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In this work, we present a new set of unpolarized (H) and polarized (H̃) generalized parton distributions
(GPDs) that have been determined using a simultaneous χ2 analysis of the nucleon axial form factor (AFF)
and wide-angle Compton scattering (WACS) experimental data at the next-to-leading order (NLO)
accuracy in QCD. We explore various Ansatzes presented in the literature for GPDs, which use forward
parton distributions as input, and choose the ones most suited to our analysis. The experimental data
included in our analysis cover a wide range of the squared transverse momentum, which is
0.025 < −t < 6.46 GeV2. We show that the WACS data affect significantly the large −t behavior of
H̃. The polarized GPDs obtained from the simultaneous analysis of AFF and WACS data differ
considerably from the corresponding ones obtained by analyzing AFF and WACS separately, and have
less uncertainties. We show that the theoretical predictions obtained using our GPDs are in good agreement
with the analyzed AFF and WACS data for the entire range of −t studied. Finally, we obtain the impact
parameter dependent parton distributions, both in an unpolarized and in a transversely polarized proton,
and present them as tomography plots.
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I. INTRODUCTION

The factorization theorem has been very successful in
describing perturbative quantum chromodynamics (QCD)
processes, considering them as being composed of a soft
nonperturbative and a hard parton level (perturbatively
calculable) part. Many processes that are used to under-
stand the structure of hadrons such as the deep inelastic
scattering (DIS), deeply virtual Compton scattering
(DVCS), deeply virtual meson production (DVMP), and
wide-angle Compton scattering (WACS) can be studied
using the factorization theorem and perturbative QCD
analysis. It is well known that the nonperturbative part
can be described using the language of parton distribution
functions (PDFs) [1–11] and also polarized PDFs (PPDFs)
[12–22]. In fact, these nonperturbative objects, which are
usually extracted from the experimental data by the well-
established means of global analysis, play a crucial role in

all calculations of high-energy processes with initial
hadrons. However, the structure of the nucleon in both
the unpolarized and polarized cases can be investigated in
more detail using generalized parton distributions (GPDs)
[23–48] which are directly related to amplitudes of physical
processes in Bjorken kinematics [49,50].
GPDs display the characteristic properties to present a

three-dimensional (3D) description of hadrons since they
provide quantitative information on both the longitudinal
and transverse distributions of partons inside the nucleon,
and also their intrinsic and orbital angular momenta.
Indeed, they can be easily reduced to PDFs, form factors
(FFs), charge distributions, magnetization density, and
gravitational form factors. Generally, GPDs are functions
of three variables x, ξ and t. The variables x and t are the
fraction of momentum carried by the active quark and the
square of the momentum transfer in the process, respec-
tively, while ξ gives the longitudinal momentum transfer.
It was recognized from the beginning that the exclusive
scattering processes like DVCS [51–56] or DVMP [57–60]
are an excellent way to probe GPDs. However, because of
the poorly known wave functions of the produced mesons
as well as the sizable higher twist contributions, additional
channels are needed to get further information on GPDs. It
is well known now that other exclusive processes such as
the timelike Compton scattering [61–63], ρ-meson photo-
production [64–66], heavy vector meson production [67],
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double deeply virtual Compton scattering [68,69], exclu-
sive pion- or photon-induced lepton pair production
[70,71], two particles [72,73] and neutrino induced exclu-
sive reactions [74–76], as well as a few other channels
[77,78], can also provide information on GPDs.
Although the first Mellin moments of GPDs in special

cases can be determined from the lattice QCD calculations
[33,34] and also there are early studies of GPDs using
various dynamical models of the nucleon structure [38], the
well-established method to extract GPDs is analyzing the
related experimental data through a QCD fit [37], same as
for the PDFs and PPDFs. To this end, there have been
various models [79–84] and parametrizations [85–87] for
GPDs during the last two decades. In the early analyses of
GPDs, the experimental data from DVCS and DVMP were
mostly used. In fact, there are valuable data provided by the
H1, ZEUS and HERMES Collaborations at DESY, in
addition to some measurements by the CLAS and Hall
A Collaborations at JLab which cover a wide kinematical
region [37]. Note that the HERMES, CLAS and Hall A
measurements were performed with a fixed proton target.
Fortunately, some forthcoming experiments are also being
done at upgraded the JLab [88,89], COMPASS [90–92],
and J-PARC [71,93] which can provide further constraints
on GPDs. Moreover, there are planned experiments at the
electron ion collider (EIC) [78] and large hadron electron
collider (LHeC) [94], where the measurements of exclusive
processes are among the main goals of their experimental
programs.
As mentioned, FFs, whether the electric and magnetic

form factors or those associated with the energy-momen-
tum tensor, can be obtained from GPDs [95–97] through
the so-called Ji’s sum rule [52,98]. In this regard, the
nucleon axial form factor (AFF), that describe spin content
of the nucleon, is also related to polarized GPDs. There are
various approaches to extract AFF including lattice QCD
calculations and neural networks (see Ref. [47] and
references therein). It can also be obtained from the
eigenstates of a light-front effective Hamiltonian in the
leading Fock representation [99]. One can refer to
Refs. [100,101] to get a review of AFF experimental data.
In our previous work [47], we used a practical Ansatz
suggested by Diehl, Feldmann, Jakob, and Kroll (DFJK)
[95–97], which relates the predetermined (polarized) PDFs
as input to (polarized) GPDs, to extract the polarized GPDs
for quarks (H̃) through a standard χ2 analysis of the
nucleon AFF data. We showed that some parameters of
the model should be readjusted to obtain better consistency
between the theoretical predictions and experimental data.
In this work, we are going to continue our studies in this
area by determining GPDs using a simultaneous analysis of
AFF and WACS data to investigate the impact of latter one
on the extracted GPDs compared to those obtained by
analyzing AFF data solely. Actually, our motivation comes
from the recent Kroll’s work [39], where it has been shown

that the WACS data can be used to constrain the large −t
behavior of H̃.
In Fig. 1, we have compared the results obtained from

the WACS data [39] (dashed and dashed-dotted curves) for
up valence H̃u

v (up panel) and down valence H̃d
v (bottom

panel) polarized GPDs at t ¼ −4 GeV2 with our previous
work [47] (HGG19) that included only the AFF data (solid
curve). As can be seen, there are considerable differences
between two approaches. To be more precise, for both
valence polarized GPDs, Kroll’s results are more inclined
to larger x so that they peaked at x ∼ 0.5, while HGG19
results peaked at x ∼ 0.1. This exactly indicates the impact
of WACS data on polarized GPDs H̃, especially at larger
values of −t. Another point which should be noted is that
for the case of H̃d

v, our previous result has a greater
magnitude compared to Kroll’s result, while both of them
have almost same magnitude for the case of H̃u

v. As we
shall explain in details later, we showed in our previous
work [47] that the final results are not very sensitive to the
choice of PPDFs set used, i.e., DSSV08 [12] and
NNPDFpol1.1 [16]. Therefore, the different PPDFs used

FIG. 1. A comparison between the Kroll’s results [39] (dashed
and dashed-dotted curves) for H̃u

v (up panel) and H̃d
v (bottom

panel) valence GPDs at t ¼ −4 GeV2, and corresponding ones
from HGG19 analysis [47] (solid curve).
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in these two works (Kroll used DSSV08 [12], but we used
NNPDFpol1.1 [16]) cannot lead to such differences, and
the resolution must lie elsewhere. As we shall show,
performing a simultaneous analysis of AFF and WACS
data leads to an improved polarized GPDs H̃ which differs
from the corresponding ones obtained by analyzing AFF
and WACS data separately.
This paper is organized as follows. In Sec. II, we present

the theoretical framework we use in this work to analyze
the AFF and WACS data and extract GPDs. To this end,
following a brief introduction about GPDs, we first review
the physics of the theoretical calculation of the nucleon
AFF and WACS cross section. Then, we introduce the
DFJK model which is used for calculating (polarized)
GPDs using predetermined (polarized) PDFs as input. We
discuss also the impact parameter dependent PDFs and
nucleon helicity flip distribution E. In Sec. III, we specify
the experimental data included in our analysis and describe
our procedure of data selection. Section IV is devoted to
presenting the results obtained using various scenarios for
theoretical calculation of WACS cross section and also
changing input PDFs. The extracted GPDs from different
analyses are compared to final GPDs corresponding to the
analysis with the lowest value of χ2. Some comparisons

between the theoretical predictions obtained using the final
GPDs and the experimental data included in the analysis
are also presented. Finally, by calculating the distribution in
the transverse plane of valence quarks, both in an unpo-
larized and in a transversely polarized proton, we present
our results for “proton tomography.” We summarize our
results and conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

As pointed out before, GPDs are nonperturbative objects
describing soft dynamics inside hadrons. They are in a
sense generalization of both FFs and PDFs. Although
GPDs cannot be calculated from perturbative QCD, they
can be extracted using the standard χ2 analysis of the
related experimental data, thanks to the factorization
theorem. In this section, we are going to review some of
their features together with their relation to the nucleon
AFF, WACS cross section, and Impact parameter depen-
dent PDFs. We also we discuss various Ansatzes for GPDs
suggested by DFJK [95–97]. Here, just like our previous
analysis [47], we use the convention of Ji [98] for GPDs, in
which H, E, H̃ and Ẽ are defined as [24,28]:
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where z ¼ ðzþ; z⊥; z−Þ. As it is evident from Eq. (1), GPDs
depend on three kinematical variables, x, ξ, and t. The first
one is the well-known Bjorken scaling variable x ¼ Q2

