
 

Charged massive vector boson propagator in a constant magnetic field
in arbitrary ξ-gauge obtained using the modified Fock-Schwinger method
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We applied a recently published modified Fock-Schwinger (MFS) method to find the exact solution of
the propagator equation for a charged vector boson in the presence of a constant magnetic field directly
in the momentum space as a sum over Landau levels in arbitrary ξ-gauge. In contrast to the standard
approaches for finding propagators, MFS method demonstrated several improvements in terms of
computational complexity reduction and revealed simple internal structures in intermediate and final
expressions, thus allowing us to obtain new useful representations of the propagator.
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I. INTRODUCTION

Analysis of elementary particle loop processes in
extreme conditions, such as strong magnetic fields, requires
a knowledge of particle propagators where the field effects
are taken into account exactly.
There exist at least two naturally arising scales of strong

magnetic fields. The first one corresponds to the so-called
critical, or Schwinger value Be ¼ m2

e=e ≃ 4.4 × 1013 G,
which is the strength of the quantizing field for an electron
(hereafter, we use the Planck units: ℏ ¼ 1, c ¼ 1). The
fields of the order of Be are connected with the concept of
magnetars, i.e., neutron stars which evolution is driven
largely by magnetic fields [1]. Other examples when such
strong (and even stronger) magnetic fields could possibly
manifest themselves include the experiments at modern
colliders, e.g., with noncentral collisions of heavy ions [2],
and high-intensity electromagnetic waves generated by a
system of lasers [3–5].
The second scale is defined by the mass of the gauge

boson mW : BW ¼ m2
W=e ≃ 1.1 × 1024 G [6]. In this case,

there arises a question of applicability of the Standard
Model in these conditions, namely, the stability of electro-
weak vacuum at B → BW . As it was shown in Ref. [7], the

radiation corrections act to prevent the instability of the
electroweak vacuum in such strong fields.
A knowledge of the vector-boson propagator at the scale

of BW expanded over the Landau levels can be helpful
for investigations of processes in the early Universe. An
example of possible influence of the quantizing effect of the
strong magnetic field on the W propagator was considered
in Ref. [8]. A model was used of dynamical generation of
the primordial magnetic field in the early Universe by
ferromagnetic domain walls, see [9] and the references
cited therein. Due to this effect, the decay width of
νe → e−Wþ has a “sawtooth” profile, thus leading to the
significant decrease of neutrino mean free path at some
neutrino energies. If the lepton-antilepton asymmetry
(induced by the CP violation in the lepton sector) has
arisen before the electroweak phase transition, leading to
overabundance of neutrinos over antineutrinos in the
Universe, then the considered mechanism would provide
an overabundance of Wþ over W− inside domain walls.
The subsequent decay of the W boson by dominant quark
channels could have influenced the baryon asymmetry in
the early Universe.
Quantum field propagators can be either constructed as

time-ordered correlation functions of the field operators or
found from the propagator equation provided by the path
integral formalism. The first approach requires us to solve
the corresponding field equation in order to construct a
quantum field operator. The solutions should be normalized
and, for fields with spin, orthogonalized with respect to
some spin operator. As an intermediate computational step,
the spin parts should be multiplied and summed over.
However, these spin-related manipulations are absent in the
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second approach. The solution of the propagator equation
already contains all the spin parts summed over, and the
δ-function in the right-hand side ensures the correct
normalization. Therefore, the latter approach seems to
require less computational effort to obtain a propagator.
Additional difficulties arise when some external field,

e.g., electromagnetic, is present. In this case, one can no
longer rely on the translational invariance when applying
Fourier transform. In some scenarios (e.g., constant exter-
nal magnetic field), this could be remedied through the use
of the Fock-Schwinger (FS) proper-time method [10,11].
However, this approach leads to the expression for the
propagator as an integral over the proper-time parameter. In
order to get the expression in the momentum space as a sum
over Landau levels, which is convenient for the calculation
of scattering amplitudes, one can apply integration tech-
niques described in [12].
In this paper, we applied a recently published modified

Fock-Schwinger (MFS) approach [13] to the solution of the
massive vector boson propagator equation in the presence
of a constant magnetic field in arbitrary ξ-gauge. It allowed
us to obtain the propagator expression directly in the
momentum space as a sum over the Landau levels. The
paper is structured as follows. First, we briefly mention
known results and approaches for finding quantum field
propagators in external electromagnetic fields, and provide
a known expression for the case of W-boson, however,
obtained using the East-Coast metric convention. Next, we
discuss the main steps of the MFS method and use it to get
the expression for the massive vector boson propagator in
the same metric convention. Finally, we apply the above-
mentioned integration techniques [12] to the proper-time
representation expression of the propagator to show that, in
East-Coast metric convention, the transformed expression
coincides with the result obtained using the MFS approach.
In the end, we also derive the propagator equation in the
West-Coast metric convention (commonly used in modern
particle physics) and provide the corresponding solution.

