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We show that it is possible to use gravitational wave detectors to observe the occurrence of a first order
phase transition in Pati-Salam extensions of the Standard Model. We show that the peak frequency of the
expected gravitational wave signals ranges within 0.1–10 Hz. We find amusing that the next generation of
gravity waves detectors are able to explore time-honored extensions of the Standard Model occurring at
energy scales inaccessible by present and future particle physics accelerators.
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I. INTRODUCTION

The idea of using gravitational wave as a complementary
approach to explore particle physics started some time ago
[1–3]. However, the bulk of the research concentrated, so far,
on the electroweak phase transition which is typically in the
detection region of the LISA gravitational wave detector as
nicely summarized in [4,5]. Of special interest is the possible
detection of gravity waves originated in grand unified
theories (GUTs). The interest arises also because typically
the new physics energy scale of GUTs is beyond the reach of
the existing and even future 100 TeV colliders.
A prerequisite to start even discussing gravitational wave

detection is that the underlying theory must undergo a
strong first order phase transition at some point during the
evolution of the Universe. Additionally, the higher the
energy scale of the first order phase transition, the higher
the peak frequency of the gravitational wave that needs to
be detected will be. Inevitably, the upper frequency limit of
the existing and planned gravitational wave detectors
(roughly at order of 103 Hz) provides an upper bound
on the detectable energy scale (roughly at 104–105 TeV). In
this sense, among the different types of GUTs, only the two
semisimple GUTs, the Pati-Salam (PS) model [6] and
Trinification model [7], satisfy this criterion. In this work,
we will focus mainly on the gravitational wave signatures
of the minimal Pati-Salam model. Our investigation differs
from the one in [8] in which an alternative model of the

Pati-Salam model was considered. In that work the authors
employed a rather involved matter content that featured,
however, a simpler first order phase transition structure.1

Gravitational wave signatures in the PS3 model (a gener-
alization of the Pati-Salam model involving three copies to
address the flavor hierarchies) can be found in [9].
The Pati-Salam model of matter field unification [6] is a

time-honored example in which one can address the
hypercharge triviality issue by embedding it in an asymp-
totically free theory. From a phenomenological standpoint
it can be commended because it does not induce fast proton
decay, and it can even be extended to provide a stable
proton [10] while automatically providing a rationale for
the existence of right-handed neutrinos (see more details in
a recent nice review [11]) In addition, it can be shown that
primordial monopoles induced by the phase transition of
Pati-Salam symmetry breaking at such low scales (of order
1000 TeV) are significantly suppressed [12–14]. Thus, our
work is not plagued with the monopole problem.2

*wang@cp3.sdu.dk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In the work of [8], the authors try to realize the gauge
coupling unification and symmetry breaking to an intermediate
step (left-right model) first and thus their scalar sectors are overall
more complicated. However, their first order phase transition
occurs only when SUð4Þ is breaking, while in our case both
SUð4Þ and SUð2ÞR break and thus their analysis of the first order
phase transition is simpler and fewer couplings are involved.

2The monopoles are created during the phase transition from
symmetry breakingGPS → GSM in light of the Abelian SMUð1ÞY ,
which does not individually appear (but is embedded instead) in
GPS, SUð4Þ ⊗ SUð2ÞL ⊗ SUð2ÞR. However, it can be shown that
[12–14] the number density to entropy ratio of the monopole is

nM=s ∼ ½ð Tc
Mpl

Þ lnðm
4
pl

T4
c
Þ�3 where Tc is the critical temperature during

the phase transition and mpl is the Planck mass. That results in a
negligible monopole density, given Tc ∼ 106 GeV.
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So far, asymptotic freedom has been the well-traveled
route to resolve the triviality problem. An alternative route
is that in which the UV theory acquires an interacting fixed
point, before gravity sets in, de facto saving itself from the
presence of a cutoff. This unexplored route was opened
when the first safe gauge-Yukawa theory was discovered
in [15].
To achieve a safe theory with a small number of colors

we employ a large number of matter fields techniques
[16,17]. The first phenomenological applications of the
large-Nf limit appeared in [18] where it was first explored
whether the Standard Model (SM) augmented by a large
number of vectorlike fermions can have an ultraviolet fixed
point in all couplings. The full treatment appeared in [19]
and was further generalized in [20]. It was found in [19] and
later on proved in [20] that while the non-Abelian gauge
couplings, Higgs quartic and Yukawa coupling, can exhibit
a safe fixed point, the hypercharge remains troublesome.
In fact, for Abelian theories, the fermion mass anomalous
dimension diverges at the alleged fixed point [21] sug-
gesting that a safe extension of the SM, like the asymp-
totically free counterpart, is best obtained by embedding
the SM in a non-Abelian gauge structure. The first non-
Abelian safe PS and Trinification embeddings were put
forward in [22,23]. However, in the minimal models, only
one generation of SM fermions can be modeled, since all
the Yukawa couplings are determined by the same UV
fixed point value with no resulting hierarchy at low energy.
Yukawa hierarchies among three generations of SM fer-
mions are discussed in [24].
In this work, we will start by investigating gravitational

wave signatures emerging in Pati-Salam extensions of the
SM embedded in an asymptotically safe scenario. We use
these predictions as an initial seed value to study the first
order phase transition and gravitational wave signatures.
Later, we will depart from the safety scenario and will
explore a more general parameter space. Therefore, our
work of studying the phase transition and gravitational
wave generation is very general and applies to both safe and
nonsafe embeddings of the Pati-Salam model.
We discover that the next-generation gravity wave

detectors are able to explore time-honored extensions of
the Standard Model occurring at energy scales inaccessible
by present and future particle physics colliders. More
precisely, we show that the peak frequency of the expected
gravitational wave signals ranges within 0.1–10 Hz.
The paper is organized as follows. In Sec. II we introduce

the Pati-Salam model while in Sec. III we compute the
finite-temperature corrections to the relevant part of the
potential of the theory. The order of the phase transition as
well as gravitational wave generation and detection are
studied in Sec. IV. The predictions for the gravity wave
signals stemming from the model parameters are presented
in Sec. V. We conclude in Sec. VI. In the Appendix we
provide some detailed computations.

