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We perform a comprehensive search for Standard Model extensions inspired by asymptotic safety. Our
models feature a singlet matrix scalar field, three generations of vectorlike leptons, and direct links to the
Higgs and flavor sectors via new Yukawa and portal couplings. A novel feature is that the enlarged scalar
sector may spontaneously break lepton flavor universality. We provide a complete two-loop renormaliza-
tion group analysis of the running gauge, Yukawa, and quartic couplings to find ultraviolet fixed points and
the critical surface of parameters, i.e., the set of boundary conditions at the TeV scale for which models
remain well-behaved and predictive up to the Planck scale without encountering Landau poles or
instabilities. This includes templates for asymptotically safe Standard Model extensions that match the
measured values of gauge couplings and the Higgs, top, and bottom masses. We further detail the
phenomenology of our models covering production, decay, fermion mixing, anomalous magnetic
moments, effects from scalar mixing and chiral enhancement, and constraints on model parameters from
data. Signatures at proton-proton and lepton colliders, such as lepton flavor violation and displaced
vertices, and the prospect for electric dipole moments or charged lepton-flavor-violating type processes are
also indicated.
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I. INTRODUCTION AND BASIC SETUP

A. Motivation and background

Ultraviolet (UV) fixed points play a central role for
fundamental quantum field theories. They ensure that
running couplings remain finite and well-defined even at
highest energies such that cross sections or scattering
amplitudes stay well-behaved. Important examples are
given by asymptotic freedom of non-Abelian gauge
interactions and the strong nuclear force, where the
fixed point is noninteracting [1,2]. UV fixed points may
also be interacting, a scenario known as asymptotic
safety, and conjectured a while ago in both particle
physics [3] and quantum gravity [4]. It implies that
quantum scale invariance is achieved with some of the
running couplings taking finite, instead of vanishing,
values in the UV.
The field has taken up some speed recently due to the

discovery that asymptotic safety is realized rigorously in
models of particle physics [5–10]. Gauge fields are key for
this to happen at weak coupling [6] alongside Yukawa and
scalar interactions subject to certain constraints [7,8]. A

typical asymptotically safe theory contains gauge fields
with charged fermions and mesonlike scalars, with gauge
groups being either unitary [5], orthogonal or symplectic
[9], or of the product type [10] such as in the Standard
Model (SM) [11]. Results also cover aspects of the
quantum vacuum [12], higher order self-interactions
[13], Abelian factors [14], proofs with supersymmetry
[15], conformal windows of parameters [16], and radiative
symmetry breaking [17]. In a related vein, the proposal that
gauge-fermion theories with many flavors may also realize
UV fixed points [18,19] has received renewed interest as of
late [5,20–26]. For further studies of ultraviolet stable fixed
points in particle physics, see [27–38].
Asymptotically safe models of particle physics share

many features of the SM such as non-Abelian gauge
interactions, a flavorful fermion sector with Yukawa
interactions, and a scalar sector. It is therefore natural to
ask whether the SM can be extended into an asymptotically
safe version of itself, and if so, what type of phenomeno-
logical signatures this would entail. First proposals [11,14]
have featured NF vectorlike fermions ψ in general repre-
sentations of the SM gauge groups and hypercharge, and a
NF × NF mesonlike complex scalar singlet S. The new
matter fields couple to the SM through the gauge inter-
actions and a Higgs portal, while the beyond-the-Standard-
Model (BSM) Yukawa term

Ly ¼ −yTr½ψ̄LSψR þ H:c:�; ð1Þ
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inspired from exact models [5,10,16], helps generate
interacting UV fixed points for moderate or large NF
[11,14,34]. Phenomenological signatures at colliders
include long-lived particles, R-hadrons, and Drell-Yan
production, with a scale of new physics potentially as
low as a few TeV and “just around the corner” [11].
In this paper, we put forward a new set of models which,

in addition to (1), are characterized by direct Yukawa
interactions between SM and BSM matter fields [39,40].
We are particularly interested in the relevance of flavor
portals for the high-energy behavior of SM extensions, in
the new phenomena that arise from them, and in their
interplay with the Higgs portal. We focus on those settings
where the new fermions ψ are vectorlike and colorless.
Moreover, to connect to SM flavor, we use NF ¼ 3, that is,
three generations of SM and BSM matter. These choices
restrict the mixed Yukawa interactions to the leptons and
leave us with a small number of viable SUð2Þ gauge
representations and hypercharges for the new fermions ψ
(see Table I), whose features and phenomenology are
studied in depth.

B. Setup for models with flavor portals

In the remainder of the Introduction, we detail the basic
setup and rationale for our choice of models and flavor
symmetries. The renormalizable Lagrangians of the six
basic models are given by

L ¼ LSM þ LBSM;

LBSM ¼ Trψ̄i=Dψ þ Tr½ð∂μSÞ†ð∂μSÞ� þ Ls þ LY; ð2Þ

where LSM denotes the SM Lagrangian and traces are over
flavor indices. Throughout, we often suppress the flavor
index of leptons and ψ ’s, as well as of the scalar matrix S.
The term Ls contains the BSM scalar self-interactions and
the Higgs portal coupling, and

LY ¼ Ly þ Lmix ð3Þ

contains the Yukawa interactions amongst the new matter
fields (1) and those between BSM and SMmatter Lmix. The
latter are specified in Table I for the six basic models to
which we refer to as models A–F. The SM fermionic content
is denoted asL,E for the lepton SUð2ÞL doublet and singlet,
respectively, while H denotes the SM Higgs doublet.
We can immediately state some of the new phenomeno-

logical features due to the flavor portal, with specifics
depending on mass hierarchies and the flavor structure of
Yukawa couplings mixing SM and BSM fields:

(i) The BSM sector decays to SM particles.
(ii) The BSM sector can be tree-level produced at

colliders in pairs or singly.
(iii) An opportunity to address flavor data shifted a few

standard deviations away from SM predictions. For
example, the anomalous magnetic moments of the
muon and the electron can be explained simulta-
neously with the mixed Yukawas in models A and C,
without the necessity to manifestly break lepton
flavor universality [40].

(iv) Flavor off-diagonal scalars Sij, i ≠ j couple to
different generations of fermions. Leptons and
new fermions mix after electroweak symmetry
breaking and lead to charged lepton flavor violation
(LFV)–like signals from off-diagonal scalar decays
Sij → l�

i l
∓
j (l ¼ e, μ, τ).

Below, we give a general discussion of all models regarding
SM tests with leptons, including prospects for magnetic and
electric dipole moments.
Another important part of our study is to ensure that

models remain finite and well-defined up to the Planck
scale or beyond, for which we perform a complete two-loop
renormalization group (RG) study of all models. To keep
the technical complexity at bay, we make a few pragmatic
and symmetry-based assumptions for the flavor structure of
the new Yukawa interactions.
To that end, we consider the kinetic part of the

Lagrangian (2). Its large flavor symmetry GF can be
decomposed as

GF ¼ Uð3Þ3q ⊗ Uð3Þ2l ⊗ Uð3Þ2ψ ⊗ Uð3Þ2S; ð4Þ

with

Uð3Þ3q ¼ Uð3ÞQ ⊗ Uð3ÞU ⊗ Uð3ÞD;
Uð3Þ2l ¼ Uð3ÞL ⊗ Uð3ÞE;
Uð3Þ2ψ ¼ Uð3ÞψL

⊗ Uð3ÞψR
;

Uð3Þ2S ¼ Uð3ÞSL ⊗ Uð3ÞSR ð5Þ

corresponding to the quarks, leptons, BSM fermions, and
BSM scalars, respectively. The Yukawas, in general, do not

TABLE I. Shown are the gauge representations R3, R2 and the
hypercharges Y of the new vectorlike leptons ψ with respect to
the SM gauge group SUð3ÞC × SUð2ÞL ×Uð1ÞY for the six basic
models A–F. Also indicated are the mixed Yukawa terms
involving SM leptons, BSM leptons, and either the complex
gauge singlet BSM scalar S or the SM Higgs H or its charged
conjugate H̃ ¼ iσ2H�; Yukawa couplings with SM scalars (BSM
scalars) are denoted by κðκ0Þ, respectively. The last column QF ¼
T3 þ Y denotes the electric charge of the ψ states.

Model ðR3; R2; YÞ Yukawa interactions in Lmix QF

A ð1; 1;−1Þ κL̄HψR þ κ0ĒS†ψL −1
B ð1; 3;−1Þ κL̄HψR −2;−1, 0
C ð1; 2;− 1

2
Þ κĒH†ψL þ κ0L̄SψR −1, 0

D ð1; 2;− 3
2
Þ κĒH̃†ψL −2;−1

E ð1; 1; 0Þ κL̄ H̃ ψR 0
F ð1; 3; 0Þ κL̄ H̃ ψR −1; 0;þ1
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respect the global symmetry (4). For instance, the SM part
Uð3Þ3q ⊗ Uð3Þ2l is broken down to baryon number, lepton
number, and hypercharge by the SM Yukawas of quarks
and leptons. Assuming that some subgroup of GF is left
intact then dictates the flavor structure of the Yukawas. For
example, without any assumptions on flavor the BSM
Yukawa interactions would read

yijklψ̄LiSjkψRl ð6Þ

with 34 independent Yukawa couplings yijkl. However,
identifying Uð3Þ2S with Uð3ÞψL

⊗ Uð3ÞψR
, the symmetry-

preserving Yukawa interaction is given by (1) with a
universal coupling y instead [5,11].
Similarly, the mixed fermion couplings with the singlet

scalars ðκ0Þ in Table I also carry four flavor indices in
general. To simplify the flavor structure along the lines of
(6) versus (1) we identify Uð3ÞE with Uð3ÞψR

(model A) or
Uð3ÞL with Uð3ÞψL

(model C). As a result, the interactions
are driven by a single Yukawa coupling instead of a tensor
and read

κ0Tr½ĒS†ψL þ H:c:�ðmodel AÞ;
κ0Tr½L̄SψR þ H:c:�ðmodel CÞ: ð7Þ

Finally, all models in Table I contain the mixed Higgs-
Yukawa matrix (κ).1 In models A, B, E, and F we identify
Uð3ÞL with Uð3ÞψR

and in models C and D we identify
Uð3ÞE with Uð3ÞψL

, which results in a diagonal and
universal Yukawa coupling

κij ¼ κδij ðmodels A–FÞ: ð8Þ

Incidentally, the flavor symmetry for models A and C
entails that κ is proportional to the SM lepton Yukawa
coupling in YlL̄HEþ H:c: implying that the latter is
flavor-diagonal Yl ∼ 1. However, the SM lepton Yukawa
couplings are irrelevant and will be neglected, unless stated
otherwise. Alternatively, we could have fixed the flavor
symmetry by identifying Uð3ÞE ∼ Uð3ÞψR

(models B, E,
and F), or Uð3ÞL ∼Uð3ÞψL

(model D), to find hierarchical
Yukawas

κ ∼ Yl ðmodels B;D;E; FÞ ð9Þ

instead of (8). Again, we do not pursue this path any further
as the lepton Yukawas are neglected in the RG study, and
adopt (8) for all models. In all scenarios, BSM fermion
mass terms ψ̄LMFψR þ H:c: break the respective remain-
ing symmetries unless Uð3ÞψL

∼Uð3ÞψR
, which gives

universal and diagonal MF in all models.

