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We consider a version of the Gross-Neveu model in 1þ 1 dimensions with discrete chiral and
continuous flavor symmetry (isospin). In 2þ 1 dimensions, this model is known as the chiral Heisenberg-
Gross-Neveu model. Spontaneous symmetry breaking and the emergence of two massless and one massive
scalar bosons are shown. A duality to the Nambu–Jona-Lasinio model with isospin is exhibited, provided
that the isovector pseudoscalar mean field is constrained to a plane in isospin space. This enables us to find
the phase diagram as a function of temperature, chemical potential, and isospin chemical potential as well
as twisted kinks. A bare mass term acts quite differently when added to this model as compared to other
chiral variants of the Gross-Neveu model.
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I. INTRODUCTION

Four-fermion models in 1þ 1 dimensions can teach us a
lot about strongly interacting relativistic systems. Well-
known examples are the Gross-Neveu (GN) model [1] with
Z2 × Z2 chiral symmetry (ψ → �γ5ψ),

LGN ¼ ψ̄i=∂ψ þ g2

2
ðψ̄ψÞ2; ð1Þ

and the Nambu–Jona-Lasinio (NJL) model [2] with Uð1Þ ×
Uð1Þ chiral symmetry (ψ → expfiðαþ βγ5Þgψ ),

LNJL ¼ ψ̄i=∂ψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð2Þ

If one includes isospin in the latter, one gets the NJL model
with isospin (isoNJL) [3] and non-Abelian SUð2Þ × SUð2Þ
chiral symmetry,

LisoNJL ¼ ψ̄i=∂ψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�: ð3Þ

In all three cases, one usually assumes that the fermions
come in Nc “colors” (ψ̄ψ ¼ PNc

i¼1 ψ̄ iψ i, etc.). To leading
order in the large Nc limit [4], the models can then be
solved explicitly using semiclassical methods. Previous

studies have uncovered a rich variety of fermion-
antifermion and multifermion bound states, time dependent
scattering problems, as well as nontrivial phase diagrams as
a function of temperature and chemical potentials.
This brief survey suggests to add one more variant to this

list, which seems to have been forgotten so far. Starting
from the GN model (1), let us introduce SU(2) isospin and
replace ψ̄ψ in the four-fermion interaction by the corre-
sponding isovector ψ̄ τ⃗ ψ,

LisoGN ¼ ψ̄i=∂ψ þ g2

2
ðψ̄ τ⃗ ψÞ2: ð4Þ

We thus arrive at the GN model with isospin (isoGN)
featuring Z2 × Z2 chiral symmetry and SU(2) flavor. As a
matter of fact, in 2þ 1 dimensions this model is known in
the condensed matter literature as the “chiral Heisenberg-
Gross-Neveu model” [5], presumably because the inter-
action term is reminiscent of the spin-spin interaction in the
Heisenberg model of magnetism. It has played a role in the
context of the quantum Hall effect and graphene recently
[6–8]. An overview of the salient features of all four models
is given in Table I. This shows in a compact way in which
sense the isoGN model is complementary to the other three
models listed. The last two lines also give original
references to the exact phase diagrams and soliton content
of the models which cannot possibly be reviewed here due
to lack of space.
Let us mention that all of these models can also be

amended by a bare fermion mass. When added to the
Lagrangian, a Dirac mass term (δL ¼ −m0ψ̄ψ) breaks
chiral symmetry explicitly and renders the solution of
the models more challenging.
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The isoGN model is clearly less attractive from a
phenomenological point of view. Nevertheless, we pro-
pose to analyze its large Nc limit in 1þ 1 dimensions for
theoretical and pedagogical reasons in this work. Questions
which immediately come to one’s mind are the following:
Does the model possess twisted kinks like the other GN
variants, and how can one find them? What does the phase
diagram look like, notably regarding inhomogeneous
phases? Can one find explicit time dependent scattering
solutions, and what can be said about the integrability of the
model? We shall see that it takes little more than a duality to
infer many physical properties of the isoGN model from
previous results for the isoNJL model. Thus this inves-
tigation also serves to illustrate the power of dualities in a
novel context; see Refs. [19–21] for earlier applications of
dualities to GN type models. Finally, including a bare mass
term has consequences different from all the other models
and is also worth studying.
The plan of this paper is as follows. In Sec. II, we

introduce our main tool, a duality between the isoGN
model and a modified isoNJL model. Section III deals
with the Hartree-Fock (HF) vacuum and gap equation.
Section IV sketches the random phase approximation
(RPA) and the meson spectrum. Section V presents the
full phase diagram as a function of temperature and
chemical potentials. We also point out that any solution
of the standard GNmodel generates a solution of the isoGN
model with a rigid isospin axis. In Sec. VI, twisted kinks,
i.e., solitonic multifermion bound states interpolating
between two different vacua, are constructed using duality.
The bound state of two such kinks is exhibited, and the
composition law for twist is interpreted geometrically. In
Sec. VII, we take a first glance at the massive isoGNmodel,
whereas Sec. VIII finishes with a short summary.

