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We study nonlinear trident in laser pulses in the high-energy limit, where the initial electron experiences,
in its rest frame, an electromagnetic field strength above Schwinger’s critical field. At lower energies the
dominant contribution comes from the “two-step” part, but in the high-energy limit the dominant
contribution comes instead from the one-step term. We obtain new approximations that explain the relation
between the high-energy limit of trident and pair production by a Coulomb field, as well as the role of the
Weizsäcker-Williams approximation and why it does not agree with the high-χ limit of the locally-constant-
field approximation. We also show that the next-to-leading order in the large-a0 expansion is, in the high-
energy limit, nonlocal and is numerically very important even for quite large a0. We show that the small-a0
perturbation series has a finite radius of convergence, but using Padé-conformal methods we obtain
resummations that go beyond the radius of convergence and have a large numerical overlap with the large-
a0 approximation. We use Borel-Padé-conformal methods to resum the small-χ expansion and obtain a
high precision up to very large χ. We also use newer resummation methods based on hypergeometric/
Meijer-G and confluent hypergeometric functions.
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I. INTRODUCTION

Quantum electrodynamics in strong laser fields is usu-
ally studied by treating the interaction with the quantized
photon field in a standard perturbation expansion in
α ¼ e2=ð4πÞ, but with a Volkov/Furry picture treatment
of the strong field. The strength of the field is usually
described in terms of the “classical nonlinearity parameter”
a0 ¼ E=ω,1 where E is the field strength and ω a typical
frequency scale of the in general pulsed plane wave. For
a0 > 1 one can in general not treat the field in a perturba-
tion expansion in a0. However, if a0 ≫ 1 one can make an
expansion in 1=a0 [1,2], which corresponds to an approxi-
mation where the inhomogeneous field is treated as being
locally constant. This is a very useful approximation that
allows otherwise very complicated processes to be studied.
However, a0 is not the only parameter in the system and so

how large a0 has to be for this locally-constant-field (LCF)
approximation (LCFA) to be valid depends on the momenta
of the particles involved [3–6].
A plane wave on its own cannot produce any particles,

but a single particle entering a plane wave can, and at high
intensity such a seed particle can lead to the production of a
large number of particles in cascades [7–9]. So, consider a
single particle with momentum pμ that enters the strong
field. In a plane-wave field, the integrated/total probability
that this particle decays/produces some other particles (e.g.,
an electron and a positron in trident) only depends on a0
and a second parameter b0 ¼ kp, where kμ is the null wave
vector of the plane wave (k2 ¼ 0 and k0 ¼ ω). The
coefficients in the LCF expansion in 1=a0 ≪ 1 only depend
on b0 via the “quantum nonlinearity parameter” χ ¼ a0b0
(χ is kept constant and is considered an independent
parameter in this expansion). (Note that χ is independent
of ω, so the LCF expansion can be seen as a derivative
expansion.)
The limit where χ becomes very large, that is αχ2=3 ≳ 1,

is different from what one might expect from the high-
energy limit of QED without a strong field, and it has been
conjectured that the expansion in α might even break down
in this regime [10–17]. This would then be a regime where
neither the strong field nor the α dependence can be treated
with perturbation theory, i.e., QED would be truly strongly
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1We use units with electron mass me ¼ 1, and a factor of the
charge e has been absorbed into the field strength eE → E.
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coupled. This conjecture is an old result which has attracted
a great deal of interest in the last couple of years [18–22].
It has recently been shown [5,6] that whether the large χ

limit is reached by having a0 or b0 being the largest
parameter leads to fundamentally different results. If a0 is
the largest parameter then LCFA is good, but if b0 is largest
then the probabilities of nonlinear Compton scattering and
Breit-Wheeler pair production reduce to the leading per-
turbative results, i.e., they become proportional to a20, and
then one has ordinary high-energy scalings without the
suggestion of an α expansion break down.
In this paper we study and compare these two ways of

reaching high χ for the trident process [1,23–34],
e− → e− þ e− þ eþ. One motivation for this is that for
αχ2=3 ≳ 1 one is interested in whether the α expansion
breaks down, so it is natural to ask how the results in [5,6]
generalize to higher-order processes, and the trident process
is such an example. The trident probability is of course not
the next-to-leading order correction to be added to the
nonlinear Compton or Breit-Wheeler probabilities, but it
does correspond to the imaginary part of a loop that is part
of the α expansion of the e− → e− amplitude (the mass
operator). Moreover, for constant fields this loop gives the
dominant contribution at Oðα2Þ (the loops giving, e.g.,
double nonlinear Compton scattering [13,35–41] is sub-
dominant), see the review [18] for a collection of the
various loops that have so far been calculated.
Another motivation for this study is phenomenological.

Part of the trident processwas observed at SLAC twodecades
ago [25]. Since then there have basically not been any new
experiments. But there are now definite plans for new trident
experiments at, e.g., LUXE [42,43] andFACET-II [44,45]. In
the old SLAC experiment the laser was relatively weak, i.e.,
a0 < 1, and, due to the lack of complete theoretical pre-
dictions, a Weizsäcker-Williams (WW) approximation was
used to estimate the trident probability. However, the new
experiments will have larger a0 and it has been shown [28]
that this WWapproximation does not give the same result as
LCFA. One might still want to use an approximation such as
WW, because LCFA only works when a0 is sufficiently
large, and so it is not clear how good LCFA is for
1 < a0 < 10, which is a regime that is relevant for upcoming
experiments. WWon the other hand is associated with high
energy rather than high intensity, so one might expect that
WW could be used in regimes where LCFA is not good. In
this paper we show that there is indeed a regime where the
WW approximation is good.
We also compare the high-energy limit of trident with

pair production by a Coulomb field in a plane wave. To do
this we generalize our results in [1] to a process where the
initial electron is replaced by another particle, e.g., a muon,
which has the same charge but different mass.
Studying trident is also relevant as the first step in

cascades, i.e., the production of a large number of particles.

For trident one can compare approximations with the exact
result as a way of determining in what parameter regimes
similar approximations can be used for higher-order proc-
esses, for which one cannot compare with the exact result.
In this context one may ask how the momentum of the
initial particle is distributed among the produced particles.
In the emission of a single photon by an electron, the
probability has in the high-energy limit a peak where the
emitted photon takes away almost all of electron’s momen-
tum [46,47]. In contrast, for trident, where the emitted
photon decays into a pair, one finds that the probability
is largest when the initial electron keeps almost all of
its momentum and only gives a small fraction to the emitted
photon and the produced pair. This low-momentum
transfer has an important impact on the behavior of the
high-energy limit of trident compared to the first-order
processes [5,6].
With this study we are also mapping a part of the

parameter space not considered in previous literature. At
small a0 the probability is perturbative and scales to leading
order as Oða20Þ, which is a regime that has been studied
since the 1940s [48]. For large a0 the leading order scales as
Oða20Þ [23,24], while the full next-to-leading order Oða0Þ
was only calculated recently [1,31]. In [1] we also
considered the low-energy regime and obtained explicit
analytical expressions valid for arbitrary a0 ≳ 1. In this
paper we complement these previous studies by provi-
ding new analytical results in the high-energy limit, for
arbitrary a0.
The rest of this paper is organized as follows. In Sec. II we

provide some basic definitions and the generalization of
some of our results in [1] to muon trident. In Sec. III A we
consider the large-χ limit of LCFA, i.e., we first take a0 to be
the largest parameter and then we take χ large. In Sec. III B
we study the limit where b0 is the largest parameter. We
show that having a0 largest and then b0 large does not
commutewith having b0 largest and then a0 large. In Sec III
Cwe compare our new high-energy approximationwith pair
production by a Coulomb field. In Sec. III D we study the
applicability of theWWapproximation. In Sec. III E and III
Fwe study the next-to-leading order corrections in the large-
a0 expansion of the high-energy approximation, and show
that these corrections are nonlocal and numerically impor-
tant. In Sec. III G we study the perturbation series around
a0 ¼ 0. We show that there is a finite radius of convergence.
Using Padé approximants and a conformal map we find that
the coefficients in the perturbation series can be used to
obtain a good approximation beyond the radius of con-
vergence and even for large a0. In Sec. IV we compare with
the low-energy regime in the casewhere the initial particle is
much heavier than the produced pair. In Sec. Vwe resum the
divergent small-χ expansion and obtain a resummation that
has a high precision up to very large χ. We conclude
in Sec. VI.
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II. DEFINITIONS

We use v⊥ ¼ fv1; v2g and v� ¼ 2v∓ ¼ v0 � v3. In
terms of the vector potential the field is given by a⊥ðϕÞ,
a0 ¼ a3 ¼ 0, where ϕ ¼ kx ¼ ωxþ. In order to understand
the high-energy limit of the trident process, it is useful to
consider the process where the initial electron is replaced
by a particle with a different mass but with the same charge.
This could for example be muon trident [23,24,49]
μ− → μ− þ e− þ eþ, but we will keep the mass μ of the
initial particle arbitrary because we are also interested in
comparing with the infinite mass limit. When the initial
particle is an electron then we have two identical particles
in the final state, so there are two terms on the amplitude
levelM ¼ M12 −M21, where oneM12 is obtained from the
otherM21 by swapping these identical particles. We refer to
the cross term 2ReM�

21M12 between these two terms as the
exchange part of the probability P ¼ Pdir þ Pex. The
exchange term is the most difficult to calculate. Indeed,
it was for a long time omitted in the literature, even for the
simplest case of constant fields. We have shown though
that, e.g., for short pulses and moderately high intensity
(a0 ∼ 1) the exchange term is important. The complicated
exchange term is of course absent if the initial particle is not
an electron. If the initial particle is an electron then the
exchange term becomes small compared to the direct part
of the probability at high enough energies.
The generalization (of the direct terms) to an arbitrary

mass μ is obtained in the same way as in [1], we only have
to replace the electron mass (which is me ¼ 1 in our units)
with the muon mass μ in some places. When comparing
with [23,24] it is important to note that we still use units
withme ¼ 1, so for an incoming muon we have μ ≈ 207. In
[1] we had two identical particles in the final state and
therefore had to divide the probability by a factor of 2 to
avoid double-counting when summing over momenta and
spin. Since we do not have identical particles here, we have
an overall factor of 2 compared to [1]. In the identical-
particle case one has two contributions to the probability,
jMðs1; s2Þj2 þ jMðs2; s1Þj2, which give the same contribu-
tion to the total/integrated probability. So, for the total
probability, in the (mathematical) limit μ → 1 our results
here reduce to the direct terms in [1] with the same factors
of 2 in the prefactor. As in [1,50] we integrate over the
transverse momenta of all the final state particles. The
longitudinal-momentum spectrum PðsÞ is defined via

P ¼
Z

1

0

ds1ds2θðs3ÞPðsÞ: ð1Þ

These longitudinal-momentum variables are the ratios
si ¼ kpi=kp, s3 ¼ 1 − s1 − s2, and we use b0 ¼ kp for
the initial particle. We use q1 ¼ 1 − s1 for the longitudinal
momentum of the intermediate photon. In our approach we
find it convenient to separate the total probability into three
terms,