2p·q,

with photon virtuality Q2, which can be interpreted as the
average of momentum fractions of active quarks. The other
longitudinal variable ξ ¼ pþ−p0þ

pþþp0þ, which is called ‘skew-
ness’, does not appear in PDFs. The last argument is
t ¼ ðp0 − pÞ2 ¼ Δ2, i.e., the squared of the momentum
transferred to the proton target.
We can express valence GPDs Hq

v of flavor q in terms of
quark GPDs Hq as

Hq
vðx; tÞ ¼ Hqðx; ξ ¼ 0; tÞ þHqð−x; ξ ¼ 0; tÞ; ð2Þ

with Hqð−x; ξ ¼ 0; tÞ ¼ −Hq̄ðx; ξ ¼ 0; tÞ. An analogous
relation holds for the valence GPDs Eq

v. The situation is
somewhat different for the case of valence polarized GPDs
H̃q

v so that we have

H̃q
vðx; tÞ ¼ H̃qðx; ξ ¼ 0; tÞ − H̃qð−x; ξ ¼ 0; tÞ; ð3Þ

with H̃qð−x; ξ ¼ 0; tÞ ¼ H̃q̄ðx; ξ ¼ 0; tÞ.
Since we are going to analyze the nucleon AFF and

WACS data to put constraints on GPDs, it is worthwhile to
review the relevant theoretical framework. To this aim, we
will first describe the important sum rules which relate
GPDs and FFs in Sec. II A, with more emphasis on the
nucleon AFF. The formulas and relations needed for
theoretical calculations of the WACS cross section are
given in Sec. II B. In Sec. II C, we introduce our phenom-
enological framework for modeling GPDs and performing
a global analysis of AFF and WACS data. Finally, we
introduce the impact parameter dependent PDFs and
nucleon helicity flip distribution E that we use for proton
tomography in Sec. II D.

A. Axial form factor

There are a certain number of sum rules that relate
nucleon FFs to GPDs by exploiting the fact that they are
different moments of GPDs [97]. The Dirac and Pauli
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form factors, F1 and F2, for example, can be written as
follows

Fp
i ¼ euFu

i þ edFd
i þ esFs

i ;

Fn
i ¼ euFd

i þ edFu
i þ esFs

i ; ð4Þ

where Fq
i for i ¼ 1ð2Þ is the contribution of quark flavor q

to the Dirac (Pauli) FF of the proton (Fp) or neutron (Fn),
respectively. Note that eq is the charge of the quark in
units of the positron charge. On the other hand, we can
write the flavor form factors Fq

i in terms of the proton
valence GPDs Hv and Ev for unpolarized quarks of flavor
q as

Fq
1ðtÞ ¼

Z
1

0

dxHq
vðx; tÞ;

Fq
2ðtÞ ¼

Z
1

0

dxEq
vðx; tÞ: ð5Þ

It is worth noting that the Lorentz invariance makes the
result independent of skewness ξ, so we choose zero-
skewness GPDs and omit this variable from now on.
In analogy with the Dirac and Pauli FFs, the nucleon

AFF can be expressed in terms of polarized GPDs as [97]

GAðtÞ ¼
Z

1

0

dx½H̃u
vðx; tÞ − H̃d

vðx; tÞ�

þ 2

Z
1

0

dx½H̃ūðx; tÞ − H̃d̄ðx; tÞ�: ð6Þ

As it can be readily seen from Eq. (6), contrary to Pauli and
Dirac FFs, the AFF involves some contributions from the
sea quarks. We examined these contributions in our pre-
vious study [47] and found that they are not significant
compared to the valence contributions, but not negligible. It
is worthmentioning that, from the conceptual point of view,R
1
0 dx H̃qðx; tÞ is the intrinsic spin contribution of quark
q to the spin of proton. Some other moments of GPDs
can be related to the matrix elements of energy-momentum
tensor.

B. Wide-angle Compton scattering

As mentioned in the Introduction, we are going to study
the impact of WACS data on the behavior of GPDs,
especially at larger values of −t, by analyzing them
simultaneously with AFF data. To this end, in this sub-
section we briefly review the relations and formulae needed
to calculate the WACS amplitudes and cross section. If one
considers a regime in which the Mandelstam variables s,
−t, and −u are large compared to the QCD scale parameter
Λ, the (unpolarized) WACS cross section can be written
as [102],

dσ
dt

¼ 1

32πðs −m2Þ2 fjΦ1j2 þ jΦ2j2 þ 2jΦ3j2 þ 2jΦ4j2

þjΦ5j2 þ jΦ6j2g; ð7Þ

where Φ1;…;Φ6 represent the six independent Φμ0ν0;μν
which denote the center-of-mass-system (c.m.s.) helicity
amplitudes. In fact, 16 (24) amplitudes contribute to the
Compton scattering theoretically. However, the parity and
time-reversal invariance lead to the following relations
among them which reduce the number of independent
amplitudes to six [39],

Φ−μ0−ν0;−μ−ν ¼ Φμν;μ0ν0 ¼ ð−1Þμ−ν−μ0þνΦμ0ν0;μν: ð8Þ

Below, we show the convention that we have used [102],

Φ1 ¼Φþþ;þþ; Φ2¼Φ−−;þþ; Φ3 ¼Φ−þ;þþ;

Φ4 ¼Φþ−;þþ; Φ5 ¼Φ−þ;−þ; Φ6 ¼Φ−þ;þ−: ð9Þ

It can be shown that, in the handbag approach, the
derivation of the Compton amplitudes is inherently simpler
using the light cone helicity basis. On the other hand, the
ordinary photon-proton c.m.s. helicity basis is more con-
venient for comparison with experimental and other theo-
retical results. The relation between the light cone helicity
amplitudes, Mμ0ν0;μν, and the c.m.s. helicity amplitudes,
Φμ0ν0;μν, is as follows [102],

Φμ0ν0;μν ¼ Mμ0ν0;μν þ
β

2
½ð−1Þ12−ν0Mμ0−ν0;μν

þð−1Þ12þνMμ0ν0;μ−ν�; ð10Þ

where,

β ¼ 2mffiffiffi
s

p
ffiffiffiffiffi
−t

p
ffiffiffi
s

p þ ffiffiffiffiffiffi
−u

p : ð11Þ

In the handbag approximation, the WACS amplitudes,
Mμ0ν0;μν, can be factored into two parts: the (hard) parton
level subprocess amplitudes, Hμ0ν0;μν, and the (soft) form
factors of the proton, Ri, as follows [102],

Mμ0þ;μþðs; tÞ ¼ 2παem½Hμ0þ;μþðŝ; t̂ÞðRVðtÞ þ RAðtÞÞ
þHμ0þ;μþðŝ; t̂ÞðRVðtÞ − RAðtÞÞ�;

Mμ0−;μ−ðs; tÞ ¼ παem

ffiffiffiffiffi
−t

p
m

RTðtÞ½Hμ0þ;μþðŝ; t̂Þ
þHμ0þ;μþðŝ; t̂Þ�: ð12Þ

Note that the M and H also satisfy Eq. (8). We have
denoted the Mandelstam variables for the photon-parton
subprocess by ŝ, t̂, and û, and for the overall photon-proton
reaction by s, t, u. In the above relations, μ and μ0 refer to
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the polarization of photons before and after interaction. The
explicit helicities in the light-cone helicity amplitudes, M,
and the subprocess amplitudes, H, represent the polar-
izations of the proton and active quarks, respectively. The
hard scattering amplitudes, Hμ0ν0;μν, associated with γq →
γq subprocess can be calculated in the perturbative QCD.
To the leading order (LO) they read [102],

HLOþþ;þþ ¼ 2

ffiffiffiffiffiffi
ŝ
−û

r
; HLO

−þ;−þ ¼ 2

ffiffiffiffiffiffi
−û
ŝ

r
; HLO

−þ;þþ ¼ 0;

ð13Þ

while they have more complicated forms at the next-to-
leading order (NLO),

HNLOþþ;þþ ¼ αs
2π

CF

�
π2

3
− 7þ 2t̂ − ŝ

ŝ
log

t̂
û
þ log2

−t̂
ŝ

þ t̂2

ŝ2

�
log2

t̂
û
þ π2

�
− 2iπ log

−t̂
ŝ

	 ffiffiffiffiffiffi
ŝ
−û

r
;

HNLO
−þ;−þ ¼ αs

2π
CF

�
4

3
π2 − 7þ 2t̂ − û

û
log

−t̂
ŝ
þ t̂2

û2
log2

−t̂
ŝ

þlog2
t̂
û
− 2iπ

�
2t̂ − û
2û

þ t̂2

û2
log

−t̂
ŝ

�	 ffiffiffiffiffiffi
−û
ŝ

r
;

HNLO
−þ;þþ ¼ −

αs
2π

CF

� ffiffiffiffiffiffi
−û
ŝ

r
þ

ffiffiffiffiffiffi
ŝ
−û

r 	
: ð14Þ

Where CF ¼ 4=3 is QCD color factor.
The soft form factors of the proton in Eq. (12) are

denoted by Ri, where the subscript i ¼ V, A, T stands for
vector, axial, and transverse, respectively. They can be
expressed as follows,