II. DUALITY

Consider the GN model with isospin, Lagrangian (4).
The following symmetries can immediately be read off:
Discrete chiral symmetry ψ → γ5ψ, U(1) fermion number,
UðNcÞ color, SU(2) isospin (in this context, both color and
isospin are flavors). The discrete chiral symmetry is shared
by the GN model (1). The divergence of the axial currents

confirms that isoscalar and isovector axial charges are not
conserved, unlike the corresponding vector charges,

∂μjμ ¼ ∂μψ̄γ
μψ ¼ 0;

∂μj
μ
5 ¼ ∂μψ̄γ

μγ5ψ ¼ −2g2ðψ̄iγ5τ⃗ψÞ · ðψ̄ τ⃗ ψÞ;
∂μj⃗

μ ¼ ∂μψ̄γ
μτ⃗ψ ¼ 0;

∂μj⃗
μ
5 ¼ ∂μψ̄γ

μγ5τ⃗ψ ¼ −2g2ðψ̄iγ5ψÞðψ̄ τ⃗ ψÞ: ð5Þ

Next we turn to the subject of duality. The authors of
Refs. [20,21] have noted a kind of duality inside the isoNJL
model. It amounts to the unitary transformation [12]

Udual ¼ iτ3PL þ iτ1PR; PR;L ¼ 1� γ5
2

: ð6Þ

It acts as follows on the bilinears relevant for the isoNJL
model with baryonic, isospin, and axial isospin chemical
potentials:

ψ̄iγ5τ1ψ ↔ ψ̄iγ5τ3ψ ;

ψ̄iγ5τ2ψ ↔ ψ̄ψ ;

ψ†τ3ψ ↔ −ψ†γ5τ3ψ : ð7Þ

This enables one to map mean field solutions involving
only “neutral” condensates (S, P3) onto solutions involving
only “charged” condensates (P1 � iP2). Here,

S ¼ −g2hψ̄ψi; P⃗ ¼ −g2hψ̄iγ5τ⃗ψi: ð8Þ

We propose a different transformation relating the isoGN
model to a truncated version of the isoNJL model. At first
glance, the isoNJL model and the isoGN model cannot be
dual to each other since they have different numbers of
interaction terms or condensates. Suppose that we only allow
pseudoscalar isovector condensates P⃗ living in a certain
plane in isospin space. Then a duality becomes viable, since
both models have three condensates. This is also potentially
interesting, relating a subset of known HF solutions of the
isoNJL model to novel solutions of the isoGNmodel. To this
end, define the canonical transformation

TABLE I. Survey of four-fermion models with Lagrangians (1)–(4).

GN isoGN NJL isoNJL

Color UðNcÞ UðNcÞ UðNcÞ UðNcÞ
Flavor 1 SU(2) 1 SU(2)
Chiral symmetry Z2 × Z2 Z2 × Z2 Uð1Þ × Uð1Þ SUð2Þ × SUð2Þ
Vacuum manifold �1 S2 U(1) SU(2)
Massless bosons 0 2 scalars 1 pseudoscalar 3 pseudoscalars
Massive bosons 1 scalar 1 scalar 1 scalar 1 scalar
Phase diagram [9] this work [10,11] [12]
Solitons [13] this work [14–16] [17,18]
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ψL → τ1ψL; ψR → ψR ð9Þ

implemented by the unitary operator

T ¼ τ1PL þ PR ¼ T†; T2 ¼ 1: ð10Þ

By a global isospin rotation, τ1 could be rotated into any
other component of τ⃗, but we shall stick to the choice (10) for
notational simplicity. T acts as follows on the relevant Dirac
and isospin matrices

Tγ0 ¼ γ0τ1T;

Tiγ1τ1 ¼ iγ1T;

Tiγ1τ2 ¼ −γ0τ3T;

Tiγ1τ3 ¼ γ0τ2T;

Tτ3 ¼ γ5τ3T: ð11Þ

This implies a number of dualities between bilinears
(remember that γ5 ¼ γ0γ1 in 1þ 1 dimensions),

ψ̄ψ ↔ ψ̄τ1ψ ;

ψ̄iγ5τ1ψ ↔ ψ̄iγ5ψ ;

ψ̄iγ5τ2ψ ↔ −ψ̄τ3ψ ;

ψ̄iγ5τ3ψ ↔ ψ̄τ2ψ ;

ψ†τ3ψ ↔ ψ†γ5τ3ψ : ð12Þ

The double arrow reflects the fact that T2 ¼ 1. These
relations show that the isoNJL model (3) is dual to the
Lagrangian