The symmetry language provides guidance for minimal
benchmarks with reduced numbers of parameters (entries in
Yukawa tensors). This makes the study manageable and
structures the RG equations. If the origin of flavor would, in
fact, be symmetries, there is a fundamental reduction in
complexity, and new physics patterns observed can provide
feedback on flavor [41]. In the followingwe use the Yukawa
interactions (3) together with (7) and (8). Unless stated
otherwise, we also assume that all BSM couplings are real-
valued.

C. Outline

The remaining parts of the paper are organized as
follows. In Sec. II we recall the tools for asymptotic safety
of weakly coupled gauge theories with matter covering
interacting fixed points, scaling exponents, vacuum stabil-
ity, the critical surface of parameters, and the matching to
the Standard Model. In Sec. III, a detailed “top-down”
search of fixed points, RG flows, and matching conditions
is provided for all models to the leading nontrivial orders in
perturbation theory.
In Sec. IV, the impact of the scalar sector and the interplay

between the Higgs and flavor portals are investigated. RG
trajectories from the TeV to the Planck scale are studied in a
“bottom-up” search at the complete two-loop accuracy for
the top, bottom, and newYukawas, and all gauge and quartic
couplings. The BSM critical surface of parameters, i.e., the
parameter regions of BSM couplings at the TeV scale which
lead to well-defined (stable vacua, no Landau poles) models
up to the Planck scale or beyond, is identified.
In Sec. V, we concentrate on the phenomenology of our

models covering production, decay, fermion mixing, and
constraints on model parameters from data. Effects from
scalar mixing and chiral enhancement, the prospects for
anomalous magnetic moments, electric dipole moments
(EDMs) or LFV-type processes, and signatures at pp and
lepton colliders such as lepton flavor violation and dis-
placed vertices, are also worked out. We summarize in
Sec. VI. Some auxiliary information and formulas are
relegated into Appendixes (Appendixes A–E).

II. TOOLS FOR ASYMPTOTIC SAFETY

In this section, we recall the principles and basic tools for
asymptotic safety and adopt them to the models at hand.
Asymptotic safety requires that the couplings of a theory
approach renormalization group fixed points in the high-
energy limit. In the language of the renormalization group,
fixed points correspond to zeros of β-functions

βaðαÞjα¼α� ≡ dαa
d ln μ

����
�
¼ 0 ð10Þ

for all couplings αa, with α�a denoting the fixed point
coordinates. Fixed points can be fully interacting with all1Notice that we keep the SM Higgs unflavored.
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couplings nonzero or partially interacting whereby some
couplings become free in the UV.
Thus, the first step is to compute the β-functions and

determine whether fixed points exist. This will be achieved
using [42–48]. Then, one must study if the fixed points can
be reached from the IR and, finally, if the trajectories can be
matched to the SM.

A. Renormalization group

We are interested in free or interacting ultraviolet (UV)
fixed points in extensions of the SM. The three gauge
couplings corresponding to the Uð1ÞY , SUð2ÞL, and
SUð3ÞC gauge sectors are introduced as

α1 ¼
g21

ð4πÞ2 ; α2 ¼
g22

ð4πÞ2 ; α3 ¼
g23

ð4πÞ2 ; ð11Þ

respectively. In our setup, the BSM fermions do not
introduce new SUð3Þ gauge charges meaning that the
strong coupling continues to have an asymptotically free
UV fixed point. One may therefore neglect α3 for the fixed
point search: we actually do so in the lowest order analysis
in Sec. III, but treat α3 at the same order as the electroweak
couplings in the SM-RG and in the higher order analysis in
Sec. IV. On the other hand, the BSM fermions carry
hypercharge and/or weak charges; see Table I. Hence,
the weak (hypercharge) coupling is infrared free in some (in
all) models and requires an interacting UV fixed point to
help cure potential Landau poles and the triviality problem.
At weak coupling, interacting UV fixed points arise in

exactly two manners [6,7]. An infrared free gauge theory
can either directly develop an UV fixed point with the help
of Yukawa interactions or may become asymptotically free
owing to a gauge-Yukawa (GY) fixed point involving other
gauge couplings [7,15]. Either way, Yukawa interactions
are key for a well-behaved UV limit. The Yukawa cou-
plings which may take this role in our models are those
given in (3) and Table I. We write them as

αy ¼
y2

ð4πÞ2 ; ακ ¼
κ2

ð4πÞ2 ; ακ0 ¼
κ02

ð4πÞ2 : ð12Þ

Let us now turn to the renormalization group equations for
weakly coupled semisimple gauge theory with nG gauge
couplings αi and nY Yukawa couplings αn amongst
matter fields [7]. Our models have three gauge couplings
(i ¼ 1, 2, 3) and up to three BSM Yukawa couplings
ðn ¼ y; κ; κ0Þ, plus SM Yukawas and quartics.
Two remarks on notation: unless indicated otherwise we

use the letters i, j as indices for gauge couplings, the letters
n,m as indices for Yukawa couplings, and the letters a, b, c
as indices for any of the gauge, Yukawa, or scalar
couplings. Following [5,16], we also introduce the notation
klm to denote a perturbative approximation of beta
functions which retains k loop orders in the gauge beta

function, l loops in the Yukawa, and m loops in the scalar
beta functions.
With these conventions in mind, the gauge beta functions

are given by

βi≡ dαi
d lnμ

¼−α2i

�
Bi−

X
j¼gauge

Cijαjþ
X

n¼Yukawa

Dinαn

�
þOðα3Þ

ð13Þ

at the leading nontrivial order in perturbation theory which
is the 210 approximation. The one-loop coefficients Bi and
the diagonal two-loop gauge coefficients Cii (no sum) may
take either sign depending on the matter content, though for
Bi < 0 the latter is always positive. The two-loop Yukawa
coefficients Din and the off-diagonal elements Cij ði ≠ jÞ
are always positive for any quantum field theory. In these
conventions, the gauge coupling αi is asymptotically free if
Bi > 0. Similarly, the Yukawa beta functions take the form

βn≡ dαn
d lnμ

¼ αn

� X
m¼Yukawa

Enmαm−
X

i¼gauge

Fniαi

�
þOðα2Þ:

ð14Þ

Any of the loop coefficients E and F are positive in any
quantum field theory. The loop coefficients in (13) and (14)
corresponding to our models can be found in Appendix A.

B. Ultraviolet Fixed Points

Next, we turn to renormalization group fixed points.
Yukawa couplings at a fixed point are either free or
interacting, and ultraviolet fixed points require that some
(or all) Yukawa couplings are nonzero. The vanishing of
(14) implies that the nonzero Yukawa couplings are related
to the gauge couplings as

αn ¼ ðE−1ÞnmFmjαj: ð15Þ

We refer to these relations as the Yukawa nullclines. Notice
that the matrix E is inverted over the set of nonvanishing
Yukawa couplings, and the matrix multiplication in (15)
excludes the vanishing Yukawa couplings (if any). In
theories with nY Yukawa couplings this procedure can
lead to as many as 2nY − 1 different nullclines. Fixed points
for the gauge coupling are found by inserting the nullcline
(15) into (13), leading to

βijβn¼0 ¼ −α2i ðBi − C0
ijαjÞ: ð16Þ

Hence, every Yukawa nullcline generates shifted two-loop
coefficients C0 given by
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C0
ij ¼ Cij −DinðE−1ÞnmFmj ð17Þ

in terms of the perturbative loop coefficients. In particular,
the nonzero fixed points for the gauge couplings follow
from (16) and (17) as

α�i ¼ ðC0−1ÞijBj; ð18Þ

where the sum over j only includes the nonvanishing gauge
couplings. The Yukawa fixed point follows from inserting
(18) into the corresponding nullcline (15). Overall, we may
find up to ð2nG − 1Þð2nY − 1Þ different gauge-Yukawa fixed
points. Also notice that the physicality condition
α�i���;α

�
n��� ≥ 0 is not guaranteed automatically and must

still be imposed. Viable gauge-Yukawa fixed points genu-
inely exist for asymptotically free gauge sectors. Most
importantly, thanks to the Yukawa-induced shift in (17),
physical solutions (18) may even exist for infrared free
gauge sectors where Bi < 0. This is the primary mechanism
to stabilize infrared free gauge sectors in the UV.
Gauge-Yukawa fixed points may also indirectly stabilize

an otherwise infrared free gauge sector [7,11,14,15],
because the one-loop coefficient of a gauge theory can
be modified in the presence of an interacting fixed point.
Conditions for this to happen for an infrared free gauge
coupling αi can now be read off from (13),

Beff
i ¼ Bi − Cijα

�
j þDinα

�
n: ð19Þ

The sums run over the nonzero gauge and Yukawa
couplings fα�j���; α�n���g, and we recall that α�i ¼ 0.
Provided that the effective one-loop coefficient becomes
positive, Beff

i > 0 > Bi, the infrared free gauge coupling
becomes free in the ultraviolet. This is the secondary
mechanism to stabilize infrared free gauge sectors in the
UV. We stress that Yukawa couplings are mandatory for
this as they are the only couplings contributing positively to
(19). Below, wewill see that both mechanisms are operative
in our models.
If all Yukawa couplings vanish, the gauge sector (13)

may still achieve free or interacting fixed points. The
interacting ones are given by

α�i ¼ ðC−1ÞijBj; ð20Þ

where the sum runs over the nonzero gauge couplings.
These are the well-known Banks-Zaks (BZ) fixed points
[49,50], which are always infrared and can only be physical
(α�i > 0) for asymptotically free gauge couplings. In
theories with nG asymptotically free gauge couplings,
we may find up to 2nG − 1 of them. Although Banks-
Zaks fixed points play no role for the UV completion of
theories, they may still be present and influence the RG
evolution of couplings on UV-IR connecting trajectories.

