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We demonstrate a novel feature of certain phase transitions in theories with large rank symmetry group
that exhibit specific types of all-to-all interactions, a typical example being the matrix model description of
a large-N gauge theory. Recently, it has been pointed out that nontrivial features of the confinement/
deconfinement transition are understood as consequences of the coexistence of the confined and
deconfined phases on the group manifold describing the color degrees of freedom. While these novel
features of the confinement/deconfinement transition are analogous to the two-phase coexistence at the
first-order transition of more familiar local theories, various differences such as the partial breaking of the
symmetry group appear due to the all-to-all interaction. In this article, we show that similar phase
transitions with partially broken symmetry can exist in various examples from quantum field theory and
string theory. Our examples include the deconfinement and chiral transition in QCD, Gross-Witten-Wadia
transition in two-dimensional lattice gauge theory, Douglas-Kazakov transition in two-dimensional gauge
theory on sphere, and black hole/black string transition. In some of these examples, we give new
interpretations to previously known solutions and clarify the underlying physical mechanism governing
their phase behavior.
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I. INTRODUCTION

In this paper, we suggest a generic feature of the phase
transitions in local quantum field theories with large rank
symmetry groups and all-to-all couplings between internal
degrees of freedom. By this, we mean that our analysis will
focus primarily on theories where the interactions in
spacetime are local but, e.g., the color or flavor degrees
of freedom see all-to-all couplings. To further clarify the
language that we will be using throughout the paper, we
will refer to the background spacetime on which local
physics takes place as physical space and the background
on which the degrees of freedom experience all-to-all
coupling as internal space. For example, consider a gauge
theory with a field ΦijðxÞ in the adjoint representation,
where x is the coordinate of the physical space and i; j ¼
1; 2;…; N are regarded as “coordinates” in the internal
space. We can thus imagine that the internal space consists
of N2 points, and the degrees of freedom at each point
interacts with all others; it is in this sense that the internal
space interactions are nonlocal. While we almost exclu-
sively study large-N gauge theories in order to realize

concretely the physics of the phase transitions of interest,
the logic of the underlying mechanism appears to be more
broadly applicable.
As a specific example, let us consider the confinement/

deconfinement transition in gauge theory [1–4] and con-
sider the useful analogy with to the liquid-solid transition in
water. A cartoon picture of the phase diagram of water at
1 atm and near 0 °C is shown in Fig. 1. Although the
terminology of internal and physical space in the case of
analyzing the liquid-solid transition of water is a bit
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FIG. 1. A sketch of the phase behavior of water near the liquid-
solid transition in terms of the energy E and temperature T. Red
(blue) lines represent the liquid (solid) phases. The solid and
dashed lines represent the stable and metastable phases. The
vertical orange line is the liquid-solid coexistence phase. In the
canonical ensemble, the energy E ¼ EðTÞ is determined by
minimizing the free energy at each fixed T, while in the
microcanonical ensemble, T ¼ TðEÞ is determined by maximiz-
ing the entropy at each fixed E.
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confusing, it will serve as a useful analog for what is
happening in various phase transitions in later sections.
Two phases can coexist in the internal space. At the

critical temperature T ¼ Tc ¼ 0 °C, water goes through a
first-order transition, and the liquid and solid phases can
coexist in physical space. The coexistence curve in the
phase diagram is represented by the vertical orange line in
Fig. 1. In a similar manner, two phases (e.g., confined and
deconfined phases) can coexist in the internal space; see
Figs. 2(a) and 2(b). The generalization of this idea to other
theories with similar all-to-all couplings is straightforward.
Partial symmetry breaking can occur. Associated with

the coexistence of two phases in the internal space, the
symmetry of the system can be broken spontaneously. For
example, SUðNÞ symmetry of gauge theory spontaneously
breaks to1 SUðMÞ × SUðN −MÞ × Uð1Þ. Moreover, the
symmetry changes gradually; namely, at large N, the ratio
M
N changes continuously from 0 to 1; see Fig. 2(b). There is
no counterpart to this phenomenon in the coexistence in
physical space.
Temperature can change nontrivially. Ignoring the

interactions at the interface of the two phases, the admix-
ture of liquid and solid water in physical space determines
the energy of the configuration at fixed temperature. On the
other hand, temperature can change nontrivially, as shown

in the left and right panels of Fig. 2(a). The same can hold
for other parameters, for example, when we replace the
energy and temperature with charge and chemical potential.
“Metastable” phases can be completely stabilized in the

thermodynamic limit. Associated with the first-order tran-
sition, metastable phases such as supercooled liquid and
superheated solid can appear. Such metastable phases due
to the local interaction are unstable to a small perturbation,
even in the thermodynamic (large-volume) limit. On the
other hand, similar metastable phases due to the all-to-all
couplings can be stabilized in the thermodynamic limit (the
large-N limit); namely, the size of the perturbation needed
to destabilize such phases can increase with the system size.
While this fact has been well known for the large-N gauge
theories, the apparent difference from the local interaction
has not been widely appreciated.
Previously, the features above have been conjectured for

the confinement/deconfinement transition. In the rest of the
paper, we argue that these features are more generically
realized. To do so, we collect evidence based on concrete
examples and heuristic arguments which apply to generic
cases. We will start with qualitative arguments in a bound
state of D-branes in Sec. II. The purpose of this section is to
rephrase the statements in Refs. [3,4] in a more intuitive
manner, which will allow for more straightforward gener-
alization beyond simple toy models. Following that dis-
cussion, we will outline a heuristic proposal for extending
the lessons learned from the qualitative analysis to more
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FIG. 2. The blue (red) lines represent the confined (deconfined) phases. Along the orange line is the partially deconfined coexistence
phase. Similar figures have been used in Ref. [3]. (a) Three basic types of energy-vs-temperature relations in various large-N gauge
theories. (b) Three types ofM-vs-temperature relations in various large-N gauge theories. HereM characterize the size of the deconned
phase in the color space, namely SUðMÞ subgroup of SUðNÞ is deconned.

1Strictly speaking, the global part of gauge symmetry can
break spontaneously. For details, see Ref. [4].
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generic cases. We will see in subsequent, varied examples
that application of the basic ideas in our proposal can
proceed without significant modification. In Sec. III, we
will study QCD-like theories on a compact physical space
(i.e., S3) in various limits giving both analytic and numeri-
cal quantitative evidence for the appearance of partial-
symmetry-breaking phase transitions, and at the end, we
will explore the possible effects that partial deconfinement
could have on chiral symmetry. In Sec. IV, we will analyze
partial-symmetry-breaking phase transitions in two-
dimensional (2D) pure Yang-Mills (YM) theories in both
lattice and continuum formulations. In Sec. V, we will try to
understand partial-symmetry-breaking phase transitions
through gauge/gravity duality in the context of black
hole/black string transitions and their relation to maximally
supersymmetric 2D super-Yang-Mills (SYM) theory. In
Sec. VI, the Higgsing in QCD with adjoint quarks is
discussed. Finally, we will provide a brief recap, discus-
sion, and outlook for future work.

II. REVIEW AND QUALITATIVE ANALYSIS

In this section, we will motivate our analysis with a
discussion of a heuristic model that captures the broad
features of the physics of phase transitions at large-N that
we wish to argue are universal. We will review key results
in Ref. [3] in such a way that allows for straightforward
generalization to other cases. The readers only interested in
the derived intuition to be applied in more quantitative
settings can skip to Sec. II B. For readers interested in
further arguments for the universality of the large-N
phenomena explored below, see Appendix for a model
of ant trail formation2 in a large colony population limit that
behaves remarkably similarly to the brane model.

A. Brane model

Let us consider the world volume theory of N-coincident
D-branes [5], which has a low-energy description as SYM
theory with an SUðNÞ gauge symmetry [6]. The dynamics
of the low energy world volume gauge theory are local
with all-to-all coupling of the color degrees of freedom.
Now, suppose we separate out and form a bound state of
M < N D-branes, i.e., a black hole. Due to the open string
excitations, the extensive variables, e.g., entropy and
energy, of the bound state are of order OðM2Þ.
Bringing another single D-brane near to the bound state

excites M different open string modes, giving rise to an
OðMÞ attractive entropic force. If this additional brane falls
into the black hole, the bound state energy and entropy
increase as E; S ∼M2 → ðM þ 1Þ2. However, due to e−E=T
Boltzmann suppression, the more favorable state tends to

have lower M. Thus, the size of the bound state is
determined where the entropic force and Boltzmann sup-
pression balance. In this way, two phase coexistence is
possible in the equilibrium state of M D-branes inside and
N −M D-branes outside the bound state.
In the large-N limit, M=N changes continuously. In the

bound state phase, the world volume gauge symmetry is
broken to SUðMÞ × SUðN −MÞ × Uð1Þ.3,4 In this way,
partial symmetry breaking can occur. There are two phase
transitions, M=N ¼ 0, where the bound state formation
begins, and M=N ¼ 1, where all of the branes have fallen
behind the horizon.
Let us make the argument more precise by considering

the above thermodynamical system in the canonical
ensemble with energy E and temperature T. The partition
function can be written as

