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We perform a comprehensive search for Standard Model extensions inspired by asymptotic safety. Our
models feature a singlet matrix scalar field, three generations of vectorlike leptons, and direct links to the
Higgs and flavor sectors via new Yukawa and portal couplings. A novel feature is that the enlarged scalar
sector may spontaneously break lepton flavor universality. We provide a complete two-loop renormaliza-
tion group analysis of the running gauge, Yukawa, and quartic couplings to find ultraviolet fixed points and
the critical surface of parameters, i.e., the set of boundary conditions at the TeV scale for which models
remain well-behaved and predictive up to the Planck scale without encountering Landau poles or
instabilities. This includes templates for asymptotically safe Standard Model extensions that match the
measured values of gauge couplings and the Higgs, top, and bottom masses. We further detail the
phenomenology of our models covering production, decay, fermion mixing, anomalous magnetic
moments, effects from scalar mixing and chiral enhancement, and constraints on model parameters from
data. Signatures at proton-proton and lepton colliders, such as lepton flavor violation and displaced
vertices, and the prospect for electric dipole moments or charged lepton-flavor-violating type processes are

also indicated.
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I. INTRODUCTION AND BASIC SETUP

A. Motivation and background

Ultraviolet (UV) fixed points play a central role for
fundamental quantum field theories. They ensure that
running couplings remain finite and well-defined even at
highest energies such that cross sections or scattering
amplitudes stay well-behaved. Important examples are
given by asymptotic freedom of non-Abelian gauge
interactions and the strong nuclear force, where the
fixed point is noninteracting [1,2]. UV fixed points may
also be interacting, a scenario known as asymptotic
safety, and conjectured a while ago in both particle
physics [3] and quantum gravity [4]. It implies that
quantum scale invariance is achieved with some of the
running couplings taking finite, instead of vanishing,
values in the UV.

The field has taken up some speed recently due to the
discovery that asymptotic safety is realized rigorously in
models of particle physics [5-10]. Gauge fields are key for
this to happen at weak coupling [6] alongside Yukawa and
scalar interactions subject to certain constraints [7,8]. A
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typical asymptotically safe theory contains gauge fields
with charged fermions and mesonlike scalars, with gauge
groups being either unitary [5], orthogonal or symplectic
[9], or of the product type [10] such as in the Standard
Model (SM) [11]. Results also cover aspects of the
quantum vacuum [12], higher order self-interactions
[13], Abelian factors [14], proofs with supersymmetry
[15], conformal windows of parameters [16], and radiative
symmetry breaking [17]. In a related vein, the proposal that
gauge-fermion theories with many flavors may also realize
UV fixed points [18,19] has received renewed interest as of
late [5,20-26]. For further studies of ultraviolet stable fixed
points in particle physics, see [27-38].

Asymptotically safe models of particle physics share
many features of the SM such as non-Abelian gauge
interactions, a flavorful fermion sector with Yukawa
interactions, and a scalar sector. It is therefore natural to
ask whether the SM can be extended into an asymptotically
safe version of itself, and if so, what type of phenomeno-
logical signatures this would entail. First proposals [11,14]
have featured Ny vectorlike fermions y in general repre-
sentations of the SM gauge groups and hypercharge, and a
Np x N mesonlike complex scalar singlet S. The new
matter fields couple to the SM through the gauge inter-
actions and a Higgs portal, while the beyond-the-Standard-
Model (BSM) Yukawa term

Ly = —yTr[p Sy + Hel, (1)
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TABLE I. Shown are the gauge representations R3, R, and the
hypercharges Y of the new vectorlike leptons y with respect to
the SM gauge group SU(3). x SU(2), x U(1)y for the six basic
models A-F. Also indicated are the mixed Yukawa terms
involving SM leptons, BSM leptons, and either the complex
gauge singlet BSM scalar S or the SM Higgs H or its charged
conjugate H = ic> H*; Yukawa couplings with SM scalars (BSM
scalars) are denoted by x(x’), respectively. The last column Qf =
T3 4 Y denotes the electric charge of the y states.

Model (R3,R,,Y) Yukawa interactions in L Or
A (1,1,-1) kLHyg +KESTy, -1
B (1,3,-1) kLHy g -2,-1,0
C (1,2 ) kEH "y, + ' LSyg -1,0
D (L2-) KEfTy, 241
E (1, 1 ,0) kL Hypg 0
F (1,3,0) kL Hyp -1,0,+1

inspired from exact models [5,10,16], helps generate
interacting UV fixed points for moderate or large Np
[11,14,34]. Phenomenological signatures at colliders
include long-lived particles, R-hadrons, and Drell-Yan
production, with a scale of new physics potentially as
low as a few TeV and “just around the corner” [11].

In this paper, we put forward a new set of models which,
in addition to (1), are characterized by direct Yukawa
interactions between SM and BSM matter fields [39.,40].
We are particularly interested in the relevance of flavor
portals for the high-energy behavior of SM extensions, in
the new phenomena that arise from them, and in their
interplay with the Higgs portal. We focus on those settings
where the new fermions y are vectorlike and colorless.
Moreover, to connect to SM flavor, we use N = 3, that is,
three generations of SM and BSM matter. These choices
restrict the mixed Yukawa interactions to the leptons and
leave us with a small number of viable SU(2) gauge
representations and hypercharges for the new fermions y
(see Table I), whose features and phenomenology are
studied in depth.

B. Setup for models with flavor portals

In the remainder of the Introduction, we detail the basic
setup and rationale for our choice of models and flavor
symmetries. The renormalizable Lagrangians of the six
basic models are given by

L = Loy + Lpsms

Lesy = TrpiPy + Tr[(9,8)"(0"S)] + L + Ly, (2)
where Lgy denotes the SM Lagrangian and traces are over
flavor indices. Throughout, we often suppress the flavor
index of leptons and y’s, as well as of the scalar matrix S.
The term L contains the BSM scalar self-interactions and
the Higgs portal coupling, and

‘CY = ‘Cy + Lmix (3)
contains the Yukawa interactions amongst the new matter
fields (1) and those between BSM and SM matter £, ;.. The
latter are specified in Table I for the six basic models to
which we refer to as models A—F. The SM fermionic content
is denoted as L, E for the lepton SU(2), doublet and singlet,
respectively, while H denotes the SM Higgs doublet.

We can immediately state some of the new phenomeno-
logical features due to the flavor portal, with specifics
depending on mass hierarchies and the flavor structure of
Yukawa couplings mixing SM and BSM fields:

(i) The BSM sector decays to SM particles.

(i) The BSM sector can be tree-level produced at
colliders in pairs or singly.

An opportunity to address flavor data shifted a few
standard deviations away from SM predictions. For
example, the anomalous magnetic moments of the
muon and the electron can be explained simulta-
neously with the mixed Yukawas in models A and C,
without the necessity to manifestly break lepton
flavor universality [40].

Flavor off-diagonal scalars S;;, i # j couple to
different generations of fermions. Leptons and
new fermions mix after electroweak symmetry
breaking and lead to charged lepton flavor violation
(LFV)-like signals from off-diagonal scalar decays
Si;j — fiiff (¢ =e, u, 7).

Below, we give a general discussion of all models regarding
SM tests with leptons, including prospects for magnetic and
electric dipole moments.

Another important part of our study is to ensure that
models remain finite and well-defined up to the Planck
scale or beyond, for which we perform a complete two-loop
renormalization group (RG) study of all models. To keep
the technical complexity at bay, we make a few pragmatic
and symmetry-based assumptions for the flavor structure of
the new Yukawa interactions.

To that end, we consider the kinetic part of the
Lagrangian (2). Its large flavor symmetry Gp can be
decomposed as

(iii)

(iv)

Gr=UB),®UB);®UG3), U35  (4)
with
UB3); =UB)y,®UB), ® U(3)p,
U(3)§ = (3)L ® U(3)E»
Uu@3), =U(@3),, ®U®3),,.
U(3)5 =U(3)s, ® U(3)s, (5)

corresponding to the quarks, leptons, BSM fermions, and
BSM scalars, respectively. The Yukawas, in general, do not
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respect the global symmetry (4). For instance, the SM part
U(3)] ® U(3)7 is broken down to baryon number, lepton
number, and hypercharge by the SM Yukawas of quarks
and leptons. Assuming that some subgroup of G is left
intact then dictates the flavor structure of the Yukawas. For
example, without any assumptions on flavor the BSM
Yukawa interactions would read

YijkeWLiS jiW re (6)

with 3% independent Yukawa couplings Vijke- However,
identifying U(3)5 with U(3),, ® U(3),,. the symmetry-
preserving Yukawa interaction is given by (1) with a
universal coupling y instead [5,11].

Similarly, the mixed fermion couplings with the singlet
scalars (k') in Table I also carry four flavor indices in
general. To simplify the flavor structure along the lines of
(6) versus (1) we identify U(3); with U(3),, (model A) or
U(3), with U(3),,, (model C). As a result, the interactions
are driven by a single Yukawa coupling instead of a tensor
and read

K'Tr[ESTy; + H.c.](model A),
K'Tr[LSyy + H.c.](model C). (7)

Finally, all models in Table I contain the mixed Higgs-
Yukawa matrix (K).l In models A, B, E, and F we identify
U(3), with U(3),, and in models C and D we identify
U(3)p with U(3),, , which results in a diagonal and
universal Yukawa coupling

k;j = k&;; (models A-F). (8)
Incidentally, the flavor symmetry for models A and C
entails that x is proportional to the SM lepton Yukawa
coupling in Y,LHE + H.c. implying that the latter is
flavor-diagonal Y, ~ 1. However, the SM lepton Yukawa
couplings are irrelevant and will be neglected, unless stated
otherwise. Alternatively, we could have fixed the flavor
symmetry by identifying U(3); ~ U(3),,, (models B, E,
and F), or U(3), ~ U(3),, (model D), to find hierarchical
Yukawas

YL

k~Y, (modelsB,D,E,F) 9)
instead of (8). Again, we do not pursue this path any further
as the lepton Yukawas are neglected in the RG study, and
adopt (8) for all models. In all scenarios, BSM fermion
mass terms ;M pyr + H.c. break the respective remain-
ing symmetries unless U(3), ~U(3),,, which gives
universal and diagonal M in all models.

'Notice that we keep the SM Higgs unflavored.

The symmetry language provides guidance for minimal
benchmarks with reduced numbers of parameters (entries in
Yukawa tensors). This makes the study manageable and
structures the RG equations. If the origin of flavor would, in
fact, be symmetries, there is a fundamental reduction in
complexity, and new physics patterns observed can provide
feedback on flavor [41]. In the following we use the Yukawa
interactions (3) together with (7) and (8). Unless stated
otherwise, we also assume that all BSM couplings are real-
valued.

C. Outline

The remaining parts of the paper are organized as
follows. In Sec. IT we recall the tools for asymptotic safety
of weakly coupled gauge theories with matter covering
interacting fixed points, scaling exponents, vacuum stabil-
ity, the critical surface of parameters, and the matching to
the Standard Model. In Sec. III, a detailed “top-down”
search of fixed points, RG flows, and matching conditions
is provided for all models to the leading nontrivial orders in
perturbation theory.

In Sec. IV, the impact of the scalar sector and the interplay
between the Higgs and flavor portals are investigated. RG
trajectories from the TeV to the Planck scale are studied in a
“bottom-up” search at the complete two-loop accuracy for
the top, bottom, and new Yukawas, and all gauge and quartic
couplings. The BSM critical surface of parameters, i.e., the
parameter regions of BSM couplings at the TeV scale which
lead to well-defined (stable vacua, no Landau poles) models
up to the Planck scale or beyond, is identified.

In Sec. V, we concentrate on the phenomenology of our
models covering production, decay, fermion mixing, and
constraints on model parameters from data. Effects from
scalar mixing and chiral enhancement, the prospects for
anomalous magnetic moments, electric dipole moments
(EDMs) or LFV-type processes, and signatures at pp and
lepton colliders such as lepton flavor violation and dis-
placed vertices, are also worked out. We summarize in
Sec. VI. Some auxiliary information and formulas are
relegated into Appendixes (Appendixes A-E).

II. TOOLS FOR ASYMPTOTIC SAFETY

In this section, we recall the principles and basic tools for
asymptotic safety and adopt them to the models at hand.
Asymptotic safety requires that the couplings of a theory
approach renormalization group fixed points in the high-
energy limit. In the language of the renormalization group,
fixed points correspond to zeros of f-functions

day,
ﬂa(a)la:a* = dln,u i -

(10)

for all couplings a,, with @} denoting the fixed point
coordinates. Fixed points can be fully interacting with all
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couplings nonzero or partially interacting whereby some
couplings become free in the UV.

Thus, the first step is to compute the f-functions and
determine whether fixed points exist. This will be achieved
using [42-48]. Then, one must study if the fixed points can
be reached from the IR and, finally, if the trajectories can be
matched to the SM.

A. Renormalization group
We are interested in free or interacting ultraviolet (UV)
fixed points in extensions of the SM. The three gauge
couplings corresponding to the U(1),, SU(2),, and
SU(3). gauge sectors are introduced as

gi _ % _ %
s T T

ay =

respectively. In our setup, the BSM fermions do not
introduce new SU(3) gauge charges meaning that the
strong coupling continues to have an asymptotically free
UV fixed point. One may therefore neglect a5 for the fixed
point search: we actually do so in the lowest order analysis
in Sec. III, but treat a3 at the same order as the electroweak
couplings in the SM-RG and in the higher order analysis in
Sec. IV. On the other hand, the BSM fermions carry
hypercharge and/or weak charges; see Table I. Hence,
the weak (hypercharge) coupling is infrared free in some (in
all) models and requires an interacting UV fixed point to
help cure potential Landau poles and the triviality problem.

At weak coupling, interacting UV fixed points arise in
exactly two manners [6,7]. An infrared free gauge theory
can either directly develop an UV fixed point with the help
of Yukawa interactions or may become asymptotically free
owing to a gauge-Yukawa (GY) fixed point involving other
gauge couplings [7,15]. Either way, Yukawa interactions
are key for a well-behaved UV limit. The Yukawa cou-
plings which may take this role in our models are those
given in (3) and Table I. We write them as

y2 K2 K/2

ay = @

(12)

Let us now turn to the renormalization group equations for
weakly coupled semisimple gauge theory with ns gauge
couplings «a; and ny Yukawa couplings @, amongst
matter fields [7]. Our models have three gauge couplings
(i=1, 2, 3) and up to three BSM Yukawa couplings
(n =y,k,«'), plus SM Yukawas and quartics.

Two remarks on notation: unless indicated otherwise we
use the letters i, j as indices for gauge couplings, the letters
n, m as indices for Yukawa couplings, and the letters a, b, ¢
as indices for any of the gauge, Yukawa, or scalar
couplings. Following [5,16], we also introduce the notation
klm to denote a perturbative approximation of beta
functions which retains k loop orders in the gauge beta

function, 1 loops in the Yukawa, and m loops in the scalar
beta functions.

With these conventions in mind, the gauge beta functions
are given by

dai
pi=
dinpu
= —alz <Bl - Z Cijaj + Z Din“n) + O(QS)
Jj=gauge n=Yukawa

(13)

at the leading nontrivial order in perturbation theory which
is the 210 approximation. The one-loop coefficients B; and
the diagonal two-loop gauge coefficients C;; (no sum) may
take either sign depending on the matter content, though for
B; < 0 the latter is always positive. The two-loop Yukawa
coefficients D;, and the off-diagonal elements C;; (i # j)
are always positive for any quantum field theory. In these
conventions, the gauge coupling «; is asymptotically free if
B; > 0. Similarly, the Yukawa beta functions take the form

_an( Z Epnt, — Z Fniai> +O(a2>
m=Yukawa

i=gauge

da,

ﬂ"Edln,u

(14)

Any of the loop coefficients E and F are positive in any
quantum field theory. The loop coefficients in (13) and (14)
corresponding to our models can be found in Appendix A.