C. Scalar potential and Higgs portal

Here we briefly discuss the scalar sector and its ground
states. As the BSM scalar carries flavor and couples to the
SM fermions, its vacuum expectation values (VEVs) have
implications for the flavor structure of the model.
The minimal potential involving the SM and BSM

scalars H and S included in (2) and compatible with the
symmetries (4) has the form

VðH; SÞ ¼ −μ2H†H − μ2sTr½S†S� − μdetðdet Sþ det S†Þ
þ λðH†HÞ2 þ δH†HTr½S†S�
þ uTr½S†SS†S� þ vðTr½S†S�Þ2 ð21Þ

for all models. It consists of the Higgs self-coupling λ and
mass parameter μ, the BSM scalar quartics u, v, as well as
the BSMmass parameters μs and the trilinear coupling μdet,
and a portal coupling δ which mixes SM and BSM scalars.
Viable UV fixed points for our models require that the
Higgs self-coupling, the portal coupling, and the self-
couplings of the BSM scalar fields take fixed points by
themselves, compatible with vacuum stability. Interestingly
though, the quartics do not couple back into the gauge-
Yukawa system at the leading order. Rather, fixed points in
the SM and BSM scalar sectors are fueled by the gauge-
Yukawa fixed points, and backcoupling occurs starting at
the two-loop level in the Yukawa sector and at the three-
loop level for the Higgs (four-loop for the BSM scalars) in
the gauge sectors.
The classical moduli space for (21) and conditions for

the asymptotic stability of the vacuum are found following
[12,51]. Depending on the sign of u, we find two settings
V� with stability conditions

Vþ∶
�
λ > 0; u > 0; uþ 3v > 0;

δ > −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðu=3þ vÞp

;

V−∶
�
λ > 0; u < 0; uþ v > 0;

δ > −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðuþ vÞp

:
ð22Þ

Both settings allow for the Higgs to break electroweak
symmetry. For Vþ, the BSM scalar VEV is flavor-diagonal
and upholds some notion of flavor universality in inter-
actions with the SM. On the other hand, V− has a VEVonly
in one diagonal component of S. In the context of our
models, this corresponds to a VEV pointing in the direction
of one lepton flavor. We learn that the Lagrangian (2) offers
the possibility to violate lepton flavor universality sponta-
neously, an interesting feature also in the context of today’s
flavor anomalies, e.g., [52]. Note if both scalars S and H
acquire a VEV, the portal coupling δ induces mixing
between the scalars H and S. Details can be seen in
Appendix D. In the following we investigate the availability
of fixed points, vacuum stability, and phenomenological
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signatures at various orders in perturbation theory up to the
222 approximation using the methodology of [42–48].

D. Scaling exponents and UV critical surface

The renormalization group flow in the vicinity of fixed
point provides information on whether the fixed point
can be approached in the UVor IR. Denoting by αa any of
the gauge, Yukawa, or scalar couplings, and expanding the
β-functions around a fixed point α�a up to second order in
δa ¼ αa − α�a, we find

βa ¼ Mabδb þ Pabcδbδc þOðδ3Þ; ð23Þ

where Mab ¼ ∂βa=∂αbj� is the stability matrix and
Pabc ¼ 1

2
∂2βa=∂αb∂αcj�. After diagonalizing M the run-

ning of couplings at first order may be written as

αaðμÞ ¼ α�a þ
X
b

Va
bcbðμ=ΛÞϑb ; ð24Þ

where μ is the RG scale and Λ a UV reference scale, while
the UV scaling exponents ϑb arise as the eigenvalues of the
stability matrix M with Vb the corresponding eigenvectors
and cb free parameters. An eigenvector is relevant, mar-
ginal, or irrelevant if the corresponding eigenvalue ϑ is
negative, zero, or positive. For all relevant and marginally
relevant couplings, the parameters cb are fundamentally
free and constitute the “UV critical surface” of the theory.
Its dimension should be finite to ensure predictivity. For all
irrelevant couplings, we must set cb ≡ 0 or else the UV
fixed point cannot be reached in the limit μ → ∞. UV fixed
points require at least one relevant or marginally relevant
eigendirection.
If a fixed point is partially interacting, that is, some but

not all couplings are nonzero, the relevancy of the vanish-
ing couplings can be established as follows. If a gauge
coupling αi vanishes at a fixed point, it follows from (13)
being at least quadratic in αi that the coupling is marginal.
Going to second order in perturbations (23) reveals that
Piii ¼ −Beff

i . As expected, the sign of (19) determines
whether the coupling is marginally relevant (Beff

i > 0) or
marginally irrelevant. If a Yukawa coupling αn vanishes at a
GY fixed point with coordinates fα�i���; α�m���g, it follows from
(14) that the corresponding scaling exponent is given by

ϑn ¼ Enmα
�
m − Fniα

�
i : ð25Þ

As this is a difference between two positive numbers,
its overall sign is not determined by the existence of the
fixed point and the coupling could come out as relevant,
marginal, or irrelevant. For BZ fixed points (all α�m ¼ 0),
however, the eigenvalue is always negative and the Yukawas
are relevant.

E. Matching and BSM critical surface

Here we consider how an asymptotically safe UV fixed
point must be connected to the SM. At low energies, any
extension of the SMmust connect to the measured values of
SM couplings. For simplicity, and without loss of general-
ity, we assume that all BSM matter fields have identical
masses MF. Moreover, the decoupling of heavy modes is
approximated by considering the BSM fields either as
massless (for μ > MF) and as infinitely massive (for
μ < MF). Both of these technical assumptions can be lifted
to account for a range of BSMmatter field masses, and for a
smooth decoupling of heavy modes, without altering the
main pattern. In this setting, the fluctuations of BSM fields
are absent as soon as μ < MF, meaning that the running of
all SM couplings αSMðμÞ must be identical to the known
SM running for all μ ≤ MF. Therefore, we refer to

μ ¼ MF ð26Þ

as the matching scale. On the other hand, the values of the
BSM couplings αBSMðμÞ at the matching scale (26) are not
predicted by the SM and must be viewed as free parameters.
Schematically, we denote this set of free parameters as

Sfree ¼ fαBSMg: ð27Þ

Any BSM renormalization group trajectory is uniquely
characterized by the matching scale (26), the (known)
values of SM couplings at the matching scale, and the
initial values of BSM couplings (27). The latter are, in our
models, the values of the three BSM scalar couplings plus
the two (or three) BSM Yukawa couplings at the scaleMF,

αBSM ¼ ðαy; ακ; ακ0 ; αδ; αu; αvÞ; ð28Þ

and the parameter space (27) is hence five (or six) dimen-
sional, depending on the model.
Depending on the BSM initial values (27), renormaliza-

tion group trajectories may display a variety of different
patterns. These include a power-law approach toward an
interacting fixed point, a crossover through a succession of
fixed points such as in asymptotic safety proper, or a
logarithmically slow decay toward the free fixed point such
as in asymptotic freedom. Either of these behaviors or, in
fact, any combination thereof, corresponds to a viable high-
energy limit in the sense of Wilson’s path integral definition
of quantum field theory. In turn, couplings may also run
into unphysical regimes where the quantum vacuum
becomes meta- or unstable, or where couplings become
nonperturbatively large and RG trajectories terminate due
to Landau pole singularities.
From a bottom-up model building perspective, the set of

parameter values SBSM for which the BSM trajectories
remain finite and well-behaved—at least up to the Planck
scale—is of particular interest. First and foremost, this set
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includes initial values for all trajectories that terminate at
interacting UV fixed points, should they exist. In general,
however, it can often be larger, simply because it may
also include trajectories that remain finite and well-defined
up to the Planck scale, but would otherwise not reach an
interacting UV fixed point proper in the trans-Planckian
regime. This feature can be referred to as Planck safety
[40], as opposed to as well as extending the notion of
asymptotic safety. The set of viable BSM parameters SBSM
is a subset of (27), and often of a lower dimensionality. The
reason for this is that interacting UV fixed points have
relevant and irrelevant eigenoperators. All interactions that
are irrelevant in the UV impose constraints on the viable
values of BSM couplings at the matching scale (27).
Therefore, we refer to the set of viable initial values
SBSM as the “BSM critical surface.”We obtain BSM critical
surfaces for models A–F in Sec. IV E.

III. BENCHMARK MODELS
AND FIXED POINTS

In this section we further specify our benchmark models
and investigate their RG flows to the leading nontrivial
order in perturbation theory. We focus on the gauge and the
Yukawa couplings whose beta functions are given by (13)
and (14) with loop coefficients for all models stated in
Sec. A. Our goal is to gain a first understanding of models
and fixed points, and the availability of matchings to the
SM. We postpone the study of quartic scalar couplings and
higher order loop corrections to Sec. IV.
The leading order approximation–known as the 210

approximation–retains two-loop orders in the gauge and
one-loop in the Yukawa couplings. Scalar couplings are
neglected. Besides the free Gaussian fixed point, we may
find interacting Banks-Zaks or gauge-Yukawa fixed points,
though only the latter will qualify as UV fixed points.
Already at this order in the approximation, there can be up
to a maximum of ð2nG − 1Þ different Banks-Zaks and a
maximum of ð2nG − 1Þ × ð2nY − 1Þ different GY fixed

points [7,10]. Here nG denotes the number of SM gauge
groups under which the BSM fermions are charged
(nG ¼ 2, 1, or 0 for our models), and nY the number of
BSM Yukawa couplings (nY ¼ 2 or 3 for all models). For
this reason, for Banks-Zaks fixed points in semisimple
gauge theories we specify the nonzero gauge couplings as
an index (e.g., BZ2). Similarly, for gauge-Yukawa fixed
points, we also indicate the nonvanishing Yukawa cou-
plings (e.g., GY1κ).
Findings of this section are summarized in Sec. III G.

A. Model A (singlets, Y = − 1)
Model A consists of the SM, amended by complex

singlet BSM scalarsS andNF ¼ 3 vectorlike BSM fermions
ψ in the representation ð1; 1;−1Þ, which is identical to the
one of the singlet leptons E present in the SM, with
Lagrangian (2). The Yukawa sector (3) contains three
BSM couplings,

−LA
Y ¼ κL̄HψR þ κ0ĒS†ψL þ yψ̄LSψR þ H:c: ð29Þ

Fixed points for model A are summarized in Table II and
denoted as FP1—FP8. Table II also shows the number of
relevant and irrelevant eigendirections. Free couplings are
markedwith a superscriptþ if they are irrelevant or with a−
if they are relevant, with power-law running. An additional
parenthesis, that is, (þ) or (−) for irrelevant or relevant,
respectively, indicates that the flow along its eigendirection
is logarithmically slow instead. It is also shown whether a
fixed point is of the BZ orGY type, in which case an index is
added to specify the nontrivial couplings.
The Gaussian fixed point (FP1) is a saddle owing to B1 <

0 < B2 and takes the role of a crossover fixed point. FP2 is
an infrared Banks-Zaks fixed point (BZ2) where the
Yukawa coupling ακ is the sole relevant coupling because
the fermions ψ , E do not carry weak isospin. FP3 is an
infrared gauge-Yukawa fixed point (GY2κ) which acts as an
infrared sink because it is fully attractive in all canonically

TABLE II. Fixed points of model A in the 210 approximation. FP1;2;3 are IR or crossover fixed points, FP4 is a line of fixed points, and
FP5;6;7;8 are UV fixed point candidates. Also shown are the numbers of relevant (“Rel.”) and irrelevant (“Irrel.”) eigendirections, and
whether the fixed point is of the BZ or GY type, with indices specifying the nontrivial couplings. Free couplings with power-law running
are marked with a superscript � if they are irrelevant/relevant, and an additional parenthesis (�) indicates that the flow is logarithmic;
see Figs. 1–3 for the phase diagram and sample trajectories.