Rq
VðtÞ ¼

Z
1

−1

dx
x
Hqðx; tÞ;

Rq
AðtÞ ¼

Z
1

−1

dx
x
signðxÞH̃qðx; tÞ;

Rq
TðtÞ ¼

Z
1

−1

dx
x
Eqðx; tÞ: ð15Þ

Indeed the skewness dependence does not drop in Compton
FFs, and GPDs in above equations are evaluated at zero
skewness (ξ ¼ 0). Now, using the above relations, one can
obtain the full form factors from the individual quark
contributions as follows,

RiðtÞ ¼
X
q

e2qR
q
i ðtÞ; ð16Þ

where eq is the charge of quark q in units of positron
charge. More explicitly, we have

RVðtÞ ¼
X
q

e2q

Z
1

0

dx
x
½Hq

vðx; tÞ þ 2Hq̄ðx; tÞ�;

RAðtÞ ¼
X
q

e2q

Z
1

0

dx
x
½H̃q

vðx; tÞ þ 2H̃q̄ðx; tÞ�;

RTðtÞ ¼
X
q

e2q

Z
1

0

dx
x
½Eq

vðx; tÞ þ 2Eq̄ðx; tÞ�: ð17Þ

In general, the Mandelstam variables at the partonic level
are different from those of the whole process. Following the
work of Diehl et al. [103], and assuming massless quarks,
we introduce three scenarios to relate these two sets of
variables. If the mass of the proton can be neglected, the
matching of the subprocess and full Mandelstam variables
is simplest. In this case we have

scenario 1∶ ŝ ¼ s; t̂ ¼ t; û ¼ u: ð18Þ

In order to estimate the influence of the proton mass, two
more scenarios are also introduced:

scenario 2∶ ŝ ¼ s −m2; t̂ ¼ t; û ¼ u −m2:

scenario 3∶ ŝ ¼ s −m2; t̂ ¼ −
ŝ
2
ð1 − cos θcmÞ;

û ¼ −ŝ − t̂: ð19Þ

It is worth noting that, in contrast to scenario 1, the relation
ŝþ t̂þ û ¼ 0 holds in scenarios 2 and 3 even though we do
not ignore the nucleon mass, since sþ tþ u ¼ 2m2

p. Note
also that the aforementioned differences in the Mandelstam
variables can be regarded as a source of theoretical
uncertainty to the results [103]. We will study in detail
the effects of considering these different scenarios for
calculating the WACS cross section on the quality of the
fit in Sec. IV B.
In addition to the WACS cross section, there are also a

few measurements of the helicity correlation parameters
ALL and KLL which are related to the WACS cross section
as follows [39]

ALL ¼ dσðþþÞ − dσðþ−Þ
dσðþþÞ þ dσðþ−Þ ;

KLL ¼ dσðþþÞ − dσðþ−Þ
dσðþþÞ þ dσðþ−Þ : ð20Þ

Note that ALL is the helicity correlation between the initial
state photon and the proton, while KLL is the helicity
correlation between the incoming photon and the outgoing
proton. If we express the above relations in terms of the
helicity amplitudes Eq. (9) we obtain,
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ALL
dσ
dt

¼ 1

32πðs −m2Þ2 fjΦ1j2 þ jΦ2j2 − jΦ5j2 − jΦ6j2g;

KLL
dσ
dt

¼ 1

32πðs −m2Þ2 fjΦ1j2 − jΦ2j2 − jΦ5j2 þ jΦ6j2g:

ð21Þ

Where dσ=dt is the WACS cross section given by Eq. (7).
Note that ALL and KLL are generally not equal if we
consider quarks as massive pointlike particles, since in the
backward hemisphere ALL becomes smaller than KLL.
However, considering the handbag approach we haveΦ2 ¼
−Φ6 that leads to ALL ¼ KLL. This is a robust property of
the handbag mechanism. In Sec. IV E, we will compare the
theoretical predictions of the helicity correlation parameter
ALL ¼ KLL obtained using our final GPDs whit the related
experimental data.

C. Modeling the GPDs

As a result of many theoretical and phenomenological
work, there are numerous models [79–84] and parametri-
zations [85–87] for GPDs such as Radyushkin’s double
distributions [104], light-front constituent quark models
[82], and quark-diquark induced parametrization [85].
Here, as in our previous work [47], we consider a simple
but advantageous Ansatz suggested by DFJK [95–97]. This
Ansatz expresses the (polarized) GPDs as a product of
ordinary (PPDFs) PDFs and an exponential which contains
the t dependence of GPDs, regulated with a specific profile
function in x. This structure is such that, in the forward
limit, (polarized) GPDs will reduce to their ordinary
(PPDF) PDF equivalents. For example, for positive x,
the GPD H changes to the usual quark and antiquark
densities as Hqðx; 0; 0Þ ¼ qðxÞ and Hqð−x; 0; 0Þ ¼ q̄ðxÞ.
According to the DFJK Ansatz which gives x and t
dependence of GPDs at zero skewness, the valence
GPDs Hq

v can be related to ordinary valence PDFs as

Hq
vðx; t; μ2Þ ¼ qvðx; μ2Þ exp½tfqðxÞ�; ð22Þ

where μ is the factorization scale at which the partons are
resolved, just like the usual quark densities [95]. It should
be noted that in Ansatz (22), which has a motivation from
Regge theory, the profile function fqðxÞ in the exponential
is x-dependent slope of ∂ðlogHq

vÞ=∂t and can have various
functional forms. In the simplest form, which we shall refer
to as the simple Ansatz, fqðxÞ is as follows,

fqðxÞ ¼ α0ð1 − xÞ log 1
x
; ð23Þ

where α0 is an adjustable parameter that should be deter-
mined from the analysis of the relevant experimental data.
In fact, it has been indicated [95] that the low- and high-x
behavior of fqðxÞ, as well as the intermediate-x region, can
be well characterized by the following forms

fqðxÞ¼ α0ð1−xÞ2 log1
x
þBqð1−xÞ2þAqxð1−xÞ; ð24Þ

and

fqðxÞ¼ α0ð1−xÞ3 log1
x
þBqð1−xÞ3þAqxð1−xÞ2; ð25Þ

where Aq and Bq are additional adjustable parameters. For
example, the above profile functions were used for a fit to
the experimental data of the Dirac and Pauli FFs [95], and
also for a phenomenological study of the strange Dirac
form factor Fs

1 [96]. It is worth noting that a profile function
of the form α0 logð1=xÞ þ B is also used for studying the
hard exclusive pion electroproduction, where GPDs play a
key role [105]. However, in our previous work [47], we
studied the effect of using this profile function for analyz-
ing the nucleon AFF data and observed that it will not lead
to an improvement in the quality of the fit. Moreover, we
indicated that among the profile functions (23), (24), and
(25), the last one can lead to lower values for the χ2 divided
by the number of degrees of freedom, χ2=d:o:f:, by
considering the same Av and Bv parameters for valence
quarks and setting the corresponding sea quark parameters
equal to zero.
According to DFJK model, an Ansatz similar to that

shown in Eq. (22) can also be considered for the valence
polarized GPDs H̃q

v, so that they can be related to valence
PPDFs, ΔqvðxÞ≡ qþðxÞ − q−ðxÞ, as following

H̃q
vðx; t; μ2Þ ¼ Δqvðx; μ2Þ exp½tf̃qðxÞ�; ð26Þ

where f̃qðxÞ is the corresponding profile function which
again can have a simple form like Eq. (23), or a complex
form with more adjustable parameters like Eq. (24) or (25).
In the present work, we are going to analyze both the

AFF and WACS data simultaneously to determine GPDs
and also compare the results with the previous ones
obtained by analyzing the AFF data solely [47], in order
to investigate the impact of WACS data on the extracted
densities, especially at larger values of −t. To this end, we
use the DFJK Ansatzes of Eqs. (22) and (26) for the
unpolarized and polarized GPDs H and H̃, respectively.
Moreover, for simplicity, we use these Ansatzes both for
the valence and sea quark contributions as before [47],
though the physical motivation to use them for the sea
contributions is not as strong as that of the valence ones
[97]. As is expected and we shall show, the contributions of
the sea are not significant compared to those that come
from the valence sector. Another point which should be
mentioned is that, according to Eq. (6), only the polarized
GPDs H̃ contribute to the AFF, while for the case of WACS
cross section three kinds of GPDs, namelyH, H̃, and E, are
involved through the soft FFs of the proton RV , RA, and RT ,
respectively [see Eq. (17)]. Since the contribution of the RT
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in WACS cross section is considerably smaller than RV and
RA (see Fig. 24 of Ref. [97]), we fix the GPDs Eq

vðx; tÞ and
Eq̄ðx; tÞ from the analysis of Ref. [95], and just parametrize
the H and H̃ GPDs. Consequently, the constraints on H
come just from the WACS data, while H̃ can be constrained
by both the AFF and WACS data.