II. KNOWN APPROACHES AND RESULTS

A history of calculations of charged particle propagators
in a magnetic field is rather long. The exact expression
for the electron propagator in a constant uniform mag-
netic field was first obtained by J. Schwinger [10] in the
Fock-Schwinger [14] proper time formalism. There exist a
number of papers where other forms of the propagator are
derived. For example, the case of a superstrong magnetic
field was analyzed in Ref. [15] where the contribution from
the ground Landau level to the electron propagator was
obtained. In Ref. [16], the propagator was transformed from
the Schwinger form [10] to a series over an integer numbern,
where the poles in the expansion terms corresponded to

Landau levels. An exact proof for the propagator [16] to be
an expansion over the Landau levels, was presented in
Ref. [17], where the electron propagator in a constant
uniform magnetic field was obtained in the same form
using the exact solutions of the Dirac equation. A misprint
in the formula for the propagator [16] was later corrected in
Refs. [18,19], but without any comments. In Ref. [19], the
expansion of the electron propagator as a power series of the
intensity of a magnetic field was presented.
The formula for the propagator of a charged scalar

particle expanded over Landau levels was obtained for the
first time in Ref. [20].
The propagator equation (and the corresponding solu-

tion) for W-boson in a constant magnetic field for an
arbitrary ξ-gauge was previously obtained in [21] (see also
[22]) using the East-Coast metric convention gμν ¼ ð−;þ;
þ;þÞ, and was given by:

Hμ
νGν

ρðX;X0Þ ¼ δμρδ
ð4ÞðX − X0Þ; ð1Þ

where

Hμ
ν ¼ ðΠΠþm2Þδμν − 2ieQFμ

ν þ
�
1

ξ
− 1

�
ΠμΠν: ð2Þ

The following standard notations are also assumed:

Xμ ¼ ðt; x; y; zÞ; Xμ ¼ gμνXν ¼ ð−t; x; y; zÞ;
∂μ ¼ ð∂t;∇Þ; ∂μ ¼ ð−∂t;∇Þ;
Dμ ¼ ∂μ þ ieQAμ; Πμ ¼ −iDμ; ΠΠ ¼ ΠνΠν:

Here, Q is a dimensionless charge of the Wð−Þ particle,
which is equal to −1, and e > 0 is the elementary charge.
Electromagnetic field configuration

Fμν ¼ ∂μAν − ∂νAμ ð3Þ
for a constant magnetic field along the z-axis is given
by F12 ¼ −F21 ¼ B, with the rest of components being
equal to 0. The solution of Eq. (1) was obtained using the
Fock–Schwinger method and, in proper-time representa-
tion, reads:

Gμ
νðX;X0Þ ¼ ϕðX;X0Þ

Z
d4p
ð2πÞ4 e

iðpðX−X0ÞÞGμ
νðpÞ; ð4Þ

with the translationally noninvariant phase factor

ϕðX;X0Þ ¼ exp

�
−
ieQ
2

X0ρFρσXσ

�
; ð5Þ

and the Fourier transform of the translationally invari-
ant part
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Gμ
νðpÞ ¼ i

Z
∞

0

ds
cosðβsÞ e

−isðp2
kþp2⊥

tanðβsÞ
βs Þ

�
e−isðm2−iεÞ½δμkν þ δμ⊥ν cosð2βsÞ −Qφμ

ν sinð2βsÞ�

þ 1

m2
ðe−isðm2−iεÞ − e−isðξm2−iεÞÞ½ðpμ −QðφpÞμ tan ðβsÞÞðpν −QðpφÞν tan ðβsÞÞ

−
iβ
2
ðQφμ

ν þ δμ⊥ν tanðβsÞÞ�
�
: ð6Þ

Here, the subscript ⊥ stands for the components
orthogonal to the direction of the magnetic field, namely,
belonging to the plane ðx; yÞ for the field directed along the
z-axis, while the subscript k stands for t and z components
in this case. We also introduced the dimensionless magnetic
field tensor φμ

ν ¼ Fμ
ν=B and an auxiliary notation β ¼ eB.

The tensor indices of four-vectors and tensors standing
inside the parentheses are contracted consecutively,
e.g., ðφpÞμ ¼ φμ