B. Ultraviolet Fixed Points

Next, we turn to renormalization group fixed points.
Yukawa couplings at a fixed point are either free or
interacting, and ultraviolet fixed points require that some
(or all) Yukawa couplings are nonzero. The vanishing of
(14) implies that the nonzero Yukawa couplings are related
to the gauge couplings as

o, = (E_l)anmjaj' (15)
We refer to these relations as the Yukawa nullclines. Notice
that the matrix E is inverted over the set of nonvanishing
Yukawa couplings, and the matrix multiplication in (15)
excludes the vanishing Yukawa couplings (if any). In
theories with ny Yukawa couplings this procedure can
lead to as many as 2""r — 1 different nullclines. Fixed points
for the gauge coupling are found by inserting the nullcline
(15) into (13), leading to
Bilg,—0 = —a;(B; - Cﬁ'jaj)- (16)
Hence, every Yukawa nullcline generates shifted two-loop
coefficients C’ given by
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Cj;=Cj - Din(E™") F (17)

in terms of the perturbative loop coefficients. In particular,
the nonzero fixed points for the gauge couplings follow
from (16) and (17) as

a; = (Cl_l)iij’ (18)

where the sum over j only includes the nonvanishing gauge
couplings. The Yukawa fixed point follows from inserting
(18) into the corresponding nullcline (15). Overall, we may
find up to (2"¢ — 1)(2"r — 1) different gauge-Yukawa fixed
points. Also notice that the physicality condition
ai.,ay. >0 is not guaranteed automatically and must
still be imposed. Viable gauge-Yukawa fixed points genu-
inely exist for asymptotically free gauge sectors. Most
importantly, thanks to the Yukawa-induced shift in (17),
physical solutions (18) may even exist for infrared free
gauge sectors where B; < 0. This is the primary mechanism
to stabilize infrared free gauge sectors in the UV.

Gauge-Yukawa fixed points may also indirectly stabilize
an otherwise infrared free gauge sector [7,11,14,15],
because the one-loop coefficient of a gauge theory can
be modified in the presence of an interacting fixed point.
Conditions for this to happen for an infrared free gauge
coupling a; can now be read off from (13),

B" = B; - C;a; + Dya;,. (19)
The sums run over the nonzero gauge and Yukawa
couplings {a;. ., a; .}, and we recall that af =0.
Provided that the effective one-loop coefficient becomes
positive, BT > 0 > B;, the infrared free gauge coupling
becomes free in the ultraviolet. This is the secondary
mechanism to stabilize infrared free gauge sectors in the
UV. We stress that Yukawa couplings are mandatory for
this as they are the only couplings contributing positively to
(19). Below, we will see that both mechanisms are operative
in our models.

If all Yukawa couplings vanish, the gauge sector (13)
may still achieve free or interacting fixed points. The
interacting ones are given by

a = (C7)

B (20)

ijPJs
where the sum runs over the nonzero gauge couplings.
These are the well-known Banks-Zaks (BZ) fixed points
[49,50], which are always infrared and can only be physical
(af > 0) for asymptotically free gauge couplings. In
theories with ng asymptotically free gauge couplings,
we may find up to 2"¢ —1 of them. Although Banks-
Zaks fixed points play no role for the UV completion of
theories, they may still be present and influence the RG
evolution of couplings on UV-IR connecting trajectories.

C. Scalar potential and Higgs portal

Here we briefly discuss the scalar sector and its ground
states. As the BSM scalar carries flavor and couples to the
SM fermions, its vacuum expectation values (VEVs) have
implications for the flavor structure of the model.

The minimal potential involving the SM and BSM
scalars H and S included in (2) and compatible with the
symmetries (4) has the form

V(H.S) = —p*H'H — piTt[SS] = pger(det S + det S7)
+ A(H'H)? + SH'HTr[S'S]
+ uTr[STSSTS] 4+ o(Tr[STS])? (21)

for all models. It consists of the Higgs self-coupling A and
mass parameter u, the BSM scalar quartics u, v, as well as
the BSM mass parameters y, and the trilinear coupling g4,
and a portal coupling 6 which mixes SM and BSM scalars.
Viable UV fixed points for our models require that the
Higgs self-coupling, the portal coupling, and the self-
couplings of the BSM scalar fields take fixed points by
themselves, compatible with vacuum stability. Interestingly
though, the quartics do not couple back into the gauge-
Yukawa system at the leading order. Rather, fixed points in
the SM and BSM scalar sectors are fueled by the gauge-
Yukawa fixed points, and backcoupling occurs starting at
the two-loop level in the Yukawa sector and at the three-
loop level for the Higgs (four-loop for the BSM scalars) in
the gauge sectors.

The classical moduli space for (21) and conditions for
the asymptotic stability of the vacuum are found following
[12,51]. Depending on the sign of u, we find two settings
V* with stability conditions

V+_{/1>0, u>0, u-+3v>0,
6> —2/A(u/3 +v),
A>0, u <0, u—+v>0,

(22)

V_:{é > =21/AMu+v).

Both settings allow for the Higgs to break electroweak
symmetry. For V*, the BSM scalar VEV is flavor-diagonal
and upholds some notion of flavor universality in inter-
actions with the SM. On the other hand, V™ has a VEV only
in one diagonal component of S. In the context of our
models, this corresponds to a VEV pointing in the direction
of one lepton flavor. We learn that the Lagrangian (2) offers
the possibility to violate lepton flavor universality sponta-
neously, an interesting feature also in the context of today’s
flavor anomalies, e.g., [52]. Note if both scalars S and H
acquire a VEV, the portal coupling 6 induces mixing
between the scalars H and S. Details can be seen in
Appendix D. In the following we investigate the availability
of fixed points, vacuum stability, and phenomenological
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signatures at various orders in perturbation theory up to the
222 approximation using the methodology of [42-48].

D. Scaling exponents and UV critical surface

The renormalization group flow in the vicinity of fixed
point provides information on whether the fixed point
can be approached in the UV or IR. Denoting by «, any of
the gauge, Yukawa, or scalar couplings, and expanding the
p-functions around a fixed point &, up to second order in
o, = a, —a,, we find

Ba = M0 + Papcpd, + 0(53>’ (23)
where M, = 0f,/0a,|, is the stability matrix and
Pupe = 30%p,/0ap0a,|,. After diagonalizing M the run-
ning of couplings at first order may be written as

au(p) = g+ Ve, (u/A), (24)
b

where p is the RG scale and A a UV reference scale, while
the UV scaling exponents J,, arise as the eigenvalues of the
stability matrix M with V? the corresponding eigenvectors
and ¢, free parameters. An eigenvector is relevant, mar-
ginal, or irrelevant if the corresponding eigenvalue 9 is
negative, zero, or positive. For all relevant and marginally
relevant couplings, the parameters ¢, are fundamentally
free and constitute the “UV critical surface” of the theory.
Its dimension should be finite to ensure predictivity. For all
irrelevant couplings, we must set ¢, =0 or else the UV
fixed point cannot be reached in the limit 4 — oo0. UV fixed
points require at least one relevant or marginally relevant
eigendirection.

If a fixed point is partially interacting, that is, some but
not all couplings are nonzero, the relevancy of the vanish-
ing couplings can be established as follows. If a gauge
coupling «; vanishes at a fixed point, it follows from (13)
being at least quadratic in ¢; that the coupling is marginal.
Going to second order in perturbations (23) reveals that
P;; = —B%. As expected, the sign of (19) determines
whether the coupling is marginally relevant (B¢ > 0) or
marginally irrelevant. If a Yukawa coupling «,, vanishes at a
GY fixed point with coordinates {«; ., @;,... }, it follows from
(14) that the corresponding scaling exponent is given by

9, = Eupay, — Fiaj. (25)
As this is a difference between two positive numbers,
its overall sign is not determined by the existence of the
fixed point and the coupling could come out as relevant,
marginal, or irrelevant. For BZ fixed points (all «}, = 0),
however, the eigenvalue is always negative and the Yukawas
are relevant.

E. Matching and BSM critical surface

Here we consider how an asymptotically safe UV fixed
point must be connected to the SM. At low energies, any
extension of the SM must connect to the measured values of
SM couplings. For simplicity, and without loss of general-
ity, we assume that all BSM matter fields have identical
masses M. Moreover, the decoupling of heavy modes is
approximated by considering the BSM fields either as
massless (for ¢ > M) and as infinitely massive (for
1 < Mp). Both of these technical assumptions can be lifted
to account for a range of BSM matter field masses, and for a
smooth decoupling of heavy modes, without altering the
main pattern. In this setting, the fluctuations of BSM fields
are absent as soon as 4 < M, meaning that the running of
all SM couplings agy(¢) must be identical to the known
SM running for all 4 < M. Therefore, we refer to

u=Mp (26)
as the matching scale. On the other hand, the values of the
BSM couplings aggy (1) at the matching scale (26) are not
predicted by the SM and must be viewed as free parameters.
Schematically, we denote this set of free parameters as

Sfree = {aBSM}' (27)

Any BSM renormalization group trajectory is uniquely

characterized by the matching scale (26), the (known)

values of SM couplings at the matching scale, and the

initial values of BSM couplings (27). The latter are, in our

models, the values of the three BSM scalar couplings plus

the two (or three) BSM Yukawa couplings at the scale M,

AapsM = (ayv Ay, A5 A, Ay av)’ (28)

and the parameter space (27) is hence five (or six) dimen-
sional, depending on the model.

Depending on the BSM initial values (27), renormaliza-
tion group trajectories may display a variety of different
patterns. These include a power-law approach toward an
interacting fixed point, a crossover through a succession of
fixed points such as in asymptotic safety proper, or a
logarithmically slow decay toward the free fixed point such
as in asymptotic freedom. Either of these behaviors or, in
fact, any combination thereof, corresponds to a viable high-
energy limit in the sense of Wilson’s path integral definition
of quantum field theory. In turn, couplings may also run
into unphysical regimes where the quantum vacuum
becomes meta- or unstable, or where couplings become
nonperturbatively large and RG trajectories terminate due
to Landau pole singularities.

From a bottom-up model building perspective, the set of
parameter values Spgy for which the BSM trajectories
remain finite and well-behaved—at least up to the Planck
scale—is of particular interest. First and foremost, this set
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TABLEII.

Fixed points of model A in the 210 approximation. FP, ; 5 are IR or crossover fixed points, FP, is a line of fixed points, and

FPs 75 are UV fixed point candidates. Also shown are the numbers of relevant (“Rel.”) and irrelevant (“Irrel.”) eigendirections, and
whether the fixed point is of the BZ or GY type, with indices specifying the nontrivial couplings. Free couplings with power-law running
are marked with a superscript =+ if they are irrelevant/relevant, and an additional parenthesis (+) indicates that the flow is logarithmic;

see Figs. 1-3 for the phase diagram and sample trajectories.

Model A aj a; o oy a; Rel. Trrel. Info Fig. 1 Matching
FP, 0+ 0-) 0+ o) 0 1 4 Saddle

FP, 0+ 0.543 0~ o) 0+ 1 4 Bz,

FP; o) 0.623 0.311 o+ 0t 0 5 GYy,

FP, 2.746 00 0~ 4.120 — o} a 2 2 Line

FP; 1.063 0-) 0.886 1.594 0* 2 3 GY AV (Fig. 3)
FPg 1.105 0.569 1.205 1.657 0* 1 4 GY Ay X (Fig. 2)
FP, 2.151 0-) 0.782 0~ 3.032 3 2 GY A3/

FPg 2.267 0.200 0.933 0~ 3.165 2 3 GY 1o Ay X

includes initial values for all trajectories that terminate at
interacting UV fixed points, should they exist. In general,
however, it can often be larger, simply because it may
also include trajectories that remain finite and well-defined
up to the Planck scale, but would otherwise not reach an
interacting UV fixed point proper in the trans-Planckian
regime. This feature can be referred to as Planck safety
[40], as opposed to as well as extending the notion of
asymptotic safety. The set of viable BSM parameters Sgqy
is a subset of (27), and often of a lower dimensionality. The
reason for this is that interacting UV fixed points have
relevant and irrelevant eigenoperators. All interactions that
are irrelevant in the UV impose constraints on the viable
values of BSM couplings at the matching scale (27).
Therefore, we refer to the set of viable initial values
Spsm as the “BSM critical surface.” We obtain BSM critical
surfaces for models A-F in Sec. IV E.

III. BENCHMARK MODELS
AND FIXED POINTS

In this section we further specify our benchmark models
and investigate their RG flows to the leading nontrivial
order in perturbation theory. We focus on the gauge and the
Yukawa couplings whose beta functions are given by (13)
and (14) with loop coefficients for all models stated in
Sec. A. Our goal is to gain a first understanding of models
and fixed points, and the availability of matchings to the
SM. We postpone the study of quartic scalar couplings and
higher order loop corrections to Sec. IV.

The leading order approximation—known as the 210
approximation-retains two-loop orders in the gauge and
one-loop in the Yukawa couplings. Scalar couplings are
neglected. Besides the free Gaussian fixed point, we may
find interacting Banks-Zaks or gauge-Yukawa fixed points,
though only the latter will qualify as UV fixed points.
Already at this order in the approximation, there can be up
to a maximum of (2"¢ — 1) different Banks-Zaks and a
maximum of (2" —1) x (2"r — 1) different GY fixed

points [7,10]. Here ns denotes the number of SM gauge
groups under which the BSM fermions are charged
(ng =2, 1, or 0 for our models), and ny the number of
BSM Yukawa couplings (ny = 2 or 3 for all models). For
this reason, for Banks-Zaks fixed points in semisimple
gauge theories we specify the nonzero gauge couplings as
an index (e.g., BZ,). Similarly, for gauge-Yukawa fixed
points, we also indicate the nonvanishing Yukawa cou-
plings (e.g., GY,).
Findings of this section are summarized in Sec. III G.

A. Model A (singlets, Y=-1)

Model A consists of the SM, amended by complex
singlet BSM scalars S and N = 3 vectorlike BSM fermions
y in the representation (1,1, —1), which is identical to the
one of the singlet leptons E present in the SM, with
Lagrangian (2). The Yukawa sector (3) contains three
BSM couplings,

—L§ = kLHyg + K'ESTy; + yip Syr +He.  (29)
Fixed points for model A are summarized in Table II and
denoted as FP;—FPg. Table II also shows the number of
relevant and irrelevant eigendirections. Free couplings are
marked with a superscript + if they are irrelevant or with a —
if they are relevant, with power-law running. An additional
parenthesis, that is, (+) or (=) for irrelevant or relevant,
respectively, indicates that the flow along its eigendirection
is logarithmically slow instead. It is also shown whether a
fixed pointis of the BZ or GY type, in which case an index is
added to specify the nontrivial couplings.

The Gaussian fixed point (FP;) is a saddle owing to B; <
0 < B, and takes the role of a crossover fixed point. FP; is
an infrared Banks-Zaks fixed point (BZ,) where the
Yukawa coupling «, is the sole relevant coupling because
the fermions y, E do not carry weak isospin. FP; is an
infrared gauge-Yukawa fixed point (GY,,) which acts as an
infrared sink because it is fully attractive in all canonically
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9 Q2
By
Ay B
As Bs By @«

FIG. 1. Schematic phase diagram and various UV fixed points
of models A, B, and D in the 210 approximation. Arrows
indicate the flow from the UV to the IR. The fixed points of
model A (Table II) are projected onto the (a, @) plane (left
panel) with A, denoting the least and A; the most ultraviolet
attractive fixed point. The fixed points of model B (Table IIT) and
model D (Table V) are projected onto the (a,, @) plane (right
panel); results for model D are equivalent to those of model B.
Note that the topology of the projected RG flows in all models is
identical.

dimensionless couplings. FP, corresponds to a line of fixed
points (see Table II), which arises from a degeneracy
among the GY,,, GY |y, and GY e fixed points. The
degeneracy is not protected and lifted by higher-loop
effects. The gauge-Yukawa fixed points FPs—FPg are
candidates for UV fixed points. They invariably involve
anonvanishing fixed point for the hypercharge coupling a7,
with or without a nonvanishing o3, and fixed points for the
Yukawas. We also note that some of the fixed point
couplings are of order unity, in particular the hypercharge
coupling. Ultimately, this is a consequence of a low number
of BSM fermions and the present approximation. We come
back to this aspect in Sec. IV where the quartic scalar
couplings are retained as well.