ZðTÞ ¼
Z

dEe−FðE;TÞ=T; ð1Þ

where FðE; TÞ ¼ E − TSðEÞ is Helmholtz free energy.
Extremizing F with respect to E and using the definition
of the temperature in the microcanonical ensemble,
T−1
micro ≔ dS=dE, one can easily see that ∂F=∂E ¼ 0 is

equivalent to setting T ¼ Tmicro. Therefore, by finding the
saddle points for fixed canonical temperature T, we obtain
the energy E which corresponds to the microcanonical
temperature.
The stable (∂2F=∂E2 > 0) or unstable (∂2F=∂E2 < 0)

saddles can equivalently be characterized by states with
positive or negative specific heat, respectively. That is,

∂2F
∂E2

¼ T
T2
micro

·
dTmicro

dE
: ð2Þ

Figures 2(a) and 2(b) show a cartoon of three basic patterns
of the phase diagram [3,7,8] with the intermediate phase
represented by the orange line. In the left (right) panel in
each figure, the specific heat of the intermediate phase is
negative (positive). The middle panel in each figure
corresponds to the weak-coupling limit of pure Yang-
Mills theory [7,8] where the saddle corresponding to the
intermediate phase has ∂2F=∂E2 ¼ 0 regardless of the
value of E.
The reason that nontrivial temperature dependence

appears in the intermediate phase can be understood as
follows [1,9]: roughly speaking, temperature is energy per
number of dynamical degrees of freedom, and hence
T ∼ E=M2.5 Note that M2 is parametrically determined

2In this case, since the ants are treated as indistinguishable, the
symmetry group governing the dynamical process of trail for-
mation within a colony of N ants is the permutation group SN .

3If the flat direction is allowed, SUðMÞ × Uð1ÞN−M−1 can also
be realized.

4The meaning of the symmetry breaking will be elaborated on
later in this paper.

5In the brane model, the energy is dominated by the con-
tribution from the bound state.
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as a function of E, and hence the specific heat can
be positive or negative depending on the details of
the dynamics. In this way, temperature can change
nontrivially.
When the phase diagram in the canonical ensemble is

like the left panels of Figs. 2(a) and 2(b), the transition
becomes of first order with hysteresis. Typically, free
energies of two stable saddles are not equal, and hence
one of them is just metastable. However, in order for the
tunneling to happen, it is necessary to go beyond the
unstable saddle, and hence a very large perturbation is
needed. That is, the value of the size of the bound state M
and free energy F have to change the amount of OðNÞ
and OðN2Þ, respectively, and the tunneling rate becomes
approximately e−N

2

. In this way, the metastable phase
can be completely stabilized in the thermodynamic limit
(large-N limit).

B. Underlying mechanism

Having constructed a rather simple model exhibiting
partial-symmetry-breaking phase transitions, let us under-
stand the mechanism behind the phase behavior and extract
the lessons applicable to other systems as well.
Returning to the liquid/solid transition of water

explained in Sec. I, the two phases have different energy
due to finite latent heat. In the microcanonical ensemble,
there is no discontinuity because the energy of the entire
system and the volume occupied by each phase can
continuously change in a correlated manner. As we will
see below, essentially the same mechanism works for the
degrees of freedom on the internal space.
Typically in the large-N limit, OðNÞ degrees of freedom

on the internal space have all-to-all interactions defined by
the symmetries of the theory. Further, in the large-N limit,
phase transitions exhibit a large jump in the extensive
thermodynamic variables in the canonical ensemble; e.g.,
the energy or charge changes significantly. In the micro-
canonical description, however, one expects that there is
path in phase space describing a (possibly unstable)
intermediate phase smoothly connecting the end points
of the jump. The partially broken symmetries in the theory
at points on the path through the intermediate phase then
smoothly interpolate between the symmetries in the (meta)
stable phases, e.g., the SUðMÞ × SUðN −MÞ × Uð1Þ
phase for the D-brane picture of black hole formation or
the SM × SN−M phase in the ant model in Appendix.
This raises a question in the intermediate phase: what if,

e.g., all N D-branes formed a bound state (or all N ants
formed a trail) immediately at the phase transition, and all
degrees of freedom on the internal space were excited
simultaneously at small energy? In this case, the temper-
ature T ∼ E=N2 would have to become parametrically
small, and hence the microcanonical phase diagram would
have a discontinuity. Therefore, as a function of E, the
number of unlocked degrees of freedomM2 has to increase

gradually in such a way that E=M2 is continuous.6

A similar way to phrase it is that in quantum mechanics
it is impossible to excite all degrees of freedom in a
parametrically small amount on a compact space because
each mode is quantized. In the case of liquid/solid transition
of water, the latent heat functions similarly to suppress
parametrically small excitations of the entire system.
Considering the case of a theory with an SUðNÞ

symmetry group with large N, the continuous change of
the symmetry cannot generically be surmised simply from
the continuity of the temperature alone. Although the
excitation of M2 degrees of freedom will break the full
SUðNÞ symmetry, the system in this state still tends to
exhibit a large symmetry. We conjecture this because it is
natural to expect that the saddles (the maximization of the
entropy in the case of the microcanonical ensemble) respect
the symmetry as much as possible. In the case of confine-
ment/deconfinement transition, the precise understanding
is obtained in Ref. [10], by using a close relationship to
Bose-Einstein condensation [11].
Essentially the same can happen in other systems as well.

The point is that there are many internal degrees of freedom
interacting, and they can be separated to two phases in the
internal space. The continuity in the microcanonical
ensemble requires the gradual change of the numbers of
degrees of freedom in two phases. The same principle
naturally leads to the intermediate phase, or equivalently
the coexistence of two phases. Furthermore, when the
system has a large symmetry, it is natural to expect the
continuous change of the symmetry.
An important difference is how M in the nonlocal

theories7—or the volume of each phase in the local
theories—depends on the energy E. In the local theories,
as long as the contribution from the interface is negligible,
the volume depends linearly on the energy, analogous to the
center panel of Fig. 2(b). In the nonlocal theories, more
complicated behavior can show up.
When the specific heat of the intermediate phase is

negative, the intermediate saddle becomes the maximum of
free energy in canonical ensemble, which separates stable
and metastable phases. The amount of fluctuation needed
for the tunneling to the other (meta)stable branches
increases with N. Therefore, in the thermodynamic limit
(large-N limit), the probability of seeing a tunneling event
becomes vanishingly small, and the metastable state is
completely stabilized at N ¼ ∞.

6One may think the continuity can be achieved if a small
fraction in the spatial volume goes thorough complete deconfine-
ment. However, note that the deconfinement takes place even in
matrix models, in which there is no spatial dimension at all. See
Sec. II B 1 for more explanation regarding this issue.

7As noted in Sec. I, the internal space consisting of the color
degrees of freedom can be regarded as a nonlocal space, in the
sense that the degrees of freedom on N2 points have all-to-all
interaction.
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All of the ingredients explained above are not specific to
the deconfinement transition in gauge theory, and so it is a
reasonable conjecture that there is a large universality class
of theories that exhibit such phase behavior.

1. Large volume vs small volume

The thermodynamic limit can be realized by sending the
volume of the physical space to infinity or by taking the
size internal space to be infinity (large-N limit). In the
large-N limit, the physical volume is so small that the
coexistence of two phases in physical space is impossible,
we need to consider only the coexistence in the internal
space. What if both internal and physical spaces are large?
Let us consider microcanonical ensemble, and suppose

we prepare an initial state in the intermediate phase
with uniform energy density. Locally, there are three basic
patterns as we have already seen [Figs. 2(a) and 2(b)], as in
the case of the small volume. If the specific heat in the
intermediate phase is negative, fluctuations in the internal
space degrees of freedom can lead to instability in the
physical space.8 Typically, a spinodal decomposition takes
place, and most of the physical space is occupied by the
phases with either M=N ¼ 0 or M=N ¼ 1. Yet, the inter-
mediate phase 0 < M=N < 1 survives on the domain wall
separating regions existing in the two (meta)stable phases.
On the other hand, if the specific heat coming from the
dynamics in the internal space is positive, then such
instability does not arise, and the intermediate state can
stably fill whole the physical space.
Let us consider further on the case with the negative

specific heat [the left panels of Figs. 2(a) and 2(b)].
Treating the system now in the canonical ensemble, the
phase with either M=N ¼ 0 or M=N ¼ 1 filling whole the
physical space gives the minimum of free energy. However,
depending on the temperature, these saddles might be only
local minima. Whether tunneling to the global minimum
takes place or not depends on the order of limits in taking
both large-N and large physical volume; that is, fixing N
large but finite and taking a large-volume limit may see
different tunneling rates as compared to the limit taking
large but fixed volume and N → ∞. For example, for a
given region at fixed volume in physical space, taking the
large-N limit parametrically suppresses the probability of
any tunneling to occur, e.g., tunneling rates in the gauge
theories are typically Oðe−N2Þ suppressed; however, in
fixing N large but finite, the large physical volume limit

will eventually surpass the large-N suppression and allow
for a non-negligible tunneling probability.