λpλ.
Alternatively, in Ref. [23], the W-boson propagator was

constructed in the Feynman gauge (ξ ¼ 1) as a time-
ordered product of the field operators that were expanded
as a series over the solutions of the corresponding wave-
equation. Finally, in Ref. [24] (see also [12]), the proper-
time parameter s in (6) was integrated out, giving the
Fourier transform that coincided (for ξ ¼ 1) with the result
of Ref. [23].
Knowledge of different representations of the charged

particle propagators in an external magnetic field is important
because it allows to consider the conditions of their appli-
cability. There exist several precedents when misunderstand-
ing of such conditions led to incorrect studies. For instance, a
calculation of the neutrino self-energy operator in a magnetic
field was performed in Refs. [25,26] by analyzing the one-
loop diagram ν → e−Wþ → ν. The authors restricted them-
selves by the contribution to the electron propagator from
the ground Landau level. As it was shown in Ref. [27], in that
case the contribution from the ground Landau level did not
dominate due to the large electronvirtuality, and contributions
from other levels were of the same order. Ignoring such a fact
led the authors [25,26] to incorrect results. Another example
of this kind was an attempt to reanalyze the probability of
the neutrinodecay ν → e−Wþ in an externalmagnetic field in
the limit of ultrahigh neutrino energies, calculated via the
imaginary part of the one-loop amplitude of the transition
ν → e−Wþ → ν. Initially, the result was obtained in
Ref. [28]. Later, the calculation was repeated in [29] where
authors insisted on another result. The third independent
calculation [30] confirmed the result of Ref. [28]. The most
likely cause of the error in Ref. [29] was that the authors used
only linear terms in the expansion of theW-boson propagator
over the electromagnetic tensor Fμν whereas the quadratic
terms were essential as well.
The modified Fock-Schwinger approach, developed in

[13] and discussed below, provides additional useful
representations of the W-boson propagator.

III. OUTLINE OF THE MODIFIED FOCK-
SCHWINGER APPROACH

Here we present a brief overview of the modified Fock-
Schwinger (MFS) approach. We are to solve the following
propagator equation:

Hð∂X; XÞGðX;X0Þ ¼ δð4ÞðX − X0Þ: ð7Þ

As in the original Fock-Schwinger (FS) method (see,
e.g., [11]) one should, first, switch to the following integral
representation:

GðX;X0Þ ¼ i
Z

∞

0

dsUðX;X0; sÞ: ð8Þ

Considering UðX;X0; sÞ as some sort of an evolution
operator satisfying a Schrödinger-type equation

i∂sUðX;X0; sÞ ¼ Hð∂X; XÞUðX;X0; sÞ ð9Þ

with the appropriate boundary conditions

UðX;X0;∞Þ ¼ 0;

UðX;X0; 0Þ ¼ δð4ÞðX − X0Þ; ð10Þ

one obtains the following result:

UðX;X0; sÞ ¼ e−is½Hð∂X;XÞ−iε�δð4ÞðX − X0Þ; ð11Þ

GðX;X0Þ ¼ H−1ð∂X; XÞδð4ÞðX − X0Þ; ð12Þ

where

H−1ð∂X; XÞ ¼ i
Z

∞

0

ds e−is½Hð∂X;XÞ−iε� ð13Þ

is the inverse of H.
The iε prescription was added in order to satisfy the

boundary conditions (10). From now on, we will skip
writing it explicitly, always assuming its presence.
Expressions, such as (11), considered in the framework

of the distribution theory, make perfect sense due to the
infinite differentiability of the δ-function. In the original FS
method, one reduces the task of finding U to a solution of a
special differential equation. The MFS approach, however,
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consists in the direct evaluation of the exponential operator
action on the δ-function. In order to do so, an appropriate
representation of the δ-function should be chosen:

δð4ÞðX − X0Þ ¼
XZ

ψλðXÞψλðX0Þ; ð14Þ

where ψλðXÞ is an eigenvector of the H operator:

Hð∂X; XÞψλðXÞ ¼ HðλÞψλðXÞ: ð15Þ
Therefore, Eq. (12) simplifies to:

GðX;X0Þ ¼ i
Z

∞

0

ds
XZ

e−isHðλÞψλðXÞψλðX0Þ: ð16Þ

Next, the exponential part is integrated out:

GðX;X0Þ ¼
XZ

ψλðXÞψλðX0Þ
HðλÞ : ð17Þ

In many cases, it is notH itself that satisfies (15), but rather
a part of it:

H ¼ H0 þH1;

H0ð∂X; XÞψλðXÞ ¼ H0ðλÞψλðXÞ: ð18Þ

If H0 commutes with H1, that indeed is the case for the
problem discussed below, the exponential operator decom-
poses into two parts and the solution takes the following
form:

GðX;X0Þ ¼ i
Z

∞

0

ds
XZ

e−isH1e−isH0ðλÞψλðXÞψλðX0Þ:

ð19Þ

Further simplifications highly depend on the exact form
of H0 and H1. However, in some cases it is possible to
transform corresponding expressions such that the depend-
ence on s is accounted through the exponential factor as
in (16), which allows for straightforward evaluation of the
integral over s.

