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High-statistics data on the eþe− → πþπ− cross section and the pion vector form factor have been
obtained recently by several collaborations. Unfortunately, there are some tensions between different data
sets, especially the most precise ones, which have not been resolved so far. Additional independent
constraints on the data are therefore of interest. We consider a parametrization-free method of analytic
extrapolation proposed recently, which is based on a mixed phase and modulus extremal problem and
combines rigorous upper and lower bounds with numerical simulations to account for the statistical
distributions of the input and output values. Spacelike data on the form factor and measurements of the
modulus in the region (0.65–0.71) GeVare used as input. In previous works, the formalism was applied for
extrapolating the form factor to low energies. In the present work, we use it as a stringent and model-
independent test of consistency with analyticity and unitarity for the high-statistics data around the ρ
resonance. The study reveals some inconsistencies, in particular, below the ρ peak, the BABAR data are
slightly higher than the band of extrapolated values, while above the ρ peak, all the data are situated at the
lower edge of the band. The implications of the results on the two-pion vacuum polarization contribution to
the anomalous magnetic moment of the muon are briefly discussed.
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I. INTRODUCTION

The electromagnetic form factor FV
π ðtÞ of the pion is a

fundamental quantity for strong-interaction physics, inten-
sively studied theoretically and experimentally for more
than sixty years. The recent interest in its precise deter-
mination is mostly driven by the anomalous magnetic
moment of the muon, aμ ¼ ðg − 2Þμ=2. There is, at present,
a disagreement between the experimental value of the
muon anomaly measured at BNL [1] and its evaluation
in the Standard Model (SM). Two new experiments aim at
reducing the experimental uncertainty by a factor of 4: the
E989 experiment at Fermilab [2], which started running in
2018, and the E34 experiment at J-PARC, which plans to
start its first run in 2024 [3]. In parallel, there is a
continuous effort for improving the accuracy of the
theoretical calculation of aμ in the SM (for a recent review
and earlier references, see [4]).

The hadronic vacuum polarization (HVP) contribution to
the muon g − 2 is the leading hadronic contribution, which
cannot be calculated using perturbative QCD and domi-
nates the theoretical uncertainty. Calculations of HVP on
the lattice and by QCD sum rules have been reported in the
literature; see, e.g., [5,6], respectively. On the other hand,
by analyticity and unitarity, the hadronic loops contribute to
the leading order (LO) as a dispersion integral over the
cross section of the eþe− annihilation into hadrons. This
allows a data-driven evaluation of HVP using experimental
data. The most recent determinations are reported in
[4,7,8]. At low energies, below

ffiffiffi
s

p ¼ 1 GeV, the dispersive
integral is dominated by the cross section of the eþe−
annihilation into two pions. Several high-statistics eþe−
experiments [9–17] have been designed and operated
recently in order to measure this cross section with
increased precision. However, as noted in [4,7,8], there
are some tensions between the data of different experi-
ments, particularly the most precise ones, BABAR [12,13]
and KLOE [14–16].
It is useful to keep in mind that to LO the cross section of

the eþe− → πþπ− process is expressed in terms of the
modulus squared of the pion vector form factor, FV

π ðtÞ. This
allows us, in principle, to use additional theoretical and
experimental information available on the form factor in
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order to improve the accuracy, especially in regions where
the data are still poor. The most powerful approach for the
study of the form factor is the dispersion theory, which
exploits analyticity, unitarity, and crossing symmetry. The
form factor has been calculated also on the lattice, but the
results did not reach the same accuracy until now, and we
shall not consider them.
The dispersion theory of the pion form factor tradition-

ally exploits the Fermi-Watson theorem [18,19], which
states that below the first inelastic threshold, the phase of
the form factor on the unitarity cut is equal to the P-wave
phase shift of ππ elastic scattering. By the well-known
Omnès representation, the form factor is reconstructed as
an analytic function in the whole complex t plane from its
phase of the boundary. The most recent dispersive analysis
[20] is based on a parametrization involving an Omnès
function multiplied by factors which account for inelastic
and isospin-breaking effects. The P-wave ππ phase shift
used as input was obtained by solving Roy equations,
which fully exploit analyticity, unitarity, and crossing
symmetry of pion-pion scattering amplitudes, and the free
parameters of the model have been fixed by fitting data on
the modulus of the form factor from eþe− experiments.
As noted in [20], in the combined fit of all data, one can

observe the well-known tension between the BABAR and
KLOE data: the BABAR data lie systematically above the
KLOE data. The fit follows the average of the two in
accordance with their respective covariance matrices. In the
Omnès representation used in [20], an assumption about
the phase in the inelastic region, where it is not known, has
been adopted. Actually, the parametrization contains an
additional factor, which is complex above the inelastic
threshold and can modify the initial phase. Therefore, while
the dependence of the results on the choice of the phase in
the Omnès function in the inelastic region is not formally
excluded, numerically, this dependence is found to be a
minor source of systematic uncertainty on the determina-
tion of the muon g − 2.
As remarked for the first time in [21], in order to avoid