2. Gauge-invariant description and spontaneous
gauge symmetry breaking

We have seen that the SUðNÞ symmetry of the brane
model is “spontaneously broken” to SUðMÞ×SUðN−MÞ×
Uð1Þ. Let us elaborate on this point and identify the order
parameter [4,10].
First, recall that the physical states in the Hilbert space

have to be gauge invariant. However, the discussion above
does not seem to be consistent with the gauge invariance.
We can easily fix it and understand everything in the gauge-
invariant manner, in the following way [4]. D-branes and
open strings are described by using the N × N matrices.
First, we consider a particular embedding of SUðMÞ into
SUðNÞ (approximately a particular choice of M D-branes),
e.g., the upper-left M ×M block as in the top panel of
Fig. 3. Then, by considering the excitation in this particular
SUðMÞ embedding, we are probing the space of SUðMÞ-
invariant states denoted jE; SUðMÞi. Note that by con-
struction the states jE; SUðMÞi are not SUðNÞ invariant.
From these SUðMÞ-invariant states, we can construct the
SUðNcÞ-invariant states with the same energy as

FIG. 3. Above is a sketch of partial deconfinement in the
weakly coupled QCD. In the gauge sector, the SUðMcÞ block is
deconfined, while the rest is confined. In the quark sector, Mc
colors of all Nf flavors are deconfined. Complete confinement is
realized only at T ¼ 0.

8Consider two small neighboring volumes A and B in
thermodynamic equilibrium and a small amount of energy moved
from A to B. After the energy transfer, the temperature in A will
be slightly higher than that in B because the specific heat is
negative. Following the energy transfer, the resulting gradient of
the temperature induces further energy transfer, and thus, after a
small perturbation, the difference of the temperatures in regions A
and B grows.
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jEiinv ¼ N −1=2
Z

dUUðjE; SUðMÞiÞ: ð3Þ

This mapping is one to one. These SUðNÞ-invariant states
are the partially deconfined states which dominate
thermodynamics.
Next, let us see how the SUðNÞ symmetry is sponta-

neously broken to SUðMÞ × SUðN −MÞ × Uð1Þ. To start,
let us consider two different embeddings of SUðMÞ into
SUðNÞ (approximately two different choices of M-branes).
We denote the SUðMÞ-invariant states for the respective
embeddings by jE; SUðMÞi1 and jE; SUðMÞi2. Further,
let us consider operators Ô that affect at most an OðN0Þ
change the energy, e.g., Ô constructed as the trace of a
product of OðN0Þ number of scalars. That is, because we
are interested in the properties of the states of energy
OðN2Þ, we do not want to consider operator insertions that
could change the energy too much. For such operators, we
have

1hE; SUðMÞjÔjE; SUðMÞi2 ¼ 0: ð4Þ

Note that M
N can be small but order OðN0Þ. The vanishing

(4) is due to the fact that in order to connect the two states
OðN2Þ creation and annihilation operators are needed. This
is analogous to the superselection; jE; SUðMÞi and jEiinv
defined by (3) are indistinguishable in the sense that we
get the same expectation value. More precisely in a very
small spatial region, different embeddings can be connec-
ted without changing the energy too much, but globally,
different embeddings cannot be connected. Essentially, this
is the spontaneous symmetry breaking of the global part of
the gauge symmetry.
In Yang-Mills theory, the value ofM is directly visible in

the distribution of the phases of Polyakov loop ρðθÞ, in a
gauge-invariant manner [10]. In the next section, we will
see this point in a few concrete examples.

III. QCD PHASE TRANSITION

In this section, we will consider the coexistence of
confined and deconfined phases in large-Nc QCD with
the SUðNcÞ gauge group and Nf quarks in two different
limits. First, we will see that, in the analytically solvable
regime of weakly coupled large-Nc QCD on a small S3, an
explicit construction of the partial deconfinement transition
is possible. Second, we will study the consequences of
partial deconfinement for chiral symmetry in the infinite-
volume limit of large-Nc QCD with Nf massless quarks.

A. Weakly coupled QCD on S3

Let us consider SUðNcÞ YM with Nf fermions of mass
m in the fundamental representation of the gauge algebra
suðNcÞ and take large Nc with

Nf

Nc
fixed. We will put this

theory on S3 × S1 where the S3 radius is R and S1 radius is
β, the weak-coupling limit can be solved analytically in the
regime where 1

R ≫ ΛQCD [7,8,12,13].

1. Nf = 0

Because Nf > 0 is technically complicated, let us start
with a simpler case setting Nf ¼ 0, which has been studied
in Ref. [4]. After understanding the Nf ¼ 0 case, the
generalization to Nf > 0 is more tractable. To study the
analytically solvable regime further, let us fix the gauge so
that the temporal component of gauge field At is static and
diagonal. In this gauge, all of the spatial components of the
gauge field can be integrated out, leaving behind an
effective action for At in terms of un ¼ 1

N TrP
n. Here,

we have denoted the Polyakov line made of At as P. The
un’s are determined such that the effective action is
minimized. The minimum of the effective action is inter-
preted as βF, where F is the free energy of the theory and
β ¼ 1=T is the inverse temperature. We use the same
notation βF for both the effective action and free energy,
with the understanding that the former is the function of
un’s and the latter is obtained by taking the saddle point
value. Explicitly computing the effective action, one
obtains the effective action

βF ¼ N2
c

X
n

anðTÞu2n; ð5Þ

where

anðTÞ ¼
1

n

�
1 − 2

X∞
l¼1

lðlþ 2Þe−nβðlþ1Þ
R

�
: ð6Þ

In the following, we will be concerned primarily with the
thermodynamic profile of loop operators built out of P.
The phase distribution of the Polyakov line is given by

ρðθÞ ¼ 1

2π

�
1þ 2

X
n

un cosðnθÞ
�
; ð7Þ

where −π ≤ θ < π. At low temperature, all an’s are
positive, and hence all un’s take zero. This is the confining
phase, ρðθÞ ¼ 1

2π. The phase transition happens at T ¼ Tc,
where a1 becomes zero:

a1ðTcÞ ¼ 0: ð8Þ

At this point, other an’s (n ≥ 2) are still positive. Therefore,
u1 can take any value without changing free energy, while
other un’s remain zero, as long as ρðθÞ ≥ 0 is not violated.
The distribution of the Polyakov line phase becomes

ρðθÞ ¼ 1þ 2u1 cos θ
2π

¼ 1þ 2P cos θ
2π

; ð9Þ
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where P ¼ 1
N TrP, and hence u1 ¼ P can take any value

between 0 and 1
2
. Above Tc, other un’s take nonzero values

as well, such that the effective action is minimized without
violating ρðθÞ ≥ 0.
The energy at T ¼ Tc is9

E ¼ N2
cP2 ×

∂an
∂β
����
T¼Tc

: ð10Þ

The entropy is obtained as S ¼ βðE − FÞ, which is simply
βE at T ¼ Tc.
Therefore, the phase diagram becomes like the center

panels of Figs. 2(a) and 2(b). In the microcanonical
ensemble, there are two transitions, at P ¼ 0 and P ¼ 1

2
.

The latter is the Gross-Witten-Wadia (GWW) transition
[14,15], which corresponds to the formation of the gap in
the phase distribution.
We identify the GWW transition with the transition

from partially deconfined phase to completely deconfined
phase. The energy and entropy of the SUðMcÞ-deconfined
phase should be those of the SUðMcÞ theory at the GWW
point [1,3]:

S ¼ SGWWðMcÞ; ð11Þ

E ¼ EGWWðMcÞ: ð12Þ

These relations actually hold, with the following identi-
fication:

P ¼ Mc

2Nc
: ð13Þ

Another nontrivial relation is obtained by looking at the
distribution of Polyakov loop phases. Because Nc −Mc of
the phases are in the confining phase while the otherMc are
at the GWW point of the SUðMÞ theory, we naturally
expect [3]

ρðθÞ ¼
�
1 −

Mc

Nc

�
ρconfineðθÞ þ

Mc

Nc
· ρGWWðθ;McÞ

¼ 1

2π

�
1 −

Mc

Nc

�
þMc

Nc
· ρGWWðθ;McÞ: ð14Þ

Here, ρGWWðθ;McÞ is the distribution in the SUðMcÞ
theory at the GWW point. This relation holds as well,
with the identification (13) and ρGWWðθ;McÞ ¼ 1þcos θ

2π .
We can push the argument further and demonstrate

partial deconfinement more robustly by constructing the

states in the Hilbert space [4]. The argument is similar to
the one provided in Sec. II B 2.