D. Impact parameter dependent PDFs and nucleon
helicity flip distribution E

As is well known, the Fourier transform of GPDs at zero
skewness, ξ ¼ 0, which are called impact parameter de-
pendent PDFs, satisfy positivity constraints so that one can
associate the physical interpretation of a probability density
with them. Indeed, they describe the distribution of partons
in the transverse plane [95,106,107]. Therefore, one can
relate GPDs H and H̃ to the impact parameter distribution
of unpolarized quarks in an unpolarized nucleon and the
distribution of longitudinally polarized quarks in a longitu-
dinally polarized nucleon, respectively. Moreover, E is
related to the distortion of the unpolarized quark distribution
in the transverse plane when the nucleon has transverse
polarization. In fact, the distribution Eq

vðx; ξ; tÞ at zero
skewness describes proton-helicity flip in a frame where
the proton moves fast [107], i.e., in the infinite momen-
tum frame.
As mentioned, one can achieve a density interpretation

of GPDs at ξ ¼ 0 in the mixed representation of longi-
tudinal momentum and transverse position in the infinite-
momentum frame [106,107]. For instance, the impact
parameter dependent parton distribution related to H can
be defined as follows [95]

qvðx; bÞ ¼
Z

d2Δ
ð2πÞ2 e

−ib:ΔHq
vðx; t ¼ −Δ2Þ: ð27Þ

From the physical point of view, qvðx; bÞ gives the proba-
bility of finding a quark with longitudinal momentum
fraction x and impact parameter b ¼ ðbx; byÞ minus the
probability of finding an antiquark with the same x and b.
Here we have adhered to the usual convention of using the x
and y superscripts to denote the x and y axes in the transverse
plane, where the distinction between the former and the
Bjorken x is implicit. Actually, the impact parameter b in
qvðx; bÞ is the transverse distance between the struck parton
and the center of momentum of the hadron [107]. We use the
boldface notation for the two-dimensional vectors in the
transverse plane. We can obtain the average of impact
parameter squared from qvðx; bÞ as follows [95]

hb2iqx ¼
R
d2bb2qvðx; bÞR
d2bqvðx; bÞ

¼ 4
∂
∂t logH

q
vðx; tÞ

����
t¼0

; ð28Þ

which is to be calculated at fixed x. It is worth noting that the
use of an exponential Ansatz for the t-dependence of

unpolarized GPDs, given in Eq. (22), guarantees that
qvðx; bÞ is positive. An estimate of the size of the hadron
canbeprovidedusing the relative distance between the struck
parton and the spectator system, b=ð1 − xÞ. As explained in
Ref. [95], the average square of this distance is calculated
from

d2qðxÞ ¼
hb2iqx

ð1 − xÞ2 ; ð29Þ

so that dq provides a lower limit for the transverse size of the
hadron.
It can be shown that [107] if one changes basis from

longitudinal to transverse polarization states of the proton, a
particular combination of Hq

v and Eq
v have a probability

interpretation in impact parameter space. In analogy to
Eq. (27), the probability to find an unpolarized quark with
momentum fraction x and impact parameter b in a
transversely polarized proton, minus the probability to find
an antiquark with the same x and b is given by the
distribution [107],

qXv ðx; bÞ ¼ qvðx; bÞ −
by

m
∂
∂b2 e

q
vðx; bÞ; ð30Þ

where the Fourier transform eqvðx; bÞ is given by,

eqvðx; bÞ ¼
Z

d2Δ
ð2πÞ2 e

−ib:ΔEq
vðx; t ¼ −Δ2Þ: ð31Þ

Equation (30) clearly indicates that transverse target polari-
zation induces a shift in the quark distribution along the
y-axis. One can consider the classical picture of the
polarized proton as a sphere that rotates about the x-axis
and moves in the z-direction to better understand such
effect [107,108]. The average of this shift is given by

hbyiqx ¼
R
d2bbyqXv ðx; bÞR
d2bqXv ðx; bÞ

¼ 1

2m
Eq
vðx; 0Þ

Hq
vðx; 0Þ : ð32Þ

Note that, in this case, the corresponding shift for the
distance between the struck quark and the spectator system
is as follows

sqðxÞ ¼
hbyiqx
1 − x

; ð33Þ

which is comparable to the distance function dqðxÞ in
Eq. (29). An important property of the impact parameter
space distributions is that they satisfy certain inequalities
[109], ensuring that the quark densities for various combi-
nations of proton and quark spins are positive. By calcu-
lating the impact parameter dependent PDFs according to
the above formulations, we can present the proton
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tomography that illustrates the interplay between longi-
tudinal and transverse partonic degrees of freedom in the
proton.
In the following, by performing various χ2 analyses of

the AFF and WACS data at NLO, we determine the
optimum values of not only the free parameters of the
profile function (25), in particular α0, but also the scale μ at
which the PDFs and PPDFs are chosen in Ansatzes (22)
and (26), respectively.
It should be noted that the Regge phenomenology and

various studies have indicated that the value of α0 should be
close to 1 [95–97]. Although our final analysis of the AFF
data [47] also confirmed this value, it led to a smaller value
for μ (1 GeV) than that which has been considered in
Refs. [95–97] (2 GeV). So, it is of interest to investigate to
what extent the inclusion of WACS data in the analysis
affects the values of α0 and μ, along with the shape of
extracted GPDs.
As mentioned before, one can also relate GPD H̃ to the

impact parameter distribution of the longitudinally polar-
ized quarks in a longitudinally polarized nucleon by
Fourier transform. In this way, the polarized impact
parameter dependent parton distributions Δqvðx; bÞ are
defined as follows [106,107]

Δqvðx; bÞ ¼
Z

d2Δ
ð2πÞ2 e

−ib:ΔH̃q
vðx; t ¼ −Δ2Þ; ð34Þ

which satisfies

Z
d2bΔqðx; bÞ ¼ ΔqðxÞ: ð35Þ

Note that, similarly to the regular polarized quark distri-
bution, the polarized impact parameter dependent quark
distributions can be interpreted as the difference between
the impact parameter dependent parton distribution for
parallel and antiparallel helicities (for x > 0)

Δqðx; bÞ ¼ q↑ðx; bÞ − q↓ðx; bÞ: ð36Þ

III. DATA SELECTION

As mentioned before, our goal is analyzing the AFF and
WACS experimental data simultaneously, in order to
determine quark GPDs H and H̃ within the theoretical
framework described in Sec. II. To this aim, an important
step is gathering the available experimental data for both
processes. Contrary to the electromagnetic nucleon FFs
which their extraction has a long history and remains a
popular field of experimental research (see Ref. [97] for an
overview), there are fewer measurements of the nucleon
AFF. In fact, at the present, one can only use the (anti)
neutrino scattering off nucleons and charged pion electro-
production to determine nucleon AFF. Most of the available

measurements for the nucleon AFF obtained from charged
pion electroproduction have been reviewed and discussed
in Refs. [100,101], and for the case of (anti)neutrino
scattering experiments, one can refer to the data obtained
from MiniBooNE experiments [110]. Similarly, there are
not many measurements of WACS cross section. As a
comprehensive effort, one can refer to the measurements by
the Jefferson Lab Hall ACollaboration [111] which include
25 kinematic settings over the range s ¼ 5–11 GeV2 and
−t ¼ 2–7 GeV2.
In our previous work [47], we used the available data of

nucleon AFF to determine polarized GPDs H̃ using the
DFJK Ansatz of Eq. (26) and considering various profile
functions. Although there were 84 data points from
Refs. [110,112–121], we formed a “reduced” dataset by
removing data points with the same value of −t and
retaining the most accurate ones which reduced the number
of data to 40 (see Fig. 1 of Ref. [47]). However, because of
the inconsistencies in datasets (our investigations indicated
that these inconsistencies are not due to the normalization),
analyzing the reduced set led to a large value for the χ2

divided by the number of degrees of freedom, χ2=d:o:f:, of
the order of 4.5. In this work, we further reduce our AFF
data by removing the older datasets and only use data from
Refs. [110,116–120]. Consequently, the number of data
points of the nucleon AFF included in our new reduced set
is 34 which cover the range 0.025 < −t < 1.84 GeV2.
Another important point which should be mentioned is that
we use data as GAð−tÞ, just like before, while the original
data are given as GAð−tÞ=GAð0Þ. In fact, as we have
indicated, the quantity GAð−tÞ=GAð0Þ cannot put any
constraint on the value of scale μ at which PPDFs are
chosen, and hence the resulting value for α0 is not very
reliable in such cases. For extracting GAð−tÞ from original
GAð−tÞ=GAð0Þ data, we use the latest value of GAð0Þ (axial
charge gA) from PDG [122], i.e., gA ¼ 1.2723� 0.0023.
For the case of WACS data, we use the measurements by

the Jefferson Lab Hall A Collaboration [111] with four
values of s, namely s ¼ 4.82, 6.79, 8.90, and 10.92 GeV2.
Their measurements contain 25 data points which cover a
wide range of −t, i.e., 1.65 < −t < 6.46 GeV2. As can be
seen, although the AFF data can be used to constrain
polarized GPDs mainly at smaller values of −t, some
important information can also be obtained from WACS
data, which mainly constrain the large −t behavior of H̃. In
the next section, we perform various analyses on the
aforementioned AFF and WACS data simultaneously to
study in detail the possible changes in the extracted GPDs,
and also the values of α0 and μ.