assumptions on the unknown phase in the inelastic region,
one can use instead of the phase some information available
in this region on the modulus. This leads to a mixed phase
and modulus representation, which can be generalized by
including also an arbitrary number of values of the form
factor at points inside the analyticity domain. The price to
be paid for the independence of the results from the
unknown phase above the inelastic threshold is that the
formalism cannot predict definite values, but only the upper
and lower bounds on the form factor. The bounds can be
calculated exactly with the techniques of functional analy-
sis in terms of the information used as input (for technical
detail, see [22,23]).
An important step forward was achieved in Refs. [24–27],

where the rigorous bounds derived from analyticity have
been merged with numerical simulations, which properly

take into account the statistical distribution of the input
and output values. This elaborate formalism has been
applied for the determination of the pion charge radius
[24] and the modulus of the form factor at low energies
[25–27]. In particular, a more accurate value of the HVP
contribution to aμ from energies below 0.63 GeV has been
obtained. The input used in these works consisted of
the most recent measurements of the form factor in the
spacelike region and the data on the modulus measured
in the range of (0.65–0.71) GeV, where the various experi-
ments are in a somewhat better mutual agreement than in
other regions.
In principle, the method can be used to predict the form

factor also at higher energies, above 0.71 GeV, up to the
first inelastic threshold. However, as will be clear below,
the analyticity bounds become gradually weaker at energies
far from the input range, especially when the inelastic
threshold is approached. Therefore, unlike the low-energy
region where the predictions have been more precise than
the experimental data, above the ρ-resonance region, where
precise data by high statistics experiments are available, we
do not expect our determinations to compete with them in
precision. However, the formalism is still useful since it
provides a stringent test of consistency of the form-factor
data with analyticity and unitarity.
The purpose of the present work is to explore the

outcome of this test for energies below and above the ρ
resonance. The paper is organized as follows: in the next
section, we give a brief description of the formalism,
expressing it as a parametrization-free test of consistency
for the values of the form factor at various energies. In
Sec. III, we describe the theoretical and phenomeno-
logical information used as input and the methodology
for extrapolating the form factor in the output region. In
Sec. IV, we present our results, confronting the extrapolated
values with the experimental data in the region (0.72–
0.9) GeV, above the region (0.65–0.71) GeV used as input.
A discussion of the results, in particular their implication on
the HVP contribution to the muon g − 2, is given in Sec. V.
The paper has an Appendix, which contains an explicit
proof that the results do not depend on the unknown phase
of the form factor above the inelastic threshold.

II. PARAMETRIZATION-FREE ANALYTICITY
AND UNITARITY CONSTRAINTS

The pion vector form factor FV
π ðtÞ is an analytic function

in the complex t plane cut along the real range t ≥ tþ,
where tþ ¼ 4m2

π . It satisfies the Schwarz reflection prop-
erty FV

π ðt�Þ ¼ ðFV
π ðtÞÞ� and the normalization FV

π ð0Þ ¼ 1.
Along the cut, the form factor is a complex function.

According to the Fermi-Watson theorem [18,19], below the
first inelastic threshold, the phase of the form factor is equal
to the P-wave phase shift δ11ðtÞ of the ππ elastic scattering.
Since this theorem is valid in the exact isospin limit, we
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must first remove the main isospin-violating effect, known
to arise from the ω − ρ and ϕ − ρ interference.
We shall follow the standard approach [20,28,29] to do

this, by defining a purely I ¼ 1 function FðtÞ as

FðtÞ ¼ FV
π ðtÞ=FωþϕðtÞ; ð1Þ

where the function FωþϕðtÞ, specified in the next section,
includes the I ¼ 0 contribution due to the ω and ϕ
resonances. Then, the Fermi-Watson theorem allows us
to write

argFðtþ iϵÞ ¼ δ11ðtÞ; 4m2
π ≤ t ≤ tin; ð2Þ

where one can assume with a good approximation that the
first inelastic threshold is set up by the ωπ-production
threshold and take

ffiffiffiffiffi
tin

p ¼ mω þmπ ¼ 0.917 GeV. In the
elastic region, the phase shift δ11ðtÞ is known with a high
precision from dispersion theory for ππ scattering [30–32].
Above tin, where the phase of the form factor is not

known, we use the information available on the modulus
from experimental measurements and perturbative QCD.
Specifically, we adopt a conservative condition written as

1

π

Z
∞

tin

jFV
π ðtÞj2

dt
t
≤ I; ð3Þ

where the integral converges and allows an accurate
evaluation of I from the available information.
From the phase and modulus conditions (2) and (3),

using techniques of functional analysis and optimization
theory (for a review, see [23]), one can derive constraints on
the values of the form factor and its derivatives at points
inside the analyticity domain. Omitting the proof given in
[22,23] (see also the Appendix of [26]), we shall write
down these constraints in a compact form, by expressing
the form factor in the isospin limit as