2. Nf > 0

Let us move on to the case of Nf > 0. The effective
action is [12,13]

βF ¼
X
n

ðN2
canðTÞu2n þ NcNfbnðTÞunÞ; ð15Þ

where an is given by (6), and

bnðTÞ ¼
ð−1Þn
n

· 4
X∞
l¼1

lðlþ 1Þe−nβ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1

2
Þ2þm2R2

p
: ð16Þ

In the following, we will be concerned primarily with the
thermodynamic profile of loop operators built out of P
again. By definition, the phase distribution of the Polyakov
loop given in (7) must be positive semidefinite: ρðθÞ ≥ 0.
Further in the low-temperature regime β ≫ R, the phase
distribution ρðθÞ is everywhere nonzero. However, there is
a GWW phase transition, which we denote by T ¼ TGWW,
above which ρðθÞ is zero for a part of the range of θ.
As long as this phase distribution is everywhere positive,

un’s can change independently, and the saddle point

equation ∂ðβFÞ
∂un ¼ 0 can be solved for each n as

un ¼ −
Nf

Nc
·
bnðTÞ
2anðTÞ

: ð17Þ

Evaluating the effective action on the saddle, i.e., substitut-
ing (17) into (15), we obtain

βF ¼ −
N2

f

4

X
n

ðbnðTÞÞ2
anðTÞ

: ð18Þ

From this point, computing the internal energy of the

thermodynamic system (E ¼ − ∂ðβFÞ
∂β ) yields

E ¼ N2
f

4

X
n

��
bn
an

�
2

·
∂an
∂β − 2

bn
an

·
∂bn
∂β
�

¼
X
n

�
N2

cu2n
∂an
∂β þ NcNfun

∂bn
∂β
�
: ð19Þ

Note that the expressions (17), (18), and (19) are valid only
for T ≤ TGWW.
At this point, we need to demonstrate that partial

deconfinement is actually taking place at a temperature
T ≤ TGWW. To begin, consider the situation that Mc colors
and Nf flavors are deconfined, as shown in Fig. 3.
Corresponding to a given temperature T, we identify
the size of the deconfined block Mc such that T is the

9By definition, E ¼ −∂ðβFÞ=∂β. In order to use this, we need
to introduce a small interaction so that the β-derivative is
mathematically well defined. For example, we can use the
expression for nonzero Nf

Nc
(19) and then send Nf

Nc
to zero.
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GWW-transition temperature of the SUðMcÞ theory, which
we denote T ¼ TGWWðMc;NfÞ.
We start by computing free energy F̃ for an SUðMcÞ YM

theory with Nf fundamental fermions of mass m. This is
trivially obtained by replacing Nc in (15) by Mc,

βF̃ ¼
X
n

ðM2
canðTÞũ2n þMcNfbnðTÞũnÞ: ð20Þ

Here, for convenience in distinguishing variables, we have
expressed the phase distribution of the Polyakov line in the
SUðMcÞ theory as

ρ̃ðθÞ≡ 1

2π

�
1þ 2

X
n

ũn cosðnθÞ
�
: ð21Þ

We can now determine the GWW temperature by solving

min ρ̃ðθÞ ¼ 0: ð22Þ

By identifying ũ ¼ Nc
Mc

u, we can trivially rewrite (20) to
(15), while (22) changes to

min ρðθÞ ¼ 1

2π

�
1 −

Mc

Nc

�
; ð23Þ

where again ρðθÞ, given in (7), is the phase distribution of
the Polyakov line in the SUðNcÞ theory. It is easy to see that
the key relation (14) is actually satisfied. This relation (23)
gives a simple way to identify Mc for a given temperature.
See Fig. 3 for a qualitative picture for the temperature
dependence.
Further, computing the energy E in the SUðMcÞ theory is

straightforward and results in

E ¼
X
n

�
N2

cu2n
∂an
∂β þ NcNfun

∂bn
∂β
�

¼
X
n

�
M2

cũ2n
∂an
∂β þMcNfũn

∂bn
∂β ;

�
; ð24Þ

and the entropy is S ¼ βðE − FÞ and is easily obtained
from the above expressions. By substituting T ¼
TGWWðMc;NfÞ, we obtain

E ¼ EGWWðMc;NfÞ; and S ¼ SGWWðMc;NfÞ: ð25Þ

Therefore, the energy and entropy behave consistently
with (23).
The method of constructing a one-to-one mapping

between the states in the Hilbert spaces of the SUðNcÞ
theory and the SUðMcÞ theory, explained around (3), is
completely applicable in the above analysis.
In the original treatment of this theory [12], the GWW

transition has been identified with the deconfinement
transition. The reasoning behind this identification is based

on the observation that the free energy is of order N2
f below

the GWW transition—as can be seen in (18)—and the
argument that N2

f counts the number of mesonic degrees of
freedom. However, as we have seen, the GWW transition
should be identified with the deconfinement transition of all
color degrees of freedom. Below this maximal GWW
transition, there is a coexistence phase on the internal
space, i.e., the group manifold of SUðNcÞ, where confined
and deconfined sectors are simultaneously realized for a
complementary subset of the color degrees of freedom.

B. Chiral symmetry

In this section, our aim is to understand the fate of chiral
symmetry as one moves into the partially deconfined phase.
That is, does an intermediate phase connecting phases of
broken and unbroken chiral symmetry exist? While there
are no quantitative, dynamical calculations yet to determine
the existence of such a coexistence phase, by exploiting a
known loophole in the Vafa-Witten theorem [16], we will
explore the possibility that an intermediate phase with
partially broken chiral symmetry could exist.
Let us now consider the infinite-volume limit of large-Nc

SUðNcÞ QCD with Nf fermions in the fundamental
representation. In order to preserve the chiral symmetry
precisely, let us consider quarks in this theory to be exactly
massless. We will write the massless quarks as ψcf with the
color and flavor indices taking values c ¼ 1; 2;…; Nc and
f ¼ 1; 2;…; Nf, respectively. If an intermediate phase
connecting the confined phase and deconfined phase does
exist, a naive guess as to its structure could be as follows:

(i) In the gauge sector, SUðMcÞ ⊂ SUðNcÞ deconfines,
and we assume that the symmetry breaking occurs in
such a way that c ¼ 1; 2;…;Mc spans the decon-
fined block as in the left panel of Fig. 4.

(ii) In the quark sector, only the massless modes ψcf
with c ¼ 1; 2;…;Mc and f ¼ 1; 2;…;Mf decon-
fine. That is, we have Mc color and Mf flavor
degrees of freedom deconfined as depicted in the
right panel of Fig. 4.

(iii) The left over (N2
c −M2

c degrees of freedom in the
gauge sector and NcNf −McMf degrees of freedom
in the quark sector) remain confined.

There are, however, immediate objections that could be
raised if the above case is true. One should note above that
the minimal flavor symmetry breaking pattern would
involve the breaking of SUðNfÞV . Such a flavor symmetry
breaking patter would seem to be in violation of the Vafa-
Witten theorem [16], which forbids the breaking of the
vector part of the flavor symmetry. However, we can use a
well-known exception: the Vafa-Witten theorem assumes
the positivity of the fermion determinant in the Euclidean
path integral, which is dependent on the value of the baryon
chemical potential μB. At μB ¼ 0, the above assumption is
valid, and hence we expect Mf ¼ Nf, just as Fig. 3.
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However, one can introduce μB ≠ 0 without breaking chiral
symmetry, and because the fermion determinant is complex
at finite baryon chemical potential, the Vafa-Witten theorem
does not apply. Thus, Mf < Nf at μ ≠ 0 may be possible.
If we can assume that the deconfinement pattern above

holds, a natural expectation is that the chiral condensate
is zero for c ¼ 1; 2;…;Mc and f ¼ 1; 2;…;Mf. Then,
in the SUðMcÞ sector, SUðNfÞA spontaneously breaks
to SUðMfÞA, and SUðNfÞV spontaneously breaks to
SUðMfÞV × SUðNf −MfÞV . In the SUðNc −McÞ sector,
SUðNfÞA breaks completely, and SUðNfÞV does not break.
Here, Mc and Mf are determined dynamically as the
function of the energy. While we cannot analytically prove
this statement, we can do a consistency check by using the
’t Hooft anomaly, which is somewhat trivial.
In the usual sense of anomaly matching in the broken and

unbroken chiral symmetry phases, treating the global chiral
symmetry SUðNfÞA as a background gauge symmetry,
the anomaly is easily calculated in the UV to be propor-
tional to dimSUðNfÞ ¼ N2

f − 1. If along the flow to the IR
SUðNfÞA is completely broken, the anomaly of the Wess-
Zumino-Witten action of the Nambu-Goldstone (NG)
boson takes the same value.
However, the logic of anomaly matching should be

satisfied at any intermediate energy scale, provided there
are no accidental symmetries along the flow. Then, in the
partially deconfined phase where there is an admixture
deconfined and confined sectors coexisting, we should be
able to perform the same counting as above. If the gauge
symmetry and chiral symmetry break in a coordinated
manner as we have conjectured above in the deconfined
SUðMcÞ sector, then the quarks contribute M2

f − 1, while
the NG boson corresponding to the coset SUðNfÞA=
SUðMfÞA contributes N2

f −M2
f. Thus, the sum is always

N2
f − 1, and the anomaly in the partially deconfined phase

matches the UV anomaly. In the confined SUðNc −McÞ
sector, the anomaly matching is trivially satisfied; the chiral
symmetry is completely broken or unbroken.

By considering the chiral condensate for each flavor and
color, possible breaking of the chiral symmetry and color
symmetry can be detected. The distribution of the phases of
Polyakov loop can also be used to see the “breaking” of the
color symmetry.
As noted in the many caveats throughout this section, the

breaking pattern we have discussed above is merely a
logical possibility, and we are without the dynamical
calculations needed in order to see if it is actually realized.
It would be interesting to understand the effect of the
nondegenerate quark mass on the flavor symmetry breaking
pattern. Partial breaking of flavor symmetry may take place
in other corners of the phase diagram as well, such as the
hadron condensation at low temperature and large baryon
chemical potential.