IV. W-BOSON PROPAGATOR IN A CONSTANT
MAGNETIC FIELD (EAST-COAST METRIC)

Let us apply MFS method to the Eq. (1) using the
East-Coast metric convention ð−;þ;þ;þÞ throughout this
section. First, we notice that the left-hand side operator H
consists of three parts (H ¼ H0 þHF þHξ):

ðH0Þμν ¼ ðΠΠþm2Þδμν; ð20Þ

ðHFÞμν ¼ −2ieQFμ
ν; ð21Þ

ðHξÞμν ¼
�
1

ξ
− 1

�
ΠμΠν: ð22Þ

There exist several useful commutation relations for the
case of a constant electromagnetic field F:

½Πμ;Πν� ¼ −ieQFμν;

½Πμ;ΠΠ� ¼ −2ieQFμ
νΠν;

½ΠμΠν;ΠΠ� ¼ −2ieQðFμ
ρΠρΠν − ΠμΠρFρ

νÞ: ð23Þ

Only one of three commutators between parts of H is
vanishing (½H0; HF� ¼ 0). Two others are not equal to
zero separately, however, their sum is. This leads to
½H0 þHF;Hξ� ¼ 0, thus, allowing for a step-by-step sepa-
ration of e−isðH0þHFþHξÞ:

e−isðH0þHFþHξÞ ¼ e−isHξe−isðH0þHFÞ

¼ e−isHξe−isHFe−isH0 : ð24Þ
Let us briefly discuss the anatomy of so constructed
propagator:

GðX;X0Þ ¼ i
Z

∞

0

ds e−isHξe−isHFe−isH0δð4ÞðX − X0Þ: ð25Þ

The H0 part is the basic building block, which represents
the propagation of a scalar particle. TheHF part adds some
additional structure due to the spin properties of a vector
boson, similar to the case of electron’s propagator [13].
However, for ξ ≠ 1 there is yet another layer of complexity
due to the choice of ξ-gauge.
In order to proceed with further calculations, we choose

the Landau gauge for the electromagnetic potential Aμ:

Aμ ¼ ð0; 0; Bx; 0Þ: ð26Þ

Making a standard change of variables

η ¼
ffiffiffi
β

p �
xþQ

py

β

�
; η0 ¼

ffiffiffi
β

p �
x0 þQ

py

β

�
; ð27Þ

we consider the following δ-function representation (the
same as in [13]):

δð4ÞðX − X0Þ ¼
ffiffiffi
β

p X∞
n¼0

Z
d3pk;y
ð2πÞ3 e

iðpðX−X0ÞÞk;yVnV 0
n: ð28Þ

Here, Vn ¼ VnðηÞ [V 0
n ¼ Vnðη0Þ] is a shorthand notation

for the nth level quantum harmonic oscillator (QHO)
eigenfunction:

VnðηÞ ¼
e−η

2=2HnðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!

ffiffiffi
π

pp ; ð29Þ

where Hn is a Hermite polynomial. Accounting for the
action of the operator (20) on the eiðpxÞ-type expressions,
we obtain:
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ðH0Þμν ¼ ðp2
k þm2 − βð∂2

η − η2ÞÞδμν: ð30Þ

This form of H0, therefore, justifies the δ-function repre-
sentation (28) due to the following equation for QHO
eigenfunctions:

ð∂2
η − η2ÞVn ¼ −ð2nþ 1ÞVn: ð31Þ

This being said, we evaluate the action of the first
exponential operator in Eq. (25):

ðe−isH0Þμνδð4ÞðX − X0Þ ¼
ffiffiffi
β

p X∞
n¼0

Z
d3pk;y
ð2πÞ3 e

−is½p2
kþm2þð2nþ1Þβ�eiðpðX−X

0ÞÞk;yVnV 0
nδ

μ
ν: ð32Þ

Expanding the exponential series for the operator HF, see Eq. (21), one obtains the following expression:

½e−isHF �μν ¼ ½e−2Qβsφ�μν ¼ δμkν þ cosð2βsÞδμ⊥ν −Q sinð2βsÞφμ
ν ¼ δμkν þ

ei2βs

2
ðδμ⊥ν þ iQφμ

νÞ þ
e−i2βs

2
ðδμ⊥ν − iQφμ

νÞ: ð33Þ

Next, we shift the summation index over the Landau levels, such that the expression in the exponent stays the same for all
terms in Eq. (32). This gives the expression for the consecutive action of two exponential operators on the δ-function:

ðe−isHFe−isH0Þμνδð4ÞðX − X0Þ ¼
ffiffiffi
β

p X∞
n¼−1

Z
d3pk;y
ð2πÞ3 e

iðpðX−X0ÞÞk;ye−is½p
2
kþm2þð2nþ1Þβ�dμν; ð34Þ

dμν ¼ δμkνVnV 0
n þ

1

2
ðδμ⊥ν þ iQφμ

νÞVnþ1V 0
nþ1 þ

1

2
ðδμ⊥ν − iQφμ

νÞVn−1V 0
n−1: ð35Þ

Finally, the exponential operator for the gauge-
dependent part Hξ simplifies to:

e−isð
1
ξ−1ÞΠμΠν ¼ δμν þ Πμ e

−isð1ξ−1ÞΠΠ − 1

ΠΠ
Πν: ð36Þ

In the MFS approach, the gauge-dependent part decom-
poses into the sum of two terms. The first term represents
the choice of Feynman gauge (ξ ¼ 1) and leads to the
expression given by Eqs. (34), (35). The second one
accounts for additional complexity in the case ξ ≠ 1.
In order to evaluate the expression