Fixed point candidates other than those given in Table II
either vanish or come out unphysical. For example, the
relation B, /a, = B /oy + 2a,, which holds in model A
[see (14) and Sec. A for the RG coefficients], implies that at
least one of the couplings aj or &, has to vanish provided
that o # 0. It follows that fixed points such as GY ., and
GY 2y cannot arise. For a, = 0, we find a line of fixed
points in the coupling o} = a, + a,. Note also that &, =
a, — cap with ¢ # 1 a free parameter is decoupled from the
rest of the system. The fixed points GY,,, GY;,¢, and
GY,, which are covered by this line of fixed points, are
unphysical. As the Yukawa beta functions do not receive
vertex corrections, they can be rewritten as f, =
yy(ay, o), and py = yy(ay, a))a, in terms of a single
anomalous dimension Yyl which, moreover, is independent
of a,. Therefore, &, becomes exactly marginal for
yy(aj,a,*) = 0, and the parameter ¢ remains unspecified.
Lines of fixed points related to the vanishing of anomalous
dimensions are well-known in supersymmetric gauge
theories. Here, they are an artifact of the low orders in

s &

0.1¢

a(u)

0.01¢

1072 10 10°° 0.001 1
u [Mrp

10715

FIG. 2. Running of couplings of model A in the 210 approxi-
mation from fixed point A,. Trajectories are invariably attracted
by FP; in the infrared, and a, comes out too large compared to the
SM value.

the loop expansion. Finally, we note that the fixed points
GY|, and GY |, arise with negative o which is unphysical.

In Fig. 1, we show the schematic phase diagram of model
A and the interplay between the UV fixed point FP;—FP,
(denoted as A;—A,) in more detail (see also Table II).
Trajectories are projected onto the (a,, ) plane, and
arrows indicate the flow from the UV to the IR. Aj is the
most relevant UV fixed point. The separatrices responsible
for the crossover from A3 to A, from Az to Ay, or from A
to A, relate to the lines a, =0, a¢ =0, or a, =0,
respectively. A, is the least ultraviolet point only exhibiting
a; as a relevant coupling.

Next, we confirm that some of the UV fixed points in
Table II can be matched onto the SM. Here, it is worth
noting that many renormalization group trajectories are
attracted by the fully attractive IR fixed point GY,,,
corresponding to FP; in Table II. If so, the gauge coupling
a, remains too large to be matched against the SM. In other
words, UV initial conditions within the basin of attraction
of FP; cannot be matched onto the SM. In concrete terms,
this is the case for any trajectory running out of the fixed
point A, or A4 (see Fig. 2 for an example). On the other
hand, provided that the gauge coupling @, takes sufficiently
small values in the vicinity of the UV fixed point,
trajectories can avoid the FP;. This is the case for both
UV fixed points A; and As. Starting from these, @, remains
sufficiently small throughout the entire RG evolution, and
matching against the SM possible at a wide range of
matching scales between the TeV and the Planck scale. An
example for this is shown in Fig. 3.

Finally, it is noteworthy that, unlike in [11,14],
the Yukawa coupling a, can be switched off as it is not
required to generate the fixed points A; and A,. Instead,
the Yukawa couplings x and x’ are required to enable a
fixed point for a;. Their predicted low-energy values are
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FIG. 3. Running of couplings of model A in the 210 approxi-

mation with matching of the partially interacting fixed point A; to
the SM at 4 = 1 TeV (see Table II).

a(Mp=1TeV)=27x107 and ay(Mz =1 TeV) =
3.5 x 1073 assuming a matching to A;; see Fig. 3.

B. Model B (triplets, Y= -1)

For vectorlike fermions w(1,3,—1) the BSM Yukawa
Lagrangiean takes the form

—LB = +xLygrH + y; Syg + H.c. (30)

The components of y can be expressed as the SU(2),
matrix via

. <W_l/1/{;/E —wzjﬂ)’ o

in accord with the normalization of the kinetic term in
Eq. (2). The upper indices indicate the U(1),,, charge of
each component.

We have listed all fixed points of model B in Table III. In
this model, the one-loop coefficients of both gauge cou-
plings obey B;, < 0, turning the Gaussian into a total IR
fixed point, and prohibiting any kind of Banks-Zaks
solutions. Moreover, all gauge-Yukawa fixed points only
involving @, (GYy,, GY,y, GYy,,) are unphysical, and for

the remaining ones, aj # 0 is required, additionally exclud-
ing GYIK’ GY12K.

This singles out the fixed points B, 4 as listed in
Table III. Similar to the fixed points A; 4 of model A,
B, is the least ultraviolet with a; being the only relevant
coupling, B4 are connected to it via a second relevant
trajectory, while B3 has three relevant directions. This is
shown schematically on the right-hand side of Fig. 1. A
crucial difference, however, is that no infrared GY fixed
points with a, > 0 and a; = 0 are realized in model B.
Hence, unlike in model A, UV fixed point solutions with
finite a3 > a3M(u 2 0.1 TeV) are not a priori excluded
phenomenologically, though constrained, and the corre-
sponding matching conditions ay¥ (M) = aP3™ (M) can
have solutions. Integrating the RG trajectories which
leave the B, UV fixed point into the @; direction toward
lower energies, we find My~ 0.025 TeV, as depicted
in Fig. 4. Similarly, for the fixed point B; we find
My = O(1072 TeV). We learn that asymptotic safety
can predict the mass scale of new physics. The scale is
disfavored phenomenologically, though only narrowly. The
impact of higher-loop corrections is studied in the follow-
ing Sec. IV.

Fixed point solutions B;; with a5 = 0 require more
detailed analysis, as asymptotic freedom is absent.
Although a, is relevant at the fixed points B, ; due to
the Yukawa interactions, it may turn irrelevant along a
trajectory toward the IR, as a,, become smaller causing

BS to become negative.

C. Model C (doublets, Y = — ]

For model C, the BSM fermions have the representation
w(l,2,— %), which is the same as the one of the SM leptons
L, leading to the Yukawa interactions

—L§ = KkEH "y + K'LSyg + yp Syg +He.  (32)

All physical fixed points in the 210 approximation are
listed in Table IV and have a; as an irrelevant coupling.
Besides the Gaussian (FP; ), one Banks-Zaks (FP,) and four
gauge-Yukawa fixed points in a, (FP; ¢) are realized.
Similar to the arguments used in the discussion of model A,

TABLEIII. Partially and fully interacting fixed points of model B in the 210 approximation, notation as in Table II. Banks-Zaks fixed
points are absent since asymptotic freedom is lost in both gauge couplings; see Figs. 1 and 4 for the phase diagram and sample
trajectories.

Model B aj a, ay a Rel. Irrel. Info Fig. 1 Matching
FP, o) o) o) o) 0 4 G

FP, 1.953 0-) 1.562 1.888 2 2 GY 1y B v
FP; 1.224 0.186 1.326 1.541 1 3 GY 12y B, v
FP, 2.712 0-) 0~ 2.712 3 1 GY,, B; v
FP; 1.732 0.216 0~ 2.164 2 2 GY B, v
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FIG. 4. Matching at M = 0.025 TeV for the fully interacting
fixed point B, of model B. Top panel: BSM running of the
couplings into the fixed point. Bottom: BSM (dotted lines) and
SM running (solid lines) of the gauge coupling near the matching
scale (dashed vertical line).

the relation ,/a, = p,/ay + a, which holds in model C
[see (14) and Sec. A for the RG coefficients], excludes a
solution GY . In addition, there is a line of fixed points

TABLE IV. Partially and fully interacting fixed points of model
C in the 210 approximation, with notation as in Table II. At this
loop order, no viable candidates for UV fixed points exist.

Model C o] o a; ay ay Rel. Ir. Info
FP, o+ o) ot o) o 1 4 G

Fp, 0+ 0.038 0~ 0~ 0~ 3 2 BZ,
FP; 0(+) 0.039 0.020 0~ 00 2 3 GYy
FP, 0(+) 0.054 0.027  0.049 0 0 5 GYypy
FPs 0+ 0.053 0.011 0~ 0.046 1 4 GYy,
FPg¢ 0+ 0.052 0~ 0.047—-0a; o 1 3 GYyy,

ay +a;~0.047 with ag =0 (FPs) that covers three
solutions GY,,, GYzy, and GYZK/y, and gives rise to a
marginal coupling. However, no physical gauge-Yukawa
fixed point involving a; exists, and hence there is no
candidate UV fixed point provided by model C at lowest
loop order.

D. Model D (doublets, Y = - 3)
In model D the BSM Yukawa Lagrangian reads

—LY =y, Swy + kEH'y, + Hee., (33)

with y(1,2,-3/2). Physical fixed points are listed in
Table V, with remarkable small coupling values a* < 1.
All solutions aj = 0 suffer from the triviality problem.
Besides the Gaussian, and BZ,, all three possible gauge-
Yukawa fixed points involving a, only are realized (FP;.. 5
in Table V), but fall in this category. Viable candidates
D,..4 for UV fixed points are of the gauge-Yukawa type
involving at least the @; gauge coupling as well as the BSM
Yukawa interaction ay, as only GY;. and GY, are
unphysical.

Projecting onto the a,-a,-plane, the hierarchy is similar
to model A (see Fig. 1) with D5 being the most and D, the
least ultraviolet fixed points. Moreover, the same argument
holds regarding the total IR fixed point GY,,,, which
attracts trajectories going toward SM coupling values such
as those following the a; critical direction from D, 4, as
depicted on the left-hand side in Fig. 5. Small values of a,
along the trajectory are required, implying solutions D 3
as possible UV fixed points. Matching onto the SM is
then possible at a range of scales; for D; we obtain
a (Mp=1TeV)=42x1073,a,(Mr=1TeV)=5.8x1073,
which is shown in Fig. 5. Fixed point D5 has also been
studied in [34], but discarded after including higher order
contributions. We retain this fixed point solution, deferring
the discussion of higher-loop-order effects to Sec. I'V.

E. Model E (singlets, Y =0)

The Yukawa interactions in model E read

—LY = kL Hyg + yip Sy + He. (34)

Since y is a singlet under all gauge groups, 3, is always
positive in the 210 approximation, requiring a; =0 at all
scales, as this coupling is irrelevant. This decouples the left-
chiral BSM fermion y; and the BSM scalar S from the SM
plus yw at this loop order. Only the Gaussian fixed point,
the Banks-Zaks in a, and a gauge-Yukawa GY,, are
present, and «; is irrelevant for all of them. This leaves
the model without viable candidates of UV fixed points at
210 approximation.
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TABLE V. Partially and fully interacting fixed points of model D in the 210 approximation, notation as in Table II; see Figs. 1 and 5

for the phase diagram and sample trajectories.

Model D aj a; o o Rel. Irrel. Info Name Matching
FP, o+ 0-) o) o) 1 3 G
FP, o) 0.038 0~ 0~ 2 2 BZ,
FP; o) 0.039 0.020 0~ 1 3 GY,,
FP, o) 0.052 0" 0.047 1 3 GY,,
FP; 0+) 0.053 0.011 0.046 0 4 GYyy,
FP; 0.246 o) 0.322 0.631 2 2 GY D, v
FP, 0.202 0.145 0.295 0.647 1 3 GY 2y D, X
FPq 0.288 0 0- 0.778 3 1 GY,, D; v
FP, 0.239 0.152 0- 0.782 2 2 GY D, X

F. Model F (triplets, Y =0) —LY = kL Hyg + yyr, Syg + Hee. (35)

In model F, the BSM fermions w(1,3,0) are in the
adjoint of SU(2), with vanishing hypercharge. The BSM
Yukawa sector can be written as

0.1
3
8
0.01
0.001
074 ol i i o
107% 10 10 10° 0001 1
u [Mpp
1 — — — — —
| MF =1TeV
01 .
| —a
2 oo ] — @
I ay
i y
0.001 —— 1
4 | . . . .
0.001 1 1000 10° 10° 10"
u (TeV)
FIG. 5. Renormalization group running of model D. Top: BSM

running from fixed point D,, where matching is not possible.
Bottom: running to the fixed point D; after matching at
1 =1 TeV (dashed vertical line).

In this setup, asymptotic freedom is absent for both gauge
couplings, making the Gaussian completely IR attractive
and excluding any kind of Banks-Zaks fixed points. In the
210 approximation, f; is independent of a,, and f, is
independent of a,, as y does not carry hypercharge. Hence
the two-loop contributions of « are the only negative terms
in 31, requiring a; # 0. Moreover, only a, contributions are
negative in f,, which suggests that a; = 0 implies aj = 0
and irrelevant. However, none of the remaining gauge-
Yukawa solutions GY ., GY oy, GY oy GY oy, and GY o,y
are realized, as x contributions in f3; are too small compared
to one- and other two-loop terms. This leaves the Gaussian
as the only physical fixed point; we conclude that there is
no AS fixed point at 210 in model F.

G. Summary top down

In Secs. III A-III F we have gained first insights into the
fixed point structure of models A-F in a top-down
approach of solving the renormalization group equations
(RGEs) at leading orders directly and running toward
infrared scales. The results for models A, B, and D
collected in Tables II, III, and V show several signatures
of UV fixed points that can be matched onto the SM, but
also indicate that those are borderline perturbative. This
suggests that the fixed points are sensitive to contributions
from higher-loop orders. We also found that the models C,
E, and F do not provide any viable solutions at 210 and the
question arises whether this is just a feature of the
approximation. In order to address both points, we go in
Sec. IV beyond the 210 approximation. To handle the
increased algebraic complexity of higher-loop corrections
and the quartic sector, a bottom-up approach will be
employed, studying the RG running from the IR to the
UV instead, mapping out the BSM critical surface.

IV. RUNNING COUPLINGS

In this section, we discuss the renormalization group
flow of couplings beyond the leading order approximation
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which has been employed in the previous Sec. III. We
explore in detail how the running of couplings depends on
the values of BSM couplings {aggy } at the matching scale.
The main new technical additions in this section are the
quartic scalar and the portal couplings, and the inclusion of
loop effects up to the complete two-loop order (222
approximation) or, if available, the complete three-loop
order (333 approximation). We are particularly interested
in the running of couplings from a bottom-up perspective,
and we study the flow for a given set of BSM initial values
agsm at the matching scale. We then ask whether these
values together with the SM input reach Planckian energies
without developing poles, exhibit asymptotic safety, and
have the stability of the quantum vacuum.

We give our setup and initial conditions in Sec. IV A, and
briefly review the RG flow within the SM in Sec. IV B.
After identifying relevant correlations between feeble and
weakly sized BSM couplings in Secs. IV C and IV D,
respectively, we present in Sec. IVE the BSM critical
surface for each model.

A. Setup and boundary conditions

We retain the renormalization group running for the three
gauge couplings of the SM (11), and up to three BSM
Yukawa couplings (12). Going beyond the leading order
210 approximation, we also retain the Higgs quartic self-
interaction A, the BSM quartics u, v, and the quartic portal
coupling o

A 5
a; = , as = ,
A (4n)? *7 (4n)?
u v
- ’ v = * 36
%= (4n) % = (4n) (36)

Moreover, it is well-known that the SM top and bottom
Yukawa couplings y,,, critically influence the running of
the Higgs quartic and, therefore, must be retained as well.
We introduce them as

y? v

@2 T G

Overall, Egs. (11), (12), (36), and (37) result in 12 (or 11)
independent running couplings for models A and C (or
models B, D, E, and F).