IV. PURE YANG-MILLS IN TWO DIMENSIONS

In this section, we consider two solvable examples of two-
dimensional pure Yang-Mills theory in Euclidean spacetime
at finite coupling: Wilson’s plaquette action and the con-
tinuum theory on 2-sphere. While these theories have been
solved analytically several decades ago and well studied
since then, to our knowledge, the simple physical interpre-
tation of their phase behavior that we will provide has
not been appreciated. In these models, we will explicitly
demonstrate that as the ‘t Hooft coupling λ varies, a
transition into a phase analogous to the coexistence phase
of confined and deconfined degrees of freedom takes place.
An important difference from the previous example is that
these examples do not admit theWick rotation toMinkowski
spacetime, and thus we are not manifestly concerned about
the interpretation of states in the Hilbert space. Rather, we
focus our attention on the properties of the saddle points
dominating the path integral in the large-N limit. We obtain
simple results consistent with our picture of partial-sym-
metry-breaking phase transitions, which supports our con-
jecture that such transitions are generic.

A. Gross-Witten-Wadia transition
in 2D lattice gauge theory

The first model that we will consider is the two-dimen-
sional version of Wilson’s plaquette formulation of UðNÞ
gauge theory on a square lattice. This theory has been
solved at large N, and a third-order (GWW) transition has
been found [14,15]. Historically, this model is, obviously,
the first theory in which the GWW was found, the
derivation of which goes as follows.
We start by fixing the axial gauge. That is, we enforce

that the link variable connecting lattice sites along the time
direction is taken to be the unit matrix. In the axial gauge,
the partition function becomes

Z ¼
�Z

dUe
− 1

g2
ðTrUþTrU†Þ

�
V ≡ zV; ð26Þ

Mc

Mc

Nc Mc

Nc Mc

Mc

Nc Mc

Mf Nf Mf

FIG. 4. In the gauge sector, the SUðMcÞ block is deconfined,
while the rest is confined. In the quark sector, Mc colors of Mf

flavors are deconfined. The chiral symmetry is broken in the
deconfined sector; namely, for Mc colors, it breaks to SUðMfÞA,
while for the other Nc −Mc colors, it breaks completely. Based
on the Vafa-Witten theorem [16], Mf ¼ Nf is expected at zero
baryon chemical potential.
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where V is the number of lattice sites, the plaquette U is
N × N unitary matrix, and the integral is taken with respect
to the Haar measure. Therefore, the problem of computing
the full path integral is reduced to simply computing the
one-matrix model partition function z.
To solve this theory, let feiθ1 ;…; eiθNg denote the set of

eigenvalues of U where the phases take values in θi ∈
ð−π; π� for all i ¼ 1;…; N. The large-N limit is taken with
fixed λ ¼ g2N. In the large-N limit, the one-matrix model
can be solved by finding the saddle point expressed by the
distribution of phases, ρðθÞ, which has a nontrivial depend-
ence on the coupling.
For λ ≥ 2, the distribution of phases takes the form

ρðθÞ ¼ 1

2π

�
1þ 2

λ
cos θ

�
: ð27Þ

However, in the regime where λ < 2, the distribution has a
markedly different profile in θ,

ρðθÞ ¼

8>><
>>:

2
πλ cos

θ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2
− sin2 θ

2

q �
jθj ≤ 2 arcsin

ffiffi
λ
2

q 	
0

�
jθj > 2 arcsin

ffiffi
λ
2

q 	 :
ð28Þ

The free energy F ¼ − log z near λ ¼ 2 in the two distinct
regimes described above displays a phase transition:

F
N2

¼
8<
:

− 1
λ2

ðλ ≥ 2Þ
− 2

λ þ 1
2
log
�
2
λ

	
þ 3

4
λ < 2

: ð29Þ

One can immediately deduce the existence of a third-order
phase transition at λ ¼ 2 insofar as at the transition point F,
dF
dλ and

d2F
dλ2 are continuous, while

d3F
dλ3 discontinuously jumps.

This is the original version of the GWW transition.
In the asymptotically free gauge theories which exhibit

the confinement/deconfinement transition, because the
coupling constant becomes smaller at higher temperature,
there is an immediate identification of the weakly coupled
phase of the theory with deconfinement and the strongly
coupled phase of the theory with the confinement. Hence,
we are tempted to see the analogy between the GWW
transition in the 2D lattice theory considered above and the
confinement/deconfinement transition in higher-dimen-
sional gauge theories. Pushing this analogy, the distribution
of the plaquette phases plays the role of the distribution of
the Polyakov line phases. The analog of the confined phase
[i.e., ρðθÞ ¼ 1

2π for the Polyakov line phase distribution] is
seen in comparing to (27) at exactly infinite coupling
λ ¼ ∞. Then, to complete the anaology for any finite
coupling, 2 < λ < ∞, the plaquette phase distribution

describes a phases of the lattice theory resembling the
partially deconfined phase.
Let us make this observation more precise. Returning to

the sketch of partial deconfinement in an SUðNÞ gauge
theory from above, we assume a “deconfined,” weakly
coupled SUðMÞ ⊂ SUðNÞ sector is sitting at the GWW
point, while the remaining degrees of freedom are in the
“confined,” strongly coupled limit. Pushing the analogy to
its end, the distribution (14), compared to the expectation
from the generic property of partial deconfinement (27),
suggests the following identification:

M
N

¼ 2

λ
or equivalently λ ¼ 2N

M
: ð30Þ

Perhaps not surprisingly, the value of λ in (30) actually
corresponds to the GWW point of the SUðMÞ theory. As
discussed in the previous section, the ’t Hooft coupling in
the truncated SUðMÞ theory is λM ¼ g2M ¼ M

N · λ. We have
just seen that the GWW transition in the lattice theory at
λM ¼ 2, which maps to a transition at λ ¼ 2N

M in this
analogy.
Making this analogy even more precise, it follows that at

the GWW transition, modulo gauge transformations, a
matrix of the following form dominates the path integral:

U ¼
�
UM;GWW

0 UN−M;λ¼∞

�
: ð31Þ

Here, UM;GWW is the M ×M unitary matrix contributing at
the GWW point, and UN−M;λ¼∞ is the ðN −MÞ × ðN −MÞ
unitary matrix contributing at the strong-coupling limit.
Like in the partially deconfined phase, it is convenient to
think that the gauge symmetry is spontaneously broken to
SUðMÞ × SUðN −MÞ × Uð1Þ. Further, with the above
identification, one can see that at the GWW point the free
energy computed from (26) on the saddle in (31) takes the
same value as the free energy of the SUðMÞ-truncated
theory,

FðλÞ ¼ −
N2

λ2
¼ −

M2

4
¼ FGWWðMÞ; ð32Þ

where the form of the saddle point (31) allows us to
interpret it simply as the sum of the contributions from the
SUðMÞ and SUðN −MÞ sectors, which are FGWWðMÞ and
zero, respectively.

B. Douglas-Kazakov transition in 2D YM on S2

Next, let us consider the large-N two-dimensional UðNÞ
Yang-Mills theory on 2-sphere S2. Unlike Sec. IVA, we
consider the theory at the continuum limit. The ’t Hooft
coupling λ has the dimension of ðmassÞ2, and nontrivial
phase structure can be seen when the dimensionless
combination λA is varied, where A is the area of S2 and
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λ ¼ g2YMN is the ’t Hooft coupling. There is a third-order
phase transition similar to the GWW transition, which is
called the Douglas-Kazakov (DK) transition [17]. We
examine this transition following Ref. [18] and exhibit
the partial-symmetry-breaking phase transition in the
strong-coupling region. This theory is slightly more non-
trivial compared to the previous examples, in which a
simple truncation to the SUðMÞ-sector worked.
The partition function is given by ZðλA;NÞ ¼R ½dAμ�e−S, where the action is the usual 2D Yang-Mills

on S2 with area A,

S ¼ −
N
4λ

Z
d2x

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
TrFμνFμν: ð33Þ

The free energy F ¼ − logZ is given by

FðλA;NÞ ¼ λA
24

ðN2 − 1Þ −
XN
n¼1

loghn

�
g2YMA
2

�
; ð34Þ

where10

hn

�
g2YMA
2

�
¼

ffiffiffiffiffiffi
2π

p
ðn − 1Þ! ·

�
g2YMA
2

�
3=2−n

ð35Þ

if

A <
π2

ðn − 1Þg2YM
; ð36Þ

and a more complicated form at A > π2

ðn−1Þg2YM
.