L̃isoNJL ¼ ψ̄i=∂ψ þ g2

2
½ðψ̄ τ⃗ ψÞ2 þ ðψ̄ iγ5ψÞ2�: ð13Þ

In other words, we are allowed to swap scalar and pseudo-
scalar couplings in the two interaction terms or, equivalently,
isoscalar and isovector couplings. Although distinct at first
glance, LisoNJL of (3) and L̃isoNJL of (13) are just two ways of
describing the same physics. In order to arrive at LisoGN,
Eq. (4), we have to get rid of the pseudoscalar term in (13).
Equation (12) tells us that we then have to start from the
isoNJL Lagrangian, but omitting the term ∼ðψ̄iγ5τ1ψÞ2 (the
one-component is singled out by our choice of τ1 in the
definition of T). The upshot is that the isoGN model (4) is
dual to the following truncated version of the isoNJL model:

L̃isoGN ¼ ψ̄i=∂ψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ2ψÞ2 þ ðψ̄iγ5τ3ψÞ2�:

ð14Þ

This duality will allow us to infer the yet unknown phase
diagram of the isoGN model at finite chemical potential and

isospin chemical potential from the known phase diagram of
the isoNJL model at finite chemical potential and axial
isospin chemical potential, without any additional effort. It
will also be useful for constructing solitonic multifermion
bound states.
A last remark on duality is in order. In the case of the

isoNJL model, the unitary transformation Udual (6) was an
element of the chiral symmetry group SUð2Þ × SUð2Þ.
Without chemical potentials, it cannot have any physical
effect since it does not matter which vacuum one picks in
the case of spontaneous symmetry breaking (SSB). With
chemical potentials the situation is different because iso-
spin and axial isospin chemical potentials are interchanged
[21]. In the present case, T does not belong to the symmetry
group of the isoGN model, but relates two seemingly
distinct field theories. In this respect, the situation is more
like the original example of a duality where four-fermion
models with either Cooper pairing or chiral symmetry
breaking have been related [19]. In that case, the duality
was recognized only after both field theoretic models had
already been solved independently [22]. Here we shall take
advantage of the fact that we have identified the duality
before solving one of the two models involved, namely the
isoGN model.

III. VACUUM

Mean field theory for fermions means HF or time
dependent Hartree-Fock (TDHF) in a relativistic setting.
In the case of the isoGN model, the Lagrangian (4) gives
rise to the TDHF equation

ði=∂ − S⃗ · τ⃗Þψ ¼ 0; S⃗ ¼ −g2hψ̄ τ⃗ ψi; ð15Þ

where the second part is the self-consistency condition. The
corresponding stationary Schrödinger equation is

Hψ ¼ ð−iγ5∂x þ γ0S⃗ · τ⃗Þψ ¼ Eψ : ð16Þ

To find the vacuum, we look for homogeneous solutions
S⃗ ¼ const which break SU(2) isospin and the discrete
chiral symmetry spontaneously. It is trivial to diagonalize
H with constant S⃗ and the substitution ∂x → ik. The
eigenvalues are �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
(two times degenerate each)

withM ¼ jS⃗j. The vacuum manifold is spanned by the real
three-vector S⃗ with a fixed length; i.e., it is a two-sphere S2.
Global isospin rotations map one vacuum onto another one.
If the order parameter minimizing the vacuum energy
density does not vanish, we have SSB of the global
SU(2) symmetry. At the mean field level considered here,
we then expect a pair of scalar (would-be) Goldstone bosons
and a massive scalar meson, even in 1þ 1 dimensions.
We choose the isospin frame such that S⃗ points into the 1

direction. If we then invoke the duality transformation T,
we come back to the free theory with two flavors of massive
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Dirac fermions (M ¼ jS1j). The only remnant of the
interactions is the self-consistency condition

S⃗ ¼ −g2hψ̄ τ⃗ ψi: ð17Þ
Using a momentum cutoffΛ=2, it yields the gap equation in
the form

1 −
2Ncg2

π
ln

Λ
M

¼ 0: ð18Þ

The factor of 2 as compared to the original GNmodel is due
to isospin (doubling of the total number of flavors,
N ¼ 2Nc) and was already encountered in the isoNJL
model [12]. The vacuum energy density per flavor coin-
cides with that of the standard GN model,

Evac

2Nc
¼ −

M2

4π
: ð19Þ

The divergent energy density of the symmetric vacuum
(M ¼ 0) has been subtracted as usual, so that the negative
value indicates that symmetry breaking is favored ener-
getically. The value of M is arbitrary, since the Lagrangian
does not possess any scale, and can be set equal to 1. All the
well-known phenomena related to renormalization (asymp-
totic freedom, dimensional transmutation) are the same as
in the standard GN model.