FðtÞ ¼ OðtÞ
ωðtÞ

gðz̃ðtÞÞ
wðz̃ðtÞÞ ; ð4Þ

where

OðtÞ ¼ exp

�
t
π

Z
∞

tþ
dt0

ϕðt0Þ
t0ðt0 − tÞ

�
; ð5Þ

ωðtÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
π

Z
∞

tin

ln jOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − tÞ

�
; ð6Þ

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − z
1þ z

r
; ð7Þ

and the equation,

z̃ðtÞ ¼
ffiffiffiffiffi
tin

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p ð8Þ

conformally maps the t complex plane cut for t ≥ tin onto
the unit disk jzj < 1, such that z̃ð0Þ ¼ 0 and the upper
(lower) edges of the cut become the upper (lower) semi-
circles in the z plane.
We recall that OðtÞ is an Omnès function, where ϕðtÞ is

equal to δ11ðtÞ for t ≤ tin and is an arbitrary function above
tin. The function denoted as ωðtÞ is analytic in the t plane
cut for t > tin and has the modulus equal to jOðtÞj on the
cut, and wðzÞ is an outer function (analytic and without
zeros in the unit disk jzj < 1), with a modulus on the
boundary jzj ¼ 1 of the disk related to the weight in the
integral (3).
Finally, the function gðzÞ appearing in (4) is an analytic

function in the disk jzj < 1 and satisfies the boundary
condition,

1

2π

Z
2π

0

dθjgðζÞj2 ≤ I; ζ ¼ eiθ: ð9Þ

This condition implies rigorous correlations among the
values of the function gðzÞ and its derivatives at points
inside the holomorphy domain, jzj < 1. In particular, if
zn ∈ ð−1; 1Þ, n ¼ 1, 2, 3 are three arbitrary real points; the
following positivity condition holds:

D ≥ 0; ð10Þ

where D is the determinant defined as

D ¼

��������������

I − gð0Þ2 ξ1 ξ2 ξ3

ξ1
z2
1

1−z2
1

z1z2
1−z1z2

z1z3
1−z1z3

ξ2
z1z2

1−z1z2
z2
2

1−z2
2

z2z3
1−z2z3

ξ3
z1z3

1−z1z3
z2z3

1−z2z3
z2
3

1−z2
3

��������������

; ð11Þ

where

gð0Þ ¼ wð0Þωð0Þ=Oð0Þ; ð12Þ

and

ξn ¼ gðznÞ − gð0Þ; 1 ≤ n ≤ 3: ð13Þ
Moreover, the principal minors of the determinant D must
also be nonnegative. We emphasize that the normalization
condition FV

π ð0Þ ¼ 1 is included as input and is imple-
mented in the definition of gð0Þ in (12).
The inequality (10) defines an allowed domain for the

real values gðznÞ, which can be expressed in a straightfor-
ward way in terms of the values of the form factor at the
points tn ¼ t̃ðznÞ, where
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t̃ðzÞ ¼ tin
4z

ð1þ zÞ2 ð14Þ

is the inverse of (8).
In particular, for tn < tþ, when both FðtnÞ andOðtnÞ are

real, we have from (4),

gðznÞ ¼ FðtnÞwðznÞωðtnÞ=OðtnÞ; ð15Þ

while for tþ < tn < tin, when FðtnÞ andOðtnÞ are complex
and have equal phases,

gðznÞ ¼ jFðtnÞjwðznÞωðtnÞ=jOðtnÞj; ð16Þ

where the modulus jOðtÞj of the Omnès function is
obtained from (5) by the principal value (PV) Cauchy
integral,

jOðtÞj ¼ exp

�
t
π
PV

Z
∞

tþ
dt0

ϕðt0Þ
t0ðt0 − tÞ

�
: ð17Þ

Using these relations, the inequality (11) can be written
as an explicit consistency test imposed by analyticity on the
values FðtnÞ at three arbitrary points below tin. As proved in
[22,23], the constraint exploits in an optimal way the input
information. Moreover, although the functionOðtÞ depends
on the phase ϕðtÞ for t > tin, the test is independent of this
phase, as proved in the Appendix.

III. DETERMINATION OF jFV
π j

IN THE ρ REGION

In our analysis, we have treated two of the values of FðtÞ
in (11) as input, using experimental information on the
form factor (or its modulus) at two points on the spacelike
and timelike axes. For each input, the inequality (10)
becomes a quadratic constraint on the form factor at the
third point, from which upper and lower bounds are exactly
derived. The test will consist of the comparison of these
bounds with the experimental data available in the third
region. The regions used as input and output will be
specified below.