The form (34) is already very suggestive: h1;…; hM can
be regarded as the contribution from the U(M)-sector. As
λA decreases from ∞, the DK transition takes place when
the weak-coupling form (35) becomes valid for all n ¼
1; 2;…; N [18]. This is true in particular at the critical area
Acðg2YM; NÞ given by

Acðg2YM; NÞ ¼ π2

g2YMN
¼ π2

λ
: ð37Þ

As can be demonstrated easily from (34), the phase
transition being probed is third order and resembles the
GWW transition in the previous examples. Thus, by
interpreting ðλAÞ−1 as “temperature,” we expect that the
strong- and weak-coupling phases are similar to the
partially deconfined and completely deconfined phases.
Then, the natural expectation is that h1; h2;…; hM
(M ¼ π2

g2YMA
) are the contributions from the analog of the

deconfined sector. In this context, then, hMþ1;…; hN are
the analog of the confined sector contributions. In order for

this interpretation to be consistent with the partial phase
transition picture, the critical area of the U(M) theory,
Acðg2;MÞ, has to satisfy the following consistency con-
dition:

M ¼ π2

g2YMAcðg2YM;MÞ : ð38Þ

It is a trivial exercise to check that this condition is actually
satisfied in the above example.
There is, perhaps, an interesting extension of the

above discussion to the quantum group version of 2D
YM. As has been noted in many places, e.g.,
Refs. [19,20], q-deformed YM on an S2 exhibits a
line of third-order (DK) phase transitions much like
ordinary YM theory for p ≥ 2. Further, some of
the intermediate phase behavior that is discussed above
is hinted at explicitly in the extension of Fig. 3 in
Ref. [20] to the q-deformed case, which raises an
interesting question about the role of partial-sym-
metry-breaking phase transitions in, say, black holes
and topological strings [21]. However, these are ques-
tions that we will leave for future analysis.

V. BLACK HOLE/BLACK STRING TOPOLOGY
CHANGE AND 2D SYM THEORY

In this section, we consider 2DN ¼ ð8; 8Þ SUðNÞ SYM
theory (i.e., with 16 supercharges). We consider the
Euclidean version of the theory and put it on a torus T2 ¼
S1β × S1L where β and L are the radii of the thermal and
spatial circles, respectively. For the bosonic fields, the
periodic boundary condition is imposed along both
circles, while for the fermionic fields, the periodic and
antiperiodic boundary conditions are imposed along the
spatial and temporal circles, respectively. With this boun-
dary condition, β is interpreted as the inverse of temper-
ature. The action is obtained by dimensionally reducing
four-dimensional (4D) N ¼ 4 SYM to two dimensions,
resulting in the action

S¼ N
λ2D

Z
β

0

dt
Z

L

0

dxTr

�
1

4
F2
μν þ

1

2
ðDμXIÞ2 −

1

4
½XI;XJ�2

�
þ ðfermion partÞ; ð39Þ

where XI (I ¼ 1; 2;…; 8) are scalar fields. There is a ZNc

center symmetry, which acts on the Wilson lineW winding
on spatial circle as W → e2πik=NW, where k is integer.
We fix L and vary energy E or temperature T ¼ 1=β.
As we will see, as E decreases, the SUðMÞ sector goes
into in the center broken phase, and M gradually increases
to N.10hn here corresponds to hn−1 in Ref. [18].
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A. Relation to black hole/black string topology change

Maximally supersymmetric 2D SUðNÞ SYM theory
captures features of the black hole/black string transition
[22,23] as follows [24].
First, 2D N ¼ ð8; 8Þ SYM theory arises in type IIB

string theory as the world volume theory of N D1-branes in
R9;1. When the spatial dimension of the 2D theory is
compactified, one of the nine spatial dimensions is com-
pactified as well, and D1-branes wrap on the compactified
dimension. T-dualizing along the world volume, the N D1-
branes are mapped to N D0-branes, and the circumference
of the compactified circle becomes L0 ≡ 4π2α0

L .
Staying in the T-dual picture and using the gauge/gravity

correspondence, by varying T ≪ L−1 while keeping fixed
the size of spatial circle L, the gravitational description of
the D0-branes is a tiny black hole (black 0-brane). The size
of the black hole is much smaller than L0, and hence the
solution is well approximated by that in the noncompact
space. As we increase the temperature, the black hole

becomes bigger and eventually wraps on the spatial circle
and turns to black string. The transition temperature is
higher for higher values of the (T-dual) spatial length scale
L0—or equivalently the transition temperature goes up as L
is decreased.
In terms of the SYM theory description, the locations of

D0-branes are the phases of Wilson linesW wrapped on the
spatial S1. The distribution of Wilson line phases can be
uniform, nonuniform but not gapped, or gapped; see Fig. 5.
Their gravitational descriptions are the uniform black
string, nonuniform black string, and black hole, respec-
tively. The phase diagram is shown in Fig. 6. In the
following, we will detail the phase transition and find
the intermediate phase.

B. Small-volume, high-temperature region

While the simulation of 2D SUðNÞ SYM theory is
costly for arbitrary N at generic temperatures,11 at high
temperature and small volume (i.e., β; L → 0), the analysis
simplifies as follows [24,25]. Let us start with a Euclidean
path integral of the theory on T2 ¼ S1β × S1L described
above. Imposing the thermal boundary condition, the
fermions are antiperiodic along the temporal circle, while
bosons are periodic. Along the spatial circle, we impose
periodic boundary conditions on both bosons and fermions.
At high temperature, β ¼ 1

T → 0, the fermions are
gapped out due to the large Kaluza-Klein mass and
decouple. Integrating out the fermionic degrees of
freedom and taking care of zero modes leaves behind
the dimensionally reduced one-dimensional bosonic matrix
model, which is a good description of the physics
near β ¼ 0.
Explicitly, after the dimensional reduction, the action is

given by

FIG. 5. The relation between the black hole/black string geometry and the distribution of the Polyakov loop [25]. (Top) the distribution
of Wilson line phases, uniform (left), nonuniform but not gapped (middle), and gapped (right). (Bottom) the counterparts in gravity side.
Uniform black string (left), nonuniform black string (middle), and black hole (right).

L

black hole

uniform 
black string

=1/T

FIG. 6. A cartoon picture of phase diagram of 2D maximal
SYM on spatial circle [25]. Lc ∼ β1=3 at high temperature, and
Lc ∼ β1=2 at low temperature.

11See Refs. [26,27] for serious attempts and a nice summary of
gauge/gravity duality in this system.
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S1D ¼ N
λ2DT

Z
L

0

dxTr

 
1

2
ðDxXIÞ2 −

1

4
½XI; XJ�2

�
: ð40Þ

The bosonic degrees of freedom in the dimensionally
reduced theory, XIðI ¼ 1; 2;…; 9Þ, are N × N Hermitian
matrices, and the gauge covariant derivative is DxXI ¼∂xXI − i½Ax; XI�, where Ax is the remaining component the
gauge field. By rescaling x̃ ¼ ðλ2DTÞ1=3x, L̃ ¼ ðλ2DTÞ1=3L,
D̃x ¼ ðλ2DTÞ−1=3Dx, and X̃I ¼ ðλ2DTÞ−1=3XI , we can
rewrite (40) as

S1D ¼ N
Z

L̃

0

dx̃Tr

�
1

2
ðD̃xX̃IÞ2 −

1

4
½X̃I; X̃J�2

�
: ð41Þ

In (41), when one calculates the expectation values of the
form hfðX̃Þi ¼ 1

Z

R ½dX̃�fðX̃Þe−S, the only parameter is
L̃ ¼ ðλ2DTÞ1=3L, and hence large volume and high temper-
ature are equivalent.
This high-temperature/large-volume equivalence is seen

in the sketched phase diagram in Fig. 6; if one starts in the
black hole phase, one can see the transition to the black
string phase by either going to larger T with fixed L or
larger L with fixed T. The critical value of L at fixed
temperature scales as Lc ∼ ðλ2DTÞ−1=3.
The computational advantage afforded by the high-

temperature limit is that (41) can more easily be studied
numerically using the standard Markov chain Monte Carlo
(MCMC) methods (see, e.g., Refs. [28,29] for introductory
articles). In the MCMC paradigm, the authors of Ref. [30]
treated L̃ as “inverse temperature” of the dimensionally
reduced theory and observed a first-order transition with
hysteresis caused by the unstable saddle of the free energy
[see the left panels of Figs. 2(a) and 2(b)]. Furthermore,
Ref. [31] has given further evidence partial deconfinement

(when L̃ is treated as inverse temperature) of an SUðMÞ
subgroup by confirming the deconfinement of the M ×M-
submatrix in the lattice configurations in an appropriate
gauge. In the 2D theory, we should see the transition of the
same type when we change T instead of L̃. Hence, the
intermediate phase—nonuniform black string—should
have negative specific heat. Therefore, we expect the
microcanonical phase diagram for fixed small L shown
in Fig. 7. In the microcanonical description, the nonuniform
black string phase is stable because there is only one
maximum of entropy at each value of E. This is consistent
with the classical real-time simulation [32], which observed
the stable nonuniform black string phase. Note that a phase
with negative specific heat corresponds to a maximum of
the free energy in the canonical ensemble.