�
Πμ e

−isð1ξ−1ÞΠΠ − 1

ΠΠ
Πν

�
e−isHFe−isH0δð4ÞðX − X0Þ ð37Þ

let us introduce some standard notations:

aþ ¼ 1ffiffiffi
2

p ðη − ∂ηÞ; a− ¼ 1ffiffiffi
2

p ðηþ ∂ηÞ; ð38Þ

∂η ¼
1ffiffiffi
2

p ða− − aþÞ; η ¼ 1ffiffiffi
2

p ða− þ aþÞ: ð39Þ

The following auxiliary vector

vρ ¼
�
0;

iffiffiffi
2

p ;
Qffiffiffi
2

p ; 0

�
ð40Þ

is also useful for further computations due to its properties:

vρðδρ⊥ν þ iQφρ
νÞ ¼ 0; v�ρðδρ⊥ν þ iQφρ

νÞ ¼ 2v�ν;

v�ρðδρ⊥ν − iQφρ
νÞ ¼ 0; vρðδρ⊥ν − iQφρ

νÞ ¼ 2vν: ð41Þ

Therefore, the action of

Πρ ¼ pkρ þ
ffiffiffi
β

p
vρaþ þ

ffiffiffi
β

p
v�ρa− ð42Þ

on dρν is given by:

Πρdρν ¼ pkνVnV 0
n þþ

ffiffiffiffiffiffi
nβ

p
vνVnV 0

n−1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þβ

p
v�νVnV 0

nþ1: ð43Þ

We notice that all QHO eigenfunctions that depend on η
have the same index n, thus, justifying the following
substitution in expression (37):

ΠΠ → p2
k þ ð2nþ 1Þβ: ð44Þ

Therefore, the middle part of [...] operator in Eq. (37) can
be moved away safely as a c-number, even prior to the
evaluation of Πμ action on expression (43). This results in
the following intermediate formula:
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ðe−isHÞμνδð4ÞðX − X0Þ ¼ ðe−isHξe−isHFe−isH0Þμνδð4ÞðX − X0Þ

¼
ffiffiffi
β

p X∞
n¼−1

Z
d3pk;y
ð2πÞ3

�
δμρ þ

e−isð
1
ξ−1Þ½p2

kþð2nþ1Þβ� − 1

p2
k þ ð2nþ 1Þβ ΠμΠρ

�
eiðpðX−X

0ÞÞk;ye−is½p
2
kþm2þð2nþ1Þβ�dρν:

ð45Þ

Now that the dependence on s is brought to the exponents, one could easily integrate it out:

Gμ
νðX;X0Þ ¼ i

Z
∞

0

ds ðe−isHÞμνδð4ÞðX − X0Þ

¼
ffiffiffi
β

p X∞
n¼−1

Z
d3pk;y
ð2πÞ3

eiðpðX−X
0ÞÞk;y

p2
k þm2 þ ð2nþ 1Þβ

�
dμν þ

ξ − 1

p2
k þ ξm2 þ ð2nþ 1Þβ f

μ
ν

�
; ð46Þ

fμν ≡ ΠμΠρdρν ¼ pμ
kpkνVnV 0

n

þ pμ
kð

ffiffiffiffiffiffi
βn

p
vνVnV 0

n−1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðnþ 1Þ

p
v�νVnV 0

nþ1Þ þ ð
ffiffiffiffiffiffi
βn

p
v�μVn−1V 0

n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðnþ 1Þ

p
vμVnþ1V 0

nÞpkν

þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
ðvμvνVnþ1V 0

n−1 þ v�μv�νVn−1V 0
nþ1Þ þ βðnþ 1Þvμv�νVnþ1V 0

nþ1 þ βnv�μvνVn−1V 0
n−1:

ð47Þ

Among many explicit representations of the propagator,
expression (46) is not the most useful one. It is asymmetric
with respect to x, y coordinates. In order to symmetrize it,
let us evaluate the integral over dpy. We notice that the
integrand depends on py not just through the exponential
factor but also through η and η0 in QHO functions, see
Eq. (27). Therefore, the following integrals for different n
and n0 should be calculated:

In;n0 ¼
Zþ∞

−∞
dpyeipyðy−y0ÞVnðηÞVn0 ðη0Þ: ð48Þ

First, we make a change of the integration variable:

u ¼ Q
pyffiffiffi
β

p þ
ffiffiffi
β

p
2

½ðxþ x0Þ − iQðy − y0Þ�: ð49Þ

This leads to:

In;n0 ¼
eiΦðX;X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþn0n!n0!π

p ffiffiffi
β

p
e−

β
4
ðX−X0Þ2⊥ Ĩn;n0 ; ð50Þ

where

ΦðX;X0Þ ¼ −
Qβ

2
ðxþ x0Þðy − y0Þ; ð51Þ

Ĩn;n0 ¼
Z

∞

−∞
du e−u

2

Hnðuþ aÞHn0 ðuþ bÞ; ð52Þ

with the following substitutions:

a ¼
ffiffiffi
β

p
2

½ðx − x0Þ þ iQðy − y0Þ�;

b ¼ −
ffiffiffi
β

p
2

½ðx − x0Þ − iQðy − y0Þ�: ð53Þ

The phase (51) can be shown to be in agreement with the
one in Eq. (5), see, e.g., Ref. [12]. Second, according to
Ref. [31], the Ĩn;n0 integral evaluates to:

Ĩn;n0 ¼ 2n
0 ffiffiffi

π
p

n!bn
0−nLðn0−nÞ

n ð−2abÞ

¼ 2n
0 ffiffiffi

π
p

n!bn
0−nLðn0−nÞ

n

�
β

2
Z2⊥

�
½n ≤ n0�; ð54Þ

where the functions LðmÞ
n are the Laguerre polynomials and

Zμ ¼ Xμ − X0μ. The symmetrized representation of the
propagator then reads:

Gμ
νðX;X0Þ ¼ β

2π
eiΦ

X∞
n¼−1

Z
d2pk
ð2πÞ2

eiðpZÞke−βZ2⊥=4

p2
k þm2 þ ð2nþ 1Þβ

�
d̃μν þ

ξ − 1

p2
k þ ξm2 þ ð2nþ 1Þβ f̃

μ
ν

�
; ð55Þ
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d̃μν ¼ δμkνLn þ
1

2
δμ⊥νðLnþ1 þ Ln−1Þ þ

iQ
2
φμ

νðLnþ1 − Ln−1Þ; ð56Þ

f̃μν ¼
�
pμ
kpkν −

βQ
2

ðpμ
kðZφÞν þ ðφZÞμpkνÞ þ

�
ð2nþ 1Þβ − β2

4
Z2⊥

�
δμ⊥ν þ

iQβ

2
φμ

ν

�
Ln

þ iβ
2

�
ðpμ

kZ⊥ν þ Zμ
⊥pkνÞ þ iδμ⊥ν −

Qβ

2
Z2⊥φμ

ν

�
ðLð1Þ

n þ Lð1Þ
n−1Þ − β2ðφZÞμðZφÞνLð2Þ

n−1: ð57Þ

In (55) and (56), all the Laguerre polynomials LðmÞ
n have βZ2⊥=2 as their arguments: LðmÞ

n ¼ LðmÞ
n ðβZ2⊥=2). This form of the

propagator is only a partial momentum space representation (with respect to t, z coordinates). However, the established
symmetry allows us to calculate the remaining Fourier transforms (with respect to x, y coordinates). In order to do this, one
should switch to polar coordinates in the x–y plane and make use of the integral identities [31]:

Z
2π

0

dφ e−iζ cosðφÞ�imφ ¼ ð−iÞm2πJmðζÞ; ð58Þ
Z

∞

0

dζζλ=2e−pζJλðb
ffiffiffi
ζ

p
ÞLðλÞ

n ðcζÞ ¼
�
b
2

�
λ ðp − cÞn
pλþnþ1

e−
b2
4pLðλÞ

n

�
b2c

4pc − 4p2

�
; ð59Þ

where Jm are the Bessel functions of order m. After some simple but rather cumbersome rearrangements and substitutions,
one finally arrives to the following result:

Gμ
νðX;X0Þ ¼ eiΦ

Z
d4p
ð2πÞ4 e

iðpðX−X0ÞÞGμ
νðpÞ; ð60Þ

Gμ
νðpÞ ¼

X∞
n¼−1

2ð−1Þne−p2⊥=β

p2
k þm2 þ ð2nþ 1Þβ

�
d
≈μ

ν þ
ξ − 1

p2
k þ ξm2 þ ð2nþ 1Þβ f

≈μ
ν

�
; ð61Þ

d
≈μ

ν ¼ δμkνLn −
1

2
δμ⊥νðLnþ1 þ Ln−1Þ −

iQ
2
φμ

νðLnþ1 − Ln−1Þ; ð62Þ

f
≈μ

ν¼
�
pμpν−

iQβ

2
φμ

ν

�
Ln−ðφpÞμðpφÞν

�
Lnþ4Lð2Þ

n−1

�
þ iQ

�
pμðpφÞνþðφpÞμpνþ

iQβ

2
δμ⊥ν

��
Lð1Þ
n þLð1Þ

n−1

�
: ð63Þ

In (62) and (63), all the Laguerre polynomials LðmÞ
n have 2p2⊥=β as their arguments: LðmÞ

n ¼ LðmÞ
n ð2p2⊥=β).