IV. MESON SPECTRUM

The meson spectrum of fermion-antifermion bound
states can be inferred from small fluctuations around the
HF vacuum. The appropriate machinery is the relativistic
form of the RPA. Since it is fairly standard and we follow
closely similar calculations in previous works on GN type
models [10,23,24], here we give only the principal defi-
nitions and sketch the main steps. The central quantity is
the one-body density matrix, expanded around the vacuum
expectation value,

Qðx; yÞ ¼ ρðx − yÞ þ 1ffiffiffiffiffiffi
Nc

p Q̃ðx; yÞ: ð20Þ

This 4 × 4 matrix (Dirac and isospin indices) is decom-
posed in terms of vacuum eigenspinors, where only the
following pieces survive in the large Nc limit,

Q̃ðk0; kÞ ¼ uaðk0Þv†bðkÞQ12
abðk0; kÞ þ vaðk0Þu†bðkÞQ21

abðk0; kÞ:
ð21Þ

Here, u and v denote positive and negative energy spinors,
respectively, and the labels a and b refer to isospin.
To leading order in 1=Nc, the equation of motion for Q
is solved automatically by choosing vacuum spinors.
Linearizing the equations in Q̃ is nothing but the RPA.
The meson spectrum can be obtained by sandwiching the

bilinear fermion operator Q̃ between vacuum and one-
meson states of momentum P,

hPjQ̃21
abðk0; kÞjvaci ¼ 2πδðP − kþ k0ÞXabðP; kÞ;

hPjQ̃12
abðk0; kÞjvaci ¼ 2πδðP − kþ k0ÞYabðP; kÞ: ð22Þ

After the dust has settled, the RPA equations assume the
form

XabðP; kÞ ¼ −Ng2
v̄k−P;aτcuk;b

EðPÞ − Eðk − P; kÞZ
cðPÞ;

YabðP; kÞ ¼ Ng2
ūk−P;aτcvk;b

EðPÞ þ Eðk − P; kÞZ
cðPÞ;

ZcðPÞ ¼
Z

dk0

2π
½v̄k0bτcuk0−P;aYabðP; k0Þ

þ ūk0bτcvk0−P;aXabðP; k0Þ�; ð23Þ

reflecting the separable form of the kernel. We have used
the notation

Eðk0; kÞ ¼ Ek0 þ Ek; Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2

p
;

EðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
ð24Þ

where M is the meson mass. Equation (23) is a homo-
geneous linear system

ZcðPÞ ¼ McdðPÞZdðPÞ ð25Þ

with the matrix

McdðPÞ ¼ Ng2
Z

dk
2π

�ðv̄k;bτcuk−P;aÞðūk−P;aτdvk;bÞ
EðPÞ þ Eðk − P; kÞ

−
ðūk;bτcvk−P;aÞðv̄k−P;aτduk;bÞ

EðPÞ − Eðk − P; kÞ
�

¼ Ng2
Z

dk
2π

mcdðk; PÞ: ð26Þ

Upon working out the integrand mcd in Eq. (25), we find
that it is diagonal in isospin with (k0 ¼ k − P)

m11ðk; PÞ ¼ m22ðk; PÞ ¼
�
1

Ek
þ 1

Ek0

�
P2 − E2ðk0; kÞ

E2ðPÞ − E2ðk0; kÞ ;

m33ðk; PÞ ¼
�
1

Ek
þ 1

Ek0

�
4M2 þ P2 − E2ðk0; kÞ
E2ðPÞ − E2ðk0; kÞ : ð27Þ

The first two entries reduce Eq. (25) to the vacuum gap
equation for M ¼ 0, and the third one for M ¼ 2M. The
covariant energy-momentum relation for the mesons is
manifest. As expected, there are two massless “would-be”
Goldstone bosons matching the number of flat directions of
the S2 vacuum manifold and one massive scalar meson, the

MICHAEL THIES PHYS. REV. D 102, 096006 (2020)

096006-4



radial excitation. The massive meson has mass 2M.
Incidentally, the same marginally bound state has been
found in the other variants of the GN model, Eqs. (1)–(3).