IV. RESULTS AND DISCUSSIONS

In the previous sections, we have introduced the theo-
retical framework and experimental data which we use in
the present study to determine GPDs H and H̃. In this
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section, we perform various analyses of the AFF and
WACS data at NLO using different approaches to find
the best one which leads to lowest χ2 with minimum
number of parameters. In this regard, we first do a para-
metrization scan (similar to what was done in Ref. [123]) to
find the optimum form of profile function (25) for each
flavor of H and H̃ GPDs, and reduce the number of free
parameters as far as possible. Then, since the theoretical
calculation of WACS cross section can be done within the
various scenarios (see Sec. II B), we perform three separate
analyses in order to find the best scenario which leads to
lowest χ2 for AFF andWACS data simultaneously, and thus
the best agreement between the theoretical predictions and
experimental data. As mentioned before, in our previous
work [47] we showed that if H̃ is represented by the Ansatz
of Eq. (26) for calculating GA, the final results will not be
very sensitive to the choice of PPDFs set. In this work,
since the theoretical calculation of WACS cross section
needs H and hence the unpolarized PDFs according to
Ansatz (22), we perform various analyses using different
sets of PDFs to study the sensitivity of the results to
changes of PDFs. After finding the optimum form of profile
function (25) for each flavor, the best scenario for calcu-
lating WACS cross section, and the most compatible PDFs
set, we present the final results of the extracted GPDs H
and H̃ along with their uncertainties. Some comparisons
between the theoretical calculations obtained using the final
GPDs and the experimental data included in the analysis
are also presented. Finally, we present some tomography
plots by calculating the impact parameter dependent PDFs
introduced in Sec. II D. It should be noted that we use the
CERN program MINUIT [124] for doing the optimization
and finding the best values of the fit parameters. Wherever
needed, we use the LHAPDF package [125] to access a
specific PDFs or PPDFs set and also the value of the strong
coupling constant αsðμÞ.

A. Parametrization scan

As mentioned before, in our previous study [47], we
used Ansatz (26) to analyze AFF data and determine
polarized GPDs H̃. We indicated that considering a more
flexible profile function like Eq. (25) with the same Av and
Bv parameters for valence quarks and setting the corre-
sponding sea quark parameters equal to zero can lead to a
lower value of χ2, as compared to the simple profile
function (23). In this work, we are also going to include
the WACS data in the analysis and determine simulta-
neously the unpolarized GPDs H and polarized GPDs H̃.
So, it is necessary to examine the possibility of constraining
a more flexible profile function using the available data and
reducing the number of free parameters as far as possible.
Such a parametrization scan can be done, for example, by
following the procedure described in Ref. [123] which was
used to find the optimum functional forms of PDFs.

To find the optimum forms of profile function (25) for
GPDs H and H̃, at this stage we analyze the AFF and
WACS data described in Sec. III at NLO, using scenario 1
for theoretical calculation of WACS cross section
[Eq. (18)], and also taking the cteq6 PDFs [1] and
NNPDFpol1.1 PPDFs [16] in Ansatzes (22) and (26),
respectively. By doing an exhaustive analytical search, we
have found that the lowest χ2=d:o:f: occurs when one takes
the following profile functions for the polarized GPDs H̃u

v,
H̃d

v, and H̃q̄ (q̄ ¼ ū; d̄),

f̃uvðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
þ B̃uvð1 − xÞ3 þ Ãuvxð1 − xÞ2;

f̃dvðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
;

f̃q̄ðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
; ð37Þ

which are obtained by considering α̃0uv ¼ α̃0dv ¼ α̃0q̄ ≕ α̃0v,
Ãdv ¼ B̃dv ¼ 0, and Ãq̄ ¼ B̃q̄ ¼ 0, and the following pro-
file functions for the unpolarized GPDs Hu

v, Hd
v, and Hq̄

fuvðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
þ Ãuvxð1 − xÞ2;

fdvðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
þ Ãuvxð1 − xÞ2;

fq̄ðxÞ ¼ α̃0vð1 − xÞ3 log 1
x
; ð38Þ

which are obtained by considering α0uv ¼ α0dv ¼ α0̄q ¼ α̃0v,
Buv ¼ Bdv ¼ 0, Auv ¼ Adv ¼ Ãuv , and Aq̄ ¼ Bq̄ ¼ 0. With

these choices, only three parameters α̃0v, Ãuv , and B̃uv are
free and should be determined from the fit. Finally, by also
considering the scale μ as a free parameter, we have four
free parameters. Note that, although increasing the number
of free parameters can somewhat reduce the value of total
χ2, it generically leads to a larger value for χ2=d:o:f:.
Hence, a major limitation at this point in time is the number
of experimental data. Nevertheless, the results of the
parametrization scan shown in Eq. (37) seem unsatisfactory
in the sense that the symmetry between f̃uvðxÞ and f̃dvðxÞ is
lost once the parameters Ãdv and B̃dv are set to zero. Here
we adhere to the usual practice of using the results of the
parametrization scan as it stands. However, at the end of
Sec. IV D we perform a new analysis by letting Ãdv and B̃dv
be free parameters in Eq. (37). Upon comparing the results,
we show that this has a drastic effect on H̃d

v, which we shall
argue to be an improvement, with a decrease of 3% in χ2

and at a cost of only 0.7% increase in χ2=d:o:f. We shall
compare the results in detail in Sec. IV D.
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B. Study of different scenarios for calculating WACS

As we explained in Sec. II B, there are three scenarios to
relate the Mandelstam variables at partonic level to those of
the whole process for calculating the WACS cross section.
Using different scenarios may lead to different theoretical
predictions for WACS and thus different fit results. In this
section, we are going to study this issue to find the best
scenario which leads to the lowest value of χ2=d:o:f: in
analyzing the AFF and WACS data. Note that, like before,
we take the cteq6 PDFs [1] and NNPDFpol1.1 PPDFs
[16] in Ansatzes (22) and (26), respectively to calculate the
unpolarized and polarized GPDs H and H̃.
Table I shows the results of three analyses of the

experimental data introduced in Sec. III that have been
performed using scenarios 1, 2, and 3 described in
Sec. II B. This table contains the list of datasets included
in the analysis, along with their related observables and
references. For each dataset, we have presented the value of
χ2 divided by the number of data points, χ2=Npts:. The value
of χ2=d:o:f: has also been presented for each analysis in the
last row of the table. As can be seen, the least χ2=d:o:f:
belongs to scenario 3 which is in good agreement with
scenario 2. However, scenario 1 leads to the largest
χ2=d:o:f:, such that its difference with the other scenarios
in total χ2 is about 82. Another point should be noted is that
the scenarios 1 and 2 lead to significantly different results
for AFF data from Refs. [110,117], even though they lead
to approximately the same χ2=d:o:f:.
Table II makes a comparison between the optimum

parameters of the profile functions (37) and (38), in
addition to the scale μ2 at which the PDFs and PPDFs
are chosen in Ansatzes (22) and (26), respectively, obtained
from three aforementioned analyses. As can be seen, there
are considerable differences between the scenarios 1, 2, and
3 so that they lead to considerably different values for
parameters μ and α0. Note that among these scenarios, only
scenario 3 leads to a value for α0 close to 1 as expected from
the previous studies [47,95–97]. However, the value of μ2
obtained from scenario 3 (1.5 GeV2) is larger than the

corresponding one obtained in our previous work [47]
(1 GeV2), where we analyzed the AFF data solely to
determined the polarized GPDs H̃. From now on we
consider scenario 3 as the best scenario since it has led
to the lowest χ2=d:o:f: (especially for the WACS data) and a
more reasonablevalue forα0 as compared to scenario 2. In the
next subsection, we continue our study by investigating the
sensitivity of the results to the PDFs set we choose for
calculating the unpolarized GPDs using the Ansatz Eq. (22).

C. Dependence on the PDFs

In our previous work [47], we studied the impact of
choosing different sets of PPDFs on the theoretical calcu-
lations of the nucleon AFF of Eq. (6), using the Ansatz (26),
and showed that the final resultswere not very sensitive to the
choice of PPDFs set. To be more precise, we concluded that
the difference between the results obtained for GA using the
DSSV08 [12] and NNPDFpol1.1 [16] PPDFs was approx-
imately 2% in full range of −t under consideration. In this
work, we have also included some new data from theWACS
cross section which their theoretical calculations require
PDFs according to Eq. (17) (throughH in RV). Therefore, it
is also of interest to study the sensitivity of the results to the
PDFs set that we choose for calculating the GPDs H, and
subsequently the WACS cross section.

TABLE I. The results of three analyses of the experimental data introduced in Sec. III that have been performed
using scenarios 1, 2, and 3 described in Sec. II B.

χ2=Npts:

Observable Reference Scenario 1 Scenario 2 Scenario 3

GA Butkevich and Perevalov [110] 74.78=14 54.81=14 69.04=14
Del Guerra et al. [116] 2.99=4 5.09=4 3.36=4
Esaulov et al. [117] 31.14=4 40.75=4 33.22=4
Bloom et al. [118] 6.84=6 6.09=6 6.23=6
Joos et al. [119] 16.42=5 21.49=5 18.90=5
Choi et al. [120] 0.02=1 0.01=1 0.01=1

dσ
dt ðWACSÞ Danagoulian et al. [111] 193.69=25 116.13=25 113.00=25

Total χ2=d:o:f: 325.88=55 244.37=55 243.76=55

TABLE II. The optimum parameters of the profile functions
(37) and (38), in addition to the scale μ2 at which the PDFs and
PPDFs are chosen, in Ansatzes (22) and (26), respectively,
obtained from three analyses of the experimental data of Table I
that have been performed using scenarios 1, 2, and 3 described in
Sec. II B.