We also remark that the scalar quartic interactions couple
back into the Yukawa sectors starting at two-loop, and into
the gauge sectors starting at three- (or four-) loop, depend-
ing on whether the participating matter fields are charged
(uncharged) under the gauge symmetry. Conversely, the
Yukawa couplings couple back into the quartic starting at
one-loop, as do the weak and hypercharge gauge couplings
into the Higgs. We expect therefore a crucial interplay
between BSM Yukawas and the portal coupling with Higgs
stability. In addition, the leading order study in Sec. III
showed that some of the fixed point coordinates might
come out within the range (0.1 — 1.0), indicating that

(37)

a; =

strict perturbativity cannot be guaranteed. For these rea-
sons, we develop the fixed point search and the study of RG
equations up to the highest level of approximation where all
couplings are treated on an equal footing, i.e., the complete
two-loop order (222 approximation). The running of SM
couplings, which serves as a reference scenario, is studied
up to the complete three-loop order (333 approximation).

All our models require boundary conditions with six
SM couplings at the matching scale p,, which for all
practical purposes corresponds to the mass of the BSM
fermions y. To be specific, we take the matching scale in
this section to be

o =1 TeV. (38)

The initial conditions for the SM couplings then read, using
M, ~172.9 GeV and [53,54],

a1 (up) =~ 8.30 x 1074,
(o) ~2.58 x 1073,
a3 (ug) = 7.08 x 1073,

o (po) ~6.09 x 1074,
a,(pg) ~4.61 x 1073,
ay(up) = 1.22 x 1076,

(25)

(39)

Hence, in our conventions, initial couplings are within the
range O(107% — 1072). We are now in a position to discuss
the running of couplings and the “BSM critical surface,”
i.e., the set of values for BSM couplings at the matching
scale which lead to viable RG trajectories all the way up to
the Planck scale.

B. Standard model

We briefly discuss running couplings within the SM
at the complete three-loop order in perturbation theory
[54-61], displayed in Fig. 6. Overall, the SM running is
rather slow with gauge, quartic, and Yukawa couplings
mostly below O(1072) or smaller. We also observe that the
Higgs potential becomes metastable starting around
10'9 GeV [54,55], an effect which is mostly driven by
the quantum corrections from the top Yukawa coupling «,.
Further, an imperfect gauge coupling unification is observed
around 10'® GeV. Quantum gravity is expected to kick in
around the Planck scale, Mp ~ 10" GeV, indicated by the
gray-shaded area. As an aside, we notice that the Higgs beta
function essentially vanishes at Planckian energies

uxMp: a,~107%, B, ~0. (40)

If quantum gravity can be neglected, hypothetically, we
may extend the running of couplings into the trans-
Planckian regime. The hypercharge coupling would then
reach a Landau pole around 10*' GeV. Also, its slow but
steady growth would eventually dominate over the slowly
decreasing top Yukawa coupling, and thereby stabilize the
quantum vacuum starting around 10* GeV. Ultimately,
however, the Higgs coupling reaches a Landau pole along-
side the U(1)y coupling and the SM stops being predictive.
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FIG. 6. Renormalization group running of the SM. Shown are the gauge, Higgs, top (solid green line) and bottom (dashed green line)
Yukawa couplings at the complete three-loop order starting from the 1 TeV regime up to the deep UV. The Planck scale is indicated by
the gray band. The Higgs self-coupling changes sign twice, around 10'® GeV and around 10°° GeV. In between, the SM vacuum is
metastable. Ultimately, the hypercharge and the Higgs coupling approach UV Landau poles around 10*' GeV.

C. Feeble BSM couplings

Next, we include new matter fields on top of the SM ones
and switch on the BSM couplings at the matching scale
(39). A minimally invasive choice are very small, feeble,
BSM couplings such that they do not significantly

influence the renormalization group flow up to the

Planck scale. Their own running would then be well
encoded already by the leading order in the perturbative
expansion, and models resemble the SM, extended by
vectorlike fermions. Specifically, we consider here initial
values of the order of aggy =~ 107 or smaller.
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Sub-Planckian Landau poles arise in models B and D (model F) in the hypercharge (weak) coupling.
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1. Models A, C, and E

Sample trajectories with feeble BSM couplings are shown
in Fig. 7 (plots to the left) for models A, C, and E. In all cases,
we observe a SM-like running of couplings. The new matter
fields modify the running of gauge couplings very mildly.
Formodels A and E, we find a vanishing beta function for the
Higgs quartic coupling, much similar to the SM (40). For
model C, we observe that the regime of Higgs metastability
terminates exactly around the Planck scale,

p,~0.

We conclude that in models A, C, and E feeble initial values
for the BSM couplings lead to SM-like trajectories including
vacuum metastability up to the Planck scale. Hence, the
BSM critical surface covers the region in which all couplings
are feeble.

/lNMPl: (XANO, (41)

2. Models B, D, and F

The models B, D, and F with feeble BSM couplings at y,,
reach a Landau pole prior to the Planck scale, with sample
trajectories shown in Fig. 7 (plots to the right). Specifically, in

model B asymptotic freedom for the weak and hypercharge
couplings is lost leading to a Landau pole around 10'® GeV
reached first for the hypercharge, going hand-in-hand with
the loss of vacuum stability. Similarly, a strong coupling
regime with a Landau pole is reached around 10'* GeV
(10'® GeV) for model D (model F). Hence, none of these
models can make it to the Planck scale for feeble BSM
couplings, excluding this region from the BSM critical
surface. Notice though that the growth of the gauge couplings
in models B and F stabilizes the Higgs sector all the way up to
close to the pole.

D. Weak BSM couplings

In the following we explore several matching scenarios
for each of the models A—F with BSM couplings of at least
the same order of magnitude as the SM couplings at the
matching scale (39). In this regime, Yukawa interactions
play a crucial role in avoiding Landau poles and stabilizing
RG flows, inviting a classification by the couplings
involved. Because of the importance for Higgs stability,
we also distinguish scenarios with or without portal coupling
effects. Afteridentifying relevant correlations between BSM
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couplings, we obtain in Sec. IV E the BSM critical surface
for each model.

1. Models A-F with ay, # 0

For o v ~ 0, the BSM Yukawa a, # 0 slows down the
running of gauge couplings and removes all Landau poles
before Mp. Moreover, it stabilizes the running of the
quartics a,,,,, due to a walking regime p, ,, =0, which
may extend until after the Planck scale. This is displayed in
Fig. 8. Because of sizable BSM couplings, the portal oy is
being switched on, influencing the running of the Higgs
quartic a,. For larger values ay]),,, the Higgs potential can
be stabilized, i.e., a, > 0 between M and Mp; (models A
and E), while smaller values of aj m, cause the Higgs
potential to flip sign twice before the Planck scale (models
B and F), or a; remains negative at Mp; (models C and D).

In models A, C, D, and E, feeble initial values of a, grow
in coupling strength, eventually destabilizing the trajecto-
ries in the far UV. For the triplet models B and F, 5, remains
small for feeble or weakly coupled a,, providing greater
windows of stability. In summary, the BSM critical surface

covers the parameter space where a, is weak and q, s are
feeble at the matching scale.

2. Models A-F with a,, # 0

A weakly coupled Yukawa interaction a, may stabilize
the SM scalar sector. The choice,
=0, a. #0, (42)

Ay i/ |516| ~ 0,

is depicted in Fig. 9. A common feature of all models A-F
is the stabilization of a; in a walking region together with
a, and the SM Yukawas, as all of which couple to the SM
Higgs directly. The BSM potential, on the other hand, lacks
a sizable Yukawa interaction, and «, self-stabilizes around
a; ~ 13/204. This phenomenon is not disrupted by feeble
initial values of |, 5|, which are driven to zero in the UV
limit. However, the scenario is not viable for model D as the
Landau pole still appears before the Planckian regime. In
model B, the pole appears soon after Mp,.

The initial value of @, can be reduced for ayy,, large
enough to stabilize the running of the Higgs quartic:
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(O #O’ |a5| #O

For models A, C, and E, this allows for feeble «, at the
matching scale, while in models B, D, and F poles arise
below or at the Planck regime, as displayed in Fig. 10.

(43)

3. Models A and C with a,, # 0

Models A and C feature the additional Yukawa inter-
action a,, giving rise to another walking regime
a, =0, las| =~ 0,

Qe ! * 0, (44)

shown in Fig. 11. Starting from the matching scale M,
these regions are reached before the Planck scale, and at
various speeds by different couplings, creating a rich
landscape of intermediate pseudofixed points and scales.
Throughout the walking regime, SM and BSM Yukawas
and quartics slow down in model A at

a;, ~3.61x107",
ai~1.80x 107!,
a; ~8.95 x 1072,

Y, 2232 % 107,
al ~3.07 x 1072,

ay ~4.12 x 1072, (45)

and in model C at
a, ~3.61x 107",

ai~1.80x 107!,
a; ~8.95x 1072,

a, ~1.88x 107",
af ~2.44 x 1072,

ay~3.92 x 1072 (46)
On the other hand, the portal @5 and gauge couplings
continue to run, although the latter is slowed down by the
magnitude of the Yukawas. Consequently, Landau poles are
avoided even far beyond the Planck scale. Moreover, the
SM [BSM] quartics «; [a,,, a,] are stabilized by the a, [a]
Yukawa couplings. All of these phenomena are conse-
quences of the vicinity of a pseudofixed point with
aj,3,5 = 0, separating the SM and BSM scalar sectors,
as well as Yukawa couplings from each other. This
decoupling is expected to be realized to all loop orders,
because, in its vicinity, the action decomposes as
S = Sy(H.L[E],wgy) + Ss(S. E[L].wrg)  (47)
for model A [C], up to corrections of the order of the SM
lepton Yukawas Y., Eq. (9). However, this separation can
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be realized only approximately for small gauge and portal
couplings. Hence, the RG flow eventually leaves the
walking regime in the far UV due to the slow residual
running of a; or a; Ultimately, this triggers a crossover
away from the walking regime and into an interacting UV
fixed point regime where all couplings bar the non-Abelian
gauge and the BSM Yukawa couplings take nontrivial
values.

Specifically, for model A, the interacting UV fixed point
is approximately given by

a; ~1.93 x 1071, i ~3.05x 107",

=625 x 107,
as > —1.55 x 1072,
ai~1.19 x 107!,
at ~4.03 x 1072,

a;=a, =a; =0,
af =127 x 107,
af ~4.78 x 107!,

@ ~453x 107", (48)

Note that the fixed point is rather close to the values of
couplings in the walking regime (45). Similarly, in model C
we find an approximate UV fixed point with coordinates

o ~7.64 x 1071, ai~3.05x%x 107",

ay=a;=a; =0, ar, ~7.00x 107",
a; ~338 x 1071, a; ~—3.30x 1072,
af ~751x 107", ai~1.57x 107!,

a; ~5.76 x 1071, oy ~4.54 x 1072, (49)

Again, we note that (48) is numerically close to the walking
regime (46).

Reducing «,| u, destabilizes the running of the Higgs
self-coupling a;, which can, however, be remedied by a
nonvanishing portal coupling ay:
Qe ! #0, |a6| #0. (50)
In model A, this enables trajectories with feeble a,|y, to
connect to the phenomena (45) and (48), while for model C,
trans-Planckian poles arise. This is displayed in Fig. 12. In
both models the coupling a, (brown line), whose overall
sign separates the vacuum solutions V* from V~, Eq. (22),
changes sign below Mp,.

In summary, the BSM critical surfaces of models A and
C include regions for both a,|y,, and @y, being pertur-
batively small. For even smaller values of a,| m,» larger
values of asly, —are required, and Higgs stability is not
automatically guaranteed. The interplay of BSM input
values on Planck-scale features is further detailed below
(Sec. IVE).

We emphasize that our models are the first templates of
asymptotically safe SM extensions with physical Higgs,
top, and bottom masses, and which connect the relevant SM
and BSM couplings at TeV energies with an interacting
fixed point at highest energies. Another feature of our
models is the low number N of new fermion flavors
required for this. In contrast, earlier attempts toward
asymptotically safe SM extensions [11,14,20,21] required
moderate or large N, and either neglected the running of
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quartic and portal couplings [11,14] or used an unphysi-
cally large mass for the Higgs [21] in large-N; resumma-
tions which require further scrutiny [20,25]. It will
therefore be interesting to test the fixed point at higher-
loop orders, once available, and nonperturbatively using
lattice simulations [26], or functional renormalization.

E. BSM critical surface

We analyze the state of the vacuum at the Planck scale in
dependence on the initial conditions of the BSM couplings
at M to determine the BSM critical surface in each model.
In accord with the reasoning in Sec. IV D, the BSM
Yukawas a, and a, are varied at the matching scale, with
the SM couplings fixed by (39). The remaining BSM
couplings are, exemplarily, set to

{ag. a5 ay. a,}y, ={0.5,1,4} x 107, (51)
For each model, we then sample 141 x 61 different initial
values (a,,a,)|y, and integrate the RG flow at two-loop
accuracy for all couplings from the matching scale to the
Planck scale. The result for all models is shown in Fig. 13.
Different parameter regions are color-coded to indicate the
type of ground state at the Planck scale, or whether poles or
instabilities arise prior to Mp. Specifically, we distinguish
regions in a,. |, that yield stable vacua V* (blue) or V-
(green), according to (22), evaluated at the Planck scale.
Regions with negative Higgs quartic are called metastable
(yellow), if 0 > ay] My > —107%, and Higgs unstable if

@]y, < =107 In the remaining regions with unstable
vacuum (gray) either BSM quartics «,, @, do not comply
with (22) (regardless of a; and «;) or «,, a,, and a; do
comply with (22), but a5 does not. Regions with Landau
poles below or at the Planck scale are indicated in red.

Next, we discuss the pattern of results in Fig. 13.
Connecting to the region of feeble couplings Fig. 7,
Landau poles are present before the Planck scale within
at least aK,y| My <1073 in models B, D, and F. For models
A, C, and E, on the other hand, within a,(,y| My < 10~ no
poles arise and the Higgs potential is metastable or even
becomes stable at the Planck scale (model C), just as
depicted in Fig. 7.

Toward larger values of a,] My models A, C, and E
exhibit a metastable and then unstable Higgs potential
until a,| u, 18 large enough to stabilize the potential as in
Fig. 9. The vacuum configuration at Mp, is then the
same as at the matching scale, either V™ or V~. For
models B and F, &y, > 1072 is required to move the
Landau pole past the Planck scale, while this is not
possible in model D.

If we are increasing a,|),, instead, this leads eventually
to the ground state V' in the BSM potential, but Higgs
stability is not guaranteed automatically; see Fig. 8. If not
obstructed by poles, each model exhibits a narrow “belt” of
parameters around a |y, ~ O(107%) and any a,|,, . within
which the BSM potential is unstable due to @, < —a, in
the V™ ground state. Here, Coleman-Weinberg resumma-
tions [12] or higher-order scalar self-interactions [13]
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should be included before definite conclusions about
stability are taken.

Another feature of models A and E is that for @, |, 2
10~! simultaneously, Landau poles occur before the Planck
scale. For the other models, RG trajectories are stabilized
around Mp; in the V~ ground state by quartic interactions.
However, this region is especially sensitive to corrections
from higher-loop orders.