V. PHASE DIAGRAM AND HF SOLUTIONS
WITH FIXED ISOSPIN DIRECTION

We first show how to deduce the phase diagram of the
isoGNmodel from that of the isoNJLmodel using duality. If
we turn to thermal HF theory, two new aspects come into the
picture: First, the HF equation in canonical form is amended
by fermionic (μ) and isospin (ν) chemical potentials,

ð−iγ5∂x − μ − ντ3 þ γ0S⃗ · τ⃗Þψ ¼ Eψ : ð28Þ

Second, the self-consistency condition now involves ther-
mal rather than ground state expectation values,

S⃗ ¼ −g2hψ̄ τ⃗ ψitherm ¼ −g2
X
α

ψ̄ατ⃗ψα
1

eβEα þ 1
;

β ¼ 1=T: ð29Þ

Applying the duality transformation ψ ¼ Tϕ to (28) yields

½−iγ5∂x − μ − νγ5τ3 þ γ0S1 þ iγ1ðS2τ3 − S3τ2Þ�ϕ ¼ Eϕ

ð30Þ

with

S1 ¼ −g2hϕ̄ϕitherm; S2 ¼ −g2hϕ̄iγ5τ3ϕitherm;
S3 ¼ g2hϕ̄iγ5τ2ϕitherm: ð31Þ

The problem has thus beenmapped onto theHF equation for
the isoNJL model with mean fields

S ¼ S1; P1 ¼ 0; P2 ¼ −S3; P3 ¼ S2; ð32Þ

fermion chemical potential μ, vanishing isospin chemical
potential, and axial isospin chemical potential ν. The
solution to this problem can be taken over from Ref. [12]
simply by switching off the isospin chemical potential. The
resulting picture of the phase boundaries in the (μ, ν, T)
space of the isoGN model is indistinguishable from that of
the isoNJL model and is reproduced in Fig. 1. The order
parameters are different though. In the isoNJL model, the
order parameter could be factorized as

Sðμ; ν; ν5; TÞ ¼ SGNðμ; TÞe2iνx ð33Þ

and had no dependence on ν5. Since the isospin chemical
potential ν of the isoGN model corresponds to ν5 of the

isoNJL model, the order parameter of the isoGN model
reduces to that of the GN model [9],

S1ðμ; ν; TÞ ¼ SGNðμ; TÞ; S2 ¼ S3 ¼ 0: ð34Þ

The only place where the isospin chemical potential shows
up is in the value of the thermodynamic potential, namely

Veffðμ; ν; TÞ
2Nc

����
isoGN

¼ Veffðμ; TÞ
Nc

����
GN

−
ν2

2π
: ð35Þ

The thermodynamic ground state is one example of a HF
solution where the order parameter has a fixed direction in
isospin space while depending on x. As a matter of fact, any
HF or TDHF solution of the GN model generates a
corresponding solution of the isoGN model with frozen
isospin direction. This can be seen as follows. For sim-
plicity, let us look for mean field solutions of the isoGN
model with S3 ≠ 0 only. In that case the TDHF problem
reduces to that of the standard GN model (1) for isospin
up and a γ5-transformed copy thereof for isospin down
(S changes sign),

S⃗ · τ⃗ ¼ SGNτ3: ð36Þ

Here, SGN is a self-consistent mean field of the standard GN
model with N ¼ 2Nc flavors. Indeed, the Schrödinger
equation

Hψ ¼
�

i∂x SGNτ3
SGNτ3 −i∂x

�
ψ ¼ i∂tψ ð37Þ

admits the following solutions for isospin up/down states in
terms of solutions of the GN model:

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0

0.2

0.4

0.6

FIG. 1. Full phase diagram of the massless isoGN model (units
M ¼ 1). (I) Chirally restored phase, (II) homogeneous, massive
phase, (III) soliton crystal. The order parameter does not depend
on ν and coincides with that of the GN model. Adapted
from Ref. [12].
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ψ I ¼

0
BBB@

ψL

0

ψR

0

1
CCCA

GN

; ψ II ¼

0
BBB@

0

−ψL

0

ψR

1
CCCA

GN

: ð38Þ

The matrix elements for single particle levels entering the
self-consistency conditions become

ψ̄ Iτ1;2ψ I ¼ ψ̄ IIτ1;2ψ II ¼ 0;

ψ̄ Iτ3ψ I ¼ ψ̄ IIτ3ψ II ¼ ðψ̄ψÞGN: ð39Þ

The first line is trivial since the expectation value of τ1;2 in
an eigenstate of τ3 vanishes. These identities are sufficient
to prove self-consistency by summing over all occupied
states. Thus, all soliton solutions of the GN model can be
adapted to the isoGN model, including the crystal solution
and multisoliton bound and scattering states. As in the case
of the vacuum, the two isospin states give identical
contributions to the (isovector) condensate. The resulting
factor of 2 from the two copies accounts forN ¼ 2Nc in the
gap equation.
There is no reason to expect that this class of special

solutions with fixed isospin direction exhausts all possibil-
ities. This raises the question about solutions with varying
isospin direction to be addressed in the following section.