Model A α�1 α�2 α�κ α�κ0 α�y Rel. Irrel. Info Fig. 1 Matching

FP1 0ðþÞ 0ð−Þ 0ðþÞ 0ðþÞ 0ðþÞ 1 4 Saddle
FP2 0ðþÞ 0.543 0− 0ðþÞ 0ðþÞ 1 4 BZ2

FP3 0ðþÞ 0.623 0.311 0ðþÞ 0þ 0 5 GY2κ

FP4 2.746 0ðþÞ 0− 4.120 − α�y α�y 2 2 Line
FP5 1.063 0ð−Þ 0.886 1.594 0þ 2 3 GY1κκ0 A1 ✓ (Fig. 3)
FP6 1.105 0.569 1.205 1.657 0þ 1 4 GY12κκ0 A2 ✗ (Fig. 2)
FP7 2.151 0ð−Þ 0.782 0− 3.032 3 2 GY1yκ A3 ✓

FP8 2.267 0.200 0.933 0− 3.165 2 3 GY12yκ A4 ✗
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dimensionless couplings. FP4 corresponds to a line of fixed
points (see Table II), which arises from a degeneracy
among the GY12y, GY12yκ0 , and GY12κ0 fixed points. The
degeneracy is not protected and lifted by higher-loop
effects. The gauge-Yukawa fixed points FP5–FP8 are
candidates for UV fixed points. They invariably involve
a nonvanishing fixed point for the hypercharge coupling α�1,
with or without a nonvanishing α�2, and fixed points for the
Yukawas. We also note that some of the fixed point
couplings are of order unity, in particular the hypercharge
coupling. Ultimately, this is a consequence of a low number
of BSM fermions and the present approximation. We come
back to this aspect in Sec. IV where the quartic scalar
couplings are retained as well.
Fixed point candidates other than those given in Table II

either vanish or come out unphysical. For example, the
relation βy=αy ¼ βκ0=ακ0 þ 2ακ, which holds in model A
[see (14) and Sec. A for the RG coefficients], implies that at
least one of the couplings α�y or α�κ0 has to vanish provided
that α�κ ≠ 0. It follows that fixed points such as GY1κκ0y and
GY12κκ0y cannot arise. For ακ ¼ 0, we find a line of fixed
points in the coupling α0y ¼ αy þ ακ. Note also that α̃y ¼
αy − cακ0 with c ≠ 1 a free parameter is decoupled from the
rest of the system. The fixed points GY2y, GY2yκ0 , and
GY2κ0 which are covered by this line of fixed points, are
unphysical. As the Yukawa beta functions do not receive
vertex corrections, they can be rewritten as βy0 ¼
γy0 ðα1; α0yÞα0y and βỹ ¼ γy0 ðα1; α0yÞα̃y in terms of a single
anomalous dimension γy0 , which, moreover, is independent
of α̃y. Therefore, α̃y becomes exactly marginal for
γy0 ðα�1; α0y�Þ ¼ 0, and the parameter c remains unspecified.
Lines of fixed points related to the vanishing of anomalous
dimensions are well-known in supersymmetric gauge
theories. Here, they are an artifact of the low orders in

the loop expansion. Finally, we note that the fixed points
GY1κ and GY12κ arise with negative α which is unphysical.
In Fig. 1, we show the schematic phase diagram of model

A and the interplay between the UV fixed point FP3–FP7
(denoted as A1–A4) in more detail (see also Table II).
Trajectories are projected onto the ðα2; ακ0 Þ plane, and
arrows indicate the flow from the UV to the IR. A3 is the
most relevant UV fixed point. The separatrices responsible
for the crossover from A3 to A1, from A3 to A4, or from A1

to A2 relate to the lines α2 ¼ 0, ακ0 ¼ 0, or αy ¼ 0,
respectively. A2 is the least ultraviolet point only exhibiting
α1 as a relevant coupling.
Next, we confirm that some of the UV fixed points in

Table II can be matched onto the SM. Here, it is worth
noting that many renormalization group trajectories are
attracted by the fully attractive IR fixed point GY2κ,
corresponding to FP3 in Table II. If so, the gauge coupling
α2 remains too large to be matched against the SM. In other
words, UV initial conditions within the basin of attraction
of FP3 cannot be matched onto the SM. In concrete terms,
this is the case for any trajectory running out of the fixed
point A2 or A4 (see Fig. 2 for an example). On the other
hand, provided that the gauge coupling α2 takes sufficiently
small values in the vicinity of the UV fixed point,
trajectories can avoid the FP3. This is the case for both
UV fixed points A1 and A3. Starting from these, α2 remains
sufficiently small throughout the entire RG evolution, and
matching against the SM possible at a wide range of
matching scales between the TeV and the Planck scale. An
example for this is shown in Fig. 3.
Finally, it is noteworthy that, unlike in [11,14],

the Yukawa coupling αy can be switched off as it is not
required to generate the fixed points A1 and A2. Instead,
the Yukawa couplings κ and κ0 are required to enable a
fixed point for α1. Their predicted low-energy values are

FIG. 2. Running of couplings of model A in the 210 approxi-
mation from fixed point A2. Trajectories are invariably attracted
by FP3 in the infrared, and α2 comes out too large compared to the
SM value.

FIG. 1. Schematic phase diagram and various UV fixed points
of models A, B, and D in the 210 approximation. Arrows
indicate the flow from the UV to the IR. The fixed points of
model A (Table II) are projected onto the ðα2; ακ0 Þ plane (left
panel) with A2 denoting the least and A3 the most ultraviolet
attractive fixed point. The fixed points of model B (Table III) and
model D (Table V) are projected onto the ðα2; ακÞ plane (right
panel); results for model D are equivalent to those of model B.
Note that the topology of the projected RG flows in all models is
identical.
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ακðMF ¼ 1 TeVÞ ¼ 2.7 × 10−3 and ακ0 ðMF ¼ 1 TeVÞ ¼
3.5 × 10−3 assuming a matching to A1; see Fig. 3.

B. Model B (triplets, Y = − 1)
For vectorlike fermions ψð1; 3;−1Þ the BSM Yukawa

Lagrangiean takes the form

−LB
Y ¼ þκL̄ψRH þ yψ̄LSψR þ H:c: ð30Þ

The components of ψ can be expressed as the SUð2ÞL
matrix via

ψ ¼
�
ψ−1=

ffiffiffi
2

p
ψ0

ψ−2 −ψ−1=
ffiffiffi
2

p
�
; ð31Þ

in accord with the normalization of the kinetic term in
Eq. (2). The upper indices indicate the Uð1Þem charge of
each component.
We have listed all fixed points of model B in Table III. In

this model, the one-loop coefficients of both gauge cou-
plings obey B1;2 < 0, turning the Gaussian into a total IR
fixed point, and prohibiting any kind of Banks-Zaks
solutions. Moreover, all gauge-Yukawa fixed points only
involving α2 (GY2κ, GY2y, GY2κy) are unphysical, and for

the remaining ones, α�y ≠ 0 is required, additionally exclud-
ing GY1κ, GY12κ.
This singles out the fixed points B1…4 as listed in

Table III. Similar to the fixed points A1…4 of model A,
B2 is the least ultraviolet with α1 being the only relevant
coupling, B1;4 are connected to it via a second relevant
trajectory, while B3 has three relevant directions. This is
shown schematically on the right-hand side of Fig. 1. A
crucial difference, however, is that no infrared GY fixed
points with α2 > 0 and α1 ¼ 0 are realized in model B.
Hence, unlike in model A, UV fixed point solutions with
finite α�2 ≫ αSM2 ðμ ≳ 0.1 TeVÞ are not a priori excluded
phenomenologically, though constrained, and the corre-
sponding matching conditions αSM1;2 ðMFÞ ¼ αBSM1;2 ðMFÞ can
have solutions. Integrating the RG trajectories which
leave the B2 UV fixed point into the α1 direction toward
lower energies, we find MF ∼ 0.025 TeV, as depicted
in Fig. 4. Similarly, for the fixed point B4 we find
MF ¼ Oð10−2 TeVÞ. We learn that asymptotic safety
can predict the mass scale of new physics. The scale is
disfavored phenomenologically, though only narrowly. The
impact of higher-loop corrections is studied in the follow-
ing Sec. IV.
Fixed point solutions B1;3 with α�2 ¼ 0 require more

detailed analysis, as asymptotic freedom is absent.
Although α2 is relevant at the fixed points B1;3 due to
the Yukawa interactions, it may turn irrelevant along a
trajectory toward the IR, as ακ;y become smaller causing
Beff
2 to become negative.

C. Model C (doublets, Y = − 1
2)

For model C, the BSM fermions have the representation
ψð1; 2;− 1

2
Þ, which is the same as the one of the SM leptons

L, leading to the Yukawa interactions

−LC
Y ¼ κĒH†ψL þ κ0L̄SψR þ yψ̄LSψR þ H:c: ð32Þ

All physical fixed points in the 210 approximation are
listed in Table IV and have α1 as an irrelevant coupling.
Besides the Gaussian (FP1), one Banks-Zaks (FP2) and four
gauge-Yukawa fixed points in α2 (FP3…6) are realized.
Similar to the arguments used in the discussion of model A,

FIG. 3. Running of couplings of model A in the 210 approxi-
mation with matching of the partially interacting fixed point A1 to
the SM at μ ¼ 1 TeV (see Table II).

TABLE III. Partially and fully interacting fixed points of model B in the 210 approximation, notation as in Table II. Banks-Zaks fixed
points are absent since asymptotic freedom is lost in both gauge couplings; see Figs. 1 and 4 for the phase diagram and sample
trajectories.

Model B α�1 α�2 α�κ α�y Rel. Irrel. Info Fig. 1 Matching

FP1 0ðþÞ 0ðþÞ 0ðþÞ 0ðþÞ 0 4 G
FP2 1.953 0ð−Þ 1.562 1.888 2 2 GY1κy B1 ✓

FP3 1.224 0.186 1.326 1.541 1 3 GY12κy B2 ✓

FP4 2.712 0ð−Þ 0− 2.712 3 1 GY1y B3 ✓

FP5 1.732 0.216 0− 2.164 2 2 GY12y B4 ✓
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the relation βy=αy ¼ β0κ=ακ0 þ ακ, which holds in model C
[see (14) and Sec. A for the RG coefficients], excludes a
solution GY2κκ0y. In addition, there is a line of fixed points

α�κ0 þ α�y ≈ 0.047 with α�κ ¼ 0 (FP6) that covers three
solutions GY2κ0 , GY2y, and GY2κ0y, and gives rise to a
marginal coupling. However, no physical gauge-Yukawa
fixed point involving α1 exists, and hence there is no
candidate UV fixed point provided by model C at lowest
loop order.