V. COMPARISON OF TWO WAYS OF OBTAINING THE W-BOSON PROPAGATOR

Let us transform Eq. (4) according to the recipe from [16] (see also [12,19]) and then compare the result with
Eqs. (60)–(63). The Fourier transform of the translationally invariant part of the W boson propagator (4) in the ξ-gauge is
presented in Eq. (6). Let us rewrite it in a more convenient form:

Gμ
νðpÞ ¼

i
β

Z
∞

0

dv e−iρv½δμkνF1ðvÞ þ δμ⊥νF2ðvÞ −Qφμ
νF3ðvÞ� þ

i
βm2

Z
∞

0

dvðe−iρv − e−iρξvÞ

×

��
pμpν − i

Qβ

2
φμ

ν

�
F1ðvÞ −

�
QpμðpφÞν þQðφpÞμpν þ i

β

2
δμ⊥ν

�
F4ðvÞ þ ðφpÞμðpφÞνF5ðvÞ

�
; ð64Þ

where the functions are introduced:

F1ðvÞ ¼
1

cos v
expð−iα tan vÞ; ð65Þ

F2ðvÞ ¼
cosð2vÞ
cos v

expð−iα tan vÞ; ð66Þ
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F3ðvÞ ¼
sinð2vÞ
cos v

expð−iα tan vÞ; ð67Þ

F4ðvÞ ¼
tan v
cos v

expð−iα tan vÞ ¼ i
∂
∂αF1ðvÞ; ð68Þ

F5ðvÞ ¼
tan2v
cos v

expð−iα tan vÞ ¼ −
∂2

∂α2 F1ðvÞ; ð69Þ

and v ¼ βs, ρ ¼ ðm2 þ p2
kÞ=β, ρξ ¼ ðξm2 þ p2

kÞ=β,
α ¼ p2⊥=β.
Since all the functions FjðvÞðj ¼ 1.::5Þ satisfy the rela-

tion Fjðvþ πnÞ ¼ ð−1ÞnFjðvÞ, let us divide the integra-
tion domain ð0;∞Þ into intervals ð0; πÞ; ðπ; 2πÞ;…; ðnπ;
½nþ 1�πÞ;…. Making in each segment the change of
variable, v → vþ nπ, we can write:

Ij ¼
Z

∞

0

dv expð−iρvÞFjðvÞ

¼
X∞
n¼0

ð−1Þn expð−iρnπÞAj

¼ 1

1þ expð−iρπÞAj; ð70Þ

where

Aj ¼
Z

π

0

dv expð−iρvÞFjðvÞ: ð71Þ

The details of calculations of the functions Aj can be
found in Refs. [12,24]. One finally obtains:

A1 ¼ −2ið1þ e−iρπÞ
X∞
n¼0

ln−1ðαÞ
ρþ 2n − 1

; ð72Þ

A2 ¼ −ið1þ e−iρπÞ
X∞
n¼0

lnðαÞ þ ln−2ðαÞ
ρþ 2n − 1

; ð73Þ

A3 ¼ −ð1þ e−iρπÞ
X∞
n¼0

lnðαÞ − ln−2ðαÞ
ρþ 2n − 1

; ð74Þ

A4 ¼ 2ð1þ e−iρπÞ
X∞
n¼0

l0
n−1ðαÞ

ρþ 2n − 1
; ð75Þ

A5 ¼ 2ið1þ e−iρπÞ
X∞
n¼0

l00
n−1ðαÞ

ρþ 2n − 1
; ð76Þ

where the auxiliary functions were introduced to write the
resulting expressions in a more compact form:

lnðαÞ ¼ ð−1Þne−αLnð2αÞ: ð77Þ

After substituting the integrals (72)–(76) into the expres-
sion for the propagator and performing simple manipu-
lations with Laguerre polynomials, we observe that (64)
transforms exactly to (61)–(63).

VI. W-BOSON PROPAGATOR IN A CONSTANT
MAGNETIC FIELD (WEST-COAST METRIC)

Expressions (60)—(63) were obtained in the East-Coast
metric convention gμν ¼ ð−;þ;þ;þÞ, however, in modern
particle physics literature the West-Coast metric convention
gμν ¼ ðþ;−;−;−Þ prevails. In this section, the following
standard notations are assumed:

Xμ ¼ ðt; x; y; zÞ; Xμ ¼ gμνXν ¼ ðt;−x;−y;−zÞ;
∂μ ¼ ð∂t;∇Þ; ∂μ ¼ ð∂t;−∇Þ;
Dμ ¼ ∂μ þ ieQAμ; Πμ ¼ iDμ; ΠΠ ¼ ΠνΠν:

In order to get the expression for the propagator, we, first,
consider relevant terms in the Standard Model Lagrangian:

L ¼ LW þ LWWA þ LWWAA þ Lgauge;

LW ¼ −
1

2
W†

μνWμν þm2W†
μWμ;