VI. TWISTED KINKS

Here the duality becomes particularly useful. The
dual Lagrangian (14) corresponds to the SUð2Þ × SUð2Þ
symmetric isoNJL model minus the interaction term
∼ðψ̄iγ5τ1ψÞ2 for our choice of the isospin frame. Any
HF or TDHF solution of the isoNJL model with identically
vanishing P1 can thus be used to generate a solution of the
isoGN model.
Consider the twisted kink at rest of the isoNJL model

[18]. Vacua in the isoNJL model correspond to constant
SU(2) matrices. The twisted kink interpolates between the
vacua Δ− ¼ M at x → −∞ and Δþ ¼ M exp ð−2iθn⃗ · τ⃗Þ at
x → ∞. Here, θ is called the twist angle and P1 ¼ 0 holds
on condition that the unit vector n⃗ lies in the (2,3) plane,

n⃗ ¼

0
B@

0

− sin β

cos β

1
CA: ð40Þ

In the representation

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ γ0γ1 ¼ −σ3; ð41Þ

the Hamiltonian of the isoNJL model assumes the 4 × 4
matrix form

H ¼
�
i∂x Δ†

Δ −i∂x

�
ð42Þ

with the twisted kink potential Δ given by

Δ ¼ Δ− þ VΔþ
1þ V

¼ S − iP⃗ · τ⃗; V ¼ e2Mx sin θ: ð43Þ

Inserting Δ�, we read off

S ¼ M

�
1þ cosð2θÞV

1þ V

�
;

P⃗ ¼ M

�
sinð2θÞV
1þ V

�
n⃗: ð44Þ

After these preparations taken from [18], we now invoke
duality. The dual twisted kink of the isoGN model will be
characterized by the Hermitian potential Δ ¼ S⃗ · τ⃗ with

S⃗ ¼

0
B@

S1
S2
S3

1
CA ¼

0
B@

S

P3

−P2

1
CA; ð45Þ

where the last entries can be taken over literally from the
isoNJL model, Eq. (44). The twisted kink can again be cast
into a form similar to (43), but now the asymptotic vacua
Δ� ¼ S⃗� · τ⃗ are elements of the su(2) Lie algebra rather
than the SU(2) group,

S⃗ ¼ S⃗− þ VS⃗þ
1þ V

; S⃗− ¼ M

0
B@

1

0

0

1
CA;

S⃗þ ¼ M

0
B@

cosð2θÞ
cos β sinð2θÞ
sin β sinð2θÞ

1
CA: ð46Þ

Up to global isospin rotations, this is the most general
twisted kink of the isoGN model. In isospin space, it
interpolates between the point M on the 1 axis and an
arbitrary point on the vacuum manifold S2 of radius M. By
an isospin rotation, we can transform this object into a kink
interpolating between two different points S⃗� on the
sphere, provided that the angle between (S⃗−; S⃗þ) is the
same. This angle is twice the twist angle θ, an intrinsic
property of the kink, and enters the scalar interpolating
function V as seen in Eq. (43). We remind the reader that
the original twisted kink was constructed by Shei in the
NJL model [14] where its potential connects two points on
the vacuum manifold, a circle of radius M, along a straight
line segment (“chord soliton”). What is the trajectory traced
out in isospin space by the twisted kink of the isoGN
model? The kink (46) can equivalently be represented as
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S⃗ ¼ S⃗− þ V
1þ V

ðS⃗þ − S⃗−Þ; ð47Þ

showing that it also follows a straight line segment, now
connecting two points on the two-sphere. The interpolating
function is a smooth, kinklike function rising from 0 to 1 as
x goes from −∞ to þ∞,

V
1þ V

¼ 1þ tanhðMx sin θÞ
2

: ð48Þ

The name kink is justified by the shape of this function,
whereas twist refers to the asymptotic vacua, i.e., the
vectors S⃗�. The two are related in that the twist angle
(half the angle between S⃗− and S⃗þ) also determines the
steepness of the kink function (48). All other details about
the twisted kink (spinors, fermion number, proof of self-
consistency, evaluation of mass) can be skipped here since
they have been fully discussed in the dual theory. Fermion
density has the same meaning in both models, but isospin
density changes by a factor of γ5 due to the duality
transformation T [see Eq. (12)]. Let us just mention that
the mass of the twisted isoGN kink is the same as that in the
dual model,

Mkink ¼
2NcM sin θ

π
: ð49Þ

As is familiar from studies of other GN model variants,
one would expect that the isoGN model also possesses
bound states of several twisted kinks sitting at arbitrary
separations and whose mass is the sum of the individual
kink masses. This can indeed be confirmed by using the
duality between the isoGN and truncated isoNJL models.
For simplicity, we consider a bound state of two kinks. If
one assumes that the two kinks have their isospin axes both
in the (1,2) plane, Eq. (75) of Ref. [18] shows that the
isospin axis of the bound state remains in this plane
everywhere. This enables us to construct the dual object.
The general structure of the two-kink bound state in the
isoGN model will be