C. Large-volume, low-temperature region

When L is sufficiently large (L ≫ 1ffiffiffiffiffi
λ2D

p ), the transition

takes place when the supergravity description of the T-dual
(D0-brane) picture is a good approximation [24]. A
simplified picture of the plausible microcanonical ensemble
is shown in Fig. 8 with the caveat that the nonuniform string
phase can be more complicated12; there may be multiple
solutions. Compared to the phase diagram in the high-
temperature limit in Fig. 7, the structure of saddle points in
intermediate energy scale is richer in that multiple phases
can coexist. Above the critical value Ec, uniform black
string is entropically favored, and below Ec, the black hole
geometry is favored. At the intermediate energy scale, there
exist other less entropically favorable saddles that are
nonetheless stable in the large-N limit.
If we begin in the stable uniform black string phase and

gradually lower the energy, the black string remains stable
until the energy reaches the Gregory-Laflamme point EGL.
At EGL, the black string entropy ceases to be locally
maximum, and dynamical instability to long wavelength
perturbations sets in [22]. In the same manner, starting in
the stable black hole phase and gradually increasing the
energy, the black hole remains stable until its entropy

T

E

BH

UBS

T1

T2

NUBS

FIG. 7. A cartoon picture of the black hole/black string
transition in the microcanonical ensemble, at high-T (weak
coupling). Red: black hole (BH), blue: uniform black string
(UBS), and orange: nonuniform black string (NUBS).

12There has been a long debate regarding this picture,
especially regarding the final state of the Gregory-Laflamme
instability [22] (see also Sec. V E). Reference [33] discussed that
the black string cannot pinch off, at least in classical gravity; then,
the final state is likely to be the nonuniform black string.
However, Ref. [34] studied a nonuniform string solution and
found that the entropy is smaller than that of uniform black string,
which suggested that the nonuniform string is not the final state.
Numerical simulation [35] observed the emergence of an array of
black holes connected by thin black strings, but the simulation
failed prior to the topology change taking place due the large
gradient. References [36–39] observed that black hole and
nonuniform black string meet at the topology change point, as
shown in Fig. 8. By now, various solutions with the S1
compactification have been investigated, and rich phase structure
has been realized; see, e.g., Refs. [40–43].
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ceases to be local maximum and becomes unstable to small
perturbations. When either of the initial phases reaches a
point at which it becomes entropically disfavored and
instability sets in, another stable branch appears—nonuni-
form black string—and bridges the black hole and uniform
black string phases. In this sense, the microcanonical phase
diagram is still continuous despite the existence of the first-
order transition at E ¼ Ec.
Different from the high-temperature limit, now the

nonuniform black string phase has the positive specific
heat. Thus, the nonuniform black string corresponds to a
local minimum of the free energy in the canonical ensem-
ble. In a certain temperature range, there are three stable
phases, even in the canonical ensemble.13

D. Nonuniform black string as
partial-symmetry-breaking phase

The intermediate, nonuniform black string phase can be
regarded as the partial-symmetry-breaking phase in which
the SUðNÞ gauge symmetry is spontaneously broken to
SUðMÞ × SUðN −MÞ. As demonstrated in Refs. [30,31]
for the high-temperature limit, the distribution of the phases
of the Wilson loop wrapped on the spatial circle gives the
gauge-invariant order parameter: the constant offset agrees
with M

N . An important point to note in this phase is that the
ZN center symmetry is completely broken. Effectively, the
ZN−M center symmetry is realized in the confined sector,
but it is not a subgroup of the ZN symmetry.

One natural question is as follows. We claimed that the
specific heat is negative in the nonuniform black string
phase at high temperature and small volume, and it exists
stably in a microcanonical ensemble. Why is it possible?
Why do we not have the coexistence of two phases
separated in volume? To understand it, first recall the
argument in Sec. II B 1: at small volume, whether the
thermodynamic instability sets in depends on the detail of
the dynamics. The case under consideration is the center
symmetry breaking phase transition, which is essentially
the onset of the decoupling of the Kaluza-Klein (KK)
mode. After the KK modes decouple, the system has to be
uniform along the spatial circle and hence cannot occupy a
small fraction of the physical space.

E. Stringy effects eliminate the
Gregory-Laflamme instability?

It is interesting to see how stringy corrections can affect
the Gregory-Laflamme instability of the uniform black
string [22]. The Gregory-Laflamme instability means the
instability of the uniform black string against a small
perturbation, which is observed in classical gravity. It is
believed that the black string eventually pinches off and
become black hole; although a more complete understand-
ing of quantum gravity is needed to resolve the singularity
associated with the topology change.
In terms of dual gauge theory, it is the instability

expressed by the black arrow in Fig. 8. Note that this is
a first-order transition in the microcanonical ensemble. At
high temperature and small volume, however, there seems
to be no first-order transition in the microcanonical
ensemble (Fig. 7). Maybe a small jump exists near the
border between the uniform black string and nonuniform
black string, or the one between the nonuniform black
string and black hole, but at least the transition from
uniform black string to black hole is impossible. It suggests
that a large stringy correction eventually eliminates the
Gregory-Laflamme instability.
Note that a similar transition in the canonical ensemble

survives. Namely, if the temperature is gradually lowered, a
jump from black string to black hole at the same temper-
ature but smaller energy takes place.

VI. YANG-MILLS WITH ADJOINT
FERMIONS ON R3 × S1

Let us consider another example where it is very easy to
see the gauge symmetry breaking: SUðNcÞ Yang-Mills
theory with Nf Majorana adjoint fermions of mass m on
R3 × S1. Similarly to some other examples above, this
theory has been studied extensively, but a simple and direct
connection of the observed phase behavior to partial
symmetry breaking has not been understood.
For the example below, we will denote the radius of the

S1 by L and consider cases where Nf ≥ 2. We impose

T

E

BH

UBS

Ec

(EGL,TGL)

NUBS

FIG. 8. Black hole/black string transition in the microcanonical
ensemble. Red: black hole (BH), blue: uniform black string
(UBS), and orange: nonuniform black string (NUBS). Solid line:
entropy global maximum, dotted line: local maximum (but not
global maximum). The black arrow show the Gregory-Laflamme
instability.

13Strictly speaking, two of the phases are metastable. However,
in the large-N limit, the tunneling is parametrically suppressed as
the probability of such an event is Oðe−N2Þ.
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periodic boundary conditions both for the gauge field and
adjoint fermions around the S1. When L is small, the
dimensionally reduced three-dimensional picture is good,
and the gauge field along the S1 can be regarded as an
adjoint Higgs field. At L ≪ m−1, the usual spontaneous
symmetry breaking takes place, as we will see below.
Staying in the regime of fixed small L and large m, the

phase diagram of this theory can be analyzed (to some
extent) by using the one-loop effective action [44]

V½Ω� ¼ 2

π2L4

X∞
n¼1

�
−1þ nf

2
ðnLmÞ2K2ðnLmÞ

� jTrΩnj2
n4

≡X∞
n¼1

fnðLmÞjTrΩnj2; ð42Þ

where Ω ¼ diagðeiθ1 ;…; eiθN Þ is the Wilson line wrapping
on the spatial circle and K2ðzÞ is the modified Bessel
function of the second kind. The free energy is obtained by
minimizing the effective action with respect to Ω.
Let z ¼ z0 be the solution of −1þ nf

2
ðzÞ2K2ðzÞ ¼ 0.

Since z2K2ðzÞ is monotonically decreasing in the region
z > 0, at z0

m < L, all fjðLmÞ’s are negative. Thus, the
minimum of the effective action is obtained by setting
jTrΩnj ¼ 1 for any n, or equivalently θ1 ¼ θ2 ¼ � � � θN.
This solution to the saddle point equation is the Z1-center-
symmetry phase (i.e., the center symmetry is completely
broken), and correspondingly the solution preserves the full
SUðNÞ gauge symmetry.
If we start to dial the size of the S1 such that L becomes

smaller, the coefficient fnðLmÞ turns positive at L < z0
nm,

and the center symmetry is restored as [44]

Z1 → Z2 → Z3 → � � � :

The center symmetry restoration coincides with the gauge
symmetry breaking pattern

SUðNÞ → ½SUðN=2Þ�2 × Uð1Þ → ½SUðN=3Þ�3 × ½Uð1Þ�2
→ � � � :

Apparently, an intermediate phase must exist between Zk-
and Zkþ1-center-symmetric phases.
In order to understand the appearance and meaning of

the intermediate phase, let us start by considering the
simplest case Z1 → Z2. In terms of gauge symmetry
breaking, we want to study the phase connecting SUðNÞ
and SUðN=2Þ × SUðN=2Þ, which naively will interpolate
SUðN −MÞ × SUðMÞ from M ¼ 0 to M ¼ N=2.
We start with a simple ansatz of a block diagonal form

for the holonomy matrix in the intermediate phase,

Ω ¼
�
1N−M 0

0 −1M

�
; ð43Þ

where 1d is the d-dimensional unit matrix. It is straightfor-
ward, then to show that on this ansatz TrΩn ¼ N for even n
and TrΩn ¼ N − 2M for odd n. Evaluating the effective
action on the ansatz gives

V½Ω� ¼
X
n∶even

fnðLmÞN2 þ
X
n∶odd

fnðLmÞðN − 2MÞ2

¼
�
1 −

2M
N

�
2

V1 þ
�
1 −

�
1 −

2M
N

�
2
�
V2; ð44Þ

where V1 and V2 are the free energies of the Z1 and Z2

configurations, respectively. When V1 ¼ V2 (namely,P
n∶odd fnðLmÞ ¼ 0), the free energy does not depend

onM, and hence the first-order transition without hysteresis
appears.
To understand other intermediate phases that appear in

the sequence Zk → Zkþ1, let us consider Z2 → Z3, which
is still relatively simple to discuss and contains the salient
features to understand generic k. As an intermediate phase,
there is an SUðMÞ × SUðMÞ × SUðN − 2MÞ × Uð1Þ2
phase. The holonomy matrix should then take the form

Ω ¼

0
B@

ϕ1M 0 0

0 ϕ�1M 0

0 0 1N−2M

1
CA: ð45Þ

Note that ϕ ¼ i when M ¼ N=2 and ϕ ¼ e2πi=3 when
M ¼ N=3. At each M, ϕ can be evaluated by extremizing
the effective action within this ansatz. It is straightforward,
though tedious, to generalize the argument above to generic
Zk → Zkþ1 intermediate phases. Note that Ref. [45] stud-
ied several finite-N theories and found analogous phases
which are stable.
Note that the center symmetry changes abruptly. It is

completely broken in the intermediate phase connecting Zk
and Zkþ1 phases, while the gauge symmetry changes only
gradually. Similarly to the case of the confinement/decon-
finement transition, we can understand the system much
better by focusing on the gauge symmetry, rather than the
center symmetry.