P ¼ P11 þ P12 þ P22; ð2Þ

which have different number of lightfront time integrals.
There is nothing fundamental about this particular separa-
tion. In fact, for a constant field, or for large a0, P22 gives
one term that is quadratic in the volume and another term
that is linear in the volume, where the latter should then be
combined with P11 and P12, which are also linear in the
volume.
Since the calculation is basically the same as in [1], we

simply state the final results, which are valid for arbitrary
field shape and polarization. The simplest term comes from
the absolute square of a “lightfront-time-instantaneous”
term on the amplitude level

P11ðsÞ ¼
2α2

π2

Z
dϕ12

1

q41

−s0s1s2s3
ðθ21 þ iϵÞ2 e

i
2b0

½r1Θμ
21
þr2Θe

21
�; ð3Þ

where r1¼ð1=s1Þ− ð1=s0Þ, r2 ¼ ð1=s2Þ þ ð1=s3Þ, dϕ12 ¼
dϕ1dϕ2, θij ¼ ϕi − ϕj, Θ

e;μ
ij ¼ θijM

e;μ2
ij , whereMe andMμ

are the effective mass [51] for the electron and muon,
respectively,

Me2
ij ¼ 1þ ha2iij − hai2ij Mμ2

ij ¼ μ2 þ ha2iij − hai2ij;
ð4Þ

where

haiij ¼
1

θij

Z
ϕj

ϕi

dϕa: ð5Þ

We have inserted factors of s0 ¼ 1 in appropriate places to
make symmetries clearer. As in other processes we have
considered, we always find that the exponential part of the
integrands can be expressed in terms of the effective mass.
The cross term between the “lightfront-instantaneous” and
the “three-point-vertex” parts of the amplitude is give by

P12ðsÞ ¼ Rei
α2

2π2b0

Z
dϕ123θðθ31Þe

i
2b0

½r1Θμ
21
þr2Θe

23
�

×
ðs0 þ s1Þðs2 − s3ÞD12

q31ðθ21 þ iϵÞðθ23 þ iϵÞ ; ð6Þ

where D12 ¼ Δ12 · Δ32 and

Δij ¼ aðϕiÞ − haiij: ð7Þ

The third and final term is given by

NONLINEAR TRIDENT IN THE HIGH-ENERGY LIMIT: … PHYS. REV. D 102, 096008 (2020)

096008-3



P22ðsÞ ¼ −
α2

4π2b20

Z
d4ϕ

θðθ31Þθðθ42Þ
q21θ21θ43

e
i

2b0
½r1Θμ

21
þr2Θe

43
�

×

�
κ01κ23
4

W12W34 þW13W24 þW14W23

þ
�
κ01
2

�
2ib0
r1θ21

þ μ2 þD1

�
− μ2

�

×

�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1

�
−D1D2

�
; ð8Þ

where κij¼ðsi=sjÞþðsj=siÞ,D1¼Δ12·Δ21,D2 ¼ Δ34 · Δ43,
Wij¼wi1wj2−wi2wj1¼ẑ·ðwi×wjÞ, w1 ¼ Δ12, w2 ¼ Δ21,
w3 ¼ Δ34 and w4 ¼ Δ43. In (8) and in the following we
have left the iϵ prescription implicit. The singularities at
θij ¼ 0 are always avoided with an integration contour
equivalent to replacing ϕ2;4 → ϕ2;4 þ iϵ=2 and ϕ1;3 →
ϕ1;3 − iϵ=2 with ϵ > 0.
Note that P12ðsÞ is antisymmetric with respect to

s2 ↔ s3, so for the integrated probability we find
P12 ¼ 0. Thus, for the integrated probability and for
μ ≠ 1, we just have two terms, P11 and P22. P11 is almost
as simple as a first-order process, and P22 can be obtained
from the incoherent product of the two first-order processes
nonlinear Compton scattering by a “muon” and nonlinear
Breit-Wheeler electron-positron pair production. In some
regimes, though, it is natural to split P22 ¼ P22→1 þ P22→2

into two terms, where P22→1 and P22→2 scale linearly and
quadratically in the volume, respectively. This can be done
by splitting the step function combination in (8) as [1]

θðθ42Þθðθ31Þ

¼ θðσ43 − σ21Þ
�
1 − θ

�jθ43 − θ21j
2

− ½σ43 − σ21�
��

:

ð9Þ

In the first term the average lightfront time in the pair-
production step σ43 ¼ ðϕ4 þ ϕ3Þ=2 can be much later than
σ21 ¼ ðϕ2 þ ϕ1Þ=2 for the photon-emission step, e.g., the
photon can be emitted at one field maximum and then
propagate to some later field maximum before it decays. In
the second term σ43 and σ21 are forced to be close. So, the
first term gives P22→2 and the second term P22→1. One can
show that for a0 ≫ 1 we have P22→2 ¼ Oða20Þ þOða00Þ,
while P22→1 ¼ Oða0Þ, so this is a natural separation at least
for large a0. We therefore define

Pone ¼ P11 þ P22→1 Ptwo ¼ P22→2: ð10Þ

The two-step Ptwo gives the dominant contribution for
high-intensity a0 ≫ 1 or for a long pulse length. This two-
step dominance at a0 ≫ 1 is the basic assumption in
particle-in-cell codes. In this paper we are interested in

the high-energy limit, where the dominant contribution
instead comes from the one-step Pone.

III. HIGH ENERGY LIMIT

In this section we will study the limit where b0 is the
largest parameter in the system. In [34] we showed
numerically that the direct part of the one-step becomes
dominant in this regime. In this section we will derive
analytical approximations for this case. In the following
two subsections we will for simplicity set μ ¼ 1. We will
reinstate μ in Sec. III C.

A. High-χ limit of LCF

For comparison, we first consider the large-χ limit of the
familiar LCFA. LCFA can be obtained by starting with our
expressions that are valid for arbitrary field shapes, and
then expanding them in a power series in 1=a0, which is
small in the LCF regime, see [1]. We have Ptwo ¼ a20P2 þ
Oða00Þ and Pone ≈ a0P1. P2 and P1 depend on b0 only via
χ ¼ a0b0. For large χ we can neglect the exchange part of
P1 and we find

Pone ≈
13α2

18
ffiffiffi
3

p
π

Z
dσ
b0

χðσÞ
�
ln
χðσÞ
2
ffiffiffi
3

p − γE −
142

39

�
ð11Þ

and

Ptwo ≈
81

ffiffiffi
3

p

56π3
Γ5

�
2

3

�
α2

3
2
3

Z
dσ21
b0

Z
∞

σ21

dσ43
b0

ðχðσ21Þχðσ43ÞÞ23

×

�
ln χðσ43Þ þ

7

4
ln 3þ 7π

4
ffiffiffi
3

p − γE −
295

42

�
; ð12Þ

where γE ¼ 0.577… is the Euler constant, χðσÞ ¼
a0b0jf0ðσÞj and the potential is given by aðσÞ ¼ a0fðσÞ.
These are simple generalizations of the constant-crossed-
field case, which was derived in [24], to slowly varying,
locally-constant fields. If we keep a0 constant and increase
b0 then Pone ∼ a0 ln χ and Ptwo ∼ a20ð1=χ2=3Þ ln χ or

Pone

Ptwo
∼
χ2=3

a0
; ð13Þ

which means that eventually (the right-hand-side of) (11)
becomes larger than (the right-hand-side of) (12), sug-
gesting that Pone becomes larger than Ptwo at sufficiently
high energies. However, LCFA breaks down at very high
energies: One can obtain the LCF expansion by rescaling
θ21 → θ̃21=a0 and θ43 → θ̃43=a0, and φ ¼ σ43 − σ21 →
φ̃=a0 for Pone, and then expanding the resulting integrands
in 1=a0. In deriving the high-χ limit (11) and (12) one finds
that only a small fraction of the initial longitudinal
momentum is given to the electron-positron pair, more
precisely s2;3 ∼ 1=χ. (Contrast this with the large χ limit of
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single-photon emission without subsequent pair produc-
tion, where there instead is a peak where the emitted photon
takes almost all the energy from the electron [46,47].) One
also finds that θ̃21 ∼ χ2=3. So, to be sure that the LCF
expansion is still valid, we need

χ2=3

a0
≪ 1; ð14Þ

which means that for a given a0 one cannot take χ
arbitrarily large. Note that this implies

a0 ≫ b20 ≫ 1; ð15Þ

which is a more precise, process- and regime-specific
condition compared to the general rule-of-thumb
a20 ≫ b0 [3].
As an aside we note that at low b0 we find in general

b0 ≪ 1∶ P ∼ exp

�
−
fða0Þ
χ

�
; ð16Þ

where fða0Þ depends on the field shape. For a0 ≫ 1 we
have

b0 ≪ 1 a0 ≫ 1∶ P ∼ exp
�
−
16

3χ
þ c
χa20

�
; ð17Þ

where the factor of 16=3χ gives the LCF result and c is a
numerical factor. So, for LCFA to be good in this regime
one needs2

a30 ≫
1

b0
≫ 1: ð18Þ

The condition (14) means that one cannot trust (13)
when this ratio becomes larger than one. This is after all
what one can expect for the relation between the first (Ptwo)
and second term (Pone) in a (Laurent) power series.
However, although LCFA breaks down, we have found
that if one increases b0 with a0 kept constant, then Pone
does in fact become larger than Ptwo [but Pone is no longer
given by (11)]. That Pone can dominate in certain parameter
regimes is not surprising, because for a0 ≪ 1 we have
Pone ∼Oða20Þ but Ptwo ∼Oða40Þ, so Pone dominates for
sufficiently weak fields. Moreover, the large-b0 limit of the
probabilities of theOðαÞ processes nonlinear Compton and
Breit-Wheeler [5,6], suggests that, at constant a0 (but not
necessarily small), increasing b0 takes us closer to pertur-
bative physics. In the following we will show that this is

partly true for trident, but, due to the low momentum
transfer, trident has a more nontrivial dependence on a0.

B. Large b0 limit

So, we now take b0 to be the largest parameter, and we
therefore leave the LCF regime. In this limit it turns out that
the spectrum is peaked at 1 − s1 ∼ 1=b0 ≪ 1. This means
that the initial electron keeps most of its longitudinal
momentum, and the intermediate photon (in the P22→1

case) scales as kl ¼ b0q1 ∼Oðb00Þ, i.e.,

χγ
χ
¼ kl

kp
¼ Oð1=b0Þ: ð19Þ

In the exponent of the direct terms we have factors of
r1=b0 ∼ 1=b20, which suggests a rescaling of θ → b20θ
similar to [6] for single nonlinear Compton scattering.
However, for the second step we have r2=b0 ∼ b00, which
leads to a fundamental difference. For P11

dir we should not
rescale θ with b0. In the limit of large b0 we can still
perform the longitudinal momentum integrals. We first
change variables from s2 ¼ q1ð1þ νÞ=2 to ν and from
s1 ¼ 1=ð1þ tÞ to t. Then we rescale t → t=b0, expand the
integrand in b0 and perform the resulting t and ν integrals.
We find (omitting the indices on Θ21 etc.)