For models A and C, the additional Yukawa interaction
a, adds an extra dimension to the BSM critical surface.
Its impact is further investigated in Fig. 14 (color-coding
as in Fig. 13) where we exemplarily explore the vacuum
state at the Planck scale within the (@, a¢)|y, parameter
plane, and

{ay. a5, 0,0, } ]y, = {0,5.1,4} x 107, (52)

We find that the region with a |y, < 10~* is very similar to
the region |y, <107* in Fig. 13, featuring a stable
ground state for weakly coupled a, |y, . For both a [y, 2
1072 the phenomena illustrated in Fig. 11 occur, implying a
stable V* region. The fate of the quadrant with |y, =
107? and &, |5, < 1072 hinges on the value of |y, . As can
be seen from Fig. 14, its flow can be stable, as in Fig. 12,
while poles or Higgs metastability are possible as well.
The BSM critical surface at the matching scale of each
model consists of the combined V™ plus V™ regions, with
slices in the multidimensional parameter space shown in
Figs. 13 and 14 in green and blue. All models A—F can be
stable at least up to the Planck scale. The yellow (meta-
stability) regions may be included as well, as this corre-
sponds to the situation of the SM. In general, experimental
constraints on the BSM critical surface apply for matching

095023-19



HILLER, HORMIGOS-FELIU, LITIM, and STEUDTNER

PHYS. REV. D 102, 095023 (2020)

Model A
1(1) T Poles
« 1071 ¢ e 1
i 103 1 V unstable i
: \
-4 Higgs - i
10 5 metastable [
107 T | | | | | | 1
1077107%107°107*10731072107! 1
ModelC %+ vt
10+ Poles
1+ : 1
. Higgs .
§ 107!+ metastable 1% §
— 1072+ .
i 103 1 V unstable i
\
1074+ v+ Ve oyt A
1075+ i

1077106107°107*107%1072107! 1
aﬁ MF

FIG. 14. As in Fig. 13 for models A and C in the {a, ac}|y,
plane with matching conditions {a,, a5, a,.,}| M, = {0,5,1,4}x
1073. Resolution is 141 x 61 points per model.

scales around the TeV scale, a topic further discussed in the
next Sec. V.

V. PHENOMENOLOGY

In this section, we investigate the phenomenological
implications of our models. Specifically, in Sec. VA we

! ¥ d
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FIG. 15.
schematic for model A; see text for details.

discuss BSM sector production at hadron and lepton
colliders, and in Sec. V B the decays of the BSM fermions
and scalar. An important ingredient for phenomenology is
mixing between SM and BSM fermions, the technical
details for which are relegated to Appendix D. Resulting
phenomenological consequences are worked out in
Sec. VC and include dileptonic decays of the scalars.
Constraints from Drell-Yan data on the matching scale
are worked out in Sec. V D. Implications for the leptons’
anomalous magnetic moments are studied in Sec. V E. In
Sec. V F we show that the portal coupling 6 in (21) together
with « and «’ can provide a chirally enhanced contribution
to the magnetic moments. This mechanism also induces
EDMs for CP-violating couplings, discussed in Sec. V G. In
Sec. V H we discuss constraints from charged LFV decays.

A. BSM sector production

Tree-level production channels of the BSM sector at pp
or £¢ colliders are shown in Fig. 15. Since the fermions are
colorless, pair production in pp collisions is limited to
quark-antiquark fusion to electroweak gauge bosons [dia-
grams 15(a) and 15(b)]. Single production through Yukawa
interactions with s-channel Higgs [diagram 15(c)] is also
possible. In ¢ colliders, the y can also be produced with
t-channel Higgs or S in pairs 15(d) and singly 15(e). The
contribution to Wy production from s-channel neutral
bosons is especially relevant, since it is present in all
models in study (except for model E), in both pp and £¢
collisions, and all N = 3 flavors of y are produced. In the
limit M > m, where f is a quark or a lepton and m/(Q/)
denotes its mass (charge), the contribution to pair produc-
tion via photon exchange at center of mass energy-squared
s reads

@1 f e

. -
(e

! s
i<

7 ) “s/h
(2)

Production channels of the BSM particles at pp and ## colliders, with f = £, q. In diagram (f) the S and S' labels are
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Gy(]_cf_’ ‘/_/’//)

LY [ amZ( 2M>
:NF?H es ! Z Q21— sF<1+TF> for s >4M2,

SU(2),,

(53)

where we summed over the y’s flavors and SU(2),
components; a, = e*/4rx denotes the fine structure con-
stant. Corresponding cross sections are of the order
NpQ7 >~ 0390 fb/(s[TeV]) [62]. Note the enhancement
in models B and D which contain fermions with |Q | = 2,
and result in effective charge squares of > Q% = 5. The
BSM scalars, which are SM singlets, can be pair produced
at lepton colliders in models A and C through the Yukawa
interactions (k') with w-exchange [diagram 15(f)]. The
cross section, for s > 4M§, then reads

o(£t¢~ - SST)

NFK'/4 4M§ 5/2 1
=—|1—-——= doxx?(1—x2
32715( s /_1 ¥ (1-x7)

X{(M+l>z (1—4TMz>x2]_2. (54)

Denote by Re[S] and Im[S] the real, CP-even, and
CP-odd physical degrees of freedom of S, respectively.
Together the Yukawas k and «’ induce single S production,
Re[S] or Im[S], in association with a Higgs [diagram 15(f)].

Another mechanism to probe the scalars is through
S-Higgs mixing [diagram 15(g)], which arises if the portal
coupling ~HHTr[S"S] is switched on. In this diagram, the
hRe[S]Rel[S] and AIm[S]Im[S] couplings arise after electro-
weak symmetry breaking. In addition, the 1hRe[S] vertex is
possible when the scalar S acquires a VEV. A detailed study
of y, S production at colliders is, however, beyond the
scope of this work.

B. BSM sector decay

We discuss, in this order, the decays of the vectorlike
leptons y and the BSM scalar S. Both subsections contain a
brief summary at the beginning.

1. Fermions

Depending on the representation, coupling, and mass
hierarchies, the BSM fermions can decay through the
Yukawa interactions to Higgs plus lepton or to S plus
lepton (only models A and C), while some members of the
SU(2),-multiplets need to cascade down within the multi-
plet first through W-exchange. These are the states with
electric charge Qr = —2 (models B and D) and Qf = +1
(model F). As detailed below, they allow for macroscopic
lifetimes. Mixing with the SM leptons induces additional

yw-decays to Z, W plus lepton which are discussed in
Sec. V C.

The vectorlike fermions with QO = 0 and QO = —1 can
decay through the Yukawa interactions (x) to v and h?™,
respectively, except in model C, in which the Higgs couples
to SU(2),-singlet leptons and only the Qp = —1 decay
takes place through k. Neglecting the lepton mass, the
decay rate into Higgs plus lepton is

mZ 2

F

where C,,, = 1/ V2 for the T5 = 0 states in models B, F,
and C,, = 1 otherwise. For a, % 107'* and M at least a
tera electron volt, one obtains a lifetime I'™! < O(10713) s,
which leads to a prompt decay. In models A (C), the decays

v, — ij” (w; = ¢;S;;) are also allowed if the BSM
scalars are lighter than the vectorlike fermions, with rate

M2
[y —2£8) = 3 e et Mp <1 - M_%) . (56)
Models B and D contain Qr = —2 fermions. After electro-

weak symmetry breaking, these cascade down through the
weak interaction as w2 — w~!W*", and subsequent
decays.

The lifetime is then driven by the mass splitting within
the multiplet. In the limit M > my,, m, one obtains for

Am = W—z — M, from SM gauge boson loops [63]

Am=2 (3 sinf%,m;+k) and k = my — my(model B),
k= O(model D), which is around a giga electron volt in
both models. Corresponding decay rates I'(y =2 =y~ £v)~
G2Am3/(157°)~3x 10712 GeV(Am/[GeV])>  indicate
around picosecond lifetimes of the w2, with a small,
however macroscopic ¢t ~ 0.3 mm resulting in displaced
vertex signatures that can be searched for at the LHC [64].
In model F, the Qr = +1 fermions decay similarly through
wt > WHyYO, with Am =M, — M0 = a5PC My, sin? %,
Numerically, this is an order of magnitude smaller than the
splitting in models B and D and suppresses the decay rate
significantly further, allowing for striking long-lived
charged particle signatures. Note that the presence of
fermion mixing, discussed in the following, can induce
more frequent decays unless couplings are very suppressed.
Note the upper limit on general mass splittings M within
the fermion SU(2), -multiplets by the p-parameter [62]
NpS(R,)6M?* < (40 GeV)?, (57)
where S, (R,) is the Dynkin index of the representation R, of
U(2), (see[11]fordetails). Specifically, S, = 0, 1/2, 2 for
models A and E, models C and D, and models B and F,
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respectively. The allowed splitting is hence about a few
percent for tera-electron-volt-ish fermion masses.

2. Scalars

If kinematically allowed, the scalars §;; decay in all
models through Yukawa couplings to yy, and in models A
and C to y plus lepton. Only the flavor diagonal compo-
nents can, except in the SM-singlet model E, in addition
decay to electroweak gauge bosons through the y-Yukawa
and a triangle loop with y’s, S - GG’, with G,G’ =
v, W, Z. Mixing of the vectorlike fermions with the SM
leptons induces BSM scalar decays to dileptons, further
discussed in Sec. V C.

For Mg > My 4+ m, decays to vectorlike fermions and
leptons through the mixed Yukawas («'), i.e., in models A
and C, are kinematically open. In all models, the decay to
ypy is possible for Mg > 2M . through the Yukawa cou-
pling y. The tree-level decay rates for a given flavor-
specific component §;; can be written as

_ M3\?

LSy —wil;) +T(S;;— jl//i)ZZTmK’Ms( _VLZ) ;
i B AMEN 1/2+

(S = wiy;) +T(Si » ww;) = 2na,Ms (1 —7{> .
(58)

where model-dependent SU(2), multiplicities in the
final states are not spelled out explicitly. For instance, in
model B, §;; decays to 117{21//;2 + l/_/,-_ll;/jl + l/_/?l//? plus CP
conjugate ones. The loop-induced decays to gauge bosons
read

aza, M3
s, o6) - 8
F

|CGG’A1/2(T) 2, (59)

where the coefficients C; depend on the representation of
y and in the limit Mg > My, can be expressed as
Cy}, - Sz(RQ) + d(Rz)Yz,
CZZ = S2(R2) tan_2 9W + d(Rz)Yz tan2 HW’
V2
=—F5—95(Ry),
ww COSZ gw 2( 2)

Cz, = V2(S,(Ry) tan™" Oy — d(R,) Y2 tan Oyy).  (60)

4

In (58) and (59), £ = 1 and £ = 0 correspond to the scalar
and pseudoscalar parts of S, respectively, and A, /,(7) =

3(&r+ (1= &)f (7)) with

arcsin[2](/7) for z < 1,
= - 2 61
@ -1 <ln% V::;: - i7z> for z > 1, (61)

100

0.1}

I/(Ms ay)

10—4 L

1077} ‘ =
0.1 0.5 1 5 10
Ms*/AMFp*

FIG. 16. Reduced decay rates I'/(Msa,) of the flavor-specific
components of the BSM scalar S (58), (59) in model A for
a, = ay. Full (dashed) lines correspond to the scalar (pseudo-
scalar) decays; for S — w¢ they coincide. The decay rate into Zy
lies between the ZZ and yy curves.

and T = M%/4M7% [65]. In the case of one of the S,; mixing
with angle f with the Higgs, the real part of S;; can decay
through mixing with rate I'y,;, = sin® ISM, where T3M is
the decay rate of the Higgs in the SM.

In model A the main S decay channels are yy
and w7, followed by the decay to photons. Other gauge
boson modes are further suppressed, as for 73 =0
holds 1>(Cy,)?=2tan#}, > (C,;)*=tand},. The reduced
rates I'/ (M sa,) as a function of 7 for model A are shown in
Fig. 16 for a, = a,.

In models B, C, D, and F the vectorlike fermions are
charged under SU(2), and allow for decays to WHW~.
When kinematically allowed, the tree-level decays into
ypy are dominant. For model B this is shown in Fig. 17.
The hierarchy between the gauge boson decay rates in
model B reads I}, > I}, > Ty, > I3, and in model C
Iy, >TI%, >T5 ~Tj,. In model D, the S; - GG’

: ; D 1D D - D ;
hierarchies are I';, >1"7, >1I'7, >I"yy,, whereas in model F

Iy, >T%, >y > T,

For Mg < My and negligible a, one may wonder
whether S can decay at all. However, fermion mixing
induces decays to SM leptons or neutrinos, discussed next.

C. Fermion mixing

Mixing between SM leptons and BSM fermions pro-
vides relevant phenomenology. Mixing angles—in the
small angle approximation to make the parametric depend-
ence explicit—for the left-handed (6)') and right-handed
(9%’ ) fermions, with the model M indicated as superscript,
are given in Table VI. Details are given in Appendix D. We
discuss, in this order, the impact of mixing on scalar
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0.1 0.5 1 5 10
Ms*/AMF*

FIG. 17. Reduced decay rates I'/ (Msa,) of the flavor-specific
components of the BSM scalar S (58) and (59) in model B.
Full (dashed) lines correspond to the scalar (pseudoscalar)
decays. The decay rates in model B into WW and yy satisfy
5, >Tp >y > T3,

decays, modified electroweak and Higgs couplings and
decays of vectorlike leptons to Z, W4 SM lepton. The
results are important for experimental searches because
they imply that all S;; and y; eventually decay to SM
leptons, charged ones, and neutrinos, with the only excep-
tions being the diagonal S;; » GG’ decays.

1. LFV-like scalar decay

In models A and C, mixing induces tree-level decays

+ /T 108 OC ~ i KU usi
Sij = ¢;7¢] at the order K07, K'0f ~x Jan using the

angles of Table VI. These can be competitive with decays to
electroweak bosons: for instance, taking «' ~y and
for &} of order 1073 or larger they dominate over S — yy
in model A. Unless the mixing is strongly suppressed,

TABLE VI. Mixing angles of the Qp = -1 {fermions
(M) and the Qp =0 fermions (6°M) (see Table I), with
my = My + yv,/v/2. In V™, the direction that is aligned with
the vacuum (second generation) presents different mixing angles.
We have ¢S, =04, for model C and 62, = \20%, for
model D. We also find 67F = /200" =09* and 0} , =/20% .
in models E and F. The additional factor of 1/4/2 in % and
0% originates from Clebsch-Gordan coefficients (31); see
Appendix D for details.

B B 0.B 0.
Vacuum 9/2 9,13 o 0" & P
v+ Ko Ky Ky, <0, o
V2m, V2m, 2m, 2\/§’M§ Vo, v,
V- - f _KUn__ K"i Kvp KUZ,V/ KUy, &
Wemf2) L T M sEe T van
V=13 —713) o koly, A xely, KUy 0
. . V2M; M 3 VM
" 2M, 2V2M, r

K04, K0% <1077 for Mg at the tera-electron-volt scale, the
S lifetime is below picoseconds and is too short for a
macroscopic decay length.

In models B, D, and F, for Mg > M, fermion mixing
induces the decays S;; — w;; (models B and F) and §;; —

w,;¢; (model D) at the order yfg]"’;F. For My < Mp, the

decays S;; — fliff at the order yoM oM ~ y(—f;fl )? —\}g:,}
F F

are the leading ones. Using (58) again, one obtains a
lifetime of picoseconds or above for a suppression factor
yOM oY <1077, Because of its flavor dependence, the
suppression of the mixing is stronger for tau-less final
states. This could allow for displaced decays into dielec-
trons, dimuons, and e*u¥, while at the same time, those
into ditaus, e*7¥, and y*7¥ could remain prompt.

Last, for models with QO = 0 fermion decays S — y‘;?ui
are also allowed for My > M., occurring at order y&%M for
models B, E, and F and at order «’ for model C. In the case
of model E, this is the only available decay mode of the S;;
(apart from S — py if allowed), leading to below-pico-
second lifetimes for y00F ~ ykv,/v/2My < 1077, Study of
the different S decay modes into various gauge bosons or
fermions can be used for experimental discrimination of
models. The patterns of final state leptons in LFV-like’
decays, e, p, or 7 can help to understand hierarchies.