D. Model D (doublets, Y = − 3
2)

In model D the BSM Yukawa Lagrangian reads

−LD
Y ¼ yψ̄LSψR þ κĒH̃†ψL þ H:c:; ð33Þ

with ψð1; 2;−3=2Þ. Physical fixed points are listed in
Table V, with remarkable small coupling values α� < 1.
All solutions α�1 ¼ 0 suffer from the triviality problem.
Besides the Gaussian, and BZ2, all three possible gauge-
Yukawa fixed points involving α2 only are realized (FP3���5
in Table V), but fall in this category. Viable candidates
D1���4 for UV fixed points are of the gauge-Yukawa type
involving at least the α1 gauge coupling as well as the BSM
Yukawa interaction αy, as only GY1κ and GY12κ are
unphysical.
Projecting onto the α2-ακ-plane, the hierarchy is similar

to model A (see Fig. 1) with D3 being the most and D2 the
least ultraviolet fixed points. Moreover, the same argument
holds regarding the total IR fixed point GY2κy, which
attracts trajectories going toward SM coupling values such
as those following the α1 critical direction from D2;4, as
depicted on the left-hand side in Fig. 5. Small values of α2
along the trajectory are required, implying solutions D1;3

as possible UV fixed points. Matching onto the SM is
then possible at a range of scales; for D1 we obtain
ακðMF¼1TeVÞ¼4.2×10−3;αyðMF¼1TeVÞ¼5.8×10−3,
which is shown in Fig. 5. Fixed point D3 has also been
studied in [34], but discarded after including higher order
contributions. We retain this fixed point solution, deferring
the discussion of higher-loop-order effects to Sec. IV.

E. Model E (singlets, Y = 0)

The Yukawa interactions in model E read

−LE
Y ¼ κL̄ H̃ ψR þ yψ̄LSψR þ H:c: ð34Þ

Since ψ is a singlet under all gauge groups, βy is always
positive in the 210 approximation, requiring αy ¼ 0 at all
scales, as this coupling is irrelevant. This decouples the left-
chiral BSM fermion ψL and the BSM scalar S from the SM
plus ψR at this loop order. Only the Gaussian fixed point,
the Banks-Zaks in α2 and a gauge-Yukawa GY2κ are
present, and α1 is irrelevant for all of them. This leaves
the model without viable candidates of UV fixed points at
210 approximation.

FIG. 4. Matching at MF ¼ 0.025 TeV for the fully interacting
fixed point B2 of model B. Top panel: BSM running of the
couplings into the fixed point. Bottom: BSM (dotted lines) and
SM running (solid lines) of the gauge coupling near the matching
scale (dashed vertical line).

TABLE IV. Partially and fully interacting fixed points of model
C in the 210 approximation, with notation as in Table II. At this
loop order, no viable candidates for UV fixed points exist.

Model C α�1 α�2 α�κ α�κ0 α�y Rel. Ir. Info

FP1 0ðþÞ 0ð−Þ 0ðþÞ 0ðþÞ 0ðþÞ 1 4 G
FP2 0ðþÞ 0.038 0− 0− 0− 3 2 BZ2

FP3 0ðþÞ 0.039 0.020 0− 0− 2 3 GY2κ

FP4 0ðþÞ 0.054 0.027 0.049 0þ 0 5 GY2κκ0

FP5 0ðþÞ 0.053 0.011 0− 0.046 1 4 GY2κy

FP6 0ðþÞ 0.052 0− 0.047−α�y α�y 1 3 GY2κ0y
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F. Model F (triplets, Y = 0)

In model F, the BSM fermions ψð1; 3; 0Þ are in the
adjoint of SUð2ÞL with vanishing hypercharge. The BSM
Yukawa sector can be written as

−LF
Y ¼ κL̄ H̃ ψR þ yψ̄LSψR þ H:c: ð35Þ

In this setup, asymptotic freedom is absent for both gauge
couplings, making the Gaussian completely IR attractive
and excluding any kind of Banks-Zaks fixed points. In the
210 approximation, β1 is independent of αy, and βy is
independent of α1, as ψ does not carry hypercharge. Hence
the two-loop contributions of κ are the only negative terms
in β1, requiring α�κ ≠ 0. Moreover, only α2 contributions are
negative in βy, which suggests that α�2 ¼ 0 implies α�y ¼ 0

and irrelevant. However, none of the remaining gauge-
Yukawa solutions GY1κ, GY2κ, GY2κy, GY12κ, and GY12κy

are realized, as κ contributions in β1 are too small compared
to one- and other two-loop terms. This leaves the Gaussian
as the only physical fixed point; we conclude that there is
no AS fixed point at 210 in model F.

G. Summary top down

In Secs. III A–III F we have gained first insights into the
fixed point structure of models A–F in a top-down
approach of solving the renormalization group equations
(RGEs) at leading orders directly and running toward
infrared scales. The results for models A, B, and D
collected in Tables II, III, and V show several signatures
of UV fixed points that can be matched onto the SM, but
also indicate that those are borderline perturbative. This
suggests that the fixed points are sensitive to contributions
from higher-loop orders. We also found that the models C,
E, and F do not provide any viable solutions at 210 and the
question arises whether this is just a feature of the
approximation. In order to address both points, we go in
Sec. IV beyond the 210 approximation. To handle the
increased algebraic complexity of higher-loop corrections
and the quartic sector, a bottom-up approach will be
employed, studying the RG running from the IR to the
UV instead, mapping out the BSM critical surface.

IV. RUNNING COUPLINGS

In this section, we discuss the renormalization group
flow of couplings beyond the leading order approximation

FIG. 5. Renormalization group running of model D. Top: BSM
running from fixed point D2, where matching is not possible.
Bottom: running to the fixed point D1 after matching at
μ ¼ 1 TeV (dashed vertical line).

TABLE V. Partially and fully interacting fixed points of model D in the 210 approximation, notation as in Table II; see Figs. 1 and 5
for the phase diagram and sample trajectories.

Model D α�1 α�2 α�κ α�y Rel. Irrel. Info Name Matching

FP1 0ðþÞ 0ð−Þ 0ðþÞ 0ðþÞ 1 3 G
FP2 0ðþÞ 0.038 0− 0− 2 2 BZ2

FP3 0ðþÞ 0.039 0.020 0− 1 3 GY2κ

FP4 0ðþÞ 0.052 0− 0.047 1 3 GY2y

FP5 0ðþÞ 0.053 0.011 0.046 0 4 GY2κy

FP6 0.246 0ð−Þ 0.322 0.631 2 2 GY1κy D1 ✓

FP7 0.202 0.145 0.295 0.647 1 3 GY12κy D2 ✗

FP8 0.288 0ð−Þ 0− 0.778 3 1 GY1y D3 ✓

FP9 0.239 0.152 0− 0.782 2 2 GY12y D4 ✗
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which has been employed in the previous Sec. III. We
explore in detail how the running of couplings depends on
the values of BSM couplings fαBSMg at the matching scale.
The main new technical additions in this section are the
quartic scalar and the portal couplings, and the inclusion of
loop effects up to the complete two-loop order (222
approximation) or, if available, the complete three-loop
order (333 approximation). We are particularly interested
in the running of couplings from a bottom-up perspective,
and we study the flow for a given set of BSM initial values
αBSM at the matching scale. We then ask whether these
values together with the SM input reach Planckian energies
without developing poles, exhibit asymptotic safety, and
have the stability of the quantum vacuum.
We give our setup and initial conditions in Sec. IVA, and

briefly review the RG flow within the SM in Sec. IV B.
After identifying relevant correlations between feeble and
weakly sized BSM couplings in Secs. IV C and IV D,
respectively, we present in Sec. IV E the BSM critical
surface for each model.

A. Setup and boundary conditions

We retain the renormalization group running for the three
gauge couplings of the SM (11), and up to three BSM
Yukawa couplings (12). Going beyond the leading order
210 approximation, we also retain the Higgs quartic self-
interaction λ, the BSM quartics u, v, and the quartic portal
coupling δ

αλ ¼
λ

ð4πÞ2 ; αδ ¼
δ

ð4πÞ2 ;

αu ¼
u

ð4πÞ2 ; αv ¼
v

ð4πÞ2 : ð36Þ

Moreover, it is well-known that the SM top and bottom
Yukawa couplings yt;b critically influence the running of
the Higgs quartic and, therefore, must be retained as well.
We introduce them as

αt ¼
y2t

ð4πÞ2 ; αb ¼
y2b

ð4πÞ2 : ð37Þ

Overall, Eqs. (11), (12), (36), and (37) result in 12 (or 11)
independent running couplings for models A and C (or
models B, D, E, and F).
We also remark that the scalar quartic interactions couple

back into the Yukawa sectors starting at two-loop, and into
the gauge sectors starting at three- (or four-) loop, depend-
ing on whether the participating matter fields are charged
(uncharged) under the gauge symmetry. Conversely, the
Yukawa couplings couple back into the quartic starting at
one-loop, as do the weak and hypercharge gauge couplings
into the Higgs. We expect therefore a crucial interplay
between BSM Yukawas and the portal coupling with Higgs
stability. In addition, the leading order study in Sec. III
showed that some of the fixed point coordinates might
come out within the range Oð0.1 − 1.0Þ, indicating that

strict perturbativity cannot be guaranteed. For these rea-
sons, we develop the fixed point search and the study of RG
equations up to the highest level of approximation where all
couplings are treated on an equal footing, i.e., the complete
two-loop order (222 approximation). The running of SM
couplings, which serves as a reference scenario, is studied
up to the complete three-loop order (333 approximation).
All our models require boundary conditions with six

SM couplings at the matching scale μ0, which for all
practical purposes corresponds to the mass of the BSM
fermions ψ . To be specific, we take the matching scale in
this section to be

μ0 ¼ 1 TeV: ð38Þ
The initial conditions for the SM couplings then read, using
Mt ≃ 172.9 GeV and [53,54],

α1ðμ0Þ ≃ 8.30 × 10−4; αλðμ0Þ ≃ 6.09 × 10−4;

α2ðμ0Þ ≃ 2.58 × 10−3; αtðμ0Þ ≃ 4.61 × 10−3;

α3ðμ0Þ ≃ 7.08 × 10−3; αbðμ0Þ ≃ 1.22 × 10−6: ð39Þ
Hence, in our conventions, initial couplings are within the
range Oð10−6 − 10−2Þ. We are now in a position to discuss
the running of couplings and the “BSM critical surface,”
i.e., the set of values for BSM couplings at the matching
scale which lead to viable RG trajectories all the way up to
the Planck scale.