Parameter Scenario 1 Scenario 2 Scenario 3

μ2 0.97� 0.05 1.91� 0.32 1.50� 0.22

α̃0v 1.08� 0.03 0.73� 0.02 0.99� 0.02

Ãuv
3.59� 0.17 8.30� 0.48 3.94� 0.16

B̃uv
−1.83� 0.06 −2.12� 0.03 −1.89� 0.03
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In the previous subsections, we used the cteq6 PDFs
[1] for doing the parametrization scan and finding the best
scenario for calculating the WACS cross section. Now, in
order to investigate the effect of PDFs on the fit results, in
particular the value of the χ2, the shape of GPDs, and the
optimum values of the free parameters, we repeat the
analysis of Sec. IV B using scenario 3, but this time
considering more recent sets of PDFs. To this aim, we
use the NLO PDFs from the CT14 [3], MMHT14 [4] and
NNPDF3.0 [5] and compare their results with each other.
The results of these three analyses have been presented in
the third, fourth, and fifth columns of Table III, respec-
tively. Overall, we conclude that there are no significant
differences between the analyses performed using different
PDFs, i.e., the value of total χ2 does not change by more
than 1 unit. Table IV makes a comparison between the
optimum parameters obtained from the three aforemen-
tioned analyses. As can be seen, the values of the
parameters also do not change significantly by choosing
different sets of PDFs. However, since the analysis per-
formed using the CT14 PDFs has led to the lowest
χ2=d:o:f: according to Table III, we consider it to be the
most suitable. Therefore, our final GPDs are those that have
been obtained using scenario 3 for calculating the WACS
cross section, and the CT14 PDFs and NNPDFpol1.1
PPDFs [16] in Ansatzes (22) and (26), respectively. Note

that, according to Table IV, our new analysis, which
includes the WACS data, confirms the result obtained in
our previous work [47] (where we analyzed the AFF data
solely) and also other studies [95–97] for α0 (α0 ∼ 1).
However, the final value of μ2, μ2 ¼ 1.48 GeV2 is larger
than our previous work (1 GeV2) and smaller than other
studies (4 GeV2) [95–97].
Although there are no significant differences between the

results of analyses performed using different sets of PDFs
in view of χ2 (Table III) and parameter (Table IV) values, it
is also of interest to compare different GPDs of various
flavors obtained from three aforementioned analyses. Top
panel of Fig. 2 shows a comparison between the Hu

v GPDs
with their uncertainties obtained using three different sets
of NLO PDFs, namely CT14 (blue solid curve), MMHT14
(red dashed curve) and NNPDF3.0 (green dotted curve),
and profile function fuv of Eq. (38) with parameters listed
in Table IV at three different values of t, t ¼ 0;−0.5, and
−1 GeV2. As can be seen, the differences between these
three sets of GPDs are not very significant. Indeed, we have
evaluated them and found that, excluding the regions close
to the endpoints, the differences are less than 5%. However,
the results differ more for Hd

v GPDs which have been
compared in the bottom panel of Fig. 2. In fact, in this case,
the differences can reach 20% in the same domain as above.
An important point which should be mentioned is that,
according to Eq. (38), the profile functions fuv and fdv are
equal. Therefore, the larger differences observed in the
bottom panel of Fig. 2 between the Hd

v GPDs compared to
the Hu

v GPDs in the top panel come directly from the larger
differences in dv PDFs compared to uv PDFs of the CT14,
MMHT14 and NNPDF3.0 sets. Figure 3 shows the same
comparison of Fig. 2 but for up and down sea quark GPDs
Hū (top panel) and Hd̄ (bottom panel). As can be seen, the
three sets of PDFs produce larger differences for theHū and
Hd̄, as compared to their valance counterparts.
As mentioned before, we consider the GPDs obtained

using scenario 3 for calculating the WACS cross section,
and the CT14 PDFs and NNPDFpol1.1 PPDFs [16] in

TABLE III. The results of three analyses of the experimental data introduced in Sec. III that have been performed
using scenario 3 described in Sec. II B and the CT14 [3], MMHT14 [4], and NNPDF3.0 [5] PDFs.

χ2=Npts

Observable Reference CT14 MMHT14 NNPDF3.0

GA Butkevich and Perevalov [110] 68.83=14 69.98=14 69.86=14
Del Guerra et al. [116] 3.37=4 3.31=4 3.33=4
Esaulov et al. [117] 33.32=4 32.81=4 32.86=4
Bloom et al. [118] 6.21=6 6.31=6 6.29=6
Joos et al. [119] 19.01=5 18.52=5 18.57=5
Choi et al. [120] 0.01=1 0.01=1 0.01=1

dσ
dt ðWACSÞ Danagoulian et al. [111] 111.77=25 112.29=25 112.48=25

Total χ2=d:o:f: 242.52=55 243.23=55 243.40=55

TABLE IV. The optimum parameters of the profile functions
(37) and (38), in addition to the scale μ2 at which the PDFs and
PPDFs are chosen in Ansatzes (22) and (26), respectively,
obtained from three analyses of the experimental data of Table III
that have been performed using scenario 3 described in Sec. II B
and the CT14 [3], MMHT14 [4] and NNPDF3.0 [5] PDFs.

Parameter CT14 MMHT14 NNPDF3.0

μ2 1.48� 0.21 1.52� 0.24 1.55� 0.24

α̃0v 0.99� 0.02 0.99� 0.02 0.99� 0.02

Ãuv
3.90� 0.16 3.96� 0.15 3.89� 0.15

B̃uv
−1.88� 0.03 −1.90� 0.04 −1.87� 0.04
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Ansatzes (22) and (26), respectively, as our final GPDs. To
check the validity of the results obtained, in Fig. 4 we have
compared our GPDs (green solid curve labeled as HGG20)

for the up (top panel) and down (bottom panel) valence
quarks with the results obtained by Diehl, Feldmann,
Jakob, and Kroll (blue dotted curve labeled as DFJK05)
[95]. This figure clearly shows a good agreement between
the results of these two analyses. Note that in the DFJK05
analysis, the main body of the experimental data was
composed of the Dirac and Pauli form factors of the

FIG. 3. Same as Fig. 2 but for the up and down sea quark GPDs
Hū (top panel) and Hd̄ (bottom panel).

FIG. 2. A comparison between the up Hu
v (top panel) and down

Hd
v (bottom panel) unpolarized GPDs with their uncertainties

obtained using three different sets of NLO PDFs, namely CT14
(blue solid curve), MMHT14 (red dashed curve) and NNPDF3.0
(green dotted curve), and profile function fuv of Eq. (38) with
parameters listed in Table IV at three different values of t, t ¼
0;−0.5 and −1 GeV2.
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nucleon, while our analysis contains data from the AFF
and WACS.

D. Final polarized GPDs

In the previous subsection, we studied in detail the
sensitivity of the fit results to the PDFs set that we choose
for calculating the GPDs H and WACS cross section. We
showed that although there are no significant differences
between the analyses performed using different sets of
PDFs in view of χ2 and parameter values, the extracted
GPDs, especially for the case of down valence and sea
quark distributions, differ as functions of x. In this sub-
section, we present our final results for the polarized GPDs
H̃u

v, H̃d
v, and H̃q̄ which can be calculated using the Ansatz

(26) and profile functions (38) with parameter values listed
in Table IV for the CT14 analysis and NNPDFpol1.1 as
the PPDFs set. Figure 5 shows a comparison between the
H̃u

v (top panel) and H̃d
v (bottom panel) GPDs with their

uncertainties obtained from this work (blue solid curve
labeled as HGG20) and our previous work (orange dashed

curve labeled as HGG19) [47] at four different values of t,
t ¼ 0;−0.5;−1, and −4 GeV2. As can be seen, for both H̃u

v

and H̃d
v GPDs, the results of HGG20 and HGG19 analyses

are very close at t ¼ 0. However, as the absolute value of t
increases, the differences between these two analyses
become more significant, i.e., the peaks of HGG20
GPDs moves to the larger values of x and their magnitudes
increase as compared to the HGG19 GPDs. In fact, since
the HGG20 analysis has included the WACS data, in
addition to the AFF data, which contain data points with
larger values of −t up to 6.46 GeV2, such changes in
valence GPDs at large−t are not unexpected. Another point
that should be noted is the relative reduction in uncertain-
ties of the HGG20 GPDs compared to the HGG19 GPDs.
Although the inclusion of WACS data in the analysis

of GPDs leads to significant changes in the shapes of

FIG. 4. A comparison between our final unpolarized GPDs
(green solid curve labeled as HGG20) for the up (top panel) and
down (bottom panel) valence quarks with the results obtained by
Diehl, Feldmann, Jakob, and Kroll (blue dotted curve labeled as
DFJK05) [95]. See Sec. IV C for more information. FIG. 5. A comparison between our final results for the

polarized GPDs H̃u
v (top panel) and H̃d

v (bottom panel) with
their uncertainties obtained from this work (blue solid curve
labeled as HGG20) and our previous work (orange dashed curve
labeled as HGG19) [47] at four different values of t, t ¼
0;−0.5;−1 and −4 GeV2.
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extracted polarized valence GPDs at larger values of −t, the
situation is different for the case of up and down sea quark
GPDs H̃ū and H̃d̄, since their contributions in the theo-
retical calculations of AFF and WACS cross section are
small compared with the valence ones [95,97]. Figure 6
shows the same comparison as Fig. 5 but for the H̃ū (top
panel) and H̃d̄ (bottom panel) GPDs. As can be seen, in this
case, there are no considerable differences between the
HGG20 and HGG19 GPDs even at larger values of−t. This
indicates that both AFF and WACS data lead to similar
behavior for the sea quark polarized GPDs.
In the Introduction, we compared two sets of polarized