II. INTRODUCING THE PATI-SALAM MODEL

We first briefly review the Pati-Salam embedding of the
SM suggested in [22].
Consider the time-honored PS gauge symmetry group

GPS [6]

GPS ¼ SUð4Þ ⊗ SUð2ÞL ⊗ SUð2ÞR; ð1Þ
with gauge couplings g4, gL, and gR, respectively. Here
the gauge group SUð4Þ ⊃ SUð3ÞC ⊗ Uð1ÞB−L, where
SUð3ÞC denotes the SM QCD gauge group. The SM quark
and lepton fields are unified into the GPS irreducible
representations

ψLi ¼
�
u1L u2L u3L νL

d1L d2L d3L eL

�
i

∼ ð4; 2; 1Þi;

ψRi ¼
�
u1R u2R u3R νR

d1R d2R d3R eR

�
i

∼ ð4; 1; 2Þi; ð2Þ

where i ¼ 1; 2; 3 is a flavor index. In order to induce the
breaking of GPS to the SM gauge group, we introduce a
scalar field ϕR which transforms as the fermion multiplet
ψR, that is, ϕR ∼ ð4; 1; 2Þ:

ϕR ¼
�
ϕu1
R ϕu2

R ϕu3
R ϕ0

R

ϕd1
R ϕd2

R ϕd3
R ϕ−

R

�
; ð3Þ

where the neutral component ϕ0
R takes a nonzero vacuum

expectation value, hϕ0
Ri≡ vR, such that GPS →

vR SUð3ÞC ⊗
SUð2ÞL ⊗ Uð1ÞY . We also introduce an additional (com-
plex) scalar field Φ ∼ ð1; 2; 2Þ, with

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
≡ ðΦ1 Φ2 Þ; ð4Þ

which is responsible of the breaking of the electroweak
symmetry. After Pati-Salam symmetry breaking, the
bidoublet scalar field becomes the two Higgs doublet
fields. The spontaneous symmetry breaking of the two
Higgs doublet scalar sector breaks the electroweak sym-
metry of the Standard Model.
The most general Yukawa Lagrangian for the matter

fields ψL=R is

Lψ
Yuk ¼ yTr½ψLΦψR� þ ycTr½ψLΦcψR� þ H:c:; ð5Þ

where y and yc are the Yukawa couplings for the third
generation only. Note that the Yukawa couplings of the first
two generations can be generated through the clockwork
mechanism [24].
In this work, we consider the case of a self-conjugate

bidoublet field Φ≡Φc which known as the minimal Pati-
Salam model put forward first in [14]. The beauty of this
minimal model is the occurrence of a further matter
unification according to which one obtains degenerate
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masses, at tree level, above the Pati-Salam symmetry
breaking scale, namely,

mt ¼ mb ¼ mτ ¼ mντ ; ð6Þ

where mt, mb, mτ, mντ denote the masses of the top,
bottom, tau lepton, and right-handed neutrino. The price to
pay is the need to introduce a chiral fermion singlet
NLð1; 1; 1Þ and extra vectorlike fermions F ∼ ð10; 1; 1Þ
in order to trigger the mass splitting below the Pati-Salam
symmetry breaking scale (see below for more detailed
discussions). In order to separate the neutrino and top
masses in Eq. (6), we implement the inverse seesaw
mechanism3 [25–28] by adding a new chiral fermion singlet
NL ∼ ð1; 1; 1Þ,4 which has the Yukawa interaction (see,
e.g., [14,22] for more details)

LN
Yuk ¼ −yνNLTr½ϕ†

RψR� þ H:c: ð7Þ

In order to split the mass of the top, bottom, and tau lepton
in Eq. (6), we introduce a new vectorlike fermion multiplet
F ∼ ð10; 1; 1Þ with massMF and Yukawa interactions (see,
e.g., [14,22] for more details):

LF
Yuk ¼ yFTrðFLϕ

T
Riτ2ψRÞ þ H:c: ð8Þ

All the field contents and couplings are summarized in
Table I.

III. FINITE TEMPERATURE EFFECTIVE
POTENTIAL

A. Tree-level effective potential of the Pati-Salam model

The general scalar potential of the model defined above
is given by

VðΦ;ϕRÞ ¼ λ1Tr2ðΦ†ΦÞ þ Re½λ2Tr2ðΦ†ΦcÞ�
þ Re½λ3TrðΦ†ΦÞTrðΦ†ΦcÞ�
þ ðλ4 − 2Reλ2ÞjTrðΦ†ΦcÞj2
þ λR1Tr2ðϕ†

RϕRÞ þ λR2Trðϕ†
RϕRϕ

†
RϕRÞ

þ λRΦ1Trðϕ†
RϕRÞTrðΦ†ΦÞ

þ λRΦ3Trðϕ†
RϕRΦ†ΦÞ

þ Re½λRΦ2
TrðϕRϕ

†
RÞTrðΦ†ΦcÞ�: ð9Þ

Since in this work we focus on the study of the phase
transition at the Pati-Salam symmetry breaking scale, the
terms involving Φ can be safely ignored and we focus on
the relevant terms involving ϕR only in Eq. (9) above.
Below, we write down only the relevant potential terms:

V treeðϕRÞ ¼ λR1Tr2ðϕ†
RϕRÞ þ λR2Trðϕ†

RϕRϕ
†
RϕRÞ; ð10Þ

while the canonically normalized kinetic term with the
gauge covariant derivative reads

K ¼ TrðDμϕ
†
RD

μϕRÞ; ð11Þ
with

DμϕR ¼ ∂μϕR þ igRðWμ
R · TRÞϕR − ig4ϕRðAμ · T4Þ; ð12Þ

where g4ðgRÞ represents the SUð4ÞðSUð2ÞRÞ gauge cou-
pling. The inner products of the gauge bosons and cor-
responding generators for SUð4Þ and SUð2ÞR are denoted
by ðA · T4Þ and ðWR · TRÞ with TrðTi

RT
j
RÞ ¼ TrðTi

4T
j
4Þ ¼

δij=2. It is important to note that we do not include any
explicit mass terms in the tree-level potential. The sym-
metry breaking in this work is induced by the Coleman-
Weinberg mechanism. We are interested in the model with
classical scale invariance for two reasons. First, without the
mass parameter, the predictive power of the model is
increased. The Pati-Salam symmetry breaking scale in this
work is an outcome rather than being inserted by hand.
Starting from UV (either with or without fixed point), the
renormalization group (RG) flow runs from UV to IR until
reaching a certain scale where dynamical Pati-Salam
symmetry breaking happens, further triggering the gravi-
tational wave. Second, we would like to further explore the
compatibility between asymptotic safety and Coleman-
Weinberg symmetry breaking in this model.5

If we write out ϕR explicitly as

1ffiffiffi
2

p
�

ϕR1 þ iϕR2 � � � � � � ϕR7 þ iϕR8

ϕR9 þ iϕR10 � � � � � � vþϕR15 þ iϕR16

�
; ð13Þ

TABLE I. Gauge, Yukawa, and scalar quartic couplings of the
PS model.

Gauge Yukawa Scalar

SUð4Þ∶ g4 ψL=R∶ y; yc ϕR∶ λR1; λR2
SUð2ÞL∶ gL NL∶ yν portal: λRΦ1

, λRΦ2
, λRΦ3

SUð2ÞR∶ gR F∶ yF Φ∶ λ1; λ2; λ3; λ4

3The inverse seesaw mechanism has the other advantage to
introduce big hierarchies between left and right neutrino masses
while no ultra high symmetry breaking scale is required. Note
that a traditional seesaw mechanism without an extra gauge
singlet NLð1; 1; 1Þ implies a much larger symmetry breaking
scale 1013 GeV [14,25].

4In this work, we focus on the third generation, since the first
two generations with small couplings give rise to negligible
thermal corrections and hence are ignored. Thus, we consider a
single generation for each of the three types of Weyl neutrinos νL,
νR, NL.