B. Standard model

We briefly discuss running couplings within the SM
at the complete three-loop order in perturbation theory
[54–61], displayed in Fig. 6. Overall, the SM running is
rather slow with gauge, quartic, and Yukawa couplings
mostly below Oð10−2Þ or smaller. We also observe that the
Higgs potential becomes metastable starting around
1010 GeV [54,55], an effect which is mostly driven by
the quantum corrections from the top Yukawa coupling αt.
Further, an imperfect gauge coupling unification is observed
around 1016 GeV. Quantum gravity is expected to kick in
around the Planck scale, MPl ≈ 1019 GeV, indicated by the
gray-shaded area. As an aside, we notice that the Higgs beta
function essentially vanishes at Planckian energies

μ ≈ MPl∶ αλ ≈ 10−4; βλ ≈ 0: ð40Þ

If quantum gravity can be neglected, hypothetically, we
may extend the running of couplings into the trans-
Planckian regime. The hypercharge coupling would then
reach a Landau pole around 1041 GeV. Also, its slow but
steady growth would eventually dominate over the slowly
decreasing top Yukawa coupling, and thereby stabilize the
quantum vacuum starting around 1029 GeV. Ultimately,
however, the Higgs coupling reaches a Landau pole along-
side the Uð1ÞY coupling and the SM stops being predictive.
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C. Feeble BSM couplings

Next, we include new matter fields on top of the SM ones
and switch on the BSM couplings at the matching scale
(39). A minimally invasive choice are very small, feeble,
BSM couplings such that they do not significantly

influence the renormalization group flow up to the
Planck scale. Their own running would then be well
encoded already by the leading order in the perturbative
expansion, and models resemble the SM, extended by
vectorlike fermions. Specifically, we consider here initial
values of the order of αBSM ≈ 10−7 or smaller.

FIG. 6. Renormalization group running of the SM. Shown are the gauge, Higgs, top (solid green line) and bottom (dashed green line)
Yukawa couplings at the complete three-loop order starting from the 1 TeV regime up to the deep UV. The Planck scale is indicated by
the gray band. The Higgs self-coupling changes sign twice, around 1010 GeV and around 1030 GeV. In between, the SM vacuum is
metastable. Ultimately, the hypercharge and the Higgs coupling approach UV Landau poles around 1041 GeV.

FIG. 7. Renormalization group running of models A–F with feeble BSM couplings. The gray-shaded area indicates the Planck scale.
Sub-Planckian Landau poles arise in models B and D (model F) in the hypercharge (weak) coupling.
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1. Models A, C, and E

Sample trajectorieswith feeble BSMcouplings are shown
in Fig. 7 (plots to the left) formodelsA, C, andE. In all cases,
we observe a SM-like running of couplings. The newmatter
fields modify the running of gauge couplings very mildly.
FormodelsA andE,we find a vanishing beta function for the
Higgs quartic coupling, much similar to the SM (40). For
model C, we observe that the regime of Higgs metastability
terminates exactly around the Planck scale,

μ ≈ MPl∶ αλ ≈ 0; βλ ≈ 0: ð41Þ
We conclude that in models A, C, and E feeble initial values
for theBSMcouplings lead to SM-like trajectories including
vacuum metastability up to the Planck scale. Hence, the
BSMcritical surface covers the region inwhich all couplings
are feeble.

2. Models B, D, and F

The models B, D, and F with feeble BSM couplings at μ0
reach a Landau pole prior to the Planck scale, with sample
trajectories shown inFig. 7 (plots to the right). Specifically, in

model B asymptotic freedom for the weak and hypercharge
couplings is lost leading to a Landau pole around 1016 GeV
reached first for the hypercharge, going hand-in-hand with
the loss of vacuum stability. Similarly, a strong coupling
regime with a Landau pole is reached around 1013 GeV
(1016 GeV) for model D (model F). Hence, none of these
models can make it to the Planck scale for feeble BSM
couplings, excluding this region from the BSM critical
surface.Notice though that the growth of the gauge couplings
inmodelsB and F stabilizes theHiggs sector all theway up to
close to the pole.

D. Weak BSM couplings

In the following we explore several matching scenarios
for each of the models A–F with BSM couplings of at least
the same order of magnitude as the SM couplings at the
matching scale (39). In this regime, Yukawa interactions
play a crucial role in avoiding Landau poles and stabilizing
RG flows, inviting a classification by the couplings
involved. Because of the importance for Higgs stability,
we also distinguish scenarioswith orwithout portal coupling
effects. After identifying relevant correlations betweenBSM

FIG. 8. Renormalization group running of models A–F and ακ ≈ 0, jαδj ¼ 10−5 (except for model E, where jαδj is very feeble), as well
as ακ0 ¼ 0 for models A and C. In models A, C, D, and E, small initial values of ακ (light blue line) blow up in the UV, while for B and F
the trajectories remain more stable. The Higgs potential (lilac line) is not stabilized by Yukawa interactions (models B, C, F), but for
sufficiently large initial values of αδ (orange line) in the singlet models (models A and E).
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couplings, we obtain in Sec. IV E the BSM critical surface
for each model.

1. Models A–F with αy ≠ 0

For ακ;κ0 ≈ 0, the BSM Yukawa αy ≠ 0 slows down the
running of gauge couplings and removes all Landau poles
before MPl. Moreover, it stabilizes the running of the
quartics αu;v, due to a walking regime βy;u;v ≈ 0, which
may extend until after the Planck scale. This is displayed in
Fig. 8. Because of sizable BSM couplings, the portal αδ is
being switched on, influencing the running of the Higgs
quartic αλ. For larger values αδjMF

, the Higgs potential can
be stabilized, i.e., αλ > 0 between MF and MPl (models A
and E), while smaller values of αδjMF

cause the Higgs
potential to flip sign twice before the Planck scale (models
B and F), or αλ remains negative at MPl (models C and D).
In models A, C, D, and E, feeble initial values of ακ grow

in coupling strength, eventually destabilizing the trajecto-
ries in the far UV. For the triplet models B and F, βκ remains
small for feeble or weakly coupled ακ, providing greater
windows of stability. In summary, the BSM critical surface

covers the parameter space where αy is weak and ακ;κ0 are
feeble at the matching scale.

2. Models A–F with ακ ≠ 0

A weakly coupled Yukawa interaction ακ may stabilize
the SM scalar sector. The choice,

αy;κ0 ¼ 0; ακ ≠ 0; jαδj ≈ 0; ð42Þ

is depicted in Fig. 9. A common feature of all models A–F
is the stabilization of αλ in a walking region together with
ακ and the SM Yukawas, as all of which couple to the SM
Higgs directly. The BSM potential, on the other hand, lacks
a sizable Yukawa interaction, and αv self-stabilizes around
α�v ≈ 13=204. This phenomenon is not disrupted by feeble
initial values of jαu;y;δj, which are driven to zero in the UV
limit. However, the scenario is not viable for model D as the
Landau pole still appears before the Planckian regime. In
model B, the pole appears soon after MPl.
The initial value of ακ can be reduced for αδjMF

large
enough to stabilize the running of the Higgs quartic:

FIG. 9. Renormalization group running of models A–F with αy ≈ 0 and jαδj ≈ 0, and ακ0 ¼ 0 for models A and C. In all models the
couplings αy;u;δ (red, brown, orange lines) are driven to zero in the UV. The solid (dashed) green line denotes the flow of the SM top
(bottom) Yukawa, which merge at the crossover.
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αy;κ0 ¼ 0; ακ ≠ 0; jαδj ≠ 0: ð43Þ
For models A, C, and E, this allows for feeble ακ at the
matching scale, while in models B, D, and F poles arise
below or at the Planck regime, as displayed in Fig. 10.

3. Models A and C with ακ0 ≠ 0

Models A and C feature the additional Yukawa inter-
action ακ0 , giving rise to another walking regime

αy ¼ 0; ακ;κ0 ≠ 0; jαδj ≈ 0; ð44Þ
shown in Fig. 11. Starting from the matching scale MF,
these regions are reached before the Planck scale, and at
various speeds by different couplings, creating a rich
landscape of intermediate pseudofixed points and scales.
Throughout the walking regime, SM and BSM Yukawas
and quartics slow down in model A at

α�t;b ≃ 3.61 × 10−1; α�κ0 ≃ 2.32 × 10−1;

α�κ ≃ 1.80 × 10−1; α�u ≃ 3.07 × 10−2;

α�λ ≃ 8.95 × 10−2; α�v ≃ 4.12 × 10−2; ð45Þ

and in model C at

α�t;b ≃ 3.61 × 10−1; α�κ0 ≃ 1.88 × 10−1;

α�κ ≃ 1.80 × 10−1; α�u ≃ 2.44 × 10−2;

α�λ ≃ 8.95 × 10−2; α�v ≃ 3.92 × 10−2: ð46Þ

On the other hand, the portal αδ and gauge couplings
continue to run, although the latter is slowed down by the
magnitude of the Yukawas. Consequently, Landau poles are
avoided even far beyond the Planck scale. Moreover, the
SM [BSM] quartics αλ ½αu; αv� are stabilized by the ακ ½ακ0 �
Yukawa couplings. All of these phenomena are conse-
quences of the vicinity of a pseudofixed point with
α�1;2;3;y;δ ¼ 0, separating the SM and BSM scalar sectors,
as well as Yukawa couplings from each other. This
decoupling is expected to be realized to all loop orders,
because, in its vicinity, the action decomposes as

S ¼ SHðH;L½E�;ψR½L�Þ þ SSðS; E½L�;ψL½R�Þ ð47Þ

for model A [C], up to corrections of the order of the SM
lepton Yukawas Yl, Eq. (9). However, this separation can

FIG. 10. As in Fig. 9 but for significantly lower values of ακ (light blue line) at the matching scale. Models B, D, and F exhibit Landau
poles before or at the Planck scale. Qualitative features observed in Fig. 9 for αy;u;δ (drop toward UV) and αb;t (merging) remain.
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be realized only approximately for small gauge and portal
couplings. Hence, the RG flow eventually leaves the
walking regime in the far UV due to the slow residual
running of α1 or αδ. Ultimately, this triggers a crossover
away from the walking regime and into an interacting UV
fixed point regime where all couplings bar the non-Abelian
gauge and the BSM Yukawa couplings take nontrivial
values.
Specifically, for model A, the interacting UV fixed point

is approximately given by

α�1 ≃ 1.93 × 10−1; α�κ ≃ 3.05 × 10−1;

α�3 ¼ α�2 ¼ α�y ¼ 0; α�κ0 ≃ 6.25 × 10−1;

α�λ ≃ 1.27 × 10−1; α�δ ≃ −1.55 × 10−2;

α�t ≃ 4.78 × 10−1; α�u ≃ 1.19 × 10−1;

α�b ≃ 4.53 × 10−1; α�v ≃ 4.03 × 10−2: ð48Þ

Note that the fixed point is rather close to the values of
couplings in the walking regime (45). Similarly, in model C
we find an approximate UV fixed point with coordinates

α�1 ≃ 7.64 × 10−1; α�κ ≃ 3.05 × 10−1;

α�3 ¼ α�2 ¼ α�y ¼ 0; α�κ0 ≃ 7.00 × 10−1;

α�λ ≃ 3.38 × 10−1; α�δ ≃ −3.30 × 10−2;