P11
dir ¼

α2

3π2

Z
dσdθ
θΘ

∂Θ
∂θ ; ð20Þ

with an integration contour equivalent to θ → θ þ iϵ. The
second leading-order term comes from P22→1

dir . To calculate
this term we start by making a partial integration in θ21 to
change 1=θ221 into 1=θ21. In the nonboundary terms we
rescale θ21 → b20θ21 and σ21 − σ43 → b20σ21. To leading
order this means that there is no field dependence for the
θ21 and σ21 integrals, i.e., we can put, e.g.,D1 → 0. The σ21
integral is trivial and gives a factor of jθ21j, which we
represent as

−
jθ21j
2

¼
Z

dr
πr2

�
e−

iθ21r
2 − 1

�
: ð21Þ

Since Θ21 → b20θ21 to leading order, the resulting θ21
integral can now be performed with the residue theorem.
Then we perform the r integral and finally the longitudinal
momentum integrals (t and ν). The boundary term coming
from the partial integration in θ21 is nonzero. To calculate
this term we change variable from σ21 to φ ¼ σ43 − σ21,
write 1=ðφ� θ43

2
Þ ¼ d

dφ lnðφ� θ43
2
Þ and make a partial inte-

gration in φ. The boundary term and the new φ integral (in
which we rescale φ → b20φ) can now be expanded in b0.
The longitudinal momentum integrals are again elementary.
We thus find

2For some field shapes, for example a circularly polarized
monochromatic field, it happens that the numerical factor c is
actually small, which leads to a weaker condition so that one can
use the LCF result even when a0 ∼ 1 [52–54].
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P22→1
dir ¼ α2

6π2

Z
dσdθ
θΘ

�
9þ 19

3
D2 −

25

3

∂Θ
∂θ

þ ½1− ðaðϕ3Þ− aðϕ4ÞÞ2�
�
ln

�
−

θΘ
ð2b0Þ2

�
þ 2γE

��
:

ð22Þ

We have used ðaðϕ3Þ − aðϕ4ÞÞ2 ¼ 2ð∂θΘ −D2 − 1Þ.
Using this relation again we find that the total probability
P ≈ P11

dir þ P22→1
dir is given by

P ¼ α2

6π2

Z
dϕ3dϕ4

θΘ

�
8

3
−
19

6
ðaðϕ4Þ − aðϕ3ÞÞ2

þ ½1 − ðaðϕ4Þ − aðϕ3ÞÞ2�
�
ln

�
−

θΘ
ð2b0Þ2

�
þ 2γE

��
:

ð23Þ

Note that, unlike the probabilities for the first-order
processes nonlinear Compton and Breit-Wheeler [5,6], P
does not scale as a20; it has instead a nontrivial dependence

3

on a0. The reason for this is that, while the incoming
particle in the first step has high energy (which leads to
perturbative scalings), the particles involved in the second
step do not. This suggests that higher-order diagrams will in
general have subprocesses associated with lower energy
which give more nontrivial dependencies on the field
strength. The appearance of softer (χ ∼ 1) vertices is of
course also what one would expect for late vertices in
cascades, after the initial momentum has been distributed
among a large number of particles. However, here we see
that this happens already at Oðα2Þ.
Although (23) has in general a nonlinear dependence on

a0, the first step in the trident process is simple in a way
similar to the first-order probabilities in [5,6]. In fact, the
first step in trident has to leading order no dependence on
the field, all the field dependence comes from the second
step, see Fig. 1. This generalizes a corresponding result in
perturbative Oða20Þ trident [48,55], where a single photon
(which would come from the background field in our case)
is absorbed, and where to leading order this photon is
absorbed only by the pair-production step. For small a0 we
can expand (23) to Oða20Þ and compare with the old
literature on perturbative trident. We find

P ¼ α2

2π

Z
∞

0

dw
2π

jaðwÞj2w
�
28

9
lnð2b0wÞ −

218

27

�
; ð24Þ

where the Fourier transform of the field is given by

aðwÞ ¼
Z

dϕaðϕÞeiwϕ: ð25Þ

(P11
dir contributes a factor of −6=109 ≈ −0.06 of the non-log

term in (24).) To compare the probability (24) with the
cross section in the literature, we replace the Fourier
transform aðwÞ → eϵμ2πδðw − w0Þ=

ffiffiffiffiffiffiffiffiffiffiffi
2ωV3

p
and divide

by the flux density (1=V3) and a temporal volume factor.
We then recover exactly the literature result, see [48,55].
To compare with the LCF result (11), let us consider the

limit a0 ≫ 1. One should not expect the a0 ≫ 1 limit of our
high-b0 approximation (23) to reduce to the large-χ limit of
LCFA (11), because taking b0 to be largest and then a0 to
be large does not commute with taking a0 to be largest and
then b0 to be large [5,6]. We find by taking the a0 ≫ 1 limit
of (22) and (20)

P11
dir ¼

α2

3
ffiffiffi
3

p
π

Z
dσ
b0

χðσÞ ð26Þ

and

P22→1
dir ¼ 13α2

6
ffiffiffi
3

p
π

Z
dσ
b0

χðσÞ
�
ln
χðσÞ
2
ffiffiffi
3

p − γE −
64

39

�
: ð27Þ

The total probability is thus given by

P ¼ 13α2

6
ffiffiffi
3

p
π

Z
dσ
b0

χðσÞ
�
ln
χðσÞ
2
ffiffiffi
3

p − γE −
58

39

�
: ð28Þ

Although this is different from the χ ≫ 1 limit of LCFA
(11), it nevertheless looks quite similar. There is, however,
an important difference.

C. Muon trident and pair production
by a Coulomb field

This difference is not obvious in the above expressions,
but it becomes obvious if we replace the initial electron
with a muon (or some other lepton with a different mass)
with mass μ ≠ 1 (we still use units where the electron mass
me ¼ 1). LCFA (11) is independent of μ, see [24]. In
contrast, the generalization of (23) is obtained in the same
way as in the perturbative case, i.e., one should replace

FIG. 1. Illustration of the fact that in the high-energy limit all
the field dependence comes from the pair-production step.
Double lines represent fermions dressed by the background
field and the single line is an electron without interaction with
the field. The wiggly line is a photon that is not part of the
background field.

3Nontrivial dependences on a0 in the high-energy limit have
also been found in the real parts of the two loop diagrams, whose
imaginary parts give the probabilities of nonlinear Compton and
Breit-Wheeler [5].
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b0 → b0=μ. This means that in the rest frame of the initial
particle, the probability is independent of μ. This suggests
that (28) can be directly compared with the probability of
pair production by a plane-wave field and an infinitely
massive initial particle in the form of a stationary Coulomb
field. That process has been calculated in a constant-
crossed field in [24,56]. We find that (28) agrees perfectly
with Eq. (19) in [56] or with Eq. (45) in [24] (2ImT gives
the pair-production probability). Thus, our new large-b0
approximation interpolates between the old result for
perturbative trident for a0 ≪ 1 and the old result for pair
production by a Coulomb field in a constant-crossed field
for a0 ≫ 1. This relation with pair production by a
Coulomb field can also be seen in the perturbative case
Oða20Þ [48,57,58], so one can expect it to hold for
arbitrary a0.
To show that this is indeed the case, we need to calculate

the probability of pair production by a Coulomb field and
an inhomogeneous plane wave with arbitrary a0. Formally,
the calculation is similar to nonlinear Breit-Wheeler
pair production, except that the photon polarization
vector ϵμ should be replaced by the Fourier transform of
the Coulomb field A0ðxÞ ¼ e

4πr, which is given by
A0ðlÞ ¼ e=l2, and the Coulomb photon is off shell. The
amplitude is given by

M ¼ −ie
Z

d3l
ð2πÞ3

Z
d4xψ̄ðxÞ

p2

AðlÞγ0e−ilixiψ−ðxÞ
p3

; ð29Þ

where ψ and ψ− are the Volkov solutions for the electron
and positron (same notation as in [1]). We work in the rest
frame of the initial particle (the Coulomb center), so b0
gives the frequency of the plane wave. The integrals over
x⊥ and x− give a delta function which we use to perform the
integrals over l⊥ and l3 ¼ −2l− ¼ 2lþ. The probability is
given by

P ¼
Z

dp̃2dp̃3jMj2; ð30Þ

where dp̃ ¼ θðp−Þdp−d2p⊥=ð2p−ð2πÞ3Þ is Lorentz invari-
ant, and p2 and p3 are the momenta of the electron and
positron. We exponentiate the Coulomb factor

1

l4
¼ −

�
θ

2b0

�
2
Z

duu exp

�
iθ
2b0

l2u

�
ð31Þ

and perform the resulting Gaussian integrals over p2⊥ and
p3⊥. We are using the Coulomb gauge for the Coulomb
field, rather than the lightfront gauge, and we find terms
that are conveniently rewritten using partial integration,
using e.g.,

∂Θ
∂ϕ3

¼ −ð1þ w2
3Þ

∂Θ
∂ϕ4

¼ 1þ w2
4: ð32Þ

Next we can perform the u integral in terms of an
incomplete gamma function,

PðsÞ ¼ α2

4π2b20q
2
1

Z
dϕ3dϕ4 exp

�
iq1θ
2b0

þ irΘ
2b0

�

×

�
−
8s2s3b20
q21θ

2
þ
�
2ib0
q1θ

ðJ − 1Þ þ J
�

×

�
κ

2

�
2ib0
rθ

þD2 þ 1

�
þ 1

��
; ð33Þ

where r ¼ ð1=s2Þ þ ð1=s3Þ, κ ¼ ðs2=s3Þ þ ðs3=s2Þ, q1 ¼
s2 þ s3 and

J ¼ eizΓð0; izÞ z ¼ −
ðs2 þ s3Þθ

2b0
: ð34Þ

This result (33) is exact in b0 (and a0). For large b0 it gives
logarithmic terms. The large b0 limit is obtained by
rescaling s2;3 → s2;3=b0 and expanding in b0. We change
variables from s2 ¼ tð1 − νÞ=2 and s3 ¼ tð1þ νÞ=2 to t
and ν. After performing these (elementary) longitudinal
momentum integrals we finally find (23). Thus, our high-
energy approximation (23) for trident agrees exactly with
the high-energy limit of pair production by a Coulomb þ
plane-wave field, for arbitrary a0, field shape and polari-
zation. Although in the near future it will probably be easier
to reach high χ by increasing a0 rather than b0, i.e., within
the LCF regime, the high-χ limit of LCFA does not agree
with the result for Coulombþ constant-crossed field, this
connection is instead seen in the high-b0 limit (23).
Pair production by the combination of a Coulomb field

and inhomogeneous plane waves has been studied at high
energies in [59–63]. For a comparison between muon
trident and pair production by a Coulomb field in a plane
wave see [49].