5Preliminary studies investigating the compatibility between
the occurrence of asymptotic freedom and Coleman-Weinberg
symmetry breaking was shown in [29,30] and investigated more
recently in [31].
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where we choose the symmetry breaking direction of ϕR
and, thus, all field components except the ϕR15 direction are
zero. As mentioned above, hϕRi triggers the breaking of

GPS →
vR SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY . Out of sixteen scalar

fields, there are nine Goldstone bosons and seven physical
bosons. Therefore, eight gauge bosons of SUð4Þ (corre-
sponding to QCD gluons) and one gauge field from
SUð4Þ ⊗ SUð2ÞR [which is simply Uð1ÞY, a linear combi-
nation of the Uð1ÞB−L from SUð4Þ and Uð1ÞR from
SUð2ÞR, with Y ¼ 2IR þ B − L] remain massless. The
other nine gauge bosons of SUð4Þ ⊗ SUð2ÞR (six lepto-
quark, two right boson W�

R and one Z0) become massive.
With Eq. (10), we can construct the mass matrix of the

scalar fields and obtain sixteen tree-level mass eigenvalues.
These mass eigenvalues can be divided into nine Goldstone
bosons with a quadratic contributionM2

Gold¼v2ðλR1þλR2Þ6
and seven physical Higgses, one out of which has a mass of
M2

Higgs1 ¼ 3v2ðλR1 þ λR2Þ and six other Higgses with a
mass M2

Higgs2 ¼ v2λR1.

B. Loop level effective potential of the Pati-Salammodel

Contributions from one-loop vacuum bubble diagrams
consist of both zero- and finite-temperature parts (see, e.g.,
[32]). In this section, we first discuss the zero-temperature
contributions to the effective potential from scalar, gauge
fields, and fermions. The general formula is well known
and can be written as

V1loop ¼
X
i

� ni
m4

i

64π2

�
log

�
m2

i

μ2

�
− Ci

�
ð14Þ

where the sum runs over the bosons (þ) and fermions (−)
and ni counts the internal degrees of freedom (d.o.f.) of
each species i. The symbols mi, μ, and Ci correspond,
respectively, to the tree-level mass terms, renormalization
scale, and constant (equal to 5=6 for gauge bosons and 3=2
for scalars and fermions in the minimal subtraction
scheme). We define the background field as ρ. In the
following, we write out the scalars, gauge fields, and
fermions contribution explicitly.
The Higgs fields contributions (7 d.o.f.) to the one-loop

effective potential VHiggs are

1

64π2
ð3ρ2ðλR1 þ λR2ÞÞ2

�
log

�
3ρ2ðλR1 þ λR2Þ

μ2

�
−
3

2

�

þ 6

64π2
ðρ2λR1Þ2

�
log

�
ρ2λR1
μ2

�
−
3

2

�
: ð15Þ

The Goldstone contributions (9 d.o.f.) to the one-loop
effective potential VGold are

9

64π2
ðρ2ðλR1 þ λR2ÞÞ2

�
log

�
ρ2ðλR1 þ λR2Þ

μ2

�
−
3

2

�
: ð16Þ

The leptoquark contributions from SUð4Þ gauge fields
(6 leptoquark × 3 polarization ¼ 18 d:o:f:) to the one-loop
effective potential are

V lepto ¼
18

64π2

�
1

4
g24ρ

2

�
2
�
log

�
g24ρ

2

4μ2

�
−
5

6

�
; ð17Þ

where the tree-level leptoquark mass is given by
M2

lepto ¼ 1
4
g24v

2. The gauge boson W�
R contributions

(2WR × 3 polarization ¼ 6 d:o:f:) to the one-loop effective
potential are

VW�
R
¼ 6

64π2

�
1

4
g2Rρ

2

�
2
�
log

�
g2Rρ

2

4μ2

�
−
5

6

�
; ð18Þ

where the tree-level WR mass is given by M2
W�

R
¼ 1

4
g2Rv

2.

The Z0 boson contribution (1Z0 × 3 polarization ¼
3 d:o:f:) to the one-loop effective potential VZ0 is

3

64π2

�
1

8
ð2g2R þ 3g24Þρ2

�
2
�
log

�ð2g2R þ 3g24Þρ2
8μ2

�
−
5

6

�
;

ð19Þ
where the tree-level Z0 mass is given by M2

Z0 ¼
1
8
ð2g2R þ 3g24Þv2.
The neutrino singlet contribution (4 d.o.f. of Dirac

Fermion) to the one-loop effective potential is

Vν ¼ −
4

64π2

�
1

2
y2νρ2

�
2
�
log

�
y2νρ2

2μ2

�
−
3

2

�
; ð20Þ

where the tree-level neutrino singlet mass is given
by M2

ν ¼ 1
2
y2νv2.

On the other hand, the Yukawa coupling in Eq. (8) also
contributes to the potential as (4 colors × 4 d:o:f: of
Dirac fermion ¼ 16 d:o:f:)

VF ¼ −
16

64π2

�
1

2
y2Fρ

2

�
2
�
log

�
y2Fρ

2

2μ2

�
−
3

2

�
; ð21Þ

with a mass termM2
F ¼ 1

2
y2Fv

2. All in all, the total one-loop
effective potential is

V1loop ¼ VHiggs þ VGold þ V lepto þ VW�
R
þ VZ0 þ Vν þ VF:

ð22Þ

6Note that in the theory with classical scale invariance, the
physical goldstone masses are massless only after the symmetry
is broken by the radiative loop corrections which are different
from the cases without classical scale invariance that the Gold-
stone bosons are massless already at the tree level. What we call
Goldstone bosons masses are actually not their physical masses
but instead the coefficients of the quadratic contributions of the
Goldstone bosons at the tree level (not at the one-loop level),
which are the ones that should be used to consistently obtain the
one-loop effective potential and are not zero.
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C. Finite-temperature effective potential
of the Pati-Salam model

The one-loop finite-temperature effective potential has
the following general form (see, e.g., [33]):

VT ¼
X
i

� ni
T4

2π2

Z
∞

0

dyy2 log½1 ∓ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þm2

i =T
2

p
�; ð23Þ

whereþni ð−niÞ corresponds to bosons (fermions). We can
further write the thermal integral in the form of the
polynomials which can significantly simplify the calcula-
tions. We focus on the integral part of Eq. (23) and define

IB;FðaÞ ¼ �
Z

∞

o
dyy2 log ½1 ∓ e−

ffiffiffiffiffiffiffiffi
y2þa

p
�; ð24Þ

where we have used a≡m2
i =T

2. For high temperature
expansions (mi=T ≪ 1), the thermal integral can be
expanded respectively for bosons and fermions as

IHB ðaÞ ¼ −
π4

45
þ π2

12
a −

π

6
a

3
2 −

a2

32
ðlogðaÞ − cBÞ

IHF ðaÞ ¼ −
7π4

360
þ π2

24
aþ a2

32
ðlogðaÞ − cFÞ; ð25Þ

where cB and cF are, respectively, cB ¼ 3=2 − 2γE þ
2 log ð4πÞ and cF ¼ 3=2 − 2γE þ 2 logðπÞ and γE ≈
0.5772. For low temperature expansions (mi=T ≫ 1),
the thermal integral for both bosons and fermions can
be expanded as7