LWWA ¼ ieQ½FμνW†
μWν −W†

μνAμWν þWμνAμW
†
ν�;

LWWAA ¼ e2½AμW†
μAνW†

ν − AμAμW
†
νWν�;

Lgauge ¼ −
1

ξ
ðDμWμÞ†ðDνWνÞ: ð78Þ

The last term accounts for gauge fixing, in the same way
as in Ref. [21]. Relative signs in the Standard Model
Lagrangian were chosen according to the convention
adopted by the majority of modern textbooks (see
Ref. [32,33]). This implies the choice of η ¼ 1 in

Wi
μν ¼ ∂μWi

ν − ∂νWi
μ − ηgεijkW

j
μWk

ν: ð79Þ

However, in Ref. [21] this choice was made according to
Ref. [34] with η ¼ −1, thus leading to different relative
signs in the Lagrangian and the corresponding wave
equation.
Next, from the given Lagrangian we derive a field

equation for W-boson in external electromagnetic field.
Adding δ’s to the right-hand side results in the correspond-
ing propagator equation:

Hμ
νGν

ρðX;X0Þ ¼ δμνδ
4ðX − X0Þ;

Hμ
ν ¼ ðΠΠ −m2Þδμν − 2ieQFμ

ν þ
�
1

ξ
− 1

�
ΠμΠν: ð80Þ

S. N. IABLOKOV and A. V. KUZNETSOV PHYS. REV. D 102, 096015 (2020)

096015-8



Finally, using the same procedure as in Sec. IV, one obtains the expression for the propagator in the West-Coast metric
convention:

Gμ
νðX;X0Þ ¼ e−iΦ

Z
d4p
ð2πÞ4 e

−iðpðX−X0ÞÞGμ
νðpÞ; ð81Þ

Gμ
νðpÞ ¼

X∞
n¼−1

2ð−1Þne−p2⊥=β

p2
k −m2 − ð2nþ 1Þβ

�
d
≈μ

ν þ
ξ − 1

p2
k − ξm2 − ð2nþ 1Þβ f

≈μ
ν

�
; ð82Þ

d
≈μ

ν ¼ δμkνLn −
1

2
δμ⊥νðLnþ1 þ Ln−1Þ þ

iQ
2
φμ

νðLnþ1 − Ln−1Þ; ð83Þ

f
≈μ

ν ¼
�
pμpν −

iQβ

2
φμ

ν

�
Ln − ðφpÞμðpφÞνðLn þ 4Lð2Þ

n−1Þ − iQ

�
pμðpφÞν þ ðφpÞμpν þ

iQβ

2
δμ⊥ν

�
ðLð1Þ

n þ Lð1Þ
n−1Þ: ð84Þ

VII. DISCUSSION

We applied the modified Fock-Schwinger (MFS) method
to obtain the exact analytical solution for the propagator of
the W-boson in external constant magnetic field in arbitrary
ξ-gauge. Commutation relations (23) allowed us to study
the solution’s internal structure by considering the con-
secutive action of exponential operators inside the inverse
operator (25) for the propagator equation (1). Each of the
exponential operators accounted for the contribution to the
final expression due to the (i) propagation of charged
particle, (ii) its spin interaction with magnetic field, and
(iii) the choice of ξ-gauge. A particular form of δ-function
decomposition reduced the action of these exponentials
either to the eigenvalue substitution or to the use of the
QHO ladder operators. Several straightforward manipula-
tions with special functions allowed us to make a transition
from partial Fourier transform (with respect to t, y, and z
coordinates) to the full Fourier transform, however, for the
translationally invariant part of the propagator.
In contrast to the nowadays standard approaches for

finding propagators, the MFS approach demonstrates
several improvements in terms of computational complex-
ity reduction and reveals simple internal structures in
intermediate and final expressions. First of all, it does
not require the full knowledge of exact analytical solution
for the corresponding wave equation, but only a form of the
solution for its scalar part (H0). The remaining complexity

(e.g., correct normalization) is hidden inside the appropri-
ate decomposition of the δ-function, while the commuta-
tion relations (23) justify the use of the same decomposition
for the full problem (with spin and gauge-dependent parts).
Second, if compared with the original Fock–Schwinger
approach followed by application of integration techniques
discussed in Sec. IV, the MFS method requires significantly
less effort to evaluate the integral over the proper-time
parameter, therefore, leading directly to a (partial) Fourier
transform. Finally, the introduction of QHO eigenfunc-
tions and ladder operators on early computational stages
allows us to use the convenient relations from the QHO
problem.
Provided that the form of the solution for the H0 part is

known and the corresponding commutation relations for
the remaining parts of H are satisfied, MFS approach has a
potential for its efficient use in higher dimensions due to the
structure of the inverse operator, where each exponential
operator accounts for a specific layer of complexity. This
makes it promising for further development of quantum
field theory methods in external fields.
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