A. Inputs

We have extracted the pion form factor from the cross
section of the eþe− → πþπ− process using standard correc-
tion factors (see, for instance, the Appendix B of [25]). We
then converted the input values of FV

π ðtÞ into the isospin-
conserving function FðtÞ using (1), solved the optimization
problem for this function, and finally, reexpressed the results
in terms of jFV

π ðtÞj. The function FωþϕðtÞ, which accounts
for the isospin violation due to ω − ρ and ϕ − ρ mixing, has
been taken of the form [28,29],

FωþϕðtÞ ¼ 1þ ϵt
t − ðmω − iΓω=2Þ2

þ ϵ0t
t − ðmϕ − iΓϕ=2Þ2

;

ð18Þ

where mω ¼ ð782.65� 0.12Þ MeV, mϕ ¼ ð1019.461�
0.016Þ MeV, Γω ¼ ð8.49� 0.08Þ MeV; and Γϕ ¼ ð4.25�
0.013Þ MeV are taken from particle data group (PDG) [33]
and the parameters ϵ ¼ −ð2.2� 0.1Þ × 10−3 and ϵ0 ¼
−ð0.5� 0.1Þ × 10−3 from Ref. [29].
We have taken the phase shift δ11ðtÞ entering the integral

(5) below tin from [30,31] (Bern phase) and [32] (Madrid
phase). They have been calculated with good precision
using dispersion relations for ππ scattering and are mutu-
ally consistent, with slightly larger uncertainties of the
Bern phase near tin. Above tin, we have taken for ϕðtÞ an
arbitrary expression. As we have already mentioned, the
results are independent of this arbitrariness.
We have calculated the integral (3) using the BABAR data

[12] from tin up to
ffiffi
t

p ¼ 3 GeV, smoothly continued with a
constant value for the modulus in the range 3 GeV ≤ffiffi
t

p
≤ 20 GeV, and a decrease ∼1=t at higher energies, as

predicted by perturbative QCD [34,35]. With this input, we
have obtained I ¼ 0.578� 0.022, where the uncertainty is
due to the BABAR experimental errors. In the calculations
we have used as input for I, the central value increased by
the error, which leads to the most conservative bounds due
to a monotonicity property discussed in [25].
The input at interior points was taken from the most

recent experimental measurements of Fπ Collaboration at
JLab [36,37] on the spacelike axis,

FV
π ð−1.60 GeV2Þ ¼ 0.243� 0.012þ0.019

−0.008 ;

FV
π ð−2.45 GeV2Þ ¼ 0.167� 0.010þ0.013

−0.007 ; ð19Þ

and the modulus measured by the eþe− experiments SND
(04), CMD2 (06), BABAR (09), KLOE (09), KLOE (11),
KLOE (13), and BESIII (15) [9–17] in the region (0.65–
0.71) GeV on the timelike axis.
The choice of the input region (0.65–0.71) GeV was

motivated in our previous works [24–26] by the fact that
here the data have a better precision than at the lower
energies where we extrapolated the form factor.1 The
number of input points in this region from each experiment
is given in Table 1 of Ref. [25]. We adopt the same input
region in the present work, since the determinations of
different experiments, especially the most precise ones,
BABAR and KLOE, are more consistent among them in this
region than at higher energies, around the ρ resonance (see,
for instance, the comparisons in Fig. 13 of [4]).

1In Ref. [25], we have studied in detail the issue of sensitivity
to this particular choice and have demonstrated the robustness of
the method.
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We recall that the hadronic decays of τ leptons have been
used in the past as an alternative source of data in the
evaluation of the HVP contribution to aμ. Isospin-breaking
(IB) and electromagnetic corrections must be applied in
order to convert these data to the cross section of eþe−
annihilation (for a recent evaluation and earlier references,
see [38]). However, as remarked in [4], the present under-
standing of these corrections is not yet at a level allowing
the use of τ data in the muon g − 2 determinations. In view
of this consensus in the community, in this work, we will
use only eþe− data.

B. Methodology of jFV
π j determination

We have taken the range (0.72–0.9) GeV as the output
region, where we extrapolate the form factor and confront
the results with the experimental data.
A nontrivial complication is the fact that the experi-

mental values used as input are known up to statistical and
systematic uncertainties. This requires us to properly merge
the formalism of analytic bounds with statistical simula-
tions. The problem was solved in Refs. [24–26] by
generating a large sample of pseudodata, achieved by
randomly sampling each of the input quantities with
specific distributions based on the measured central values
and the quoted errors. For each point from an input
statistical sample, upper and lower bounds on jFV