ILB;FðaÞ ¼ −
ffiffiffi
π

2

r
a

3
4e−

ffiffi
a

p �
1þ 15

8
a−

1
2 þ 105

128
a−1

�
: ð26Þ

To include the information for both the high temperature
and low temperature, we need to have an expression to
connect the above two expressions, Eq. (25) and Eq. (26).
We find

IBðaÞ ¼ e−ð
a
6.3Þ4IHB ðaÞ þ ð1 − e−ð

a
6.3Þ4ÞILB

IFðaÞ ¼ e−ð a
3.25Þ4IHF ðaÞ þ ð1 − e−ð a

3.25Þ4ÞILF: ð27Þ
Thus, we have the finite-temperature effective potential
(without ring contributions so far) as

V tot
T ¼ T4

2π2

�
IB

�
M2

Higgs1

T2

�
þ 6IB

�
M2

Higgs2

T2

�

þ 9IB

�
M2

Gold

T2

�
þ 6IB

�M2
W�

R

T2

�
þ 3IB

�
M2

Z0

T2

�

þ 18IB

�
M2

lepto

T2

�
þ 4IF

�
M2

ν

T2

�
þ 16IF

�
M2

F

T2

��
: ð28Þ

D. Ring contribution to the effective potential
of the Pati-Salam model

The next-leading contributions go beyond the mean-field
approximation by including the finite-temperature correc-
tions (characterized by the two-point function) to the
propagator in the one-loop vacuum bubble diagram; see,
e.g., [32]. The two-point function receives contributions
from both scalars and vector bosons. The idea is to sum
over all relevant diagrams (so-called Daisy or ring dia-
grams) with insertions of one; two; ...; NðN → ∞Þ two-
point functions, respectively, on top of the leading-order
propagator. Pictorially, the insertions can be represented by
small rings attached to the main ring (propagator).
The general formula for the ring contributions can be

written as

Vi
ring ¼ −

T
12π

��
m2

i ðρÞ þ
X
bosonsj

πjið0Þ
�
3=2

−m3
i ðρÞ

�
;

ð29Þ
where πið0Þ denotes the corresponding thermal mass
contributions to the species i from the relevant bosonic
d.o.f. j (in the outside rings of the daisy diagram). To
consider the ring diagram contributions to the Higgs field,
for example, πHiggs should include all the scalar field

(thermal mass) contributions denoted as πHiggs1Higgs ; π
Higgs2
Higgs ;

πGoldHiggs as well as the gauge field contributions. For thermal
mass contributions to the scalar field from the gauge and
scalar fields (i.e., scalar field in the big central ring of the
Daisy diagram), we have the following general formula for
the contributions of different species j in the outside ring of
the daisy diagram, i.e.,

πjscalarð0Þ ¼
1

12

m2
jðvÞ
v2

T2: ð30Þ

Thus, we obtain the thermal mass from the two Higgs fields
and Goldstone fields, respectively, as

πHiggs1scalar ð0Þ ¼
1

4
ðλR1 þ λR2ÞT2; πHiggs2scalar ð0Þ ¼

1

12
λR1T2

πGoldscalarð0Þ ¼
1

12
ðλR1 þ λR2ÞT2: ð31Þ

Similarly, the scalar thermal mass contributions from the
gauge fields are obtained in the following:

πleptoscalarð0Þ ¼
1

48
g24T

2; π
W�

R
scalarð0Þ ¼

1

48
g2RT

2

πZ
0

scalarð0Þ ¼
1

96
ð2g2R þ 3g24ÞT2: ð32Þ

To obtain the total thermal mass contributions to the Higgs
field, we need to include all the above thermal masses, i.e.,
Eqs. (31) and (32), and we have

7Note that there are typos in the expressions of the low energy
expansion in [34].
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X
j

πjscalarð0Þ ¼ πHiggs1scalar ð0Þ þ 6πHiggs2scalar ð0Þ þ 9πGoldscalarð0Þ

þ 18πleptoscalarð0Þ þ 6π
W�

R
scalarð0Þ þ 3πZ

0
scalarð0Þ:

ð33Þ

Note that for each scalar field d.o.f. (either the Higgs or
Goldstone bosons), it receives the same ring diagram con-
tributions

P
j π

j
i . Thus, by using Eq. (29) and Eq. (33), we

obtain the total ring contributions to the scalar fields in the
Pati-Salam model:

Vscalar;tot
ring ¼ VHiggs1

ring þ 6VHiggs2
ring þ 9VGold

ring : ð34Þ

Now we consider the case where the gauge fields are in
the central ring of the Daisy diagram. We have the
following general formulas to calculate the gauge, scalar,
and fermion fields contributions to the gauge thermal
masses for both Abelian and non-Abelian cases (see,
e.g., [35]). For the Abelian case, we have

Uð1Þ∶ πL;Sgauge ¼ g02T2

3

X
S

Y2
S; πL;Fgauge ¼ g02T2

6

X
F

Y2
F;

ð35Þ

where L denotes the longitudinal thermal mass since it can
be shown that the transverse thermal mass is suppressed
and YS, YF corresponds, respectively, to the hypercharge of
relevant scalar and fermion fields. For the non-Abelian
case, we have

SUðNÞ∶ πL;Sgauge ¼ g2T2

3

X
S

t2ðRSÞ;

πL;Fgauge ¼ g2T2

6

X
F

t2ðRFÞ;

πL;Vgauge ¼ N
3
g2T2; ð36Þ

where t2ðRSÞ, t2ðRFÞ corresponds, respectively, to the
Dynkin indices of the scalar and fermion representations,
Tr½Ta

RT
b
R� ¼ t2ðRÞδab. We obtain the total thermal mass

contributions to the leptoquark,W�
R , and Z

0 are respectively

πL;Totlepto ¼ 5

3
g24T

2; πL;Tot
W�

R
¼ 4

3
g2RT

2; πL;TotZ0 ¼ 4

3
g24T

2:

ð37Þ
When computing ring contributions for gauge fields, we
use the original basis instead of the mass eigenstates. Thus,
both m2

i ðρÞ and
P

i π
j
ið0Þ are rewritten as matrices M2ðρÞ

and Πð0Þ, respectively, rather than eigenvalues as in the
above scalar case. Equation (30) can be correspondingly
modified as

Vgauge;tot
ring ¼ −

T
12π

Trð½M2ðρÞ þΠð0Þ�3=2 −M3ðρÞÞ; ð38Þ

where we include all contributions to the gauge rings and
take into account only the massive gauge bosons for the big
rings. The Πð0Þ is a diagonal 10-by-10 matrix with the
entries of ði; iÞ being 5g24T

2=3 and entries of ðj; jÞ being
4g2RT

2=3 for i ¼ ð1;…; 7Þ and j ¼ ð8; 9; 10Þ.
In contrast,M2ðρÞ is a nearly diagonal symmetric 10-by-

10 matrix with the first six diagonal elements being g24ρ
2=4,

the seventh being 3g24ρ
2=8, and the last three diagonal being

g2Rρ
2=4, plus two off-diagonal elements: ½M2ðρÞ�7;10 ¼

½M2ðρÞ�10;7 ¼
ffiffiffiffiffiffiffiffiffiffi
3=32

p
gRg4ρ2.