VII. CONCLUSIONS

In this paper, we have examined a variety of theories with
large rank symmetry groups and observed that partial-
symmetry-breaking phase transitions appear to be generic
large-N phenomena leading to interesting phase coexist-
ence behavior. In each case, the partial-symmetry-breaking
phase appears as an intermediate phase connecting two
(meta)stable phases that generically realize the full rank
symmetry group. While the examples we have discussed
are gauge theories, the underlying mechanism discussed in
Sec. II does not fundamentally require a gauge symmetry at
all. This leads somewhat naturally to our speculation that
such partial-symmetry-breaking phase transitions could
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admit a broad universality class. After all, the demonstra-
tion of these novel transitions through matrix models
certainly suggests that theories that have limiting descrip-
tions in terms of random matrices could exhibit partial
symmetry in intermediate phases as well. However, it is
unclear how to construct a generic proof of universality, and
so it would be worthwhile to explore possible examples that
lie outside of the scope of gauge theories.
While we have focused exclusively on examples in

gauge theories here (apart from the toy model of ant trails
in Appendix), there are a number of ways in which partial-
symmetry-breaking phase transitions could appear in other
areas of physics. Indeed, there seem to be natural analogs
for these transitions observed in the theories we have
studied above in phenomena in statistical physics models
such as quantum rotors, Dimer models, and Bose-Einstein
condensates that could be well-described by the same
language. While it is not immediately clear what, if any,
immediate utility this reinterpretation could have, it may
be worth trying to understand the connections between
confinement/deconfinement and phase transitions in con-
densed matter that could afford a more unified picture of
the fundamental physics governing them.14

Returning to gauge theoretic examples, one example
where one might expect to possibly see partial-symmetry-
breaking phase transitions would be in a particular defor-
mation of the index (or rather the supersymmetric partition
function on S1 × Sd−1) of superconformal field theories. It
was noted in Ref. [46] that in analytically continuing
fugacities, x, in the superconformal index of four-dimen-
sional N ¼ 4 SUðNÞ SYM theory, one could observe a
confinement/deconfinement transition by taking x to be a
complex number. It was previously argued that, unlike the
partition function, supersymmetric indices are invariant
under changes in continuous parameters, and so phase
transitions would not be captured by any index computa-
tion [47]. It would be interesting to see if this deformed
index does see any partial-symmetry-breaking phase tran-
sitions between the confined and deconfined phases; if such
partial-symmetry-breaking phase transitions are visible in
the index with complex fugacities and given the vast
literature on supersymmetric and superconformal indices,
it would also be interesting to see any broader implications.
It is also interesting to note that we have seen in Sec. III

A that partial deconfinement can happen in QCD-like
theories. A consequence of the partial-symmetry-breaking
phase transition is that a simultaneous breaking and
restoration of gauge symmetry is involved, which may
give a precise definition of confinement/deconfinement
transition based on the change of symmetry [4]. (Note that

it is widely believed that there is no symmetry character-
izing deconfinement because center symmetry is explicitly
broken by the existence of quarks in the fundamental
representation.) It is important to understand whether the
phenomenon we have discovered survives at Nc ¼ 3 and
infinite volume and whether there are consequences in
observable quantities.
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APPENDIX: ANT TRAIL FORMATION

Departing entirely from high energy physics, let us
consider a somewhat funny example from entomology:
the formation of an ant trail [48]. This cute, relatively
simple, phenomenological model has a phase behavior that
strikingly resembles the brane model [3].
To summarize the ant model in Ref. [48], consider a

colony of N indistinguishable ants such that there exists an
SN permutation symmetry exchanging any individual mem-
ber of the colony. The number of ants forming a trail as a
function of time is denoted MðtÞ and depends on a number
of environmental factors—e.g. local topography,weather, and
so on—such that the time dependence of M is modeled as

dM
dt

¼ ðαþ pMÞðN −MÞ − sM
sþM

: ðA1Þ

The parameters in Eq. (A1) encode the system dynamics as α
specifying the probability that each ant finds the food source
accidentally,sdescribing the rate that ants leave the trail, andp
giving the strength of the pheromone-mediated nonlocal two-
body interaction between each ant. To give a sense of the
environmental dependence in the model, consider a day with
particularly dry air conditions; with the lack of ambient
moisture in the air, the pheromone evaporates faster, and
hence p becomes smaller. The size of the stationary ant trail
can be obtained by solving the equation dM

dt ¼ 0.
While it is true that M can change continuously, some

care is needed with regard to the distinction between
canonical and microcanonical ensembles. We follow the
treatment in Ref. [3], in order to make the application to
physics problems more salient. That is, there are analogous

14After the first version of this paper appeared in the arXiv,
Ref. [10] pointed out a concrete connection between the Bose-
Einstein condensation and partial-symmetry-breaking phase
transitions.
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features shared between the stationary trail equation and the
saddle point equation for other systems we discuss later.
An interesting “large-N” limit of the ant model is taken

where α ∼ N−1, p ∼ N−1, and s ∼ N1 [3]. In Fig. 9, we
show the plot of x≡ M

N versus p̃≡ Np for Nα ¼ 1, several
Oð1Þ values of s̃≡ s

N, and N ¼ 105. As we will explain
later, p̃ is analogous to temperature in the brane model [3].
The number of the antsM corresponds to the number of D-
branes in the bound state.
In the three examples of varying s̃ increasing from left to

right in Fig. 9, we see the stable—or possibly metastable—
saddles (solid lines) and unstable saddles (dashed lines)
displaying interesting phase behavior. Whether the saddle is
stable or unstable can be seen from the sign of dMdt around the
saddle. Note that here we vary p̃ and study the response in
M, which amounts to being in the canonical ensemble.
Starting from the leftmost panel in Fig. 9, we have the
following:

(i) For s̃ < 1 in the left panel of Fig. 9, if under small
perturbations to M away from the saddle the trail
accumulates new ants or disintegrates, the saddle is
unstable (dashed line). This unstable saddle sepa-
rates two (meta)stable saddles and causes the first-
order phase transition.
In order for the tunneling between two stable

saddles to happen, it is necessary to go beyond the
unstable saddle. It requires OðNÞ change of the
number of the ants, and hence asN grows it becomes
harder and harder to go across this unstable phase.
Therefore, there is no tunneling in the large-N limit.

(ii) When s̃ > 1 in the right panel of Fig. 9, under small
perturbations to M, the saddle is stable at all p̃.

(iii) At s̃ ¼ 1 in the center panel of Fig. 9, we see the
boundary between two cases where the curve x ¼
xðp̃Þ has infinite slope at p̃ ¼ 1 at large N.

It is easy to find the analogy to the system of D-branes [3].
At higher temperature, each open string mode can be excited
more, and hence the attraction becomes stronger; the analog
in ant trail formation is that the nonlocal coupling (phero-
mone) attracting ants to the trail becomes stronger. The
suppression of M due to the Boltzmann factor balancing
the entropic force is played by the “laziness” term in the ant
model, which describes the rate of the ants leaving the trail.
Just as was seen in the brane model where bound states
formed at the point where the entropic forces and Boltzmann
suppression were balanced, a stationary phase exists for the
ant trail where the outflow due to the laziness effect is
balanced against the inflow due to the strength of pheromone.
The internal space consisting of the ants splits into two

simultaneously realized phases: inside and outside the trail.
Hence, two phases can coexist in the internal space. The
permutation symmetry of the ants breaks as SN → SM ×
SN−M, and hence partial symmetry breaking can occur. The
analog of temperature is the pheromone parameter p̃. As we
can see from Fig. 9, p̃ can change nontrivially as a function
of x. Finally, in the left panel of Fig. 9, OðNÞ perturbation
to the number of ants on the trail is needed in order for the
“tunneling” across the unstable trail to happen, and hence
the metastable phase can be completely stabilized in the
thermodynamic limit (many-ant limit).
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