α�t ≃ 7.51 × 10−1; α�u ≃ 1.57 × 10−1;

α�b ≃ 5.76 × 10−1; α�v ≃ 4.54 × 10−2: ð49Þ

Again, we note that (48) is numerically close to the walking
regime (46).
Reducing ακjMF

destabilizes the running of the Higgs
self-coupling αλ, which can, however, be remedied by a
nonvanishing portal coupling αδ:

αy ¼ 0; ακ;κ0 ≠ 0; jαδj ≠ 0: ð50Þ

In model A, this enables trajectories with feeble ακjMF
to

connect to the phenomena (45) and (48), while for model C,
trans-Planckian poles arise. This is displayed in Fig. 12. In
both models the coupling αu (brown line), whose overall
sign separates the vacuum solutions Vþ from V−, Eq. (22),
changes sign below MPl.
In summary, the BSM critical surfaces of models A and

C include regions for both ακjMF
and ακ0 jMF

being pertur-
batively small. For even smaller values of ακjMF

, larger
values of αδjMF

are required, and Higgs stability is not
automatically guaranteed. The interplay of BSM input
values on Planck-scale features is further detailed below
(Sec. IV E).
We emphasize that our models are the first templates of

asymptotically safe SM extensions with physical Higgs,
top, and bottommasses, and which connect the relevant SM
and BSM couplings at TeV energies with an interacting
fixed point at highest energies. Another feature of our
models is the low number NF of new fermion flavors
required for this. In contrast, earlier attempts toward
asymptotically safe SM extensions [11,14,20,21] required
moderate or large NF, and either neglected the running of

FIG. 11. Renormalization group running in models A and C with αy ¼ 0, ακ;κ0 ≠ 0, and jαδj ≲ 10−5. The solid (dashed) green line
denotes the SM top (bottom) Yukawa. The flow is stabilized by a crossover fixed point just before the Planck scale (gray area); see text.
As α1 (steel blue line) becomes large, a complete UV fixed point is reached in the far UV.
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quartic and portal couplings [11,14] or used an unphysi-
cally large mass for the Higgs [21] in large-NF resumma-
tions which require further scrutiny [20,25]. It will
therefore be interesting to test the fixed point at higher-
loop orders, once available, and nonperturbatively using
lattice simulations [26], or functional renormalization.

E. BSM critical surface

We analyze the state of the vacuum at the Planck scale in
dependence on the initial conditions of the BSM couplings
atMF to determine the BSM critical surface in each model.
In accord with the reasoning in Sec. IV D, the BSM
Yukawas αy and ακ are varied at the matching scale, with
the SM couplings fixed by (39). The remaining BSM
couplings are, exemplarily, set to

fακ0 ;αδ; αu; αvgjMF
¼ f0; 5; 1; 4g × 10−5: ð51Þ

For each model, we then sample 141 × 61 different initial
values ðακ; αyÞjMF

and integrate the RG flow at two-loop
accuracy for all couplings from the matching scale to the
Planck scale. The result for all models is shown in Fig. 13.
Different parameter regions are color-coded to indicate the
type of ground state at the Planck scale, or whether poles or
instabilities arise prior to MPl. Specifically, we distinguish
regions in ακ;yjMF

that yield stable vacua Vþ (blue) or V−

(green), according to (22), evaluated at the Planck scale.
Regions with negative Higgs quartic are called metastable
(yellow), if 0 > αλjMPl

> −10−4, and Higgs unstable if

αλjMPl
< −10−4. In the remaining regions with unstable

vacuum (gray) either BSM quartics αu, αv do not comply
with (22) (regardless of αλ and αδ) or αu, αv, and αλ do
comply with (22), but αδ does not. Regions with Landau
poles below or at the Planck scale are indicated in red.
Next, we discuss the pattern of results in Fig. 13.

Connecting to the region of feeble couplings Fig. 7,
Landau poles are present before the Planck scale within
at least ακ;yjMF

≲ 10−3 in models B, D, and F. For models
A, C, and E, on the other hand, within ακ;yjMF

≲ 10−4 no
poles arise and the Higgs potential is metastable or even
becomes stable at the Planck scale (model C), just as
depicted in Fig. 7.
Toward larger values of ακjMF

, models A, C, and E
exhibit a metastable and then unstable Higgs potential
until ακjMF

is large enough to stabilize the potential as in
Fig. 9. The vacuum configuration at MPl is then the
same as at the matching scale, either Vþ or V−. For
models B and F, ακjMF

> 10−2 is required to move the
Landau pole past the Planck scale, while this is not
possible in model D.
If we are increasing αyjMF

instead, this leads eventually
to the ground state Vþ in the BSM potential, but Higgs
stability is not guaranteed automatically; see Fig. 8. If not
obstructed by poles, each model exhibits a narrow “belt” of
parameters around ακ0 jMF

≈Oð10−3Þ and any ακjMF
, within

which the BSM potential is unstable due to αu < −αv in
the V− ground state. Here, Coleman-Weinberg resumma-
tions [12] or higher-order scalar self-interactions [13]

FIG. 12. As in Fig. 11 but for smaller ακ (light blue line) and larger portal coupling jαδj (orange line). The flow is stabilized by a
crossover fixed point involving αδ (orange line). In model A, the flow continues into the same walking regime and UV fixed point as in
Fig. 11, while model C runs into a pole way beyond the Planck scale. αu (brown line) changes sign below MPl.
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should be included before definite conclusions about
stability are taken.
Another feature of models A and E is that for ακ;yjMF

≳
10−1 simultaneously, Landau poles occur before the Planck
scale. For the other models, RG trajectories are stabilized
around MPl in the V− ground state by quartic interactions.
However, this region is especially sensitive to corrections
from higher-loop orders.
For models A and C, the additional Yukawa interaction

ακ0 adds an extra dimension to the BSM critical surface.
Its impact is further investigated in Fig. 14 (color-coding
as in Fig. 13) where we exemplarily explore the vacuum
state at the Planck scale within the ðακ;ακ0 ÞjMF

parameter
plane, and

fαy; αδ; αu; αvgjMF
¼ f0; 5; 1; 4g × 10−5: ð52Þ

We find that the region with ακ0 jMF
≲ 10−4 is very similar to

the region αyjMF
≲ 10−4 in Fig. 13, featuring a stable

ground state for weakly coupled ακjMF
. For both ακ;κ0 jMF

≳
10−2 the phenomena illustrated in Fig. 11 occur, implying a
stable Vþ region. The fate of the quadrant with ακ0 jMF

≳
10−2 and ακjMF

≲ 10−2 hinges on the value of αδjMF
. As can

be seen from Fig. 14, its flow can be stable, as in Fig. 12,
while poles or Higgs metastability are possible as well.
The BSM critical surface at the matching scale of each

model consists of the combined V− plus Vþ regions, with
slices in the multidimensional parameter space shown in
Figs. 13 and 14 in green and blue. All models A–F can be
stable at least up to the Planck scale. The yellow (meta-
stability) regions may be included as well, as this corre-
sponds to the situation of the SM. In general, experimental
constraints on the BSM critical surface apply for matching

FIG. 13. BSM critical surface for models A–F with fακ0 ; αδ; αu; αvgjMF
¼ f0; 5; 1; 4g × 10−5 and values fακ; αygjMF

at the matching
scale. The colors indicate if the corresponding vacuum at the Planck scaleMPl is either stable Vþ (blue) or V− (green), (22), an unstable
BSM vacuum (gray), a stable vacuum for αu;vjMPl

but with αλjMPl
< 0 (yellow for αλjMPl

> −10−4, otherwise brown), or if the RG flow
runs into a pole (red). Resolution is 141 × 61 points per model.
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scales around the TeV scale, a topic further discussed in the
next Sec. V.

V. PHENOMENOLOGY

In this section, we investigate the phenomenological
implications of our models. Specifically, in Sec. VA we

discuss BSM sector production at hadron and lepton
colliders, and in Sec. V B the decays of the BSM fermions
and scalar. An important ingredient for phenomenology is
mixing between SM and BSM fermions, the technical
details for which are relegated to Appendix D. Resulting
phenomenological consequences are worked out in
Sec. V C and include dileptonic decays of the scalars.
Constraints from Drell-Yan data on the matching scale
are worked out in Sec. V D. Implications for the leptons’
anomalous magnetic moments are studied in Sec. V E. In
Sec. V F we show that the portal coupling δ in (21) together
with κ and κ0 can provide a chirally enhanced contribution
to the magnetic moments. This mechanism also induces
EDMs forCP-violating couplings, discussed in Sec. V G. In
Sec. V H we discuss constraints from charged LFV decays.

A. BSM sector production

Tree-level production channels of the BSM sector at pp
or ll colliders are shown in Fig. 15. Since the fermions are
colorless, pair production in pp collisions is limited to
quark-antiquark fusion to electroweak gauge bosons [dia-
grams 15(a) and 15(b)]. Single production through Yukawa
interactions with s-channel Higgs [diagram 15(c)] is also
possible. In ll colliders, the ψ can also be produced with
t-channel Higgs or S in pairs 15(d) and singly 15(e). The
contribution to ψ̄ψ production from s-channel neutral
bosons is especially relevant, since it is present in all
models in study (except for model E), in both pp and ll
collisions, and all NF ¼ 3 flavors of ψ are produced. In the
limitMF ≫ mf, where f is a quark or a lepton andmfðQfÞ
denotes its mass (charge), the contribution to pair produc-
tion via photon exchange at center of mass energy-squared
s reads

FIG. 14. As in Fig. 13 for models A and C in the fακ; ακ0 gjMF

plane with matching conditions fαy;αδ;αu;αvgjMF
¼f0;5;1;4g×

10−5. Resolution is 141 × 61 points per model.

FIG. 15. Production channels of the BSM particles at pp and ll colliders, with f ¼ l; q. In diagram (f) the S and S† labels are
schematic for model A; see text for details.
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σγðf̄f→ ψ̄ψÞ

¼NF
4π
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α2eQ2
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SUð2ÞL
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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for s>4M2

F;

ð53Þ

where we summed over the ψ’s flavors and SUð2ÞL
components; αe ¼ e2=4π denotes the fine structure con-
stant. Corresponding cross sections are of the order
NFQ2

f

P
Q2

F90 fb=ðs½TeV�Þ [62]. Note the enhancement
in models B and D which contain fermions with jQFj ¼ 2,
and result in effective charge squares of

P
Q2

F ¼ 5. The
BSM scalars, which are SM singlets, can be pair produced
at lepton colliders in models A and C through the Yukawa
interactions ðκ0Þ with ψ-exchange [diagram 15(f)]. The
cross section, for s > 4M2

S, then reads

σðlþl−→ SS†Þ
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: ð54Þ

Denote by Re½S� and Im½S� the real, CP-even, and
CP-odd physical degrees of freedom of S, respectively.
Together the Yukawas κ and κ0 induce single S production,
Re½S� or Im½S�, in association with a Higgs [diagram 15(f)].
Another mechanism to probe the scalars is through

S-Higgs mixing [diagram 15(g)], which arises if the portal
coupling ∼H†HTr½S†S� is switched on. In this diagram, the
hRe½S�Re½S� and hIm½S�Im½S� couplings arise after electro-
weak symmetry breaking. In addition, the hhRe½S� vertex is
possible when the scalar S acquires a VEV. A detailed study
of ψ , S production at colliders is, however, beyond the
scope of this work.