E. Complete finite-temperature potential

Nowwe are ready to write out the total finite-temperature
effective potential of the Pati-Salam model. It can be
written as

V tree þ V1loop þ V tot
T þ Vscalar;tot

ring þ Vgauge;tot
ring : ð39Þ

IV. FIRST ORDER PHASE TRANSITION
AND GRAVITATIONAL WAVE

In this section, we will discuss the order of the possible
early time Pati-Salam phase transition and the impact on
possible gravitational wave signals.

A. Strong first order phase transition

Here we focus on showing that a strong first order phase
transition can occur at around the Pati-Salam symmetry
breaking scale with sample coupling solutions shown in
Table II. We did not include all the couplings in the table
since the remaining couplings are irrelevant in the analysis
of our effective potential. We further note that the sample
solutions in Table II are the ones leading to an asymptoti-
cally safe extension of the Pati-Salam model. However, we
will show that the occurrence of a first order phase
transition is not limited to this set of specific values of
the couplings.
The finite-temperature effective potential equation (39)

is shown in Fig. 1. Here we have set the renormalization
scale μ at 5000 TeV, which is reasonable as the lower bound

TABLE II. This table summarizes the sample coupling sol-
utions at the Pati-Salam symmetry breaking scale. We did not
include λ1, λ2, λ3, λ4, λRΦ1

, λRΦ2
, λRΦ3

, y, yc since they are
irrelevant in studying the finite-temperature effective potential.
Note that this set of solutions is obtained from a safe UV fixed
point.

αL αR α4 λR1 λR2 yF yν

0.0038 0.0015 0.0109 0.291 −0.291 0.004 0.645
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on the Pati-Salam physics scale is at 2000 TeV or
so, derived from the upper limit BrðKL → μ�e∓Þ < 4.7 ×
10−12 [36]. We have also chosen the temperature T to match
the critical temperature, i.e., T ¼ Tc ¼ 2680 TeV at which
the potential has degenerate minima.
A positive nontrivial (away from the origin) minimum

occurs for ϕR ∼ 8400 TeV and it is denoted as ϕRc and thus
ϕRc=Tc ∼ 3.13 > 1. This shows that the associated phase
transition is a strong first order one.

B. Connection between first order phase transition
and Coleman-Weinberg symmetry breaking

We noticed that a strong first order phase transition
occurs when spontaneous symmetry breaking happens via
the Coleman-Weinberg mechanism. This is in line with the
results and expectations of [33] (see also relevant discus-
sions in, e.g., [37]). Of course, in other models first order
phase transitions can still occur when symmetry breaking
is generated via a hard negative mass square in the
potential [38].
Around the finite-temperature transition, the Coleman-

Weinberg values of the couplings reported in Table II are
such that λR1 ≃ −λR2, canceling each other. From the RG
flow point of view, in Fig. 2, Coleman-Weinberg symmetry
breaking occurs when the RG flows of λR1ðμÞ þ λR2ðμÞ run

from positive to negative flowing from the UV to the IR.
The transition point [the scale λR1ðμÞ þ λR2ðμÞ ¼ 0]
defines the dynamical symmetry breaking scale of the
Pati-Salam model which is below 10000 TeV.
To gain insight it is interesting to show the symmetry

breaking phenomenon via the stream plot provided in
Fig. 3. The green line consisting of two symmetry breaking
lines (λR1 þ λR2 ¼ 0 for λR2 < 0 and λR2=2þ λR1 ¼ 0 for
λR2 > 0) divides the plot into two phases. The right-hand
side of the green line corresponding to the vacuum stable
phase while the left side is related to the symmetry breaking
phase. In our convention the arrows point towards the
infrared. The two dots correspond, respectively, to a saddle
point (the red one) and to an UV fixed point in both
couplings. The bare couplings are meant to be fixed at
some high energy scale on the right-hand side of the plot.
A glance at the plot shows that the only consistent way to
radiatively cross the green line is by initiating the flow in
the bottom right corner of the plot. One might be tempted to
cross it from left to right by starting near the black dot.
However, this scenario would lead to an unstable potential
at high energies and therefore is discarded.
Focusing on the bottom right corner, there is a special

asymptotically safe trajectory emanating from the red dot.
On that trajectory the theory will avoid a Landau pole and
can be considered fundamental (up to gravity) in the deep
ultraviolet. Another point is that the trajectory leads to a
predictive infrared physics. We are also pleased to see that
there is a wider region of UV bare coupling values that lead
to a Coleman-Weinberg phenomenon beyond the asymp-
totically safe limit.

–10000 –5000 5000 10000
(TeV)

–2.85 1014

–2.80 1014

–2.75 1014

Veff[ ,Tc] (TeV)4

FIG. 1. We plot the finite-temperature effective potential by
using the set of the couplings in Table II. The renormalization
scale μ is set at 5000 TeV while the temperature is chosen at
T ¼ Tc ¼ 2680 TeV which is the critical temperature.

8 10 12 14 16
t=Log10[

MZ

]

–0.06
–0.04
–0.02

0.02
0.04
0.06
0.08
R1[t]+ R2[t]

FIG. 2. We plot the RG running of λR1ðtÞ þ λR2ðtÞ from UV to
IR. The transition point [the scale λR1ðtÞ þ λR2ðtÞ ¼ 0] defines
the Coleman-Weinberg symmetry breaking scale of the Pati-
Salam model.

–0.2 0.0 0.2 0.4

–0.4

–0.2

0.0

0.2

R1

R
2

FIG. 3. We show the stream plot of λR1, λR2 where the flow
direction is defined from UV to IR. The red and black plots are
both the fixed point. The two green lines are the symmetry
breaking lines which are defined as λR1 þ λR2 ¼ 0 for λR2 < 0
and λR2=2þ λR1 ¼ 0 for λR2 > 0. The purple line is the particular
RG flow corresponding to the sample solution in Table II.
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C. Bubble nucleation

The time is ripe to discuss bubble nucleation within our
model. We will provide a brief review of the method and
apply it to our case.
The general picture is that as the Universe cools down, a

second minimum, away from the origin, develops below a
critical temperature. This triggers the tunneling from the
false vacuum, at the origin, to the stable vacuum below the
critical temperature. Assuming the transition to be first
order, the tunneling rate per unit volume ΓðTÞ from the
metastable (false) vacuum to the stable one is suppressed by
the three-dimensional Euclidean action S3ðTÞ and we have
[39–41] (for more recent work see, e.g., [42])

ΓðTÞ ¼
�
S3ðTÞ
2πT

�
3=2

T4e−S3ðTÞ=T: ð40Þ

The Euclidean action has the form:

S3ðρ; TÞ ¼ 4π

Z
∞

0

drr2
�
1

2

�
dρ
dr

�
2

þ Vðρ; TÞ − Vð0; TÞ
�
;

ð41Þ

where we use the difference of the potential Fðρ; TÞ≡
Vðρ; TÞ − Vð0; TÞ to adjust the “datum point” of the
potential at zero. The bubble configuration (instanton
solution) is given by solving the following equation of
motion of the action in Eq. (41):

d2ρ
dr2

þ 2

r
dρ
dr

−
∂F
∂ρ ðρ; TÞ ¼ 0; ð42Þ

with the associated boundary conditions:

dρ
dr

ð0; TÞ ¼ 0; lim
r→∞

ρðr; TÞ ¼ 0: ð43Þ

To find the solutions we use the so-called overshooting and
undershooting method. We also used the numerical pack-
age, CosmoTransitions [43], to cross-check8 our results.
For T ¼ 2200 TeV the bubble profile is shown in Fig. 4.
We can insert the bubble profile ρðr; TÞ into the Euclidean
action equation (41) and thus S3 will be dependent on
T only.

The next step is to obtain the nucleation temperature
which is defined as the temperature at which the rate of
bubble nucleation per Hubble volume and time is approx-
imately one. This means

ΓðTÞ ∼H4; ð44Þ

where H is the Hubble constant. By using Eq. (40), we
obtain

T ln
T
mpl

≃ −
S3ðTÞ
4

; ð45Þ

where mpl is the Planck mass. By solving Eq. (45) numeri-
cally, we find the nucleation temperature Tn is around
1260 TeV. The inverse duration of the phase transition β
relative to the Hubble rate H� at the nucleation temperature
Tn is given by:

β

H�
¼

�
T

d
dT

�
S3ðTÞ
T

������
T¼Tn

: ð46Þ

We numerically obtain β=H� ≃ 183.
Next, we will calculate another important parameter α

which is the ratio of the latent heat released by the phase
transition normalized against the radiation density:

α ¼ ϵ

ρrad
¼ 1

π2

30
g�T4

n

ð−ΔV þ TnΔsÞ

ΔV ¼ VðvTn
; TnÞ − Vð0; TnÞ

Δs ¼ ∂V
∂T ðvTn

; TnÞ −
∂V
∂T ð0; TnÞ; ð47Þ

where vTn
is the vacuum expectation value of the finite-

temperature effective potential at the nucleation temper-
ature, and g� (¼150) is the relativistic d.o.f. in the universe.
We find αTn

≡ αðT ¼ TnÞ ¼ 0.217.

0.005 0.010 0.015
r

2000

4000

6000

8000

ρ (r )

FIG. 4. We plot the bubble profile ρðrÞ, where T is chosen at
T ¼ 2200 TeV which is slightly lower than the critical temper-
ature at Tc ¼ 2680 TeV.

8It should be noted that although our scalar potential VðϕRÞ for
Pati-Salam symmetry breaking consists of multifields, the vac-
uum expectation values can be rotated to one single field
component under the rotation of fundamental SUð4Þc×
SUð2ÞR. Thus, the scalar potential can be treated as a one-
dimensional potential which is suitable for CosmoTransitions
package. However, for multiple scalar fields under the different
symmetry group, the symmetry rotation will not help and we
believe the more recent package known as “Anybubble” [44]
should be very helpful.
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D. Gravitational waves

We now have all the instruments to address the gen-
eration and potential observation of gravitational waves
stemming from the Pati-Salam early times phase transition.
For the reader’s benefit, we provide a brief review of the

ingredients needed to discuss the acoustic gravitational
waves signals by following Ref. [45]. The discussion about
collision dynamics of scalar field shells and turbulence can
be found in [45] and their effects can be safely neglected in
light of being subleading.
The power spectrum of the acoustic gravitational wave is

given by9

h2ΩswðfÞ ¼ 8.5 � 10−6
�
100

g�

�1
3

Γ2
AIŪ

4
f

�
H�
β

�
vwSswðfÞ;

ð49Þ

where the adiabatic index ΓAI ¼ ω̄=ϵ̄ ≃ 4=3. ω̄ and ϵ̄
denote, respectively, the volume-averaged enthalpy and
energy density respectively. Ūf is a measure of the root-
mean-square fluid velocity and is given by

Ū2
f ≃

3

4
κfαTn

; ð50Þ

where κf is the efficiency parameter and it is well
approximated by

κf ∼
α

0.73þ 0.083
ffiffiffi
α

p þ α
ð51Þ

when vωðwall speedÞ → 1. The spectral shape SswðfÞ is
given by

SswðfÞ ¼
�

f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�7

2 ð52Þ

with peak frequency fsw approximated by

fsw ¼ 8.9 μHz
1

vω

�
β

H�

��
zp
10

��
Tn

100 GeV

��
g�
100

�1
6 ð53Þ

with zp a simulation-derived factor that is of order 10, and
following [48] we take it to be 6.9.
By substituting αTn

and β=H� from Eq. (46) and Eq. (47)
into the above power spectrum formula for the acoustic
gravitational wave equation (49), we plot the curves of
the energy density against frequency (solid lines and the
sample solution in Table II is in red) in Fig. 5 where the
coupling solutions in Table IV are used. We have also
included the future bounds (dashed lines) coming from
planned gravitational wave detection experiments such as
LIGO Voyager [49,50], LISA [4], TianQing [51], BBO
[52,53], ET [54,55], and CE [49]. They are shown,
respectively, in blue, cyan, orange, purple, green, and
magenta in Fig. 5. Interestingly, we find the predicted
acoustic gravitational wave signal predicted to be within the
detection region of the LIGO Voyager which is planned to
be operational around 2027-2028. Note that a novel method
for presenting and comparing the gravitational wave signals
from different models has been proposed in [47].

V. PATI-SALAM DRIVEN GRAVITY WAVES

We are now in a position to analyze in more detail the
parameter space of bare couplings leading to observable
gravitational waves within the Pati-Salam grand unified
framework.

10–5 0.01 10

10–16

10–12

10–8

10–4

1

Frequency (Hz)

G
W

h
2

LISA

BBO

Voyage

TianQin

ET

CEΩ

FIG. 5. In this diagram, we show the bounds of the relevant
future gravitational wave detections in the plot of dimensionless
energy density in gravitational waves against frequency. The
bounds of LIGO Voyager, LISA, TianQing, BBO, Einstein
Telescope (ET), Cosmic Explorer (CE) are shown, respectively,
in blue, cyan, orange, purple, green, and magenta. The acoustic
gravitational wave signals predicted in our Pati-Salam models are
shown in black, red, and brown. The red one is predicted in the
asymptotically safe scenario while the black and brown ones are
with the Yukawa coupling (yF, yν) values deviated from the safe
scenario without modifying the IR SM physics.