π ðtÞj at
points t in the output region have been calculated using the
formalism described in the previous section. Note that the
input points had to pass a consistency condition in order to
be included in the sample. Indeed, some of the minors of
the determinant D, mentioned below (13), involve only
input quantities, and if the positivity condition is violated,
the corresponding points had to be rejected. Finally, a set of
allowed values in between the bounds has been uniformly
generated, taking into account the fact that all the values
between the extreme points are equally valid. The number
of generated points was adapted to the width of the allowed
range, being larger for wider ranges.
In this way, for a specified spacelike and timelike input,

we generated a large sample of output values of jFV
π ðtÞj at

each point
ffiffi
t

p
in range (0.72–0.9) GeV of interest. The

output distributions turn out to be close to a Gaussian,
allowing the extraction of the mean value and the standard
deviation (defined as the 68.3% confidence limit interval).
The values obtained with an input from each experiment

at different energies and of the different experiments
(SND, CMD2, BABAR, KLOE09, KLOE11, KLOE13,
and BESIII) have been then combined using an averaging
prescription proposed in [39], where the correlations
between different values are derived from the values
themselves (for details on the application of this method
in our case, see Ref. [25]). We note that although some
experimental collaborations quote correlations between the
modulus measurements at different energies, these cannot
be used in a straightforward way in our method, which

requires the correlations between the extrapolated values at
one energy, obtained with input modulus measurements at
different energies.
Finally, the two spacelike input points have been

considered separately, and then we took the average of
the two predictions for both the central value and the error.
The same conservative procedure has been adopted for the
phases: we considered the results obtained separately with
the Bern and Madrid phases and also the simple average of
the corresponding predictions. The comparison of these
results with the experimental values serves as a test of
unitarity and analyticity of the experimental determinations
in the input and output regions.

IV. RESULTS

We start by illustrating the statistical distributions of the
output values of jFV

π ðtÞj, obtained with a specific input. In
Fig. 1, we show these distributions at several values of t,
obtained with the pseudodata sample generated with the
experimental measurement at 0.699 GeV by BABAR, the
first spacelike input (19) and Bern phase. One can note the
increasing number of points in the samples with increasing
t. The explanation is that the allowed bands between the
upper and lower bounds become wider at larger energies,
and more intermediate points must be generated in order to
obtain the correct statistical distribution. All the distribu-
tions are very close to a Gaussian, allowing the extraction
of a central value and a standard deviation at 68.3% con-
fidence level.
From these distributions, by applying the averaging

procedure mentioned in Sec. III B, we obtained a central
value and a standard deviation for the modulus for all
energies in the output region (0.72–0.9) GeV. For conven-
ience, we present the extrapolated values of jFV

π ðtÞj2 at
68.3% C.L. in this region as a band denoted as an “allowed
band”. This is the main prediction of our method, which we
compare with the experimental values available in the same
region.
In Fig. 2, we show the allowed bands for jFV

π ðtÞj2 in the
range (0.72–0.9) GeV, obtained by using as input all eþe−
experiments (SND, CMD2, BABAR, KLOE 09, KLOE 11,
KLOE 13, and BESIII) in comparison with the eþe−
experimental data in the same region. The bands obtained
with the Bern and Madrid phases are shown separately.
Several remarks can be made from this figure. First,

below the ρ peak, the bands of extrapolated values are
rather narrow, competing with the experimental data in this
region. Only BABAR and KLOE data are more precise than
the prediction. Several BABAR points lie definitely above
the allowed band, while several KLOE points lie below the
band. We can say that these points are in certain tension
with analyticity and the data from the lower-energy region,
(0.65–0.71) GeV. For the other data sets, which have larger
uncertainties, no inconsistencies are seen.
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Above the ρ peak, the allowed bands obtained by
extrapolation become gradually wider, as anticipated,
and cannot compete in precision with the experimental
data. However, some interesting features can be seen also in
this region. All the data lie at the lower edge of the wider
band obtained with the Bern phase [31] and are definitely
below the band obtained with the Madrid phase [32], which
is more narrow since the quoted uncertainties are smaller.

Some experimental points near 0.9 GeV are also below the
average band obtained with the two phases, presented
in Fig. 3.
The above predictions have been obtained by using as

input all the data in the range (0.65–0.71) GeV. It is of
interest to see what happens if we restrict the input to some
data sets. In Fig. 4, we show the allowed band obtained
using as input only BABAR 2009 data [12] and Bern phase.
One can see that now the BABAR points below the ρ peak
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FIG. 2. Allowed bands of jFV
π ðtÞj2 at 68.3% C.L. obtained with

input from all eþe− experiments. The bands obtained with the
Bern and Madrid phases are shown separately.
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FIG. 3. Allowed band obtained with input from all eþe−
experiments and Bern and Madrid phases.