D. Weizsäcker-Williams equivalent photon
approximation

For other processes, in the absence of a strong laser field,
a common tool for studying the high-energy limit is the
Weizsäcker-Williams (WW) equivalent photon approxima-
tion [64–66], see, e.g., [67] for a textbook treatment. At the
time of the famous experiment at SLAC [25], no complete
description of trident existed, so a WWapproximation was
used to estimate the importance of the one-step term.4

However, in [28] it was shown that the WW approach
does not agree with the high-χ limit of LCFA. In this
section we will explain why this is.
In our case the starting point for a WWapproximation is

given by (cf. [28])

4The one-step term was called trident in [25], but we use
trident to refer to the total probability.

NONLINEAR TRIDENT IN THE HIGH-ENERGY LIMIT: … PHYS. REV. D 102, 096008 (2020)

096008-7



PWW ¼ 2α

π

Z
dq1
q1

ln

�
1

q1

�
PBW; ð35Þ

where PBW is the photon-averaged probability of nonlinear
Breit-Wheeler pair production,which can be expressed as [1]

PBW ¼ iα
2πb0

Z
q1

0

ds2

Z
dϕ3dϕ4

q21θ43
exp

�
ir2
2b0

Θ43

�

×

�
1 −

κ23
4

ðaðϕ4Þ − aðϕ3ÞÞ2
�
; ð36Þ

where againq1 ¼ s2 þ s3 is the longitudinal photonmomen-
tum. We again rescale s2;3 → s2;3=b0 and change variables
from s2 ¼ tð1 − νÞ=2 and s3 ¼ tð1þ νÞ=2 to t and ν. To
leading (logarithmic) order we find

PWW ¼ α2

3π2

Z
dϕ3dϕ4

θΘ
½ðaðϕ4Þ − aðϕ3ÞÞ2 − 1� lnb0; ð37Þ

which is exactly the same as the lnb0 part of the full
approximation (23). So, the WW approach does work. It
agrees with our new approximation where b0 is the largest
parameter. Since the largea0 limit of this approximation does
not commutewith the largeb0 limit ofLCFA,wenowsee that
the reason thatWWandLCFA do not agree is that forWW to
work we need b0 to be the largest parameter, while for LCFA
toworkwe needa0 to be largest. TheWWapproachmight be
the simplest way to obtain the lnb0 term, but b0 would have
to bevery large in order for the constant terms to be negligible
compared to this logarithmic term.

E. Nonlocal corrections

In Sec. III C we showed that the large-a0 limit of our
large-b0 approximation is fundamentally different from the
large-χ limit of LCFA, even though they at first sight look
similar. This difference becomes even clearer at the next-to-
leading order (NLO). The leading order (LO) (28) is
obtained in a way that is similar to the derivation of
LCFA, i.e., it is obtained by rescaling θ → θ̃=a0 and then
expanding to leading order in 1=a0. This is a local,
derivative expansion around the point where θ ¼ 0 or
ϕ3 ¼ ϕ4. For example, the effective mass becomes M2 ≈
1þ _a2⊥ðσÞθ2=12 with corrections involving higher deriva-
tives of aðσÞ. The correction to the leading-order LCFA
(11) and (12) is obtained by simply including higher orders
in this expansion. In contrast, we will now show that the
next-to-leading order correction to (28) is nonlocal. In fact,
(at least for a long pulse considered in this section) its
scaling with respect to a0 is not universal, it depends on the
pulse shape.
We can see this using a long pulse with circular

polarization, aðϕÞ ¼ a0ðsinϕ; cosϕÞhðϕ=T Þ, where hðxÞ
gives the envelope shape, e.g., e−x

2

or θð1 − 2jxjÞ. For
T ≫ 1we rescale σ ¼ T u and expand in 1=T . (The locally

monochromatic approximation has recently been studied
in [68].) We have

M2 ≈ 1þ ½a0hðuÞ�2
�
1 − sinc2

θ

2

�
ð38Þ

and

ðaðϕ4Þ − aðϕ3ÞÞ2 ≈ ½a0hðuÞ�2θ2sinc2
θ

2
: ð39Þ

We see that u only appears in the integrand via a0hðuÞ.
Let us for simplicity consider first a flat-top envelope
hðxÞ ¼ θð1 − 2jxjÞ, so the u integral gives trivially 1. We
obtain NLO by subtracting from the exact integrand the
integrand that gives LO (which is obtained by rescaling
θ → θ̃=a0 and expanding to leading order in 1=a0), but
expressed in terms of the original θ rather than θ̃ ¼ a0θ,
and then we expand this difference directly in 1=a0, i.e.,
without rescaling any integration variables. We find

ΔP ¼ −
α2

6π2
T
Z

dθðF − FLCFÞ; ð40Þ

where

F ¼ ðfðϕ4Þ − fðϕ3ÞÞ2
θ2F

�
19

6
þ ln

�
a20θ

2F
ð2b0Þ2

�
þ 2γE

�
; ð41Þ

FLCF ¼
12

θ2

�
19

6
þ ln

�
a20θ

2FLCF

ð2b0Þ2
�
þ 2γE

�
; ð42Þ

F ¼ hf2i − hfi2 ≈ 1 − sinc2
θ

2
; ð43Þ

ðfðϕ4Þ − fðϕ3ÞÞ2
θ2

≈ sinc2
θ

2
; ð44Þ

and FLCF ¼ _f2ðσÞθ2=12. The integrand in (40) has an
integrable singularity at θ ¼ 0, so we can set iϵ → 0.
Note that, in contrast to LO (28) and what one might have
expected from the LCF regime, this NLO depends non-
locally on the field, i.e., it is not an expansion around θ ¼ 0
and the dominant contribution to the integral comes from a
θ interval with θ ∼ 1 (neither large nor small, dimension-
less). So, while we for LO (28) can perform the θ integral
for an arbitrary field shape, in NLO we still have a
nontrivial θ integral that feels all of the field shape.
Since we are in a regime where b0 is supposed to be
larger than any other parameter, one might have expected
that the formation length should be large and then the
nonlocality would not be surprising. But note that the
dependence on a0 and b0 in (23) is separated into
hða0Þ ln b0 þ gða0Þ, where hða0Þ and gða0Þ only depend
on a0 and the pulse shape. So, whether or not we can
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approximate the functions gða0Þ and hða0Þ using a local
θ ∼ 1=a0 scaling is not determined by b0. And if a0 is
sufficiently large (but with b0 still being large enough such
that (23) is valid) the leading order does still come from a
short formation length θ ∼ 1=a0 independently of b0.
Note also that NLO scales as a00 and ln a0 compared

LO which scales as a0 and a0 ln a0, so, unless a0 is very
large, (40) provides a numerically important correction.
This is illustrated in Fig. 2. For this field we find

P ¼ α2T ð0.40a0 − 0.32Þ lnð2b0Þ
þ α2T ð−1.6a0 þ 1.3þ ½0.32þ 0.40a0� ln a0Þ; ð45Þ

where all the numerical factors are approximate. At least for
this example, Fig. 2 shows that by including NLO we have
a good approximation already at a0 > 2.
If we instead of a flat-top envelope hðxÞ ¼ θð1 − 2jxjÞ

have a smooth envelope, then the u integrand is approx-
imately constant, equal to (40), in the interval where
a0hðuÞ ≫ 1, but the fact that the length of this interval
is now a0 dependent means that NLO has a different scaling
with respect to a0. Consider for example

hðxÞ ¼ 1=ð1þ ½2x�2nÞ ð46Þ

with n ≥ 1. In the limit n → ∞ we recover the flat-top
hðxÞ ¼ θð1 − 2jxjÞ. We obtain the NLO by subtracting the

LO integrand, as in (40), except this time we rescale u →

a1=ð2nÞ0 ũ before we take the limit a0 ≫ 1. We find that NLO

scales as a1=ð2nÞ0 (with some terms having an additional
ln a0). This means that for a smooth envelope NLO is even
more important. It is most important for the field with the
slowest decay, n ¼ 1, where the ratio between LO and
NLO only scale as

ffiffiffiffiffi
a0

p
. Note that LO is obtained from ϕ

values on the order σ ∼ a00 and θ ∼ 1=a0, while NLO is

obtained from σ ∼ a1=ð2nÞ0 and θ ∼ a00. Note also that the
scaling with respect to a0 is not universal, it depends on the
pulse shape, n in this case. This also highlights the fact that
NLO is not simply the next term in a power-series
expansion in 1=a0 (in contrast to the LCF regime).
Fig. 3 shows that for a Lorentzian pulse (n ¼ 1) shape

the NLO term is indeed more important than for the flat-top
envelope. This is especially clear for the b0-independent
term, for which the error at leading order is even larger than
the exact result, even for a0 ¼ 10. For the b0-independent

exact

LO

NLO

2 4 6 8 10
a0

1

2

3

4

5

6

ln(2b0) part

exact

LO

NLO

NNLO

2 4 6 8 10
a0

20

15

10

5

constant part

FIG. 3. Same as 2 but with a Lorentzian (n ¼ 1 in (46) instead
of a flat-top envelope. Since LO ∼ a0 and NLO ∼ ffiffiffiffiffi

a0
p

(apart
from log terms), the absolute difference increases with a0, so
NLO is even more important for this pulse shape. For the constant
part the NNLO scales as a00.

exact

LO

NLO

2 4 6 8 10
a0

1

2

3

4

ln(2b0) part

exact

LO

NLO

2 4 6 8 10
a0

7

6

5

4

3

2

1

constant part

FIG. 2. Comparison between the exact, the leading order (28),
and the leading order plus the next-to-leading order correction
(2). The field is monochromatic with a circular polarization,
f ¼ fsinϕ; cosϕg. The first plot shows the part proportional to
ln 2b0 and the second plot the rest. In both cases a factor of α2T
has been factored out, where T is a volume factor. The nonlocal
correction is clearly important here.
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term the NNLO term is a constant, a00. This NNLO term is
obtained in the following way. Let Iðσ; θÞ be the integrand.
LO is obtained by rescaling θ → θ̃=a0 and expanding to
leading order in a0. If one tried to obtain the next order by
keeping σ and θ̃ as independent of a0 then one would find
divergent integrals, so NLO must instead be obtained by a
different a0 scaling of the integration variables. Let
ILOðσ; θÞ be the leading-order integrand expressed in terms
of the original θ variable. NLO is now obtained from
Iðσ; θÞ − ILOðσ; θÞ by rescaling σ →

ffiffiffiffiffi
a0

p
σ̃ and expanding

to leading order in a0. Again, one cannot obtain NNLO
with the same a0 scaling of θ and σ, because this leads to
divergent integrals. Let INLOðσ; θÞ be the integrand that
gives NLO, expressed in terms of the original variables.
NNLO is now obtained from ðI − ILO − INLOÞðσ; θÞ by
expanding to leading order in a0, this time without
rescaling the integration variables. So, each of these terms
is obtained with a different rescaling of σ and θ. Contrast
this with the LCF or the saddle-point regime, where one
just has to rescale the integration variables once and then
obtain the leading as well as higher orders by simply
expanding the integrand to higher orders. In the saddle-
point regime one would for example change variables to
θ ¼ θsaddle þ ffiffiffi

χ
p

θ̃ etc. and then expand the integrand in a
power series in χ times and exponential on the form e−���=χ .
This leads in general to an asymptotic series, but the terms
are obtained in a systematic way. Here we need to work
more in order to obtain the higher orders in the large-a0
expansion, and, moreover, the scalings of NLO and NNLO
are not universal, they depend on the field shape. We also
see that, unless a0 is very large, LO can be far from the
exact result, which means that we need to obtain these
higher orders. Fortunately, once we have calculated the first
orders we obtain a very good approximation already
at a0 ≳ 2.