2. Impact on Z, W, and Higgs couplings

Fermion mixing gives rise to tree-level effects in
the couplings of leptons and vectorlike fermions to the
massive electroweak bosons. In the case of the Z couplings
to two leptons, the Lagrangian in the fermion mass basis
L, = ﬁ [2r (g =V 94)¢ + ¢'vy* (1 — y°)V]Z, acquires
couplings

o =M+ 3 (T +1/2) £ 3T, (62)

A

with respect to their SM values ¢f, = —1/2 + 2s2 and
¢4 = —1/2, and where Ti/_l is the isospin of the Qp = —1
component of the vectorlike fermions in each model. The
rotation angles are to be taken from Table VI according to
the chosen vacuum structure and the lepton flavor Z. In the
case of model A (C), one finds TS/" =0 (TS/,, =-1/2),
yielding modifications purely proportional to s (s ). In
models B, E, and F one finds 0 <« 0;, while model D
presents @, < @g, so that in all models the ¢’ present
modifications proportional to xv,/Mp. In models with
Qr = 0 fermions (B, C, E, and F), the Z couplings to two
neutrinos become

2Despite the different lepton flavors in the final state processes
suchas S;; — £7¢7 are, strictly speaking, LFV-like only because
flavor is conserved in the decay.
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¢ =g M+ Ay =g M+ Sgo [Ti,o —-1/2]  (63)

with ¢“M = 1/2. In model C, for which T;O =1/2, ¢
remains unaffected. Therefore, in all models Z data mainly
constrains the mixing angles proportional to kv,/Mp.
Measurements of the Z couplings to charged leptons
and the electron-flavored neutrinos demand Ag <1073
or smaller [53], which implies

a, <4 x 107 (Mp/TeV)2. (64)
Modifications of the W couplings remain also in agreement
with W decay measurements if (64) is fulfilled (see
Appendix E for details). Additionally, Higgs couplings
are modified by mixing as well. Since charged leptons
acquire mass from several Yukawa interactions, the cou-
plings of L;,, = %Z Zh in the mass basis fulfill

' M
ye = yM +5sin6; (:aﬂcos 0% —vV2—Lsin 9{;) (65)
Up Up

for model A, while replacing L <> R gives the expression
for model C. In all other models, the ¥’ term is absent.
For angles fulfilling Z vertex constraints according to
Eq. (64), Higgs signal strength bounds are avoidable for
all leptons [53,66].

3. Electroweak decays of vectorlike leptons

Finally, mixing induces decays of the vectorlike fer-
mions to weak bosons and leptons at tree level, with rates

(y? - zf?)

Mg
— LT (G R =22+ 1)

Cy? - w e

= 5 B R + (R PI= r2@ t 1/r).

(66)

where r; = M? /M=%, f~! = ¢, f° = v, and the coefficients
¢} and gy 4 are collected in Tables X and XI, respectively,
for all models. Let us discuss the decays of the chargeless
w° in model C, which occur exclusively through its
mixing unless y° — Sv via «’ is allowed. For the universal
vacuum V™ and for the flavor in which the flavor-specific
vacuum V~ points, it is important to note that the
w? is lighter than the w~' by Amc =M, — M, =
abPS sin@3,m,/2 ~ 0.4 GeV. This difference causes iso-
spin breaking in the mixing angles given in Table VI, which
induces a Cabibbo-Kobayashi-Maskawa-like misalignment
between up 75 =1/2 and down T5=-—1/2 sectors
00C —0€ ~0S(Amc/My), such that the decay y° —
=W - £'=¢Tv can take place. Assuming 0% < 0,

T T T T T T TTT] T T T
1072 g — Model A — —— Model C 3
[~ ]
RN —— —— Model B —=— ModelD 1
—— Model F
LEP
____\.\ ______________________ —
LHC 13TeV ]
\\ 7
Al 1 1 1
0.1 0.5 1 5

M, F (TCV)

FIG. 18. The electroweak parameters Y (full lines) and W
(dashed lines) for models A—D and F as functions of the BSM
fermion mass, and in comparison with the most stringent con-
straints from either LHC 8 TeV or the Large Electron and Positron
Collider (LEP, black lines), and the projected sensitivity of LHC
13 TeV (gray) taken from [68]. W constraints in models B, F
(orange dashed line) and C, D (blue dashed line) are identical.

we estimate I'(y® - ¢"~¢"v) ~G%|0C P AmEM3. /(19273 ) ~
4x107°GeV|0S|>(M£/[TeV])3. Unless 65 < 1072, the y°
decays faster than picoseconds.

For the flavors k in the lepton-specific vacuum V~ which
do not get a corresponding VEV in S, the left- and right-
handed angles have the opposite hierarchy, fulfilling

6 < 5. Since 0% = 0, the ¥ decay promptly through
Wl — W with |clf| = sin 0§ ~ kv, /V2Mp.

D. Drell-Yan

Modifications of the running of the electroweak
couplings can be constrained directly from charged and
neutral current Drell-Yan processes. Of particular interest
are the electroweak precision parameters W and Y, which
are linearly dependent on the BSM contribution to the
running of a, and a;, respectively, as [67]

Cy | M3
2! — Y (BSN' = B,,).

W, Y = A1 ——
10 M2

(67)

where C, = 1 and C; = 3/5. A lower limit on the mass of
the vectorlike fermions can be directly extracted from
experimental bounds on W, Y [68]. As shown in
Fig. 18, these require M = 0.1 TeV for model A and
My 2 0.3 and 0.2 TeV for models B and C, respectively. In
models D and F one obtains My = 0.2 and 0.3, respec-
tively, while in model E one cannot extract bounds due to
the BSM sector being uncharged under the SM gauge
symmetries. The bound for model B excludes fixed points
B, and B, which can only be matched at M ~ (0.02 TeV.
Remarkably, the fixed points that remain viable in terms of
matching are only those which present a free a,. The effect
of two-loop corrections in W, Y may be estimated by taking
the effective coefficients BT instead of B, ; in (67). In our
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matching scenarios, this typically induces relative changes
of order 1% or less in W, Y with respect to the one-loop
values, and W, Y remain positive. The smallness of these
corrections is due to the fact that all couplings at low scales
present values of order 1072~1073, which are suppressing
the two-loop effects, while B, | are typically of order 1 or
larger.

E. Anomalous magnetic moments

The measurements of the electron and muon anomalous
magnetic moments are in tension with SM predictions,
offering hints for new physics. In the case of the muon, the
long-standing discrepancy amounts to [53]

Aa, = a;® — ai™ = 268(63)(43) x 1071, (68)

Adding uncertainties in quadrature, this represents a 3.5¢
deviation from the SM, while recent theory predictions find
up to 4.1c [69,70].> For the magnetic moment of the
electron, recent measurements lead to

Aa, = ag® — aSM = —88(28)(23) x 10714, (69)
corresponding to a pull of —2.4¢ from the SM prediction
[75,76]. For earlier BSM considerations, see Ref. [77].

From a model building perspective it is important to
understand which new physics ingredients are required to
explain the anomalies (68) and (69) simultaneously. Given
that the electron and muon deviations point in opposite
directions, it is commonly assumed that an explanation
requires the manifest breaking of lepton flavor universality.
BSM models which explain both anomalies by giving up
on lepton flavor universality have used new light scalar
fields [78—83], supersymmetry [84—87], bottom-up models
[88,89], leptoquarks [90,91], two-Higgs doublet models
[92,93], or other BSM mechanisms which treat electrons
and muons manifestly differently [94—102]. In the spirit of
Occam’s razor, however, we have shown recently that the
data can very well be explained without any manifest
breaking of lepton universality [40], which is in marked
contrast to any of the alternative explanations offered
by [78-101].

In this and the following subsection, we detail how the
models A, B, C, D, and F induce anomalous magnetic
moments at one-loop, and why, ultimately, only models A
and C can explain the present data. Note that model E does
not appear in the list, the reason being that the charged SM
leptons do no longer couple to BSM fermions after
electroweak symmetry breaking. The setting previously

The possibility of rendering Aa, insignificant has recently
been suggested by a lattice determination of the hadronic vacuum
polarization [71]. Further scrutiny is required [72] due to tensions
with electroweak data [73,74] and earlier lattice studies.

(b)

FIG. 19. Contributions to Aa, (£ = e, u, t) with a lepton chiral
flip (cross on solid line) via & (a) or S;, exchange, with i = 1, 2,
3, only present in models A and C (b).

put forward by us in [40] corresponds to model A and
model C of the present paper.

Specifically, new physics contributions to Aa, arise
through the one-loop diagrams shown in Fig. 19. In the
limit where M is much larger than the mass of the lepton
and the scalar propagating in the loop, the new physics
(NP) contribution typically scales as

aI;IP "y (70)

where m, denotes the lepton mass and 1 = k, k¥’ is one of
the mixed Yukawa couplings; see Appendix B for details.
For couplings «/, k of comparable order, the largest con-
tribution comes from the latter, which couples the vector-
like fermions to the lighter scalar (the Higgs). The
parameter space a,, My compatible with (68) is shown
in Fig. 20. As obvious from (B2), Eq. (70) is manifestly
positive, and cannot account for Aa,. For the muon
anomaly (68), the coupling oMz =~ (1.4 £+ 0.4) TeV~2
in models A, C, and D as well as aKM;2 &
(4.2 £1.2) TeV~2 for models B and F is required. This
is, however, ruled out by the constraint (64). We learn that

1 - aKNP
----- (IKNP*
0.01}
S
Z-ll excluded
-
10-6f | | | ‘ |
0.05 0.10 o 1 | |

My (TeV)

FIG. 20. Requisite values of o, to account for Aa, (68) for new
physics contributions scaling as (70) (full line) and (71) (dotted
line). The shaded region is excluded by Z-data (64).
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1

FIG. 21. Chirally enhanced contribution to the anomalous
magnetic moment of a lepton ¢ through scalar mixing (cross
on dashed line) and a y, chiral flip (cross on solid line).

the models B, D, E, and F cannot accommodate either of
the present data (68) and (69). Models A and C, on the
other hand, have an additional diagram from the S
exchange, Fig. 19(b). In fact, since the S field is a matrix
in flavor space the unobserved flavor index of the BSM
fermion w; in the loop makes this in total Np =3
contributions. The external chirality flip again induces a
contribution quadratic in lepton mass (70) which can
account for (g — 2) ,» since the coupling to the scalar singlet
k' is much less constrained than the one to the Higgs [40].

Certain NP scenarios, notably supersymmetric ones, can
evade one power of lepton mass suppression in (70) by
having instead the requisite chiral flip on the heavy fermion
line in the loop, as in Fig. 21, such that

e (71)

opening up the possibility for larger contributions to g — 2,
and dipole operators in general. For g — 2 we explore this
further for models A and C in Sec. V F. Another application
is electric dipole moments, discussed in Sec. V G.

F. Scalar mixing and chiral enhancement

The scalar potential involving the SM and BSM scalars
H and S and the various quartic couplings and scalar mass
terms has been given in (21). To investigate the prospect of
chiral enhancement for dipole operators, such as those
responsible for (¢ —2), EDMs, or 4 — ey, we need to
investigate the ground states. Using the methods of [12,51]
two ground states V* have been identified in (22), includ-
ing the conditions for couplings. The ground state V*
respects flavor universality in interactions with the SM
because it breaks SU(3),, x SU(3),,, — SU(3);,, due to
the diagonal VEV (S;;) = \”/—“55,- + Conversely, V™~ sponta-
neously violates flavor universality because it breaks
su(3),, xSu(3),, to SU(2), xSU(2),, xU(l) by
only allowing a single diagonal component k to pick up
a nonvanishing VEV (S;;) = \%51‘1}5,‘1%

If both scalars S and H acquire a VEV, the portal
coupling 6 induces a nondiagonal mass term in the potential

which allows the scalars to mix. Together with both
BSM Yukawas k, k¥’ chiral enhancement can occur in
models A and C. A corresponding contribution to g — 2
is shown in Fig. 21. First, we study the case V~, where a
single diagonal component of S generates a VEV. The S;
component is chosen in order to target the generation i of
leptons in the term «'Tr[y; SE]. We define

h* 1
H= . s Sii:_ Sl-,--i—isl‘-‘i—f-vs . 72
<%(h+thc+vh)> ﬁ( ) (72)

The mass matrix of the entire scalar sector is diagonal
except for the mixing of s;; and h. Concentrating on this
subsystem, the mass eigenstates /1, i, can be expressed in
terms of the mixing angle f as

<h1> _ < co.sﬂ sinﬁ) (si,»>’ (73)
hy —sinf cosp h
where

tan 2 = 0 Zh(1 4+ Om2/md));  (74)

VA(u + v) mg

see Appendix D for details. Neglecting for the sake of this
discussion the mixing induced by the scalar VEVs in the
fermion system, the BSM Yukawa Lagrangian in the scalar
mass basis reads

‘Cﬂ = —l/_/][(K'SlnﬁéjkPL +KJ Cosﬁéijé,-kPR)hl

+ (kcospé P, —«'sin 6,6, Pr)hy]¢ +Hec.,  (75)
where we have again assumed «,«’ real and K = k6.
Provided that the mass eigenstate h; is much heavier
than h, and y, and in the limit My > m,, , the leading
contribution to (g — 2), reads, for £ = i with (S;;) # 0,

/
- my KK, )
R TR TR

(76)
see Appendix B for details. This contribution is switched
on only when both left and right chiral couplings of the
lepton to the same scalar are present, a condition which is
met by scalar mixing, and which comes with an enhance-
ment factor £ (%£)1/2| sin 2| with respect to NP contri-
my \ay
butions such as (70). ag_ can have either sign.
If the vacuum is aligned in the muon direction, (g —2),
benefits from chiral enhancement (76). Figure 22 shows for
which values of M, |sin2p| the contribution to (g —2),
equals Aa, (68) for some benchmark values of ,/a.a.
Also shown is an upper limit on the mixing angle sin 2 <
0.2 from Higgs signal strength measurements [62].
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FIG. 22. The mixing angle |sin2f| as a function of M that
explains the (g — 2) , anomaly within its 1o uncertainty (68) for a
muon-aligned vacuum V= (76) and for different values of |/a,a,
with the upper bound from Higgs signal strength measurements
[76]. For VT the corresponding, requisite value of |sin2/'| is a

factor of /3 larger (78).

Next we consider the case V*, where the BSM VEV is
universal in all flavors. Here mixing occurs between the h
and the three s;; states acquiring the VEV. However, two of
the mass eigenstates contain no component in the #
direction, and thus only mix the s;; states within them-
selves. The two normalized mass eigenstates that have
nonvanishing components in the % direction are

1
hy' =——=(cosf's1;.c088's2,c0s f's33,V/3sin g h),
V3
/:__1~ / B B _\/_ /
h, \/g(smﬂs”,smﬁszz,smﬂs33, 3cosf'h). (77)

Hence, the mixing pattern with £ is identical for all s;;. The
enhanced contribution to the anomalous magnetic moments
affects all lepton generations and reads

- my, kK ,
a, =——————=sin2p. 78
g 2v/3M 167° g 78)

As a}f_, it can a priori have either sign and can accom-
modate future (g — 2), data by adjusting kx'5/M - together
with the quartics. The parameter space ', M that fits Aa,

is, up to a factor of /3, the same as for V~, shown in
Fig. 22, and we note that this factor cancels with the one for
the angle f’, which obeys

V36 m),

for v = 0 and pg4o = 0; see Appendix D for details.
Owing to (78), we emphasize that fixing the parameter
sin2f in V™ to explain Aa, in (68) also induces a

tan 28 = (14 O(m?/m?)), (79)

contribution to the anomalous magnetic moments of the
electron and the tau,

al" = (m,/m,)a}” ~1.4x 107", (80)

al” = (m;/m,)a)" ~4.5x 1078, (81)

The former, however, is in conflict with the data for Aa, in
(69), both in magnitude and in sign, while the latter is 4
orders of magnitude away from present limits on Aa, =
a;® — aSM [53].

On the other hand, larger couplings «'/Mp[TeV]~
O(10) allow for a simultaneous explanation of both data
points (68) and (69). This mechanism uses the diagrams in
Fig. 19(b) to generate Aa,, and the chirally enhanced
diagram of Fig. 21 to generate Aa,, without introducing
flavor structure explicitly, and irrespective of the vacuum
being flavor blind (V') or electron-aligned (V- with
¢ = e). Moreover, the underlying mechanism is not fine-
tuned and could, in principle, accommodate a wide range of
deviations Aa, and Aa, different from present data.