S⃗ ¼ S⃗0 þ V1S⃗1 þ V2S⃗2 þ b12V1V2S⃗12
1þ V1 þ V2 þ b12V1V2

: ð50Þ

Here, the Si (i ¼ 0, 1, 2, 12) are three vectors of length M
and

S⃗0 · S⃗i¼M2 cosð2θiÞ; Vi ¼ e2Mxsinθi ði¼ 1;2Þ: ð51Þ

The physical interpretation of the vectors S⃗i is as follows: In
isolation, soliton I interpolates between the vacua S⃗0 and S⃗1
with twist angle θ1, and soliton II between S⃗0 and S⃗2 with
twist angle θ2. Their bound state connects the vacua S⃗0

and S⃗12. If we choose the arbitrary spatial positions such
that the solitons do not overlap, all four vectors S⃗i can be
interpreted as vacua; see Fig. 2 for the two possible
orderings of the solitons. The most interesting question
is: Given S⃗0, S⃗1, S⃗2, what is S⃗12, i.e., what is the
composition law for twist? We could answer this simply
by transforming the explicit result of [18] via duality, but a
more instructive way is perhaps the following geometrical
consideration. Since the two plots in Fig. 2 are two different
orderings of the same kinks, we must have

S⃗1 · S⃗0 ¼ S⃗12 · S⃗2;

S⃗2 · S⃗0 ¼ S⃗12 · S⃗1: ð52Þ

This merely expresses the fact that the twist angles are an
intrinsic property of the kinks, independently of their
relative positions in space. It turns out that this is already
sufficient to determine the unknown vector S⃗12 up to a
twofold discrete ambiguity. The solution which agrees with
Eq. (75) of Ref. [16] after the duality transformation is

S⃗12 ¼ M1;2S⃗0;

M1;2 ¼ 1 − 2e⃗1;2e⃗T1;2;

e⃗1;2 ¼
S⃗1 − S⃗2
jS⃗1 − S⃗2j

: ð53Þ

Equation (52) is satisfied because all S⃗i have the same
length, as one can easily check. The coefficient b12 in (50)
can also be expressed in terms of the angles of the vectors
S⃗1;2 by the duality transformation, but we do not write
down the complicated expression that does not seem to
have a simple geometrical interpretation.
Finally, we note that time dependent solutions of the

isoNJL model are also known explicitly. They include
breathers and scattering problems of solitons or breathers.
If we try to transform the simplest example (scattering of
two twisted kinks) into the isoGN model via duality, we
find that even if P1 ¼ 0 initially, it does not stay 0 during
the time evolution. This seems to be unavoidable and

FIG. 2. Schematic illustration of kink-kink bound states with
two different spatial configurations, serving to explain the basis
of the geometrical composition of twists, Eqs. (52) and (53).

DUALITY STUDY OF THE CHIRAL … PHYS. REV. D 102, 096006 (2020)

096006-7



prevents us from finding time dependent solutions of the
isoGN model. The fact that static solutions can be written
down in closed form unlike time dependent ones is
reminiscent of the massive GN model. In that case, it
has been shown that integrability is lost when switching on
the bare mass [25]. This may point to the fact that the
isoGN model is not integrable, although we cannot rule out
that time dependent solutions can be found by methods
different from duality.

VII. MASSIVE MODEL

Adding a bare mass term to the Lagrangian (4), we arrive
at the massive isoGN model

LisoGN ¼ ψ̄ði=∂ −m0Þψ þ g2

2
ðψ̄ τ⃗ ψÞ2: ð54Þ

The bare mass term breaks the discrete chiral symmetry,
leaving the SU(2) isospin intact. In contrast to the other GN
type models, the bare mass term yields a contribution to the
mean field different from all terms generated by the
interaction and SSB. As we shall show, this has important
consequences.
Let us consider the vacuum problem and the gap

equation first. The HF Hamiltonian reads

H ¼ −iγ5∂x þ γ0ðm0 þ S⃗ · τ⃗Þ: ð55Þ

We diagonalize H with constant S⃗ in momentum repre-
sentation. The spectrum reveals two species of free,
massive fermions with masses split by 2m0,

M� ¼ jM �m0j; M ¼ jS⃗j; ð56Þ

and the vacuum energy density

E
Nc

¼ −
Z

Λ=2

−Λ=2

dk
2π

ðϵþ þ ϵ−Þ þ
M2

2Ncg2

¼ −
Λ2

4π
þ 1

4π

�
M2þ ln

M2þ
Λ2

þM2
− ln

M2
−

Λ2
−M2þ −M2

−

�

þ M2

2Ncg2
: ð57Þ

Minimizing with respect to M, we find the gap equation

2π

Ncg2
¼ 2 lnΛ2 − lnðM2þM2

−Þ −
m0

M
ln
M2þ
M2

−
: ð58Þ

In the chiral limit (m0 → 0) this reduces to Eq. (18).
Alternatively, condition (58) could have been obtained
from the self-consistency relation for the order parameter.
Upon using the gap equation to eliminate the coupling
constant, the regularized vacuum energy density becomes