F. Nonlocal corrections for short pulses

In the previous section we showed that NLO can be
important for a long pulse. However, the longer the pulse is,
the higher the energy has to be for our high-energy
approximation (23) to be good. So, in this section we will
study NLO for short pulses. Since unipolar fields seem to
involve more complicated calculations, we focus on a field
with að−∞Þ ¼ að∞Þ, given by

aðϕÞ ¼ a0ð1þ cosϕÞ ð47Þ

for jϕj < π and aðϕÞ ¼ 0 for jϕj > π. As in the previous
section, LO is obtained by expanding to leading order in θ,
while the corrections are nonlocal. Due to symmetry we can
restrict the integration variables to ϕ1 < ϕ2. We separate
the integration region into parts with P12 ¼ fϕ1 < −π;
−π < ϕ2 < πg, P22 ¼ f−π < ϕ1 < ϕ2 < πg, P23 ¼
f−π < ϕ1 < π;ϕ2 > πg and P13 ¼ fϕ1 < −π;ϕ2 > πg.

The contribution from P23 is equal to the one from P12,
and only P22 contribute to LO. NLO can be calculated in a
similar way as in the previous section, but the fact that we
have two nontrivial integrals makes the calculations more
complicated. So, we simply state the result

P ≈ α2½ð1.6a0 þ 0.34½lna0�2 þ 0.25 lna0 − 0.99Þ lnð2b0Þ
þ 1.6a0 ln a0 − 6.9a0

− 0.28½lna0�3 − 1.6½lna0�2 − 0.32 ln a0 þ 4.9�; ð48Þ

where all the constants are approximate. While a direct
calculation of this is quite involved, we can confirm it more
easily by making the following ansatz for the correction,

δPða0Þ ¼ d0 þ d1 ln a0 þ d2½lna0�2 þ d3½lna0�3; ð49Þ

where di are constants that can be obtained either by a
numerical evaluation of the exact result for P, dP=da0,
d2P=d2a0 and d3P=d3a0 at one, arbitrary, large a0 ¼ ar; or
by evaluatingP at 4 differentar.ar should be large enough so
that the exact result has converged to (49), and can be chosen
much larger than the a0 range one is mainly interested in. In
this case we have checked that ar ∼ 104 gives good results:
The need for NLO is most clearly seen in the

b0-independent part. At a0 ¼ 30 the exact result for this
part is ≈ − 69.41α2, which is in good agreement with
LOþ NLO ≈ −69.45α2, while the leading order is not great,
LO ≈ −43.27α2. This is consistent with the results in the
previous section for long pulses, i.e., that NLO is needed to
have a good precision even for very large a0. Moreover, we
again find that by including NLO we have a good approxi-
mation already at not-very-large a0; for a0 ¼ 2 we find
for the b0-independent part fexact;LO;LOþ NLOg≈
f−7.9;−11.5;−7.7gα2, so LOþ NLO is already close to
the exact result at a0 ¼ 2.
A short pulse with compact support is also useful in

order to demonstrate that the correction is nonlocal,
because the part where the two integration variables are
both outside the pulse but on opposite sides, i.e., P13,
contributes to NLO. In this example we have

δP13 ≈ α2½ð0.14 ln a0 − 0.040Þ lnð2b0Þ
− 0.14½ln a0�2 − 0.56 ln a0 þ 0.16�; ð50Þ

which is a significant part of the total NLO.
Given that NLO is nonlocal, one might wonder if

perhaps the a0 scaling depends on the way the field goes
to zero. For this reason we have also considered aðϕÞ ¼
a0ð1þ cosϕÞ2 for jϕj < π and aðϕÞ ¼ 0 for jϕj > π,
which has a different decay at ϕ ¼ �π. In one part of
the calculation of NLO one finds that the dominant
contribution comes from a region of the ϕ variables that
scales differently in a0 compared to the first example.
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However, we still find the same form as in (48); the only
difference is the numerical coefficients.

G. Perturbation theory

In the previous two sections we studied the large-a0
expansion and showed that by including NLO we obtain
approximations that are good all the way down to a0 ≳ 2. In
this section we study the small-a0 expansion. In contrast to
the large-a0 expansion, it is quite straightforward to obtain
a perturbation series in a0. We do not need to figure out
how to rescale integration variables, we just have to expand
the original integrand in a power series in a0 and then
perform the integrals at each order numerically. We con-
sider again the compact, short field in (47). We find

P ¼ α2½Lða0Þ lnð2b0Þ þ Cða0Þ�; ð51Þ

where Lða0Þ and Cða0Þ can be expanded in a power series
in a20 with coefficients with alternating sign and decreasing
in absolute value,

L¼1.1a20−0.26a40þ���−0.00022a280 þ0.00014a300 − ���
ð52Þ

C¼−3.6a20þ0.80a40− ���þ0.00050a280 −0.00031a300 þ���
ð53Þ

The ratios of neighboring coefficients seem to converge to
cn=cn−1 ∼ −0.64, indicating a finite radius of convergence
of a20 ∼ 1.5. We can check this from the zeros of the
effective mass at imaginary a0: In the denominator of the
integrand in (23) we have M2 ¼ 1þ a20½ðM2 − 1Þ=a20�.
The maximum of ½ðM2 − 1Þ=a20� is ≈0.76 (reached in the
P12 region), which means that the singularity closest to the
origin is at a20 ∼ −1.5, so the radius of convergence is
a20 ∼ 1.5. This is also agrees with Fig. 4, where we compare
an exact evaluation of (23) with the perturbation series.
Figure 4 shows that at a0 ∼ 1 one can still obtain better
precision by including more terms, but at a0 ∼ 1.2 the
perturbative sums deviate from the exact result regardless
of how many terms one adds. (The radius of convergence
for other processes in different regimes has been studied
in [69–71].)
So, perturbation theory seems to be limited to small a0

(≲1.2 in this example), which is what one might have
expected. However, there is growing interest in the field of
extracting information encoded in perturbation series
(around the origin in this case) to study different regions
of parameter space, see, e.g., [72–75] and references
therein. In our case we have resummed the perturbation
series into Padé approximants [76–79],

PN
Mða20Þ ¼

P
N
n¼0 Ana2n0P
M
n¼0 Bna2n0

; ð54Þ

where B0 ¼ 1, (in our case) A0 ¼ 0, and the other coef-
ficients are obtained by expanding into a perturbation series
and matching with (52) and (53). Padé approximants are
sometimes used together with Borel resummation in order
to treat asymptotic perturbation series [72,73], see [74] for
an application to the Euler-Heisenberg effective action and
Schwinger pair production. However, in this case we have a
convergent series, so we apply the Padé method directly. In
Fig. 5 we compare the first few (diagonal) approximants
with N ¼ M. These Padé approximants give a good
agreement with the exact result beyond the radius of
convergence all the way up to a0 ∼ 7. So, even though
we cannot use a direct sum of the perturbation series at
1.5≲ a0 ≲ 10, the behavior of the probability in this region
is encoded in the coefficients of the perturbation series
around a0 ¼ 0. Since we showed in the previous sections
that the large-a0 expansion (with NLO included) is good all
the way down to a0 ≳ 2, we now have a significant overlap
where the small- and large-a0 expansions give numerically
basically the same results, as illustrated in Fig. 6. This
means that we have analytical approximations for any value
of a0.
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FIG. 4. Exact evaluation of (23) (black lines) compared to the
perturbative sums including 1 and up to 15 of the first terms in the
a20 expansion.
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We can extend the reach of perturbation theory further
using a conformal map [72–74,78–80],

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0

a2s

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0

a2s

q
þ 1

a20 ¼
4a2sz

ð1 − zÞ2 ; ð55Þ

which maps the singularity at a20 ¼ −a2s to the unit circle.5

Instead of expanding in a power series in a20, we expand
in z. Using only the conformal map also allows us to go
beyond the radius of convergence; for the example in Fig. 7
we find agreement up to a0 ∼ 20 by including terms up to
z30. We can reach further if we perform a Padé resummation
of the conformal series; in Fig. 7 we find agreement up to
a0 ∼ 50 with a Padé approximant with N ¼ M ¼ 14 (for
the constant part; the log part is much better).

So, by calculating a sufficient number of the coefficients in
the perturbation series around a0 ¼ 0, one can obtain a good
approximation even for large a0. We are therefore led to
consider large orders. A direct numerical integration can
become challenging if we need to go to very high orders, but
at sufficiently high orders we can use a semianalytical
approach. At Oða2N0 Þ, the most important part of the
integrand is given by �

−
M2 − 1

a20

�
N

; ð56Þ

whichmakes the integrand sharply peaked at the point where
M2 is at maximum. By exponentiating this factor as (cf. [82])

exp

�
N ln

�
M2 − 1

a20

��
; ð57Þ

we can use saddle-point methods to perform the integrals.6

To leading order the rest of the integrand is simply evaluated
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FIG. 5. The black lines are exact evaluation of (23) and the other
lines show the Padé approximants with N ¼ M ¼ 1; 2;…; 6.
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FIG. 6. The black dashed lines are exact evaluation of (23) and
the other lines show the Padé approximant with N ¼ M ¼ 6 and
the large-a0 expansion in (48).

5The first singularity is at a20 ∼ −1.5. In the plots we have
chosen as to be the (numerically obtained) value of the first
singularity, as is usually done. This is expected to be the optimal
conformal map [81]. However, in this case this only gives a slight
improvement compared to simply setting, e.g., as → 1. In this
particular case, this can be understood by noting that, while the
singularity closest to the origin is determined by P12, the
dominant contribution at large a0 comes from P22.

6Strictly speaking, the maximum is not necessarily a saddle
point. For example, in the contribution from P22 the maximum
occurs on the boundary of the integration region, which means
that, after a suitable choice of integration variables, we have one
integration variable with linear rather than quadratic fluctuation
around the maximum.
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at themaximum. LetLijN andCijN be the contributions from
region Pij to the coefficients of L and C in (51) at Oða2N0 Þ.
To leading order we find

L12N ≈ −
0.22ð−0.67ÞN

N
ð58Þ

L22N ≈ −
0.35ð−0.54ÞN

N
3
2

ð59Þ

L13N ≈ −
0.015ð−0.56ÞN

N
1
2

ð60Þ

C12N ≈ −
ð0.11 lnN − 0.81Þð−0.67ÞN

N
ð61Þ

C22N ≈ −
ð0.17 lnN − 1.1Þð−0.54ÞN

N
3
2

ð62Þ

C13N ≈ −
ð0.0075 lnN − 0.056Þð−0.56ÞN

N
1
2

: ð63Þ

From these large-order approximations we see explicitly that
we have convergent series. The ratio test gives of course the
same radius of convergence as we found above.