9Note that in [46,47], it was claimed that there could be an
impact of the suppression due to the shorter duration of the sound
waves. Following [46], the suppression is written as

Hτsh ∼
ð8πÞ13Maxðvw; csÞ

Ūf

�
β

H

�
−1
: ð48Þ

For β=H ∼ 180, α ∼ 0.2 and vw ¼ 1, Eq. (48) roughly leads to a
factor of 10 suppression which is relatively small compared to the
cases with ultra supercooling. The reason we do not have a huge
suppression is our β=H as well as α are not too big. It will cause a
huge suppression if either of the two becomes much bigger.
Nevertheless, a factor of 10 suppression will not change our main
conclusions, i.e., our predictions of the GW signals can be tested
by the near future GW experiments.
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For convenience we start with the asymptotically safe
Pati-Salam scenario that has helped us quickly identify the
relevant parameter space for the occurrence of a strong first
order phase transition.

A. Asymptotically safe case

In this section, we discuss an asymptotically safe
embedding of the Pati-Salam framework by adding a large
number of vectorlike fields into the theory. In this limit we
will argue for the existence of an UV fixed point which
solves the triviality problem while yielding a highly
predictive theory at lower energies.
Without further ado we introduce NF pairs of vectorlike

fermions charged under the fundamental representation of
the Pati-Salam gauge group equation (1) with the following
charge assignments:

NF∶ ð4; 1; 2Þ ⊕ ð4; 2; 1Þ: ð54Þ

For simplicity, we assume that these new vectorlike
fermions appear at the Pati-Salam symmetry breaking
scale.
Employing the large-NF beta functions reported in the

Appendix, we can compute the RG flow connecting the UV
fixed point (red dot in Fig. 3) and the SM in the infrared.
For each NF ≫ 1 input, we obtain a set of UV fixed point
solutions. Follow the RG flow starting from the determined
UV fixed point to the electroweak scale, we can check
whether it matches onto the SM.
At the PS symmetry breaking scale, we need to use

matching conditions for both the gauge couplings and
scalar quartic couplings. In particular, after PS symmetry
breaking, the scalar bidoublet should match the conven-
tional two Higgs doublet model (we implement the beta
functions of the two Higgs doublet model provided in [56]).
We have searched the full parameter space in the range of
NF ∈ ð10; 200Þ and find that NF ¼ 13 with the UV fixed
point solutions shown in Table III agree best with the low
energy data (both the Higgs mass and the top Yukawa
coupling at the electroweak scale). We note that yF is
asymptotically free for all viable solutions. We have
therefore provided a UV safe completion of the SM.10

The sample solutions in Table II are already the
asymptotically safe solutions corresponding to NF ¼ 13.
This set is particularly interesting because of the following:

(i) It corresponds to a possible UV safe fixed point
rendering (up to gravity) our Pati-Salam model UV
complete.

(ii) The Pati-Salam symmetry is dynamically broken
through the Coleman-Weinberg mechanism below
10000 TeV (see Fig. 2) without adding any mass
terms.11

(iii) Below 2680 TeV, a strong first order phase transition
occurs and at the nucleation temperature Tn ¼
1260 TeV gravitational wave signals can be gen-
erated. These are within the reach of the planned
LIGO Voyager experiment detection region see
Fig. 5 and the signal-to-noise-ratio for the safe
scenario is 30) as well as the detection regions envi-
sioned for the ET, CE, and Big Bang Observer
(BBO).

We show the results as the red solid curve in both Fig. 5
and Fig. 6.

B. Beyond the safe scenario

Here, we will go beyond the safe scenario by exploring a
more general parameter space able to generate testable
gravitational wave signals.
We observe that the gauge couplings g4, gR, gL are

fixed by the Standard Model once the Pati-Salam sym-
metry breaking scale is chosen. In addition, when varying
the quartic couplings we must ensure the presence of the
Standard Model Higgs with its 125 GeV mass at the
electroweak scale. We therefore vary only the Yukawa
couplings yF, yν and the two quartic couplings λR1, gL to
satisfy this constraint.
Scanning the Yukawa coupling parameter space, we

discover that when increasing either yF or yν (see black row
of Table IV), the dimensionless energy density of the
gravitational wave signal increases accordingly and the
peak frequency will shift slightly to the left. This is clear
when comparing the black curve with the red (safe) curve
in Fig. 5.
When scanning the quartic couplings parameter space,

we find that the gravitational waves signal also depends on
λR1 þ λR2. Varying λR1, λR2 with fixed λR1 þ λR2, the
dimensionless energy density and the peak of the frequency
of the gravitational wave signals are roughly fixed. When
increasing λR1 þ λR2 (see the Brown and Grey rows of
Table V) the dimensionless energy density of the gravita-
tional wave signal decreases accordingly and the peak

TABLE III. This table summarizes the UV fixed point solution
for NF ¼ 13 involving the bubble diagram contributions in the
Yukawa and quartic RG beta functions. yF is asymptotically free
and thus is zero at the fixed point.

λ1 λ2 λ3 λ4 λRΦ1
λRΦ2

λR1 λR2 y; yc yF yν

0.13 0.01 0.03 0.05 0.10 0.01 0.34 −0.29 0.53 0 0.67

10We note that even if the fixed point is not entirely established,
this analysis is still valid because the associated trajectories are
valid for any energy scale sufficiently close to the would-be UV
fixed point due to the nature of the precise results of the large-Nf
expansion away from the fixed point.

11This result does not depend on the existence of the fixed
point but it is a welcome prediction.
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frequency shifts significantly to the left with respect to the
safe scenario. This can be seen from Fig. 6.
Thus, different from the safe scenario where the peak

frequency is roughly around 10 Hz, going beyond the safe
scenario allows for a peak of frequency ranging between
0.1 and 10 Hz.

VI. CONCLUSIONS

We investigated the gravitational wave signatures stem-
ming from the Pati-Salam model by presenting a few
benchmark points in the parameter space supporting a
strong first order phase transition.
We started the analysis by employing a safe version of

the Pati-Salam extension of the Standard Model and then
quickly generalized to more generic situations. We find that
a Coleman-Weinberg spontaneous breaking of the sym-
metry triggers a first order phase transition that can be
observed via the next generation of gravitational wave
detectors such as LIGO Voyager, the ET, and the CE.
Beyond the safe scenario we notice that the Yukawa

couplings yν, yF affect mostly the gravitational wave
energy density while the combination of quartic couplings
λR1 þ λR2 shifts its peak frequency.
Concluding, we discover that the peak frequency of the

gravitational wave signals stemming from the Pati-Salam
model ranges within 0.1–10 Hz. Our results lead to the
exciting news that the next generation of gravity wave
detectors will be able to explore important extensions of the
Standard Model appearing not at the electroweak scale but
at much higher energy scales not accessible through present
and future particle physics accelerators.
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APPENDIX: LARGE-NF BETA FUNCTIONS

The beauty of the large-NF beta function is noticing that
a subset of the Feynman diagrams (denoted as bubble
chain) can be summed up into a closed form at 1=NF order.
Thus, all the higher order information up to 1=NF order is
encoded in the summation functions denoted as F1ðAÞ,
H1ðAÞ, H0ðAÞ below. It also serves to note that these
summation functions possess the pole structures:

F1ðAÞ ∼ log ð1 − 2A=15Þ; H1ðAÞ ∼ log ð1 − A=3Þ;
ðA1Þ

which guarantees the UV fixed point for the gauge beta
functions and opens the possibility for the fixed point
solutions for all the couplings.
To the leading 1=NF order, the higher order (ho)

contributions to the general RG functions of the gauge
couplings were computed in [20], while for the simple
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FIG. 6. In this diagram, we show the bounds of the relevant
future gravitational wave detections in the plot of dimensionless
energy density in gravitational waves against frequency. The
bounds of LIGOVoyager, LISA, TianQing, BBO, ET, and CE are
shown, respectively, in blue, cyan, orange, purple, green, and
magenta. The acoustic gravitational wave signals predicted in our
Pati-Salam models are shown in red, black, grey, and brown. The
red one is predicted in the asymptotically safe scenario while the
black, grey, and brown ones are with the Yukawa and Quartic
coupling (λR1, λR2) values deviated from the safe scenario without
touching the IR SM physics.

TABLE IV. This table summarizes the sample coupling sol-
utions at the Pati-Salam symmetry breaking scale. Safe, Black,
and Brown represent, respectively, the gravitational wave energy
density curves with the Red, Black, and Brown colors in Fig. 5.

αL αR α4 λR1 λR2 yF yν

Safe 0.0038 0.0015 0.0109 0.291 −0.291 0.004 0.645
Black 0.0038 0.0015 0.0109 0.291 −0.291 0.5119 0.645
Brown 0.0038 0.0015 0.0109 0.291 −0.291 0.001 0.001

TABLE V. This table summarizes the sample coupling solu-
tions at the Pati-Salam symmetry breaking scale. The Safe, Black,
Brown, and Grey represent, respectively, the gravitational wave
energy density curves with Red, Black, Brown, and Grey colors
in Fig. 6.

αL αR α4 λR1 λR2 yF yν

Safe 0.0038 0.0015 0.0109 0.291 −0.291 0.004 0.645
Black 0.0038 0.0015 0.0109 0.291 −0.291 0.5119 0.645
Brown 0.0038 0.0015 0.0109 0.291 −0.001 0.5119 0.645
Grey 0.0038 0.0015 0.0109 0.291 −0.093 0.5119 0.645
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gauge groups they were computed in [17,57] and for the
Abelian in [16]. Here we summarize the results. The ho
contributions to dαi=d log μ (in the semi-simple case) are

βhoi ¼ 2Aiαi
3

�
dðRiÞH1i

ðAiÞ
NFi

Q
kdðRk

ψÞ
þ
P

jdðGjÞF1j
ðAjÞ

NFi

Q
kdðRk

ψÞ
�
;

αi ≡ g2i
ð4πÞ2 ði ¼ L; R;CÞ; ðA2Þ

with the functions H1i and the t’Hooft couplings Ai

Ai ¼ 4αiTRNFi

Q
kdðRk

ψÞ
dðRi

ψ Þ

H1i
¼ −11

4

CG

TR
þ
Z

Ai=3

0

I1ðxÞI2ðxÞdx;

F1j
¼

Z
Aj=3

0

I1ðxÞdx; ðA3Þ

where I1ðxÞ and I2ðxÞ are

I1ðxÞ ¼
ð1þ xÞð2x − 1Þ2ð2x − 3Þ2 sin ðπxÞ3

ðx − 2Þπ3
× ðΓðx − 1Þ2Γð−2xÞÞ

I2ðxÞ ¼
CR

TR
þ ð20 − 43xþ 32x2 − 14x3 þ 4x4Þ

4ð2x − 1Þð2x − 3Þð1 − x2Þ
CG

TR
: ðA4Þ

The Dynkin indices are TR ¼ 1=2ðNciÞ for the fundamental
(adjoint) representation while dðRk

ψÞ denotes the dimension
of the fermion representation.
The RG functions of the (semisimple) gauge couplings

are

βtotα2L ¼ dα2L
d log μ

¼ β1loopα2L þ βhoα2L ¼ −6α22L

þ 2A2Lα2L
3

�
1þH12L

ðA2LÞ
4NF

þ 15

8

F14
ðA4Þ
NF

�

βtotα2R ¼ dα2R
d log μ

¼ β1loopα2R þ βhoα2R ¼ −
14

3
α22R

þ 2A2Rα2R
3

�
1þH12R

ðA2RÞ
4NF

þ 15

8

F14
ðA4Þ
NF

�

βtotα4 ¼
dα4

d log μ
¼ β1loopα4 þ βhoα4 ¼ −18α24

þ 2A4α4
3

�
1þH14

ðA4Þ
4NF

þ
X
i¼L=R

3

16

�
F12i

ðA2iÞ
NF

��
:

ðA5Þ

The Yukawa beta function reads

βy ¼ c1y3 þ y
X
α

cαg2αIyðAαÞ; with

IyðAαÞ ¼ Hϕ

�
0;
2

3
Aα

��
1þ Aα

C2ðRα
ϕÞ

6ðC2ðRα
χÞ þ C2ðRα

ξÞÞ
�

HϕðxÞ ¼ H0ðxÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ ðA6Þ

containing information about the resumed fermion bubbles
and c1, cα are the standard one-loop coefficients for the
Yukawa beta function while C2ðRα

ϕÞ, C2ðRα
χÞ, C2ðRα

ξÞ are
the Casimir operators of the corresponding scalar and
fermion fields. Thus, when c1, cα are known, the full
Yukawa beta function follows. Similarly, for the quartic
coupling we write

βλ ¼ c1λ2 þ λ
X
α

cαg2αIλg2ðAαÞ þ
X
α

c0αg4αIg4ðAαÞ

þ
X
α<β

cαβg2αg2βI
tot
g2
1
g2
2

ðAα; AβÞ; ðA7Þ

and with c1, cα, c0α, cαβ the known one-loop coefficients for
the quartic beta function and the resumed fermion bubbles
appear via

Iλg2ðAαÞ ¼ Hϕ

�
0;
2

3
Aα

�

Ig4ðAαÞ ¼ Hλ

�
1;
2

3
Aα

�
þ Aα

dHλð1; 23AαÞ
dAα

ðA8Þ

Itotg2
1
g2
2

ðAα; AβÞ ¼
1

3
½Ig2

1
g2
2
ðAα; 0Þ þ Ig2

1
g2
2
ð0; AβÞ

þ Ig2
1
g2
2
ðAα; AβÞ�

Ig2
1
g2
2
ðAα; AβÞ ¼

1

Aα − Aβ

�
AαHλ

�
1;
2

3
Aα

�

− AβHλ

�
1;
2

3
Aβ

��
;

Hλð1; xÞ ¼
�
1 −

x
4

�
H0ðxÞ

¼ ð1 − x
4
Þð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ : ðA9Þ

We therefore have the quartic beta function including the
bubble diagram contributions when c1, cα, c0α, cαβ
are known.
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