FIG. 1. Statistical distribution of jFV
π ðtÞj at different energies t shown in the legends. To obtain these histograms, we use modulus data

at 0.699 GeV measured by BABAR, the spacelike point ts ¼ −1.6 GeV2, and the Bern phase. The vertical lines (red) correspond to
68.3% C.L. intervals.
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are in more agreement with the allowed band, while the
KLOE data lie definitely below the band, and above the ρ
peak, all the experimental data are well below the allowed
band. As an opposite choice, we show in Fig. 5, the allowed
band obtained using as input all the data except BABAR,
with the Bern phase used as before. The data are now in
more agreement with the allowed band, except the BABAR
data below the ρ peak, which are definitely higher.
Finally, in Figs. 6 and 7, we present the allowed bands

obtained using as input only KLOE 2011 [15] and KLOE
2013 [16] data, respectively, and Bern phase. Now all the
experimental points, below and above the ρ peak, are inside
the allowed range, except the BABAR data below the ρ
peak, which are clearly above it. We note that the disagree-
ment is more pronounced for the KLOE 2011 input and
slightly less stringent for the KLOE 2013 input.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we have investigated the consis-
tency of the recent high-statistics experimental data on the
pion vector form factor with analyticity and unitarity. The
aim was to provide additional constraints on the dispersive
evaluation of the HVP contribution to the SM value of the
muon g − 2. The work was motivated also by the tensions
that exist between the most precise data, BABAR and
KLOE, which have not been resolved so far.
Wehave used amodel-independent formalism,whichuses

the Fermi-Watson theorem (2) in the elastic region and a very
conservative integral condition (3) on the modulus in the
inelastic region. From these boundary conditions, rigorous
constraints on thevalues of the form factor at points inside the
analyticity domain can be derived, expressed in the particular
case of three points as the positivity condition (10) of the
determinant (11) and of its minors.
In our analysis, we have exploited this constraint by

using as input, the experimental data (19) on the form factor
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FIG. 4. Allowed band using as input only BABAR data and the
Bern phase.
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on the spacelike axis and the measurements of the modulus
in the region (0.65–0.71) GeV by the SND, CMD2,
BABAR, KLOE 2009, KLOE 2011, KLOE 2013, and
BESIII experiments. The choice of this region was justified
by the fact that data from various experiments are here in
better mutual agreement than at higher energies. It may be
noted however that this choice is an educated guess and
cannot necessarily be considered very rigorous. In particu-
lar, some tensions between BABAR and KLOE data exist
even in this region.
Using a specific input, we have derived upper and lower

bounds on the modulus in the higher-energy region (0.72–
0.9) GeV, which includes the ρ peak. The bounds derived
from analyticity have been converted into central values
and standard deviations at 68.3% C.L. by using numerical
simulations on pseudodata samples and have been pre-
sented as a band of “allowed values.” The aim was to
compare the bands obtained by analytic extrapolation with
the experimental data available in the same region, where
the tensions between BABAR and KLOE are larger.
We emphasize that in the present formalism, the analytic

extrapolation is performed without a specific parametriza-
tion of the form factor, like the Gounaris-Sakurai formula
or the Omnès-like parametrizations used in the literature.
Moreover, the results are optimal for a definite input and
are rigorously independent of the unknown phase of
the form factor above the inelastic threshold. For com-
pleteness, we gave in the Appendix a formal argument and
a detailed proof of this property, presented here for the
first time.
The results shown in Sec. IV indicate some inconsis-

tencies between the data and the extrapolated band. For
assessing in a quantitative way the comparison, we used the
quantity,

χ2 ¼
Xn
i¼1

ðjFV
π ðEiÞj2extrap − jFV

π ðEiÞj2experimÞ2
ϵ2i

; ð20Þ

where the sum is over the energies Ei, where experimental
data are available and ϵi are the errors, estimated by adding
in quadrature the experimental errors on the modulus
squared and the uncertainties of the extrapolated values.
For illustration, we consider the extrapolated values in

the range (0.72–0.9) GeV obtained with input from all
experiments and the two phases, shown in Fig. 3, compared
to the BABAR and KLOE 2011 data in this range,
respectively. The values χ2=n ¼ 2.25 for BABAR (where
n ¼ 89) and χ2=n ¼ 4.80 for KLOE 2011 (where n ¼ 29),
confirm the discrepancies observed on the plots.
The tension between BABAR and KLOE is manifest and

exhibits new facets. As shown in Fig. 4, using as input only
BABAR data in the region (0.65–0.71) GeV, the KLOE data
below the ρ peak are definitely lower than the extrapolated
band. More impressively, above the ρ peak, all the data,
including BABAR, lie below the allowed band. If, on the

other hand, only KLOE data in the region (0.65–0.71) GeV
are used as input, Figs. 6 and 7 show that all the data above
0.72 GeV are consistent with the allowed band, except for
BABAR data below the ρ peak, which lie definitely above
the band.
A somewhat surprising feature is that all the data above