IV. HEAVY MASS AND LOW ENERGY

In the previous section we saw that, in the high-energy
limit, the “lightfront-time-instantaneous” P11 contributes to
leading order and is only smaller than the dominant term by a
logarithmic term lnb0. This is interesting because P11 gives
in general only a small contribution. In this sectionwe study a
regime where P11 alone gives the dominant contribution.
So, consider the limit where the mass of the initial

particle is much heavier than the mass of the pair, μ → ∞.
This is a relevant limit since already a muon is much
heavier than an electron. Our calculations could also be
relevant for processes involving millicharged particles, see,
e.g., [83,84], but here we will focus on electrons and
muons. In this limit the momentum of the initial particle
does not change much during the process. So, we change
variables from s2 ¼ ð1 − s1Þu to u and from s1¼1=ð1þ tÞ
to t, rescale t → x=μ and then take the limit μ → ∞. For
P22 the lightfront-time integrals for the first step become
free, i.e., the background field enters only via the second
step. We can therefore perform the σ21 and θ21 integrals.
The first term in (9) vanishes because the θ21 contour can be
closed in the upper half of the complex plane and there
are no poles there. This means that the two-step part Ptwo
does not contribute in the limit where the initial particle is
much heavier than the pair. For the second term the σ21
integral is trivial and gives

−
jθ43 − θ21j

2
¼
Z

dr
2π

eiðθ43−θ21Þr − 1

r2
: ð64Þ

The θ21 integral can now be performed with the residue
theorem, and then the r integral can be expressed in terms
of an incomplete Gamma function. We recover exactly
(33), so the infinite mass limit of muon trident agrees with
pair production by the superposition of a Coulomb field
and a plane wave, as expected.
The high-energy limit therefore just reproduces the result

in the previous section, so we consider now instead the low-
energy limit. We have b0=μ ¼ ω and we considerω ≪ 1. In
this regime we can perform all the integrals with the saddle-
point method. For the momentum integrals we have a
saddle point at u ¼ 1=2 and x ¼ 2Mðσ43; θ43Þ. We find

P11 ¼ −
iα2ω
4π

Z
dσdθ
θ3M

exp

�
2iθM
ω

�
ð65Þ

and

P22 ¼
α2ω2

8π

Z
dσdθ

2þD2

θ4M4
exp

�
2iθM
ω

�
: ð66Þ
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FIG. 7. The black lines are exact evaluation of (23) and the
other lines show: the perturbative sum in the conformal variable z
up to z30; the Padé approximant of the conformal series with
N ¼ M ¼ 10 (N ¼ M ¼ 14) for the log part (constant part); and
the large-a0 expansion in (48).
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Although one could perform the remaining integrals
numerically, that would not give a more accurate result
than performing them with the saddle-point method,
because we have already performed the momentum inte-
grals with the saddle-point method. However, we can
already see that P11 gives the dominant contribution for
arbitrary field shape, as P22 ∼ ωP11 ≪ P11. Contrast this
with the case where all the masses are equal, where the
opposite is true [1], i.e., P11 ∼ χP22→1 ≪ P22→1. Thus, here
the lightfront instantaneous term P11 gives the dominant
contribution.
Note also that the saddle points for the lightfront-time

integral are determined by the function θM, while in the
equal-mass case as well as other processes such as non-
linear Compton scattering, Breit-Wheeler pair production
or double nonlinear Compton scattering, the saddle points
are instead determined by θM2 [40]. In [40] we found
explicit saddle-point approximations for an entire class of
field shapes for processes with θM2 in the exponent.
However, these fields lead to transcendental equations
for the saddle points here. It is, of course, still simple to
obtain the saddle points numerically, expand around the
saddle point and perform the resulting Gaussian integral
analytically. For a0 ≫ 1 we can still find fully analytical
results. We haveM2 ¼ 1þ a20 _fðσÞθ2=12 and a saddle point
at θ ¼ i

ffiffiffi
6

p
=ðja0 _fðσÞjÞ, and we find

P≈P11≈
α2

2
ffiffiffi
π

p
Z

dxþ
�jEðxþÞj

2
ffiffiffi
3

p
�5

2

exp

�
−

2
ffiffiffi
3

p

jEðxþÞj
�
; ð67Þ

where EðxþÞ ¼ ωa0ðσ=ωÞ. For a constant field we recover
Eq. (44) in [24].
We can also perform the remaining integral with the

saddle-point method. If a0 is only moderately large we
need to include higher-order corrections to the leading
order (67). By expanding in 1=a0 we obtain

P ≈ α2E2GeF=E; ð68Þ

where E ¼ Eð0Þ is the field maximum,

F ≈ −2
ffiffiffi
3

p �
1 −

3ζ

20a20

þ 3ζ2

5600a40

�
143 − 15

fð5Þ0

ζ2
− 21

½fð4Þ0 �2
ζ3

��
; ð69Þ

and

G ≈
a0

24
ffiffiffiffiffi
6ζ

p
�
1þ ζ

40a20

�
22 − 3

fð5Þ0

ζ2
− 3

½fð4Þ0 �2
ζ3

��
; ð70Þ

where ζ ¼ −fð3Þ0 > 0 and fðnÞ0 ¼ ∂n
ϕj0f. We have included

one more order in the exponential part because even a small

difference from the exact F can lead to a non-negligible
difference in P due to the factor of 1=E ≫ 1 in the
exponent. Note that all terms are local, they come from
the region where the two lightfront time variables are close,
which is seen from the fact that they are expressed in terms
of derivatives of the field (evaluated at the maximum). This
is what one can expect in a LCF expansion in 1=a0, but
contrast this with the high-energy limit in the previous
section, where the next-to-leading order corrections are
nonlocal. Note also that we do not automatically have a
local expression just because we can perform the lightfront
time integrals with the saddle point method (which we can
do as long as E is small enough), because, although the
average variable σ ¼ ðϕ2 þ ϕ1Þ=2 is in general forced to be
close to the field maximum, for a0 ∼ 1 we have a saddle
point at θ ¼ ϕ2 − ϕ1 ∼ i, so in that case the imaginary part
of ϕ2 and ϕ1 do not have to be close, i.e., the result would
be nonlocal.
In order to compare this expansion with the exact result,

we consider a linearly polarized monochromatic field,
aðϕÞ ¼ a0 sinϕ. We have a saddle point with σ ¼ 0 and
θ determined by7

1þ 2

a20
−
cos θ
2

−
sin θ
2θ

¼ 0: ð71Þ

For a0 ≫ 1 we have θ ¼ i
ffiffiffi
6

p
=a0, for a0 ≪ 1

θ ¼ i lnð8=a20Þ. For a0 ≪ 1 the exponential part becomes

P ∼ a
4
ω
0; ð72Þ

which is the expected perturbative result since 2=ω photons
have to be absorbed to produce the pair in the limit where
the initial particle is very heavy. For a0 ∼ 1we can solve the
saddle-point equation numerically. (The corresponding
equation in the equal-mass case can be solved explicitly
in terms of an inverse trigonometric function.) The result is
compared in Fig. 8 with the corresponding approximation
(68). We see that by including the first couple of terms in
the 1=a0 expansion we obtain a good approximation
already for a0 ≳ 1.5. It is straightforward to obtain higher
orders in 1=a20, but, as we see in Fig. 8 (where we include
terms up to 1=a260 ), there is a limit for how low a0 that can
be reached with a direct sum of the perturbation series in
1=a20. However, by resumming this series into a Padé
approximant, we can reach much lower a0. So, we see that
resummation methods can be useful for perturbation series
in both a0 and 1=a0.

7For comparison we note that for a circularly polarized
monochromatic field the saddle point is determined by
sincθ ¼ 1þ 1

a2
0

.
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A. Production of a muon pair

We can also consider the process where the initial
particle is much lighter than the pair, for example an
electron producing a muon pair. If a0 ¼ E=ðmeωÞ ≫ 1 it
could still be that the muon nonlinearity parameter aμ ¼
E=ðmμωÞ is not large. Since the muon is much heavier than
the electron μ ≈ 207 one can expect an exponential sup-
pression, so we perform the integrals with the saddle-point
method. We consider for simplicity a Sauter pulse
fðϕÞ ¼ tanhϕ. For the two-step we find

Ptwo ∼ exp

(
−
4

χ

 
μ3aμΛþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ3aμΛ

3

s !)
; ð73Þ

where Λ¼ð1þa2μÞarccotaμ−aμ. For aμ≫1 this reduces to

Ptwo ∼ exp

�
−

8

3χ
ðμ3 þ μ3=2Þ

�
; ð74Þ

which agrees with Eq. (24) in [24]. However, the one-step
scales as

P11 ∼ exp

�
−
4
ffiffiffi
3

p
μ2

χ
þ 2

ffiffiffi
3

p

χ

�
1þ 6

5a2μ

��
ð75Þ

and is therefore exponentially larger than the two-step. For
aμ ≫ 1we can neglect the third term. The first, leading term,

− 4
ffiffi
3

p
μ2

χ agrees with the result in [23]. So, this is another
regime where the one-step dominates over the two-step.
However, for the production of a muon pair by an electron
we have 4

ffiffiffi
3

p
μ2 ≈ 3 × 105, so χ would have to be very large

for this to not be completely negligible. It could therefore
be more interesting to consider the opposite process, where
there is a muon in the initial state with aμ∼1 (which means
a0 ≫ 1). We leave this for future studies.

V. LARGE χ FROM SMALL-χ EXPANSION

In this section wewill study the χ dependence of the LCF
result. In particular, we will show how asymptotic (diver-
gent) power series in χ can be resummed using Borel-Padé-
conformal methods [72,73,75,78–80] to obtain a good
approximation up to very large χ.

