particle correlations near the
Fermi surface which form a color-singlet, i.e., a baryonic
composite. Altogether, this picture leads to a model of the
momentum space shell [29,30]. However, it seems counter-
intuitive to postulate quarks at lower momenta and baryons
at larger momenta.
Now, let us discuss such a possible momentum shell

in our language of the mode-by-mode deconfinement.
The schematic illustration is shown in Fig. 12 where the
occupation function, fquarkðkÞ, for quarks with momenta k
is also sketched. In the dilute regime with ρ ≪ r−3soft, the
isolated baryons are dominant as shown in the far left
panel of Fig. 12. The quark momentum distribution is
characterized merely by quark compositions inside each
baryon. Therefore, fquarkðkÞ should have a support up to
k ∼ r−1soft ∼ ΛQCD. With increasing baryon density, as long as
baryons are isolated, fquarkðkÞ is simply piled up without
changing its shape itself.
As the baryon density increases further, baryons can be

clustered, as confirmed, for example, in numerical simu-
lations of quantum molecular dynamics [69]. This happens
at the density, ρ ∼ r−3soft, parametrically. Nucleons are still
distributed dilutely at the normal nuclear density, but
eventually, the classical and the quantum percolation of

FIG. 11. Schematic phase diagram of quantum percolation; the
quantum critical concentration pq as a function of the eigene-
nergy E and the classical critical concentration pcð< pqÞ that is
independent of E. The minimum is around E=V ∼Oð1Þ. Cusps
may appear corresponding to the molecular states. The E ¼ 0
state would be realized only when baryons occupy all the sites,
and thus pqðE → 0Þ → 1. The E ¼ 6V states are localized for
any p < 1 since single particle states get localized as long as
finite cluster boundaries remain in the system.
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baryon clusters would be realized beyond a certain critical
density of soft deconfinement, as illustrated in the middle
panel of Fig. 12. On such percolated clusters of baryons,
the quark wave functions can be delocalized with low
momentum components. Then, these delocalized states
would substantially contribute to fquarkðkÞ in small k
regions as indicated by blue area in the middle panel of
Fig. 12. Meanwhile, localized states associated with iso-
lated baryons and small-sized baryon clusters still make
nonzero contributions to fquarkðkÞ, but percolating quarks
emerge from the small-k regions as the cluster domains get
larger. It should be noted that we do not necessarily assume
inhomogeneous baryonic states. We should recall that our
picture is based on the Born-Oppenheimer approximation,
and the true ground state properties are obtained after
taking the average over baryon configurations. The uni-
formity is recovered through the averaging procedure in
the end.
At even larger densities where baryon hard cores over-

lap, ρ ∼ r−3hard, most clusters get quantum percolated, and
delocalized quark states become more populated as shown
in the far right panel of Fig. 12. In this way the quark Fermi
sea grows up and develops with low momentum states of
quarks saturated. Isolated baryon clusters would become
fewer, although they should still remain due to quantum
interference effects. Possibly, therefore, fquarkðkÞ sustains
contributions from localized (interpreted as confined)
states, as sketched by the red area in fquarkðkÞ in the far
right panel of Fig. 12. These localized states on top of the
Fermi sea may be regarded as relativistic baryons with
Nc-quarks collectively moving in the same direction. This
is in contrast to the case without the Fermi sea, where

moving directions of Nc-quarks are not aligned, leaving a
small baryon momentum. Changes from the nonrelativistic
to relativistic regime can be one of sources for stiffening in
equations of state [29,30].
The modeling of dense matter as a superposition of

localized and delocalized quark wave functions may be
relevant to physical observables involving excited modes
rather than bulk thermodynamics. Thus, the effects on the
neutron star EoS may be limited, but the transport coef-
ficients such as the heat conductivity, the baryon number
diffusion constant, the viscosity, and so on could be
sensitive to details of mode-by-mode localization/delocal-
ization. Another quantity sensitive to excitation modes is
the entropy density for which nuclear matter and quark
matter contribute in parametrically distinct ways. The soft
deconfinement contains both of these contributions as in
Fig. 12, and it may be possible to define an effective critical
density separating nuclear, soft deconfinement, and hard
deconfinement regimes, in a way similar to the pseudo-
critical temperature in finite temperature QCD. In principle
these effects can be studied from phenomenology such as
protoneutron stars and neutron star mergers. The photo
production rate may be also an interesting indicator in a
similar fashion to high-T matter coupled with the Polyakov
loop [70].

V. CONCLUSIONS

In this work we proposed two characterizations of
quark deconfinement, namely, hard deconfinement and
soft deconfinement. It is conceptually straightforward to
understand hard deconfinement along the lines of a conven-
tional picture of classical percolation of baryons. Once the

FIG. 12. Graphical representation of Soft and hard deconfinement based on the percolation picture. The occupation function, fquarkðkÞ,
for quarks with momenta k is also schematically illustrated. The red (blue) area in fquarkðkÞ indicates the contributions from localized
(delocalized) modes.
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nucleon core regions overlap, thermodynamic properties
are dominated by the energy-momentum tensor in the
nucleon core that could be available by measuring the
gravitational form factors of the nucleon in deeply virtual
Compton scattering. Based on this speculation, we quanti-
fied the internal structures of a nucleon using a chiral
soliton model, and estimated the equation-of-state of its
compact core. We found that the nucleon EoS obtained in
this way is fairly consistent with the empirical EoSs known
from neutron star phenomenology. We also discussed
implications of partial chiral symmetry restoration in dense
matter which lead to a stiffer EoS, a direction bringing the
nucleon core EoS closer to other empirical EoSs.
Soft deconfinement is a more subtle notion. Micro-

scopically, expectation values are taken over ensembles of
various quantum states. Consider various snapshots of
baryon configurations. As the baryon density increases,
the cluster size in such snapshots of baryon configurations
becomes larger. Then, eventually, quark wave functions are
more and more delocalized and the quantum percolation of
quarks occurs from smaller momentum modes of quarks.
The appropriate physical interpretation of soft deconfine-

ment should thus be based on the localization or delocal-
ization of quark states. Even if they are localized, quark

wave functions may extend over a wider range than a
single nucleon, and so there is no sharp identification of
confinement/deconfinement. Such gradual changes of the
delocalization range would give us detailed insights on the
quark-hadron continuity, and at the same time, useful
clues to resolve intuitive views of quarkyonic matter and
its field-theoretical modeling (see also Ref. [71] for a recent
attempt). In contrast to hard deconfinement for which we
presented quantitative estimates, our discussions on soft
deconfinement are limited to a qualitative level. It is a
very interesting and challenging problem to formulate a
quantitative description of ρðEÞ and reveal its gauge (in)
dependence, so that the mobility edge trajectory can be
drawn and the detailed momentum shell structures could be
clarified.
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