the ρ peak appear to be situated at the lower edge of the
extrapolated band. This feature is more dramatic when only
BABAR data in the region (0.65–0.71) GeV are used as
input, as seen in Fig. 4, but is obtained also with input from
all experiments, or from all experiments except BABAR, as
seen in Figs. 3 and 5, respectively.
It is difficult at present to find a simple explanation for

this result. An important ingredient in our approach is the
phase shift δ11. We recall that in the Roy analysis performed
in [31], one of the input values, at 0.8 GeV, has been fixed
by invoking form factor data. This may create a conceptual
“circularity” problem, since we now use this phase to
calculate the modulus of the form factor (we have noted
actually this problem in our previous work [40]). However,
in the present analysis, this conceptual problem has little
practical influence. First, we note that only the Bern phase
is affected by this problem: the Madrid phase contains no
input from the form factor. More precisely, the so-called
CFD solution from [32], which we used, is obtained from a
fit of ππ scattering data constrained by dispersion relations
for ππ amplitudes. Remarkably, it is consistent with the
Bern phase and has smaller errors, and the numerical
impact is negligible.
A global correction factor, with large values precisely in

the region of interest, might offer a possible explanation.
We recall in this context the so-called ρ − γ mixing factor,
calculated in [41], whose effect is to slightly push upward
the modulus of the form factor extracted from eþe− data
above the ρ peak. However, for the moment, we refrain
from further speculating on possible explanations of the
fact that the data from the region (0.65–0.71) GeV seem
to require higher values than the experimental measure-
ments of the modulus above the ρ peak, especially
above 0.8 GeV.
Instead, we briefly comment on the implications of

this result on the HVP contribution to the muon g − 2.
As it is known, the two-pion LO contribution to aμ, which
does not contain the vacuum polarization effects but
includes one-photon final-state radiation (FSR), is
expressed as an integral over the modulus squared on
the pion form factor (for the explicit formulas, see, for
instance, Sec. II of [25]).
Using the central value and the width of the extrapolated

band shown in Fig. 3, we obtained for the contribution
from the region (0.8,0.9) GeV the value aμ½0.8; 0.9� ¼
ð75.21� 4.18Þ × 10−10. The variation of the parameters
quoted below (18) brings a very small contribution to
the uncertainty, which is dominated by the extrapolation
error.
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On the other hand, the values obtained for the same
quantity from the direct integration of the data are (in units
of 10−10) 67.5(4)(6) [7] and 66.6(3) [8], while the fit of the
form factor performed in [20] gives 66.6(4). The value
obtained by us from analytic extrapolation is higher by
about 8 units of 10−10 than these values. Moreover, in spite
of the large uncertainty of our result, the difference is
significant. This fact is noteworthy and deserves further
investigations.
We recall that there is at present a certain tension

between the ω mass derived from the two-pion channel
and the values extracted from the three-pion and π0γ
channels, which coincide practically with the PDG average
(see the discussions in [12,20,42]). Using in our formalism
the smaller value mω ¼ 781.68 MeV from the two-pion
channel analysis [20] leads to a small upward shift in
aμ½0.8; 0.9�, by about 0.08 units of 10−10. This is explained
by the fact that the modulus of the isospin-breaking factor
(18) increases when mω is lowered. So, in our formalism,
lowering mω from the PDG value quoted below (18) to
values preferred by the standard two-pion analyses does
not improve the agreement with data in the energy range
[0.8, 0.9] GeV. The presence of additional isospin-breaking
effects is not excluded, and the problem needs of course
more investigation.
One may ask whether further improvements can be

achieved within the present formalism. We recall that
our method is based on the solution of a functional extre-
mal problem and is optimal for a given input. So, the
improvement can come only from an improved input, such
as a more precise phase or additional input from lattice
calculations.
To summarize, in this work, we have carried out the

logical extension of our previous work, which combines the
method of unitarity bounds with detailed Monte Carlo
simulations to yield determinations of the radius and the
values of the form factor below 0.63 GeV, to the region
above 0.72 GeV, essentially around the ρ resonance. Since
the bounds are now weaker we do not have a high precision
determination but rather a detailed consistency test of the
compatibility of the data in this region with unitarity and
analyticity constraints. Our work reveals some puzzles as
discussed in detail in the foregoing. It is a detailed merger
of theoretical methods and experimental data in one of the
few systems in the low-energy strong interaction sector
where high quality data are available in several kinematic
regimes.
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APPENDIX: THE BOUNDS DO NOT DEPEND ON
THE PHASE ϕðtÞ FOR t > tin: A PROOF