Since the underlying Lagrangian does not break lepton
flavor, this mechanism leads additionally to a prediction for
the deviations of the tau anomalous magnetic moment Aa,.
Using the data (68) and (69), our models predict

AaY" ~(7.542.1)x 1077, (82)
if the vacuum is flavor blind, or
Aa¥l” ~(8.1+22)x 1077, (83)

if the ground state is electron-aligned, respectively. Further
details of this scenario can be found in [40].

Within our set of models, we conclude that the muon
anomaly (68) alone, or the electron anomaly (69) alone, or
both anomalies together, can only be explained by models
A and C.

G. EDMs

Unlike in the remainder of this work, here we allow the
BSM Yukawas to be complex-valued. If the portal inter-
action 0 is present, in models A and C a relative phase
between k and x’ induces an electric dipole moment (EDM)
of the SM leptons through the chirally enhanced one-loop
diagram Fig. 21. The EDM-Lagrangian can be written as

Loy = dg(—i/2)0,,ysF*E, (84)
where F* denotes the electromagnetic field strength

tensor and d, the lepton electric dipole moment with mass
dimension —1.

095023-27



HILLER, HORMIGOS-FELIU, LITIM, and STEUDTNER

PHYS. REV. D 102, 095023 (2020)

For model A, and in the large-M limit, we find

dy sin2fIm[c*«’]
e 4Myp 167

(85)

where the flavor-specific vacuum V™ is assumed with ¢
denoting the flavor distinguished by the ground state
((S¢e) #0). Here, an EDM arises solely for the lepton
flavor selected spontaneously by the vacuum. In turn,
assuming the vacuum V™ and provided that the CP-phases
are lepton universal, we find instead

d/"  sin2f Im[x*x]
e 4/3Mp 162%

(86)

for any flavor, and all EDMs are predicted to be equal. The
same expressions (85), (86) and results hold true for model
C except for the replacement k*x’ — kx’*.

The current experimental bounds on d, and d,,

|d,| <1.1x107% ecm,

d,| <1.5%x107" ecm, (87)

by the ACME and Muon g-2 collaborations at 90% and
95% C.L. [103,104], respectively, imply the bound

| sin 28Im[k*k’]|/ 1622 < 2.2 x 107'2(M/TeV), (88)

from the electron data, while the bound from muons is 10
orders of magnitude weaker. Comparing this to Aa, (68)
induced by the same mechanism (see Fig. 22), the
CP-phases must be suppressed at the order 10~7 (d, bound)
and are unsuppressed by the muon EDM data. If the
lepton EDMs are induced by a lepton flavor nonuniversal
mechanism, by flavor-dependent CP-phases, or in a vac-
uum V™~ pointing in the muon direction, the electron EDM
bound could be bypassed and the muon EDM could be as
large as d, ~ 2.5 x 107> ecm given (68) with order one
phases. Interestingly, this is in reach of future experiments
|d,| ~5 %107 ecm [88].

H. Charged LFV processes

In the setup with Yukawa interactions (3), (7), and (8)
flavor is conserved. While there is intergenerational mixing
in Yukawas with S, no charged LFV proper occurs; see
footnote 2. Here we envision a situation beyond (8) and
allow for additional flavor off-diagonal couplings. Our aim
is to see whether and how well such variants can be probed
in LFV processes.

The #; — ¢;y decay rate induced by a Higgs-fermion
loop in all models except the singlet model E for m,, m;, <
My and m; < m; can be written as [105]

—
T

‘ 0.01r
S
1074
10-6 - o
0.1 0.5 1 5 10
Mg (TeV)
FIG. 23. Allowed regions (shaded) for ot’, o, and Mp

from LFV decays (91). Because of the proximity of upper
limits on B(z — ey) and B(z — uy) only the latter is shown.
The projected sensitivity of the MEG-II experiment [106] is
shown by the solid gray line. The dashed gray line denotes the
Z — £¢-constraint (64).

5
o M

a .
[t —Cy) =— (o , 89
(€1~ £ = g Wl P (59)
with
ij 1
A = 22Kmi’<mj7 (90)

where m corresponds to the flavors of the BSM fermion in
the loop; see Appendix C for details. In (90), a flavor
pattern proportional to x6;; plus small off-diagonal entries
of the order ke is assumed that is responsible for charged
LFV. Hence, a « ace, and I'(¢; — ¢y) arises at order €.
Figure 23 shows how present bounds [53]

B(u — ey) <4.2x 10713,
B(t — ey) <3.3x 1078,
B(t — uy) < 4.4 x 1078, (91)

at 90% C.L. and projected bounds B(u — ey) <2 x 1071
from the MEG-II experiment [106] constrain of’, &'
depending on M. Also shown for comparison is the
constraint on diagonal couplings from Z data (64). While
present constraints on the off-diagonal entry ok‘ (blue
line) are comparable to the diagonal ones from Z — £7,
the ones on o and ¢ (red line) are significantly weaker.

LFV decays into three lepton final states are also
possible, receiving contributions from both penguin and
box diagrams with «, ¥’. We estimate [107]

3(4r)’ag (o)
8G:. M}

B(u — eee) ~ B(u— ev,v,), (92
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which is €® suppressed as (89). Present bounds from the
SINDRUM collaboration B(u — eee) < 10712 [108] give
o’/ (Mp[TeV])? < (2 —3) x 107*. This is indeed compa-
rable with y — ey bounds in Fig. 23, yet not more
excluding. The parameter space will be further probed
by the Mu3e experiment, which aims at a reach of
B(u — eeg) < 107'° [109]. For 7 decays to three charged
leptons, present bounds pose loose constraints on off-
diagonal couplings, & /(M z[TeV])? <0.1.

On the other hand, u to e conversion processes
have a limit in gold nuclei on the conversion rate
(CR) of CR(u —e,Au) <7 x 10713 at 90% C.L. by the
SINDRUM 1II collaboration [110]. In our models the
conversion process is possible through Z and y penguin
contributions which receive €? suppression. We estimate
CR(u—e,Au) ~O(10712)(ak/107%)% /(M ¢[TeV])* [111],
in close competition with y — ey bounds. The future
Mu2e experiment [112], with expected sensitivity
CR(u—e,Au)<6.7x107"7, can improve the bound from
SINDRUM II on a¢ by about 2 orders of magnitude.

Along the lines of the anomalous magnetic moments,
scalar mixing induces chirally enhanced contributions to
LFV dipole operators if k contains nonvanishing off-diago-
nal elements. For instance, the rate for 4 — ey becomes

X,

F(,u—>ey):64(

Ke,K' sin 2ﬂ> 2 my 03)

1672 M%’

in the same approximations as in (76) and V'~ pointing in the
muon direction. (There is a similar contribution induced by
K. Which requires a scalar VEV in the electron direction.)
Constraints on o<, s = k,,k’ sin 23/ (16x?) from the chirally
enhanced amplitude are stronger than on ok by a fac-
tor m,, /3M .

VI. CONCLUSIONS

We have studied SM extensions with three generations of
vectorlike leptons and a new singlet matrix scalar field,
inspired by asymptotic safety. The main focus has been on
new physics implications for settings where the running
couplings remain finite and well-defined at least up to the
Planck scale, and possibly beyond. A key novelty over
earlier models are Higgs and flavor portals (Table I) which
are explored in depth. Within this setup we show that the
number of new fermion generations required for asymp-
totically safe or Planck safe extensions can be much lower
than thought previously.

Using the renormalization group, we have provided a
comprehensive study of six basic models. All of them are
found to be well-behaved up to the Planck scale in certain
parameter regimes, owing to Yukawa couplings linking SM
and BSM fermions with the Higgs (Figs. 7-10). The TeV
scale initial conditions for BSM couplings (Fig. 13) illus-
trate parameter regions which do not run into Landau poles

and vacuum instabilities or metastabilities. Similar results
are found for models which admit a secondary Yukawa
coupling between SM and BSM fermions and the new
scalars (Figs. 11, 12) with a corresponding critical surface
of parameters (Fig. 14). Very explicitly we learn that the
requirement for safety up to the Planck scale provides a
testable selection criterion in the BSM parameter space.

A conceptual novelty is the use of both top-down and
bottom-up searches to find fixed points and Planck safe
parameter regions. On the technical side, we have retained
the RGEs for the gauge, Yukawa, and quartic couplings up
to the complete two-loop order, extending upon previous
studies. New features are walking regimes, and new
patterns for fixed points are due to a competition between
Yukawa, portal, and gauge couplings. Theories where the
running of couplings can be extended to infinite energy are
of interest in their own right. Our asymptotically safe
extensions are the first ones that achieve this for the key SM
and BSM couplings, and in accord with the measured
values of the gauge couplings and the Higgs, top, and
bottom masses.

Our models also offer a rich phenomenology due to their
close ties with the SM through Yukawa and Higgs portals.
Genuine features are LFV-like signatures in scalar decays

Sij = ¢e]

also with displaced vertices for sufficiently small coupling.
The vectorlike leptons can have exotic charges that can lead
to displaced vertex signatures. The models can be exper-
imentally probed at colliders (Fig. 15), specifically through
yry and Drell-Yan production, and additionally, at eTe™ or
uu~ machines, through single w production [113,114].
The BSM scalars can be pair produced at lepton colliders,
orin pp, if portal effects are present. It would be interesting
to check whether existing new physics searches at the
LHC in lepton-rich final states lead to constraints on model
parameters. As no dedicated analysis for the models here
has been performed, however, this requires a reinterpreta-
tion of existing searches that is beyond the scope of
this work.

Finally, we comment on outstanding features related to
lepton universality and low-energy probes for new physics,
i.e., measurements of the lepton’s magnetic or electric
dipole moments. Except for the breaking by SM Yukawas,
lepton universality is manifest in all our models and may or
may not be broken spontaneously by the vacuum.
Irrespective of the ground state, however, we find that
two of the six basic models can explain the electron
anomaly alone, the muon anomaly alone, or both anomalies
together. The latter is rather remarkable in that it also entails
a prediction for the tau anomalous magnetic moment [40],
whereas any other BSM explanation of the muon and
electron anomalies requires a manifest breaking of lepton
universality [78—101]. In addition, provided the vacuum is
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flavorful and points into the muon direction, we find that
the electron EDM bound can be bypassed with a sizable
muon EDM at the level of ~1072? e cm.

We look forward to further exploration of asymptotically
safe model building and searches.
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APPENDIX A: TWO-LOOP g-FUNCTIONS

The following Appendixes collect technical details and
useful formulas used within the main manuscript.

In this Appendix, we detail S-functions for the models
A-F up to two-loop order. The results are based on [42—48].

The two-loop gauge and one-loop Yukawa RGEs can be
expressed as

ﬁi:—a%<3i— Z Cija; + Z Dinan>7

Jj=gauge n=Yukawa

:Bn = an( Z Enmam - Z Fm'ai> >
m=Yukawa

i=gauge

(A1)

corresponding to (13) and (14) in the main text. Some
of the loop coefficients are model specific and are
listed in Table VII, while others are universal or can be
expressed in a general way in terms of the representation R,
of the vectorlike fermions under SU(2), and their hyper-
charge Y. In what follows, C,(R,) denotes the quadratic
Casimir invariant and S, (R,) the Dynkin index (see [11] for
details).

For the hypercharge coupling, these generic coefficients
read

41
B, = -3~ 8d(R,)Y?,

199
Cll = T + 24d(R2)Y4,

C12 - 9 + 24C2(R2)d(R2)Y2,

88 17
Cis=75" =3 Dy =3.
Dy, = 36d(R,)Y? (A2)
For the weak coupling, one obtains
19
By = e 88,(R),
Cy1 =3 +245,(Ry)Y?,
35
Cp=—+ 1285,(R,)(2C5(R,) 4 20/3),
Cy3 = 24,
Dy, = Dy, =3,
Dy, =365;(R,) (A3)

Finally, for the strong coupling the coefficients are inde-
pendent of the BSM sector

B3 = 14, D3l - 4, D3h = 4,
11
C31 - ?, C32 - 9, C33 - —52 (A4)

For the Yukawa coefficients, we note that only @, couples
into the one-loop running of the top and bottom Yukawas
B see Tables VII. Further loop coefficients for Yukawa
couplings at one-loop are given by

E,;=Ep =9, E,;, = E, =3,
g1 5
11— 6’ bl_6s
9
Fo=Fp=z7. Fi3 = Fp; = 16. (AS)

In a similar vein, there are no one-loop contributions from
as,p, to fy, and . For p, one finds

TABLE VII. Model-specific loop coefficients for the gauge and Yukawa beta functions (Al).

Model Dl)c le’ D2K DZK’ EIK EhK EyK Eyk’ EKK Fkl FK2 EK’K’ Ek’y EK’K FK’I FK’Z
A 15 36 3 0 6 6 2 8 9 15/2 9/2 8 8 0 12 0
B 45/4 0 33/4 0 9/2 9/2 1)2 0 23/4  15/2  33/2

C 15 18 3 18 6 6 1 10 9 15/2 9/2 10 10 0 3 9
D 39 0 3 0 6 6 1 0 9 39/2  9/2

E 3 0 3 0 6 6 2 0 9 3/2 9/2

F 9/4 0 33/4 0 9/2 9/2 1/2 0 23/4  3/2  33/2
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TABLE VIII. Model-specitic loop coefficients for the quartic and Yukawa beta functions (A9), (A10), and (A12).

Model I, T K K, Ky, H HY,, L}, L5, Ly, L,
A 12 6 75/4 -33/2 9/4 10 14 12 0 12 0
B 9 15/8 225/16 -51/8 -21/16 47/32 39/8 15/4 15/2 9 18
C 12 6 75/4 -33/2 9/4 10 16 12 0 6 6
D 12 6 219/4 39/2 9/4 10 16 36 0 30 6
E 12 6 3/4 3/2 9/4 10 14 0 0 0 0
F 9 15/8 9/16 57/8 —21/16 47/32 39/8 0 15/2 0 18
E,, =23+ d(Ry)). while those which are model specific are summarized in
Fo_ y? Table VIL
’n ’ For the scalar couplings at one-loop, it is convenient to
Fy, = 12C5(R,). (A6)  use the definition
Loop coefficients for . which are universal in all models
are given by _ ay +a, modelsA,C
a, = { . (A8)
| ay models B,D,E,F
Ey=Eq =6,
E. =3, . .
In this convention, the one-loop RGEs for the scalar
Ew = F3 =0, (A7) quartic couplings read

pY =M 492 + Laga, — Jha2,

1 39 1
ﬂél) = a;|das + 12a,; + 24a, + 40a,, + 6a, + 6a; + EIKaK +2d(R,)a, — S =50 = gl,(a ay,
A =240, (a, + a,) + 2d(Ry)a, (2, — &),
B = 5262 + 120, (a, + 4a,) + 262 + 4d(R,) & a, . (A9)

Here, ﬁ i ) denotes the one- loop p-function of the Higgs quartic in the SM. The one-loop coefficients /, and J%, are
tabulated in Table VIIIL.

At two-loop order, running of the couplings «,,, , is modified via

2) SM(2)

9 27 15 58

b = b +9a3 — = Jhat ——La|a,+a ——-a, (D) + 3Dy0)a, + 6S5(Ry)a3 +—Y?d(R,)a?
o, a, 4 24 9

9 27 15
o _ b e [ —
a a + 9a; 1 o 7 e < +a, — 77 )

1
/}512> = ﬂjM(z) —90a3a; — 36a; — 18d(R,)a,af — 121, a5 — = Jhata; —

L2
4
5 » 2., 2
2 (D) + 3D5a) + 68,5 (R;)a; — 9 Y?d(R,)a

— Loy + 3Jﬁ,<(xya£ +3H% o}

2 12
5
- L} oo} — LA aya? + = 5 (D) + 3Dy)aa; — Kt o, — Ky ayapa, — Kby d3a,
+ 3052(R2)(7!2a;L + 10d(1€2)Y2(11(X]L - 4d(R2)Y2(a1 + (12) — 452(R2)(al + 3(12)(12, (AIO)

using coefficients in Tables VII and VIII, and /}t b. /1 ) denote the two- loop beta functions of the SM.
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TABLE IX. Model-specific two-loop coefficients for the BSM Yukawa beta functions (A11).