A. Nonlinear Breit-Wheeler pair production

We start for simplicity with nonlinear Breit-Wheeler pair
production. See also [85], where the real and imaginary
parts of the polarization tensor (the latter gives the pair-
production probability) were studied using the large-order
behavior of a χ expansion. In LCFA the probability is given
by (see e.g., [1])

P ¼ αa0

Z
dσR; ð76Þ

where

R ¼
Z

ds

�
Ai1ðξÞ − κ

Ai0ðξÞ
ξ

�
ξ ¼

�
r
χγ

�2
3 ð77Þ

and

r ¼ 1

sð1 − sÞ κ ¼ s
1 − s

þ 1 − s
s

: ð78Þ

We use χγ ¼ a0kl, where lμ is the momentum of the
incoming photon, to distinguish it from the electron χ in
trident. s ¼ kp0=kl is the fraction of the longitudinal
momentum given to the produced electron. AiðξÞ is the
Airy function and

Ai1ðξÞ ¼
Z

∞

ξ
dtAiðtÞ: ð79Þ

We could consider a field with a locally constant χγðσÞ, but
here we focus on the integrand R at a given value of χγ . For
small and large χγ the probability is given by [86]
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FIG. 8. The exponent and the prefactor for μ → ∞, low-energy
and a sinusoidal field. The probability is given by P ¼
α2E2GeF=E, where E is the field strength. “LO,” “NLO,”
“NNLO,” and “N13LO” are obtained by expanding in 1=a0.
“N13LO” includes terms up to 1=a260 , and ½6=6� Padé is the
N ¼ M ¼ 6 Padé approximant for the perturbative series in 1=a20.
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χγ ≪ 1∶ R ¼ 3

16

ffiffiffi
3

2

r
exp

�
−

8

3χγ

�
ð80Þ

and

χγ ≫ 1∶ R ¼ 15 × 3
2
3Γ4½2

3
�

28π2χ
1
3
γ

: ð81Þ

The goal now is to obtain sufficiently many higher-order
corrections to (80) in order to make a resummation that
works up to χ large enough so that we have agreement
with (81). We can do this by first expanding the Airy
functions at large arguments,

Ai1ðξÞ ¼
1

2
ffiffiffiffiffi
πx

p
�
1 −

41

48x
þ 9241

4608x2
þ…

�
exp

�
−
2x
3

�
;

ð82Þ

where x ¼ ξ
3
2 ¼ r=χγ , and similarly for Ai0ðξÞ=ξ. The s

integral can now be performed by expanding the integrand
around the saddle point at s ¼ 1=2.8 We find

R ¼ 3

16

ffiffiffi
3

2

r
T exp

�
−

8

3χγ

�
; ð83Þ

where

T ¼
X∞
n¼0

Tnχ
n
γ ¼ 1−

11

64
χγ þ

7985

73728
χ2γ −

4806425

42467328
χ3γ þ…

ð84Þ

We have calculated the first 56 terms, but it is not difficult
or time consuming to obtain more terms. By plotting the
ratio of neighboring coefficients Tn=Tn−1, it is clear that
they grow factorially. It is therefore natural to make a Borel
transform

BTðtÞ ¼
X∞
n¼0

Tntn

n!
: ð85Þ

We have a finite number of terms for BT. We resum this
truncated series into a Padé approximant, PBTðtÞ, which
gives a ratio of two polynomial functions of t. The final result
is now obtained by a Laplace transform

TreðχγÞ ¼
Z

∞

0

dt
χγ

e−t=χγPBTðtÞ: ð86Þ

The series we consider here are Borel-summable with no
singularities for real t > 0.
In Fig. 9 we compare the direct perturbation series and

the resummation with the exact result. We see that, at
sufficiently small χγ , the leading order (80) gives a good
approximation, but as we increase χγ it starts to deviate.
Since the power series in χγ is a divergent asymptotic series,
a direct summation of higher-order terms does not help.
However, the Padé-Borel resummed series gives an excel-
lent agreement with the exact result already at Padé order
M ¼ N ¼ 5. In fact, N ¼ 5 works up to large χγ: At
χγ ¼ 100, the exact result is ≈0.0749, compared to
≈0.0755 for the resummed series. Going to N ¼ 25 we
find that the Padé-Borel resummed series has a large
overlap with the large-χ approximation (81). This is what
we wanted to see; the small-χγ expansion gives divergent
power series, but by resumming this series with Borel-Padé
methods we obtain a good approximation all the way
up to the region where the leading large-χγ approximation
becomes good.
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FIG. 9. Boreli gives the Padé-Borel resummation with a
diagonal Padé approximant with N ¼ M ¼ i. LO is the leading
small-χ approximation (80), and NLO, NNLO and NNNLO are
obtained by including the first couple of terms in the direct sum of
the perturbation series (84). The “large-χγ” line shows (81). The
black lines show the exact result.

8Resummations of saddle-point expansions have been discussed
in [87].
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In fact, we can obtain an even better agreement by
performing a conformal transformation of the Borel trans-
form before forming a Padé approximant, as described in
[72,73]. By numerically matching the ratio of neighboring
large-order coefficients of the Borel transform onto the
following asymptotic form (cf. Richardson extrapolation
in [88])

BTn

BTn−1
¼ c0 þ

c1
n
þ c2
n2

þ…; ð87Þ

where BTn ¼ Tn=n!, we find that this ratio converges to
c0 ¼ −3=8. This means that the Borel transform has a finite
radius of convergence given by jtj < 8=3, and a singularity
at t ¼ −8=3. We therefore replace t in the truncated Borel
series with the conformal variable z given by

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3t

8

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3t
8

q
þ 1

t ¼ 32z
3ð1 − zÞ2 : ð88Þ

The next steps are to expand the resulting function in a
power series in z to the same order, make a Padé
approximant of the new series, and finally express z in
terms of t. This gives a Padé-conformal resummation
PCBTðtÞ of the original truncated Borel series [72,73].
The final step is to perform the Laplace transform in (86)
with PCBTðtÞ instead of PBTðtÞ.
The result is quite impressive: At χγ ¼ 103 the relative

error ðRapprox=RexactÞ − 1 is f0.2;0.01;0.05;5×10−7;0.02g
for fPB5; PB25; PCB5; PCB25; ð81Þg, where the subscripts
5 and 25 stand for the order N ¼ M in the diagonal Padé
approximant. We see that by including the conformal step,
the relative error at N ¼ 5 is on the same order of
magnitude as N ¼ 25 for the case without the conformal
step. With N ¼ 25 the conformal approximation gives an
extremely high precision, with a relative error several
orders of magnitude smaller than the large-χγ approxima-
tion (81). At χγ ¼ 104 we have a relative error of f2 ×
10−4; 4 × 10−3g for fPCB25; ð81Þg, so at such a very large
χγ the resummation PCB25 still gives a very high precision
and a relative error that is one order of magnitude smaller
than the large-χγ approximation (81). At χγ ¼ 105 we have
a relative error of f7 × 10−3; 8 × 10−4g for fPCB25; ð81Þg,
so PCB25 still gives a relative error of less than one percent.
We see that, while the large-χγ approximation eventually
gives a higher precision, this only happens at a very high χγ .

In fact, this only happens as αχ2=3γ becomes large, and then
one would not trust the leading order in the α expansion
anyway. So, if we limit ourselves to αχ2=3γ not large, then
the resummation gives a remarkable precision over the
entire range of χγ .

B. Trident

We will now use the above resummation method for
trident. In comparison with previous studies using resum-
mation methods for Schwinger pair production [74,89,90],
note that our expansion parameter χ gives the field strength
in the rest frame of the initial electron in terms of the critical
field. While the one-step part eventually becomes larger
than the two-step part as the energy increases, in this
section wewill assume that a0 and the pulse length are large
enough such that the dominant contribution is given by the
two-step part. In LCFA this is given by

Ptwo ¼ α2a20

Z
dσ43dσ21θðσ43 − σ21ÞR; ð89Þ

where (see, e.g., [1,28])

R ¼ −
Z

ds1ds2θðs3Þ
1

χ2q21

�
Ai0ðξ1Þ
ξ1

Ai0ðξ2Þ
ξ2

þ
�
Ai1ðξ1Þ þ κ01

Ai0ðξ1Þ
ξ1

��
Ai2ðξ2Þ − κ23

Ai0ðξ2Þ
ξ2

��
;

ð90Þ

where ξ1 ¼ ðr1=χðσ21ÞÞ23 and ξ2 ¼ ðr2=χðσ43ÞÞ23. This
expression allows for a locally constant χðσÞ, but we will
for simplicity consider a constant field. For χ ≪ 1 we
obtain as above

R ¼ T
32

exp

�
−
16

3χ

�
; ð91Þ

where

T ¼ 1þ 31

216
χ −

3871

31104
χ2 þ 492505

4478976
χ3 þ…: ð92Þ

For χ ≫ 1 we have (12). We can again obtain, without
much work, the first ∼70 terms in T. We again find a series
with factorially growing coefficients, so we use the Borel-
Padé method. The results are shown in Fig. 10. We again
find that the Borel-Padé method gives excellent agreement
with the exact numerical result up to large values of χ.
Given the impressive improvement found in the previous

section for nonlinear Breit-Wheeler by making a conformal
transformation, one would of course also like to make a
similar transformation for trident. However, for trident we
find that the ratios of neighboring Borel coefficients,
BTn=BTn−1, does not converge (we have calculated >70
coefficients). Instead, we find at large n a ratio that goes
periodically through 4 different values f…;−0.48;−0.23;
−0.07;þ0.69;−0.48;…g. This indicates the presence of
complex conjugate pair of singularities on the radius of
convergence [91]. Compare thiswith theBreit-Wheeler case,
where the only convergence-limiting singularity is on the
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negative real axis. So, we cannot use the standard ratio test to
determine the radius of convergence. One could still use
Cauchy-Hadamard’s theorem, which gives the radius
from 1=r ¼ lim sup

n→∞
jBTnj1n, but this converges slowly [91].

A better approach is to use Mercer-Robert’s procedure
[92]: The radius of convergence is given by limn→∞ 1=Bn,
where

Bn ¼
�
BTnþ1BTn−1 − BT2

n

BTnBTn−2 − BT2
n−1

�1
2

: ð93Þ

For the coefficients that we have calculated, Bn has some
small oscillations at large n, but we find that the radius of
convergence is given by jtj ∼ 3.8. The Mercer-Robert’s
procedure also gives the positions of the conjugate pair of
convergence-limiting singularities re�iθ, from the n → ∞
limit of

cos θn ¼
1

2

�
BTn−1Bn

BTn
þ BTnþ1

BTnBn

�
: ð94Þ

We find θ ¼ 3π=4, so the singularities closest to the origin
are at ∼3.8e�3iπ=4. We can confirm this by plotting Padé

approximants9 of the Borel transform. The Padé approxim-
ants do indeed have singularities at ∼3.8e�3iπ=4. The Padé
approximants also show singularities on the real axis at
t < −5, i.e., further away from the origin.10 The fact that the
singularities closest to the origin do not lie on the real axis
might suggest using a different type of conformal map, e.g.,
as in [93]. However, we have found that a conformal map on
the form (88), but with the replacements 3=8 → 5 and
32=3 → 20 (this is motivated by the presence of singularities
at t < −5), still gives a significant improvement: For
χ ¼ 103 we have a relative error of f0.05; 6 × 10−5g for
fPB25; PCB25g, and for χ ¼ 104 we have f0.3; 0.003;
0.001g for fPB25; PCB25; ð12Þg. So, even for χ ¼ 104 the
relative error of this conformal map is on the same order of
magnitude as the large-χ approximation (12). Since one
might anyway want to keep αχ

2
3 from becoming large, this

conformal map seems good enough for our purpose.
So, we can obtain a good approximation at large χ by

resumming the small-χ expansion. It is also interesting to
note that the small-χ expansion is obtained by expanding
around the saddle point where the three final-state particles
have the same longitudinal momentum s1 ¼ s2 ¼ s3 ¼ 1=3.
The expansion coefficients around this point contain the
information needed for large χ, even though the spectrum is
sharply peaked at s1 ≲ 1 at large χ. So, we are expanding
around a point atwhich thevalue of the spectrum is negligible
compared to the spectrum’s maximum at large χ.