GPDs H̃u
v and H̃d

v (see Fig. 1) from our previous work [47]
(HGG19) which analyzed the AFF data solely and Kroll’s
work [39] which considered only the WACS data. We
showed that there are considerable differences between
these two sets of GPDs at large value of −t (4 GeV2) so that
the Kroll’s results are more inclined to larger x. Therefore, it
is of interest now to compare our new polarized GPDs

(HGG20) with the HGG19 and Kroll’s ones since we have
extracted them using a simultaneous analysis of AFF and
WACS data. Figure 7 shows such a comparison between the
results obtained for the H̃u

v (top panel) and H̃d
v (bottom

panel) GPDs from four analyses HGG19 (dotted curve),
Kroll-I (dashed curve), Kroll-II (dotted-dashed curve), and
HGG20 (solid curve) at t ¼ −4 GeV2. This figure indicates
that the simultaneous analysis of AFF and WACS data
leads to a significant shift of the valence polarized GPDs to
the large x region at larger values of −t. Indeed, one can
clearly see the better agreement of our results with those of
Kroll after the inclusion of the WACS data in the analysis.
Kroll did not report uncertainty for his distribution, we
guess that his uncertainty should be same order as ours and
as a result the uncertainty bands would touch. From the
bottom panel of Fig. 7 we infer that the inclusion of the
AFF data affects significantly H̃d

v, since both analyses
containing these data (HGG19 and HGG20) have a dis-
tribution which is greater by an order of magnitude than the
Kroll-I and Kroll-II.
As mentioned in Sec. IVA, it is also of interest to study

the impact of using a more flexible profile function for H̃d
v

FIG. 7. A comparison between the results of four analyses
HGG19 (dotted curve), Kroll-I (dashed curve), Kroll-II (dotted-
dashed curve), and HGG20 (solid curve) for the polarized GPDs
H̃u

v (top panel) and H̃d
v (bottom panel) at t ¼ −4 GeV2. See

Sec. IV D for more information.
FIG. 6. Same as Fig. 5 but for the up and down sea quark GPDs
H̃ū (top panel) and H̃d̄ (bottom panel).
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by letting Ãdv and B̃dv be free parameters, leading to
symmetrical Ansatzes for H̃u

v and H̃d
v. By performing a new

analysis of the AFF and WACS data using scenario 3 for
calculating the WACS cross section, and the CT14 PDFs
and NNPDFpol1.1 PPDFs in Ansatzes (22) and (26),
respectively, and also adding two free parameters Ãdv and
B̃dv in profile function f̃dvðxÞ of Eq. (37), the optimum
values of the fit parameters are obtained as follows,

α̃0v ¼ 0.98� 0.02; μ2 ¼ 2.22� 0.82;

Ãuv ¼ 3.79� 0.22; B̃uv ¼ −1.82� 0.05;

Ãdv ¼ 9.85� 3.43; B̃dv ¼ −2.48� 0.43;

and the value of χ2=d:o:f: increases by 0.03 (from 4.41 to
4.44), though the value of χ2 itself decreases by about 7
units (from 242.5 to 235.1). Comparing these values with
the corresponding ones from Table IV (see column entitled
CT14), one observes that the differences between the α̃0v,
Ãuv , and B̃uv parameters are not significant. However, the
value of μ2 has increased considerably from 1.48 to
2.22 GeV2. By calculating H̃u

vðxÞ and H̃q̄ðxÞ using the
new values obtained for their parameters and comparing
them with the previous distributions at typical values of −t,
we have found that their graphs have not changed signifi-
cantly by adding two free parameters for H̃d

vðxÞ. However,
their uncertainties have increased, as the numbers reported
above for the parameters clearly indicate. It is worth noting
that the uncertainties obtained for the two new parameters
Ãdv and B̃dv of H̃

d
vðxÞ are considerably larger than those of

the corresponding parameters of H̃u
vðxÞ.

Figure 8 shows a comparison between the H̃d
vðxÞ

obtained from the analysis performed by adding two free
parameters Ãdv and B̃dv in profile function f̃dvðxÞ of
Eq. (37) labeled as “HGG20-II” and the corresponding
one from the previous analysis (HGG20) at −t ¼ 1 GeV2.
As can be seen, there are significant differences between
the results of these two analyses. To be more precise, the
peak value has decreased by about a factor of two, and its
position has shifted from about x ¼ 0.3 to x ¼ 0.2. If we
superimpose Fig. 8 onto Fig. 7 and compare the trends of
changes in the five graphs, we can see that HGG20-II,
having equivalent Ansatzes for the up and down valance
quarks, is more appropriate. However the increase in the
uncertainty is substantial, indicating that the available data
is insufficient to fully support this case.

E. Data-theory comparison

Now it is time to compare the theoretical predictions of
the AFF and WACS cross section obtained using the final
GPDs presented in the previous subsections with the
experimental data included in the analysis in order to
check the validity of the fit. Figure 9 shows a comparison

between the theoretical predictions for the nucleon axial
form factor GA with their uncertainties obtained using the
HGG20 (blue solid curve) and HGG19 red dashed curve)
GPDs and the experimental data included in the analysis
(see Sec. III and Table III). Note again that the HGG20
prediction has been calculated using the polarized
GPDs H̃ obtained from the analysis considering the
CT14 as PDFs set and NNPDFpol1.1 as PPDFs set.
As can be seen, the agreement between the theory and data
has improved in the HGG20 analysis compared to our
previous work (HGG19), where we analyzed the AFF data
solely. Another point that should be noted is a consid-
erable reduction in the error band of the HGG20 pre-
diction compared to the HGG19, for x≳ 0.2, though it is
wider for smaller values of x.

FIG. 8. A comparison between the H̃d
vðxÞ obtained from two

analyses HGG20 (blue solid curve) and HGG20-II (orange
dashed curve) at −t ¼ 1 GeV2. See text for details.

FIG. 9. A comparison between the theoretical predictions of the
GA with their uncertainties obtained using the HGG20 (blue solid
curve) and HGG19 (red dashed curve) GPDs and the exper-
imental data listed in Table III.
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In Fig. 10 we have presented a comparison between the
experimental data of the WACS cross section (dσ=dt)
included in the analysis with the related theoretical pre-
dictions obtained using our final unpolarized (H) and
polarized (H̃) GPDs and considering scenario 3 of
Eq. (19). The data points belong to three different values
of s, namely s ¼ 6.79, 8.90, and 10.92 GeV2, which have
been shown by the square, circle, and triangle symbols,
respectively. The vertical error bars contain both the
statistical and systematic uncertainties added in quadrature.
It should be noted that in order to better distinguish
between the results of these three values of s, we have
multiplied the experimental data and theoretical predictions
of the first and third by a factor of 10 and 1=10,
respectively. This figure clearly shows a good agreement
between the theoretical predictions and experimental data
in the entire interval of −t under consideration, and thus the
good quality of the fit. Indeed, almost all data points are
within the error band of the theoretical predictions.
According to this figure, the reason for the relatively large
χ2=Npts: of these data (112=25 for the CT14 analysis in
Table III) is not the poor theoretical description of the data,
but it is due to the small values of the experimental
uncertainties which appear in the denominator of the
expression for χ2.
As a final data-theory comparison in this subsection, we

calculate the helicity correlation parameters ALL and KLL

using our final GPDs H and H̃, and GPD E from Ref. [95].
Figure 11 shows a comparison between the experimental
data taken from Refs. [126], i.e., E007-002 depicted as a
filled square with s ¼ 7.8 GeV2 and t ¼ −2.1 GeV2, and
[127], i.e., E99-114 depicted as an open circle with s ¼
6.9 GeV2 and t ¼ −4.0 GeV2, and the related theoretical

predictions at s ¼ 7.8 GeV2 (solid curve) and s ¼
6.9 GeV2 (dashed curve). As can be seen, the theoretical
prediction is in better agreement with the experimental data
E99-114, which is at a larger values of −t where the
handbag approach is more reliable. Moreover, the uncer-
tainties in our theoretical predictions, not included in the
figure, would most likely have be an overlap with exper-
imental data E99-114. We have also found that ALL and
KLL are more sensitive to inclusion of WACS data as
compared to AFF,GA, for example. In particular, our results
depicted in Fig. 11 show local maxima, whereas in previous
predictions [126], which do not include the WACS data,
they are monotonically increasing. We believe that this
observation deserves more investigation, which we will
tend to in a later work.