The Omnès function OðtÞ defined in (5) is not unique,
as it involves the arbitrary function ϕðtÞ for t > tin.
However, as argued in [21,22], a change of the function
ϕðtÞ for t > tin is equivalent with a multiplication by a
function analytic and without zeros in jzj < 1 (i.e., a so-
called outer function). According to the general theory of
analytic functions of Hardy class [43], the multiplication by
an outer function leads to an equivalent class of analytic
functions. Therefore, the solution of the extremal problems
defined on this class does not change, which means that the
bounds do not depend on the phase ϕðtÞ for t > tin.
It is instructive to give also an explicit proof of this

independence. We first note that the functions wðzÞ and
gðzÞ do not involve the arbitrariness in question: wðzÞ is
given explicitly in (7), and gðzÞ is analytic in jzj < 1 and
subject only to the condition (9). We must consider there-
fore only the functions OðtÞ and ωðtÞ. More precisely, as
seen from (15) and (16), we are interested in the ratio of
their values for t < tin.
It is convenient to write OðtÞ as

OðtÞ ¼ O1ðtÞ ·O2ðtÞ; ðA1Þ

where

O1ðtÞ ¼ exp

�
t
π

Z
tin

tþ
dt0

δ11ðt0Þ
t0ðt0 − tÞ

�
;

O2ðtÞ ¼ exp

�
t
π

Z
∞

tin

dt0
ϕðt0Þ

t0ðt0 − tÞ
�
: ðA2Þ

From (6) and (17), it follows that we can write also

ωðtÞ ¼ ω1ðtÞ · ω2ðtÞ; ðA3Þ

where

ω1ðtÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
π

Z
∞

tin

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − tÞ

×
t0

π

Z
tin

tþ

δ11ðt00Þdt00
t00ðt00 − t0Þ ;

�
;

ω2ðtÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
π

Z
∞

tin

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − tÞ

×
t0

π
PV

Z
∞

tin

ϕðt00Þdt00
t00ðt00 − t0Þ

�
: ðA4Þ

Here, we indicated that the PV has to be taken only in
ω2ðtÞ, where the integration variables t00 and t0 can coincide.
The functions O1ðtÞ and ω1ðtÞ depend only on the

known phase δ11ðtÞ in the elastic region t < tin. We must
investigate therefore only the ratio of O2ðtÞ and ω2ðtÞ,
which separately depend on the arbitrary phase ϕðtÞ for
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t > tin. We recall that we have to evaluate these functions
for t < tin. Moreover, we note that the principal value is
equal actually to the real part of the corresponding integral,
as follows from the formal Plemelj relation,

1

x − z − iϵ
¼ PV

1

x − z
þ iπδðz − xÞ: ðA5Þ

Using the identity,

t0

t00ðt00 − t0Þ ¼
1

t00 − t0
−

1

t00
; ðA6Þ

and permuting the order of integration, we write ω2ðtÞ as

ω2ðtÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
π

�Z
∞

tin

ϕðt00Þdt00 1
π
Re

Z
∞

tin

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − tÞðt00 − t0Þ −

Z
∞

tin

ϕðt00Þdt00
t00

1

π
Re

Z
∞

tin

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − tÞ

��
:

ðA7Þ

It is convenient to use in the first integral the identity,

1

ððt0 − tÞðt00 − t0Þ ¼
�

1

t00 − t0
þ 1

t0 − t

�
1

t00 − t
: ðA8Þ

Then the integrals upon t0 in (A7) can be performed exactly
using the generic dispersion relation,

1

π

Z
∞

tin

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − yÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − y

p ; ðA9Þ

satisfied by the function 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − y

p
, which is analytic of

real type in the y complex plane cut for y > tin and has an
imaginary part equal to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
on the upper edge of

the cut.
In (A7), y is replaced either by t00, when the result

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − t00

p
is purely imaginary and does not contribute to

the real part, or by t, when the result 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
is real and

can be simplified with the factor
ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
appearing in the

numerator. Then it is easy to see that the two terms, with
denominators t00 − t and t00, combine into a single term,
leading to

ω2ðtÞ ¼ exp

�
t
π

Z
∞

tin

dt00
ϕðt00Þ

t00ðt00 − tÞ
�
: ðA10Þ

But this term coincides with O2ðtÞ defined in (A2), so that
we obtain

ωðtÞ
OðtÞ ¼

ω1ðtÞ
O1ðtÞ

; t < tin: ðA11Þ

From this equality, it follows that the relations (15) and
(16) contain only the quantities ω1ðtnÞ and O1ðtnÞ, inde-
pendent of the phase ϕðtÞ for t > tin, which proves that the
bounds derived from (10) and (11) do not depend on
this phase.
This fact was checked numerically with various choices

of this function. In particular, one can take ϕðtÞ ¼ 0 for
t > tin, which implies O2ðtÞ ¼ 1 and ω2ðtÞ ¼ 1. In this
case, the phase in the integral (5) has a discontinuity at
t ¼ tin, which leads to a logarithmic singularity of
ln jO1ðtÞj at this point. This implies an end singularity
of the form, 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
lnðt0 − tinÞ in the integrand of (6) at

t ¼ tin. However, the singularity is integrable and can be
handled numerically with precision.
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