C. Hypergeometric/Meijer-G resummation

In this section we will use some resummation methods
[94–96] which are particularly suitable for functions with a
branch cut. The first step is still to calculate the truncated
Borel transform (85), but then this series is resummed
using hypergeometric functions qþ1Fq

instead of the Padé-
conformal methods. Assuming that we only have the
perturbative information, then the resummation is taken
as [95]

HBTðtÞ ¼ qþ1Fq

�
a; a1;…; aq
b1;…; bq

;
t
t0

�
; ð95Þ

where a ¼ 1 and the N ¼ 2qþ 1 constants ai, bi and
t0 are obtained by expanding the hypergeometric function
in a series in t and matching with the Borel transform
truncated at tN . In practice, this is conveniently done by
[95] matching the first N ratios of the Borel coefficients,
BTnþ1=BTn onto a Padé approximant in the variable nPq

i¼0 pini

1þPq
i¼1 qin

i ; ð96Þ
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FIG. 10. Same as Fig. 9 but for the two-step part of trident.

9As is well known, Padé approximants can exhibit spurious
poles, so we have plotted several different Padé approximants to
make sure that any singularity is genuine.

10It could be that t ¼ −16=3 is a special point.
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and then comparing with the series-definition of qþ1Fq.
The Laplace transform can then be expressed compactly in
terms of a Meijer-G function [95,97,98],

TðMÞ
re ðχγÞ ¼

Z
∞

0

dt
χγ
e−t=χγHBTðtÞ

¼
Qq

i¼1 ΓðbiÞQq
i¼0 ΓðaiÞ

Gqþ2;1
qþ1;qþ2

�
1; b1;…; bq
1; a;a1;…; aq

;−
t0
χγ

�
:

ð97Þ

For nonlinear Breit-Wheeler, this new resummation
allows us to obtain a high precision at large χγ with much
fewer terms than with the Padé-conformal approach.
Already at N ¼ 5 we find a relative error of less than
5% for χγ ¼ 103. At N ¼ 7 we have encountered some
instabilities that seem to be related to the fact that one ai is
very close to one bi, i.e., we are close to a point where the
hypergeometric and Meijer-G functions are reduced to a
lower order. However, at N ¼ 9 we find a relative error of
less than 3 × 10−3 at χγ ¼ 103, and less than 8 × 10−3

at χγ ¼ 104.
This is already an impressive improvement, but one can

obtain a high precision with even fewer terms by using
other known facts in addition to the perturbative data
[78,96,99]. In our case, we know that the Borel transform
has a singularity at t ¼ −8=3, which can be used to set
t0 ¼ −8=3. We could then let a be a constant to be obtained
by matching in the same way as the other ai and bi.
However, we also know the asymptotic scaling at large χγ
(81), R ∼ 1=χ1=3γ , which, together with the asymptotic limit
of the Meijer-G function, can be used to fix one of the
constants, e.g., a ¼ 1=3 (the other constants will be larger
so that a ¼ 1=3 gives the leading asymptotic scaling).
2qþ 1 terms are now needed to fix the constants in qþ1Fq

and the overall prefactor. Already at q ¼ 1, i.e., with only 3
terms in the perturbation series, we find a relative error of
0.01 at χγ ¼ 103, and 0.011 at χγ ¼ 104. At q ¼ 2 we again
encounter an instability. At q ¼ 3 we find a relative error of
1.9 × 10−3 at χγ ¼ 103, and 2.5 × 10−3 at χγ ¼ 104. And at
q ¼ 4 we find a relative error of 1.5 × 10−4 at χγ ¼ 103,
and 2.0 × 10−4 at χγ ¼ 104.
Thus, the new hypergeometric/Meijer-G resummation

methods allow for a high precision up to very large χγ with
relatively few terms from the perturbation series. However,
this does not mean that we can forget about the Padé-
conformal methods: The hypergeometric/Meijer-G resum-
mation is particularly suitable for functions with a branch
cut, but for trident we saw above that the Borel transform
has a more complicated structure, with the radius of
convergence limited by a complex-conjugate pair of sin-
gularities rather than one singularity on the negative axis.
So, it is not a priori clear that the hypergeometric/Meijer-G

resummation would work for the trident case. We have
nevertheless tried it and found that with N ¼ 3 (using only
the perturbative data) the resummation is good up to
χγ ∼ 20. However, because of the instabilities mentioned
above, we have not been able to extend this by increasing
N. One could try to take the second line in (97) as an ansatz
and fix some of the constants by matching with the large-χ
scaling (12), which might work since for, e.g., a1 − a2 ¼ 0
(or an integer) the large-χ limit involves log terms
(cf. [100]). However, we leave this to future studies. In
the next section we will instead consider another new
resummation method.

D. Confluent hypergeometric resummation

In this section we will use the resummation method
introduced in [101]. It is similar to the usual Borel-Padé
method, but allows us to use the large-χ scaling to improve
the convergence. In this approach the resummed T is
given by

TAS
re ðχÞ ¼

Xn
i¼1

ci
−χi

ϕ

�
−
χ

χi

�
; ð98Þ

where ϕ is some suitably chosen special function and the
2n constants ci and χi are determined by matching the χ-
series expansion of the two sides. This requires the first 2n
coefficients of T. The following function was proposed
in [101],

ϕðzÞ ¼ z−aU

�
a; 1þ a − b;

1

z

�
; ð99Þ

where U is the confluent hypergeometric function. A
simple way [101] to find the constants in (98) is to first
calculate the ½n − 1; n� Padé approximant of

X2n−1
i¼0

Ti

ϕi
χi; ð100Þ

where ϕk ¼ ðaÞkðbÞk=k!, and then χi are given by the poles
of this approximant (these are simple poles in our case) and
ri are the corresponding residues. a ¼ b ¼ 1 gives the
usual Padé-Borel resummation, but a and b can be chosen
such that the large-χ limit of ϕðχÞ behaves as the known
limit of T.
In the Breit-Wheeler case, we can take a ¼ 1=3 and

b ¼ 1, for which ϕ can be expressed in terms of an
incomplete gamma function with asymptotic scaling
ϕðχÞ ∼ 1=χ1=3, just as in (81). This choice leads to a
resummation that seems competitive with the Meijer-G
resummation: At n ¼ 1, i.e., with only the first two terms in
T, the relative error at χ ¼ 103 and 104 is ∼0.02; at n ¼ 4

the relative error is ∼10−3 at χ ¼ 103 and 104. Note that the
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relative error is only slightly larger at χ ∼ 104 compared to
χ ∼ 103 because the large-χ scaling is built into the
resummation function ϕ. An advantage with this resum-
mation is that it seem relatively fast. Another advantage is
that we can also use it for trident.
In the trident case, we take a ¼ b ¼ 2=3, which gives a

large-χ limit ϕðχÞ ∼ ½lnðχÞ þ const:�=χ2=3, which matches
the scaling of the leading term in (12) (but not const.). In
this case we find that we need larger n compared to the
Breit-Wheeler case. n ¼ 1 gives nonsensical results. At
n ¼ 2 we find a relative error of f0.051; 0.066g at
χ ¼ f103; 104g. At n ¼ 10 the relative error is f9.7 × 10−4;
1.5 × 10−3g for χ ¼ f103; 104g. The relative error seems to
decrease quite slowly as one increases n (also in the Breit-
Wheeler case). However, this resummation still requires
much fewer terms than the Borel-Padé-conformal method.
We leave it to future studies to determine whether a
significant improvement can be obtained by choosing a
different ϕ (maybe a superposition of two U) in order to
match both the lnðχÞ=χ2=3 and the 1=χ2=3 part of (12).
So, we have seen that the resummation methods intro-

duced in [101] gives a significant improvement over the
standard Borel-Padé-conformal method, both in the Breit-
Wheeler and the trident case. This still does not mean that
one can forget about the Borel-Padé-conformal method,
because in some cases the large-χ (or equivalent) limit
might be unknown.11

VI. CONCLUSIONS

We have obtained new high-energy approximations in
the regime where the energy parameter b0 is the largest
parameter and where the direct part of the one-step
dominates over the two-step. Our high-energy approxima-
tion interpolates between the old literature result in the
perturbative limit a0 ≪ 1 and previous result for pair
production by the superposition of a Coulomb field and
a constant-crossed field in the a0 ≫ 1 limit. In between, for
arbitrary a0, we find that the high-energy approximation of
trident coincides with pair production by the superposition
of a Coulomb field and a general, inhomogeneous plane
wave.
Our high-energy approximation is the sum of a loga-

rithmic term, ln b0, and a b0-independent term. We find that
the logarithmic term can be obtained with a Weizsäcker-
Williams equivalent photon approximation. Taking a0 large
usually means that the field can be treated as locally
constant. However, taking first the energy parameter b0
to be the largest parameter (our new approximation) and
then taking a0 large does not commute with first taking a0
to be the largest parameter (standard LCFA) and then taking

b0 (or χ) large. So, the fact that our new high-energy
approximation agrees with the standard Weizsäcker-
Williams approximation (to leading logarithmic order)
explains why the latter does not agree with previous
LCF results.
Another interesting difference from the LCF regime is

that, while the leading order in the large-a0 limit of the
large-b0 approximation is local (similar to the LCF regime),
the next-to-leading-order correction is nonlocal, i.e., it is
given by an integral where the two lightfront-time variables
are not forced to be close but can be far apart. In fact, an
important contribution to this correction for compact fields
comes from the region where both lightfront-time variables
are outside the field but on opposite sides. This is a signal
that the formation length is longer in the high-energy limit
compared to the large-a0 limit.
We have also shown that in the case where the initial

particle is much heavier than the pair, the dominant
contribution in the low-energy limit is given by the term
in the amplitude that comes from the instantaneous part of
the lightfront Hamiltonian.
We have used Borel, Padé and conformal methods to

resum perturbation series in a0, 1=a0, and χ. The use of
Padé approximants for analytical continuation of perturba-
tion series beyond their radius of convergence has a long
history in physics. Here we have shown that our new high-
energy approximation has a finite radius of convergence in
a0, but by forming Padé approximants we can go beyond
this radius of convergence and obtain a good agreement
with the large-a0 approximation in an interval of inter-
mediate a0 values. By making a conformal transformation
before Padé resummation we obtain agreement with the
large-a0 approximation up to much larger a0. We have also
used a Padé approximant to analytically continue a power
series in 1=a0 in the low energy (saddle-point) regime.
Finally, we have considered the χ dependence of nonlinear
Breit-Wheeler pair production and the two-step part of
trident in the LCF regime. At small χ the probability can be
expanded in a power series in χ times a “Schwinger-like”
exponential e−const:=χ . This power series diverges, so we use
a Borel transform to obtain a convergent series. Then we
use Padé and conformal methods to analytically continue
the truncated Borel transform as described in [72–74]. This
gives us a resummation of the originally divergent χ series
into an approximation that agrees with the exact result up to
very large χ, with a significant overlap with the leading
large-χ approximation. We have also shown that newer
resummation methods [95,101], which are based on hyper-
geometric/Meijer-G or confluent hypergeometric functions,
can significantly reduce the number of terms that have to be
calculated in order to get a certain precision. It would be
interesting to further study these sorts of resummation
methods for other strong-field processes and for other fields
and parameter regimes.

11However, even if the large-χ limit is unknown, it could still
be useful to make the large-χ scaling of the basis function explicit
and then vary it until the best convergence is reached, as
described in [78].
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