Model P'EK PZK Q‘lK Q%K ’l<y SK‘ Il(x ’1<2 R,1<1

A 19/2 24 37/4 51/4 6 225/8 279/8 9/2 721/12
B 57/32 59/8 37/16 -101/16 6 1343/32 785/32 -3/2 1249/12
C 5 24 55/8 33/8 15 225/8 279/8 9/2 589/12
D 5 24 95/8 33/8 27 225/8 831/8 27/2 4541/12
E 19/2 24 17/4 51/4 0 225/8 123/8 -9/2 35/12

F 57/32 59/8 17/4 —101/16 0 1343/32 205/32 3/2 35/12

Two-loop RGEs of ay ., read

ﬂ:i) = P~ (14 2d(Ry))at, — 2590+ d(Ry)(89  27d(Ro) et + Ry
_ é [49 + d(Ry)(39 — 19d(Ry))]a2 + Of, a1, + 05,00, + Oy, + Oy
+ 15—20(1 [17a; + Sa;] + %(12 la, + ap] + 40a3[a, + @] — 65,(Ry)[1 — 2d(R,)] o,
- 277 [ + 2] + 3y, — Jh I (27, + 27ay, + 48ay) e,
- 12a,a;5 + 9af + 12a3,

ﬂj) = % +2Y?(20d(R,) — 3)} Ya? — {227 +6C5(R,) — 4OS2(R2)} Cy(Ry) a3

—12Cy(Ry)Y*aya; + [48 + 10d(R,)] Yoy &, + [48 + 10d(R,)]C2(Ry) @,

1
+ 8[5az + 5a; + 6a,a,] + 20} — 16(5a, + 3a,)ax, — [5 + 18d(R2)} a
, , , 3
— P;(K(X% -+ Q{Kal(lk + Qékaza,( — W (2d(R2) + l)ayaK,

P nn 257
a
y
- 12C2(R2)Y2a1a2 + [48 + 10d(R2)}Y2C(15¥y + [48 + 10d<R2)]C2(R2)6¥2&,
1
+ 8[5a; + 5a; + 6a,a,] + 20} — 16(5a, + 3a,)ax, — [5 + 18d(R2)} a

y 2 Yy Yy
— Py + Q1Kala;< + Q2Ka2a1<

—274R)[18a, + 18ay, + 3(2d(R,) + 1)a, + 16as]a,. (A11)

also using the loop coefficients tabulated in Table IX.
Finally, the two-loop contributions for the BSM scalar quartics are
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B = —336a3 — 105602a, — 688a,a> +

[Y2d<R2)a1 + 382 (Rz)az} [ZOau - 8(3‘)]&}

1 1
— 48d(Ry)a, (a, + a,)a, + 2d(R,)[6a, — 9, + 4a,)a, — 2003a, + I a.a {3 a, Ea“}

B = —288a3 — 688c2a, — 1056a,a>

1
—24d(R,) [aﬁ +da,a, + 33

+4[a1+3a2—3at—3ab——

]a + 2d(R,)[4a

8160{ + 20[Y2d(R2)a1 + 352(R2)(12]

- 9a, +2a,)&; - = Laa,a,

2

Lo, —5a, — 2055} a(%,

2 557 15 45 85 25
,5((; ) = [4—8 + 5Y2d(R2)} atag + — g G100 + [_1_6 + 15S2(R2)] a3as + [120{, +— Tk }alaé

45 N

T la, + aplaras + 40[a, + aj|azas + 10[Y2d(Ry)ay + 38, (Ry) )y as
27 5, 5 Co1a 17 2

-5 la; + aplas — 2la,a,a5 — d(R,)[48a, + 80a, + 9, |ayas — ﬁl,(a,(aya(; ]2.1,(,((1 as

6 1
—200 {aﬁ + g%% + a%] as+ 12 {2051 + 6a, — 6a, — 6y, — EIKaK - 505,1} a0
+ oy + 3y — 120, — 120, — 144a, — 240, — I,a, — 4d(Ry)a, — 19a; — 12a;]a}

1511 5
Sy ngxal + Doy X5+ 5

— 12Y%d(Ry)aja, — 36

with  model-specific coefficients tabulated in

Table VIII.

loop

APPENDIX B: BSM CONTRIBUTIONS TO g-2

Results for weak corrections to g —2 in general gauge
models can be found in [115]. In this work the relevant
BSM contribution comes from a neutral scalar-y loop.
Using the general Yukawa Lagrangian with chiral projec-

tors Prjp = (1 Fs5)/2

‘CY = (CLIPL +CR1PR)fH+HC (Bl)

where y is a fermion with charge Qr = —1, H is a neutral
scalar, and #; is a charged lepton of flavor i,

1

N /1 3 (et + k) (¥ = x%) +%chicRix2

a:

D8 T i (MR = m)x+ miy (1= )
m? 1
= 16ﬂ.zlm2 |:§ (C%i + clzei)ll(M%/m%{)
H

Mg
+ ?CLiCRiIZ(M%/m%I)] ; (B2)
where we assumed real couplings c;;, cg;. For m; — 0 in
the integrals with t = M%/m? one obtains

5 ~
[5 d(R,) — 4] Sy (Ry)ada, — L‘fyalayak - Lgyazaya,(,

Loy, + HKKya ay

(A12)
|
=61 +31+6tIn(r) +2
hin = 3(1—1)* ’
L) = 2 —4t+2In(t) + 3 (B3)
=y

The limits t — oo (heavier fermion) and r — O (heavier
scalar) yield

1 m? 1 M
NP.F _ 2 2 F
T zMz {6(%1"*01&)"‘?

CLiCRi:| s
1

1 m?[1 M, "
?IPH — ml [3(6%1‘4-0%1')—%@[@,-(21nm—£+3>],

(B4)

respectively. For =1, the integrals are well-defined,
I,(1)=1/6, I,(1) =2/3. The presence of both Yukawas
cri» Cri # 0 switches on the rightmost terms in (B4) with
enhancement factors Mp/m;.

APPENDIX C: LFV BRANCHING RATIOS

Here we provide the ¢; — ¢}y decay rate mediated by
Yukawa interactions with a neutral scalar for a general
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Lagrangian (B1). We consider only the cases where either
the fermion F or the boson H propagating in the loop are
much heavier than the leptons. If the interaction is purely
left- or right-handed (either ¢;; = 0 or cg; = 0 for all i), the
decay rate is [105]

F(Lﬂi*fﬂ’)

Qa,
= 4;13 (mf —m3)* (m} +m3)(cxjcx:)*|Fi (Mz/mg) ],

1

(C1)
where X = L, R, and F(¢) in the limit m?, mj2 — 0 reads

tIn(z)
S 1)4]. ()

i 2—5-2
Fy(1) {

T 1622my [ 12(— 1)

Taking 7 — oo and m; > m; one recovers Eq. (89). For a
scalar more massive than the fermion F, taking ¢+ — 0 and
m; > m; we obtain

A,

M = 2m) = 144 (

(C3)

*
cxcxi\2 m?
167> ) m},’

If both left- and right-handed interactions are present, the
leading contribution reads

aE
D(¢; = €jy) = 55 (mf = m]) M| F> (M7 /mi)
X [(C;chu)z + (CZJ‘CRJZ}, (C4)
with
i t—-3 In(t)
Fy(t) = . (O8]
2(1) 1622m?2, [2(;—1)2 (t—1)3} (©5)
For t — 0, 1 = oo and m; > m; yields, respectively,
a CRiCLi\? cLicri\2| mi
Ind £ £.y) = =% J J i ,
(=) 16[(167:2) +(167z2> ]M%
a, [ (CricLi\? | [CLiCRi\?
(¢ - Cy) =2 || =2 .
@i=dm =75 [(16;;2) +(16ﬂ2)]
mM% (3 M3\?2
: S+In—£). C6
< (G (0

Here we neglected terms proportional to (¢ i xi)?; assum-
ing (cx;cxi)*=0(cicLicijcri)?s the results (C4)—(C6)
are valid up to corrections of order m;/Mp. The results
apply for the BSM Yukawa couplings with the physical
Higgs in models A, C, D and in model B for a — a /2.

APPENDIX D: MASS MATRICES AND SCALAR
POTENTIAL

The VEVs in terms of the parameters of the potential
(21) are obtained as

2 5 ,,2
2 Hs =3 H
Uy = 2
u—+nv—ng
2 on 2
H =5ty Hs 1 v?
e e L
_n4(u+m;)

with n =1, 3 for the vacuum solutions V- and VT,
respectively. If the trilinear term pug4. is switched on, for
V+ one should replace u? — p? + pgevs/V/2 and solve
accordingly for v,. A detailed analysis of the vacuum
structure can be found in [116] for a similar case. Before the
scalars acquire these VEVs the potential is symmetric
under the transformation S—U,, SU .f,R, where U; are 3 x 3
unitary matrices, each with 9 degrees of freedom. In the
case of a muon-aligned V~, the VEV in s,, breaks this
symmetry into U(2),, x U(2), x U(1). The number of
massless modes in Sisthen2x9—-2x4—-1=9.In V™,
the universal VEVs break U(3),, x U(3),, = U(3) i
yielding 9 Goldstone modes as well. We assume that
additional mass terms prohibit the presence of massless
Goldstones. The symmetries involving the Higgs are the
same as in the SM, rendering three massless states, which
are eaten by W+, Z.

The S — H mixing in the mass Lagrangean V™ in
vacuum V'~ is obtained from

o?v ) ) 1
=m} = —p + 3031 + = 6v?
Dhoh gy, T RTINSO
_ 2(u+ o)t = b3
C (utv)—862/40°
o*v ) ) 1
— =m? = —p2 +302(u+v) + =602
8S228522 S.H=0 ( ) 2 h
2 -
=08 /4(u+ )’
>’V 5
= my, = 65V
ahaszz S.H=0 sh sthn
)
= —————mgmy, (D2)
2/ AMu+ v)
Thus, & and s,, mix according to
mass 1 m% My, S22
VS (syp,h) = 5 (s22.h) ) . (D3)
2 mg, mj h

with eigenvalues
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1
m; +mhi\/m —m?2)? +4m?,].

my = 2[

(D4)

The masses of the fields which do not get a finite VEV are
obtained as

o*v 1
7 :m?:—y§+v§u+—5vﬁ
i/ 1S, H=0 2
— u 2 f H—
=—— ori=1,3.
2(u+ ) s l

(Ds)

Note /2 is positive since u < 0 for V=~ (22).
The mass eigenstates /1, h, can be expressed as in (73)
in terms of the angle f, where

2mg, 26,0

m—ml -l

tan 2 =

(Do)

Expanding for m;, < my yields (74).
The VEVs of the § and H scalars induce mixing
between the BSM fermions and the leptons. Defining

fx = (exs px, Tx Wx1,Wx2:wx3)'s X =L, R, the corre-
sponding mass mixing term for model A can be written as

JiMifr= \/EELY eR+\/§KeLWR+\/§KWL2ﬂR

vS — —
+— +M , D7
\/5 Y12V R2 FYLYR ( )

where %Ye = \”/—”Ediag(ye, Yu»Ye). Diagonalizing M fM}
and M;M ¢ to get rotations for f; and fg, respectively,

with m, = M + %y reveals mixing angles at the order

/
64 ~ ﬂ, ~ KOs (D8)
t \/EM F \/imz
for £;; —w;; and up —yg,, respectively. The mixing

angles (up to order of magnitude) for the different models
are given in Table VI. In models B, C, E, and F, where the y
multiplets contain Qr = 0 states, left-handed rotations are
introduced between the v, — /.

In V', where all diagonal components of S acquire a
VEV, one obtains (i, j: no sum)

882(")/}; S =m}? = —p* + 3viA +§5v§,
323&1- S,H=0 =m® = =g+ i Qu+ 5v) + 15”;:»
%avsu S.H=0 = My = 2005~ i f( i#7),

3(1?3:,.,. oo T OV V- (D9)

The normalized mass eigenstates in the basis (s, 522,
s33, h) read

1
h = ——(cosf,cosf.cosf.\/3sinp
1 \/§( p'.cos ', cos fp p)
1
hl) = ———(sinf#, sin ', sin B, —v/3 cos '
2 \/5( p.sinf',sin fj p)
1
hy =—(-1,0,1,0
1
h, =—(-1,1,0,0 D10
i =5 (-1.1.0.0 (D10)
with corresponding eigenvalues
/ 1 12
my = 2(m +m)? + 2my
/(2 = 2 4 2m ) 4 12m,),
mh = mi? —my,. (D11)

3

Thus, the mixing of the Higgs with the BSM scalars
occurs only for the states /] , and is universal. Because of
the degeneracy of m4, any linear combination of the states

h , is an elgenvector too. In the limit p4;, v — 0, the angle
' can easily be expressed as

2\/_m;h _ 2V/38v,0,

/2 ”2 n -
my mg —my

tan2ff =

(D12)

For m), < m{ one obtains (79). For fermion mixing, we
find, similar to (D8),

L N K'vg
L= \/zmz | B \/El’}’lz
— i and Cig

— Wri» respectively.

(D13)

for iL
APPENDIX E: WEAK INTERACTIONS
AFTER EWSB

Chiral mixing between vectorlike fermions and leptons
modifies their couplings with the weak bosons. Explicit
rotations to the mass basis yield

—1,gauge

Yy = Cexll/)_(l —50,Cx>
X" = colx + so, 0%
Y EE = ey = spu,
Vi = cpur + sy (E1)

where X = L, R and the angles 0 are positive and can be
found for all models in Table VI. After rotating to the mass
basis, weak interactions are described by the Lagrangian
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TABLE X. Coefficients of the W~ boson interactions with fermions in the mass basis; see Eq. (E2). The nonvanishing Clebsch-Gordan
coefficients are C5 = —C?, = /2, C§ = CP, =1, and Cf = —C}j = \/2. Angles should be taken from Table VI according to the
vacuum structure and the lepton flavor 7.

fO, pro+l cV 4 ﬁf/QH cV ey
v co, co0 + CoSo, S0 0 WO,y Cico C,
l//_l9 l//0 S‘gL392 + C()CHLng COCQR I], l//Jrl —C1592 0
£,y o, 59 — CoSo, Cop —CoySg, w2y C_icq, C_ico,
v so, o — CoCo, S 0 w2t —C_ys9, —C_;59,
TABLE XI. Coefficients of the Z boson interactions with Q = —1 and Q = 0 fermions in the mass basis [see (E2)]

with Agf =55 (T2 +3) £ 55, T;I,] and Ag® = S(ZJ‘Z [TS/0 —1]. Angles should be taken from Table VI according to

78

the vacuum structure and the lepton flavor 7.

D i 9v 9v
l.¢ —3+2s5 4+ Agl, -5+ Ad)
e 2(T3,_, +52) — Adl, -Ad,
vl ¢ —1[sin 29L(T31,, +1) + sin 29RT3/,1] —1[sin 29L(T3/,1 +1) —sin 26’RT31,1]
19, f10 v 9a
U,v % + Ag¥ % + Ag”
WO, y° 2T}, — Ag” —Ag
w' v —5sin26) (T}, —3) —1sin20 (13, - )
9 20 d for all possible combinations of fermions f, f’ in our
Ly =5———fCr"(gv — 9a°)f"9Z an P :
2cos 0, ! models. The coefficients ¢}’ can be found in Table X.

Expressions for the couplings gy, are collected in

92 w w 1O+111/—
+ Qyu(cWp, +cWp O+tlw- 4+ He., (E2
\/Ef a Lok R rf : (E2) Table XI.
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