FIG. 10. A comparison between the experimental data of the
WACS cross section (dσ=dt) with the related theoretical pre-
dictions obtained using our final GPDs. The data points belong
to three different values of s, namely s ¼ 6.79, 8.90, and
10.92 GeV2, which have been shown by the square, circle,
and triangle symbols, respectively. Multiplication factors indi-
cated are to distinguish the graphs.

FIG. 11. A comparison between the experimental data of the
helicity correlation parameter ALL ¼ KLL from Refs. [126] (filled
square with s ¼ 7.8 GeV2) and [127] (open circle with
s ¼ 6.9 GeV2), and the related theoretical predictions obtained
using our final GPDs H and H̃, and GPD E from Ref. [95], at
s ¼ 7.8 GeV2 (solid curve) and s ¼ 6.9 GeV2 (dashed curve).

FIG. 12. Average shift sqðxÞ of the distance between struck
quark and spectators in a polarized proton, defined in Eq. (33), for
the up (blue solid curve) and down (green dotted-dashed curve)
quarks.
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FIG. 13. Tomography plots of the unpolarized density qvðx; bÞ for the up (left frames) and down (right frames) quarks in the transverse
b ¼ ðbx; byÞ plane at three fixed x, namely x ¼ 0.6, 0.3, 0.05. The values of qvðx;bÞ have been shown by color and some guiding
contours have been drawn. The unit of qvðx;bÞ is fm−2.
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It should be mentioned that there are a large amount of
rather accurate data on the electromagnetic form factors of
the nucleon which can constrain the GPDs H and E quite

well, as established in Refs. [95,97]. In this work, with our
main focus on the poorly known GPD H̃, we have fixed the
less effective GPD E from the literature and have chosen

FIG. 14. Same as Fig. 13 but for the density qXv ðx; bÞ.
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FIG. 15. Same as Fig. 13 but for the density Δqvðx; bÞ. Note that the results related to the down quark (right frames) have been
multiplied by −1 for easier comparison.
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simple parametrizations for GPDs H and H̃, to determined
them using simultaneous analysis of the nucleon axial form
factor and WACS data. We have examined the case in
which both GPDs E and H were fixed by the results of
Ref. [95] and observed that the quality of the fit of the
experimental data of the WACS cross section (dσ=dt)
and the related theoretical predictions is reduced. On the
other hand, we have used the GPD H obtained from our
simultaneous analysis of the nucleon axial form factor and
WACS data to compute the magnetic Sachs form factor of
the proton, as an example, and the results are acceptable.
However, a better approach would be to perform a
comprehensive global analysis including all available data
of the axial and electromagnetic FFs and WACS, to
determine simultaneously E and H and H̃, which we shall
attempt in our next work.

F. Proton tomography

As we explained in Sec. II D, one can associate the
physical interpretation of a probability density with the
impact parameter dependent PDFs, which are the Fourier
transforms of GPDs at zero skewness. In this subsection,
we calculate the impact parameter dependent PDFs and
present proton tomography in impact parameter space
using our final GPDs obtained from the simultaneous
analysis of the AFF and WACS data.
In Fig. 12, we have plotted the average shift sqðxÞ of the

distance between struck quark and spectators in a trans-
versely polarized proton for the up (blue solid curve) and
down (green dotted-dashed curve) quarks, obtained using
Eq. (33). Note that for the case of down quark, since the
values of s are negative, we have presented the results as
−sdðxÞ to make the comparison more clear. In fact, the
different signs of suðxÞ and sdðxÞ come from the different
signs of the anomalous magnetic moments of the up and
down quarks [95]. Note that, according to Eqs. (32) and
(33), one needs bothHq

v and E
q
v GPDs for calculating sqðxÞ.

As mentioned before, in our analysis, we have fixed Eq
v

from the analysis of Ref. [95] and just parametrized the H
and H̃ GPDs. Therefore, for calculating sqðxÞ in Fig. 12, we
have used our final result for Hq

v and the result of Ref. [95]
for Eq

v.
As a further illustration, in Figs. 13 and 14 we have

shown our final results for GPDs as tomography plots in
impact parameter space for fixed x. To be more precise,
Fig. 13 displays the results of the unpolarized density
qvðx; bÞ for the up (left frames) and down (right frames)
quarks that have been calculated using Eq. (27) at three
fixed values of x, namely x ¼ 0.6, 0.3, 0.05. Figure 14
shows the corresponding results for the unpolarized density
qXv ðx; bÞ that have been calculated using Eq. (30) for
transversely polarized proton. It is obvious from these
figures that the displacement of the center of the qXv ðx; bÞ
distribution along the by-axis is different for the up and

down quarks. In fact, it is expected from different signs of
suðxÞ and sdðxÞ that the center of the qXv ðx; bÞ density will
be shifted toward negative by for down quarks, whereas it
will be shifted toward positive by for up quarks. It should
also be noted that the observed difference between the
qXv ðx; bÞ and qvðx; bÞ for down quark at small x compared
to the corresponding results for the up quark is due to the
fact that the shift jsdðxÞj is significantly larger than suðxÞ at
small values of x (see Fig. 12).
Since our focus in this work has been on the polari-

zed GPD H̃, it is more informative to calculate the pola-
rized impact parameter dependent parton distributions,
Δqvðx; bÞ, of Eq. (34). Figure 15 is analogous to Fig. 13
but for the densityΔqvðx; bÞ. In this figure, in order to make
comparison easier, we have multiplied the results related to
the down quark (right frames) by −1. In fact, Δdvðx; bÞ is
negative since its polarized GPD H̃ has negative values in
full range of x (see Fig. 5). Figure 15 clearly shows that the
graphs of Δqvðx; bÞ for the up and down quarks, similar to
those of qvðx; bÞ in Fig. 13, do not have any shift, as
expected. However, the results of Δqvðx; bÞ have larger
peaks as compared to the results of qvðx; bÞ due to the fact
that the profile functions of the unpolarized distributions
[Eq. (38)] have basically larger magnitudes as compared to
those of the polarized distributions [Eq. (37)] in conformity
with the results of Ref. [95].

V. SUMMARY AND CONCLUSIONS

It has been well established that the structure of the
nucleon, in both the unpolarized and polarized cases, can
be investigated in greater detail using GPDs. According to
the DFJK model, GPDs can be expressed in terms of PDFs
at zero skewness. In this work, considering DFJK model,
we have determined both the unpolarized (H) and polarized
(H̃) GPDs for quarks at NLO using a simultaneous χ2

analysis of the nucleon AFF and WACS experimental data.
It can be considered as a continuation of our previous work
[47] where we extracted the polarized GPDs, namely
HGG19, through a χ2 analysis of the AFF data solely.
The experimental data included in our analysis cover a wide
range of the squared transverse momentum −t, i.e.,
0.025 < −t < 6.46 GeV2. In order to find the best set of
GPDs, we have performed various analyses of the AFF and
WACS data using different approaches. In this regard, we
first performed a parametrization scan to find the optimum
form of profile function Ansatzes for each flavor of H and
H̃ GPDs and reduce the number of free parameters as many
as possible. Next, we have considered the three different
prescriptions or scenarios for relating the Mandelstam
variables at the partonic level to those of the whole process,
i.e., at the nucleon level. Then, by performing three
separate analyses, we have found the best scenario, namely
scenario 3 given by Eq. (19), for calculating the WACS
cross section theoretically which leads to the lowest χ2 and
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thus the best agreement between the theoretical predictions
and experimental data. Moreover, we have performed
various analyses using different sets of PDFs to study
the sensitivity of the fit results to the PDFs set that we
choose for calculating the GPDsH and the resulting WACS
cross section. We have shown that although there are no
significant differences between the analyses performed
using different sets of PDFs in view of χ2 and parameter
values, the extracted GPDs differ as functions of x,
especially for the case of down valence and sea quark
distributions. After finding the optimum form of profile
function for each flavor, the best scenario for calculating
WACS cross section, and the most compatible PDFs set, we
have presented the final results of the extracted GPDs H
and H̃ with their uncertainties, namely HGG20, and have
compared them with the corresponding ones obtained from
other analyses. We have shown that there is a good
agreement between the HGG20 and DFJK05 [95] unpo-
larized GPDs, even though the latter has used the exper-
imental data of the Dirac and Pauli FFs, while we have used
data from the AFF and WACS. Moreover, we have
indicated that the WACS data affect the large −t behavior
of GPDs more considerably. The main result of the present
work is that the simultaneous analysis of AFF and WACS
data leads to polarized GPDs which differs substantially as
compared to the ones obtained by analyzing each of the

AFF and WACS data separately (see Fig. 7). We have
compared the theoretical predictions obtained using the
final GPDs with the experimental data included in the
analysis, and have shown that there is a good agreement in
the entire interval of −t under consideration. Finally, by
calculating the distribution in the transverse plane of
valence quarks, both in an unpolarized and in a transversely
polarized proton, we have presented some tomography
plots which illustrate the interplay between longitudinal
and transverse partonic degrees of freedom in the proton.
Since there exists a large amount of rather accurate data on
the electromagnetic form factors of the nucleon which can
be used to constrain the GPDs H and E [95,97], we will
dedicate our next work to performing a comprehensive
global analysis which includes all available data of the axial
and electromagnetic FFs and WACS, to determine simul-
taneously GPDs E and H and H̃.
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