E
Nc

¼ −
Λ2

4π
−
M2

2π
þm2

0

2π

þm0

4π
ðMþ lnM2þ −M− lnM2

−Þ −
m2

0

π
lnΛ: ð59Þ

Let us compare these findings with the corresponding
results for the massive isoNJL model [26]. There the
gap equation was

2π

Ncg2
¼ 4

�
m0

M
þ 1

�
ln

Λ
M

¼ 4

�
γ þ ln

Λ
M

�
ð60Þ

with the “confinement parameter”

γ ¼ π

2Ncg2
m0

M
¼ m0

M
ln

Λ
M

: ð61Þ

In the case of the isoNJL model, one has to send Λ → ∞,
m0 → 0 keeping the physical parameter γ constant. The
bare mass m0 cannot appear in any observable. In the
massive isoGN model, it does not seem to be necessary to
renormalize the bare mass. The term ∼m0 lnΛ in the gap
equation (60) gets canceled in the isoGN model when
adding contributions from fermions with masses M �m0.
This suggests that the bare mass m0 is a physical parameter
in the isoGN model. The new logarithmic divergence in the
vacuum energy density (59) does not present any difficulty
since it is independent of the dynamical massM, similar to
the quadratic divergence.
It is also instructive to look at the fate of the Goldstone

bosons using RPA. In the NJL or isoNJL models with
continuous chiral symmetries, the massless “pions” acquire
a mass if one switches on the bare mass [23], obeying the
Gell-Mann, Oakes, Renner relation [27]. This is not
expected here since the isospin symmetry is not broken
explicitly by a bare mass term. We have repeated the RPA
calculation of Sec. IV, using single particle energies and
spinors appropriate to two species of fermions with masses
jM �m0j. We find indeed again two massless scalar
mesons. The marginally bound massive one disappears,
similar to what happens in the massive GN model.
Unfortunately, duality does not allow us to relate the

massive versions of the isoGN and isoNJL models since the
Dirac mass term ∼ψ̄ψ goes over into a term ∼ψ̄τ1ψ .
Therefore we cannot say anything about the phase diagram
or solitons of the massive isoGN model at this stage.

VIII. SUMMARY

The first generation of (large Nc) four-fermion models in
1þ 1 dimensions comprises the GN and NJL models,
featuring either a discrete or a continuous chiral symmetry.
Recently, there has been some interest in generalizing the
NJL model by including isospin in the interaction. The
resulting isoNJL model acquires a non-Abelian chiral
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symmetry and is closer to the NJL model in 3þ 1
dimensions used as effective theory in strong interaction
physics. The corresponding generalization of the GN
model, the isoGN model, has never been studied in
1þ 1 dimensions, to the best of our knowledge, although
it has played a role in condensed matter physics in 2þ 1
dimensions (chiral Heisenberg-Gross-Neveu model). The
purpose of this work was to fill this gap.
To set the stage, we first determined the vacuum and the

gap equation of the isoGNmodel. SSB of the discrete chiral
symmetry and SU(2) isospin is found. As verified using
RPA, it is accompanied by the emergence of two massless
bosons, matching the number of flat directions of the
vacuum manifold (a 2-sphere). Our most valuable tool,
however, is a novel duality, mapping the isoGN model onto
the isoNJL model. This was exploited to determine the
phase diagram of the isoGN model as a function of
temperature and two chemical potentials. Likewise, twisted
kinks could be shown to exist in the isoGN model as well
without any new effort. Static bound states of several kinks
also carry over to the isoGN model. The composition law
for twist can be interpreted geometrically in isospin space.

Since the duality is between the isoGN model and an
amputated version of the isoNJL model where the pseu-
doscalar isovector mean field P⃗ is restricted to a plane, it
has not been possible to find time dependent solutions. This
casts some doubts on the integrability of the isoGN model,
unlike what is believed to hold for the GN, NJL, and
isoNJL models, but we cannot rule out integrability at
this stage.
Finally, we pointed out that adding a bare mass term to

the isoGN model has a very different effect from all other
models discussed. The reason is the fact that there is no
interaction in the scalar-isoscalar channel, so that the bare
mass becomes a physical parameter without need for
renormalization. The massless bosons remain massless if
one switches on the bare fermion mass, in striking contrast
to the usual scenario familiar from NJL type models.
In summary, we hope that the present study is of some

pedagogical value, even if it does not have any phenom-
enological applications yet. It is based on a natural
generalization of the GN model and meant to fill an
obvious gap in the otherwise well-explored family of
GN type models of Table I.
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