B. BSM sector decay

We discuss, in this order, the decays of the vectorlike
leptons ψ and the BSM scalar S. Both subsections contain a
brief summary at the beginning.

1. Fermions

Depending on the representation, coupling, and mass
hierarchies, the BSM fermions can decay through the
Yukawa interactions to Higgs plus lepton or to S plus
lepton (only models A and C), while some members of the
SUð2ÞL-multiplets need to cascade down within the multi-
plet first through W-exchange. These are the states with
electric charge QF ¼ −2 (models B and D) and QF ¼ þ1
(model F). As detailed below, they allow for macroscopic
lifetimes. Mixing with the SM leptons induces additional

ψ-decays to Z, W plus lepton which are discussed in
Sec. V C.
The vectorlike fermions with QF ¼ 0 and QF ¼ −1 can

decay through the Yukawa interactions (κ) to hν and hl−,
respectively, except in model C, in which the Higgs couples
to SUð2ÞL-singlet leptons and only the QF ¼ −1 decay
takes place through κ. Neglecting the lepton mass, the
decay rate into Higgs plus lepton is

Γðψ → lhÞ ¼ π

4
C2
ψlακMF

�
1 −

m2
h

M2
F

�
2

; ð55Þ

where Cψl ¼ 1=
ffiffiffi
2

p
for the T3 ¼ 0 states in models B, F,

and Cψl ¼ 1 otherwise. For ακ ≳ 10−14 and MF at least a
tera electron volt, one obtains a lifetime Γ−1 ≲Oð10−13Þ s,
which leads to a prompt decay. In models A (C), the decays
ψ i → ljS

†
ji (ψ i → ljSji) are also allowed if the BSM

scalars are lighter than the vectorlike fermions, with rate

Γðψ → lSÞ ¼ π

2
C2
ψlακ0MF

�
1 −

M2
S

M2
F

�
2

: ð56Þ

Models B and D contain QF ¼ −2 fermions. After electro-
weak symmetry breaking, these cascade down through the
weak interaction as ψ−2 → ψ−1W�−, and subsequent
decays.
The lifetime is then driven by the mass splitting within

the multiplet. In the limit MF ≫ mW;mZ one obtains for
Δm ¼ Mψ−2 −Mψ−1 from SM gauge boson loops [63]

Δm≃ αPDG
2

2
ð3sinθ2WmZþkÞ and k ¼ mW −mZðmodel BÞ,

k ¼ 0ðmodel DÞ, which is around a giga electron volt in
both models. Corresponding decay rates Γðψ−2→ψ−1lνÞ∼
G2

FΔm5=ð15π3Þ≃3×10−13 GeVðΔm=½GeV�Þ5 indicate
around picosecond lifetimes of the ψ−2, with a small,
however macroscopic cτ ≃ 0.3 mm resulting in displaced
vertex signatures that can be searched for at the LHC [64].
In model F, theQF ¼ þ1 fermions decay similarly through
ψþ1 → Wþ�ψ0, with Δm¼Mψþ1 −Mψ0 ¼ αPDG2 MW sin2 θW

2
.

Numerically, this is an order of magnitude smaller than the
splitting in models B and D and suppresses the decay rate
significantly further, allowing for striking long-lived
charged particle signatures. Note that the presence of
fermion mixing, discussed in the following, can induce
more frequent decays unless couplings are very suppressed.
Note the upper limit on general mass splittings δM within

the fermion SUð2ÞL-multiplets by the ρ-parameter [62]

NFSðR2ÞδM2 ≲ ð40 GeVÞ2; ð57Þ

whereS2ðR2Þ is theDynkin index of the representationR2 of
SUð2ÞL (see [11] for details). Specifically,S2 ¼ 0; 1=2; 2 for
models A and E, models C and D, and models B and F,
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respectively. The allowed splitting is hence about a few
percent for tera-electron-volt-ish fermion masses.

2. Scalars

If kinematically allowed, the scalars Sij decay in all
models through Yukawa couplings to ψψ̄ , and in models A
and C to ψ plus lepton. Only the flavor diagonal compo-
nents can, except in the SM-singlet model E, in addition
decay to electroweak gauge bosons through the y-Yukawa
and a triangle loop with ψ’s, S → GG0, with G;G0 ¼
γ;W; Z. Mixing of the vectorlike fermions with the SM
leptons induces BSM scalar decays to dileptons, further
discussed in Sec. V C.
For MS > MF þml decays to vectorlike fermions and

leptons through the mixed Yukawas ðκ0Þ, i.e., in models A
and C, are kinematically open. In all models, the decay to
ψ̄ψ is possible for MS > 2MF through the Yukawa cou-
pling y. The tree-level decay rates for a given flavor-
specific component Sij can be written as

ΓðSij→ ψ̄ iljÞþΓðSij→ ljψ iÞ¼2πακ0MS

�
1−

M2
F

M2
S

�
2

;

ΓðSij→ ψ̄ iψ jÞþΓðSij→ψ jψ iÞ¼2παyMS

�
1−

4M2
F

M2
S

�
1=2þξ

;

ð58Þ

where model-dependent SUð2ÞL multiplicities in the
final states are not spelled out explicitly. For instance, in
model B, Sij decays to ψ̄−2

i ψ−2
j þ ψ̄−1

i ψ−1
j þ ψ̄0

iψ
0
j plus CP

conjugate ones. The loop-induced decays to gauge bosons
read

ΓðSii → GG0Þ ¼ α2eαy
16π

M3
S

M2
F
jCGG0A1=2ðτÞj2; ð59Þ

where the coefficients CGG0 depend on the representation of
ψ and in the limit MS ≫ MW can be expressed as

Cγγ ¼ S2ðR2Þ þ dðR2ÞY2;

CZZ ¼ S2ðR2Þ tan−2 θW þ dðR2ÞY2 tan2 θW;

CWW ¼
ffiffiffi
2

p

cos2 θW
S2ðR2Þ;

CZγ ¼
ffiffiffi
2

p
ðS2ðR2Þ tan−1 θW − dðR2ÞY2 tan θWÞ: ð60Þ

In (58) and (59), ξ ¼ 1 and ξ ¼ 0 correspond to the scalar
and pseudoscalar parts of S, respectively, and A1=2ðτÞ ¼
2
τ2
ðξτ þ ðτ − ξÞfðτÞÞ with

fðτÞ ¼
8<
:

arcsin½2�ð ffiffiffi
τ

p Þ for τ ≤ 1;

− 1
4

�
ln 1þ

ffiffiffiffiffiffiffiffiffi
1−τ−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−τ−1

p − iπ

�
2

for τ > 1;
ð61Þ

and τ ¼ M2
S=4M

2
F [65]. In the case of one of the Sij mixing

with angle β with the Higgs, the real part of Sij can decay
through mixing with rate Γmix ¼ sin2 βΓSM

h , where ΓSM
h is

the decay rate of the Higgs in the SM.
In model A the main S decay channels are ψ̄ψ

and ψl, followed by the decay to photons. Other gauge
boson modes are further suppressed, as for T3 ¼ 0

holds 1>ðCZγÞ2¼2tanθ2W>ðCZZÞ2¼ tanθ4W . The reduced
rates Γ=ðMSαyÞ as a function of τ for model A are shown in
Fig. 16 for αy ¼ ακ0.
In models B, C, D, and F the vectorlike fermions are

charged under SUð2ÞL and allow for decays to WþW−.
When kinematically allowed, the tree-level decays into
ψ̄ψ are dominant. For model B this is shown in Fig. 17.
The hierarchy between the gauge boson decay rates in
model B reads ΓB

ZZ > ΓB
γγ > ΓB

WW > ΓB
Zγ , and in model C

ΓC
ZZ > ΓC

γγ > ΓC
Zγ ≈ ΓC

WW . In model D, the Sii → GG0

hierarchies are ΓD
γγ>ΓD

ZZ>ΓD
Zγ>ΓD

WW , whereas in model F
ΓF
ZZ > ΓF

Zγ > ΓF
WW > ΓF

γγ.
For MS < MF and negligible αy one may wonder

whether S can decay at all. However, fermion mixing
induces decays to SM leptons or neutrinos, discussed next.

C. Fermion mixing

Mixing between SM leptons and BSM fermions pro-
vides relevant phenomenology. Mixing angles—in the
small angle approximation to make the parametric depend-
ence explicit—for the left-handed ðθML Þ and right-handed
ðθMR Þ fermions, with the model M indicated as superscript,
are given in Table VI. Details are given in Appendix D. We
discuss, in this order, the impact of mixing on scalar

FIG. 16. Reduced decay rates Γ=ðMSαyÞ of the flavor-specific
components of the BSM scalar S (58), (59) in model A for
αy ¼ ακ0 . Full (dashed) lines correspond to the scalar (pseudo-
scalar) decays; for S → ψl they coincide. The decay rate into Zγ
lies between the ZZ and γγ curves.
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decays, modified electroweak and Higgs couplings and
decays of vectorlike leptons to Z;Wþ SM lepton. The
results are important for experimental searches because
they imply that all Sij and ψ i eventually decay to SM
leptons, charged ones, and neutrinos, with the only excep-
tions being the diagonal Sii → GG0 decays.

1. LFV-like scalar decay

In models A and C, mixing induces tree-level decays
Sij → l�

i l
∓
j at the order κ0θAL; κ

0θCR ≃ κ0 κvhffiffi
2

p
MF
, using the

angles of Table VI. These can be competitive with decays to
electroweak bosons: for instance, taking κ0 ∼ y and
for θAL of order 10−3 or larger they dominate over S → γγ
in model A. Unless the mixing is strongly suppressed,

κ0θAL; κ
0θCR ≲ 10−7 for MS at the tera-electron-volt scale, the

S lifetime is below picoseconds and is too short for a
macroscopic decay length.
In models B, D, and F, for MS > MF, fermion mixing

induces the decays Sij → ψ jli (models B and F) and Sij →
ψ ilj (model D) at the order y κvhffiffi

2
p

MF
. For MS < MF, the

decays Sij → l�
i l

∓
j at the order yθML θ

M
R ≃ yð κvhffiffi

2
p

MF
Þ2 ylvhffiffi

2
p

MF

are the leading ones. Using (58) again, one obtains a
lifetime of picoseconds or above for a suppression factor
yθML θ

M
R ≲ 10−7. Because of its flavor dependence, the

suppression of the mixing is stronger for tau-less final
states. This could allow for displaced decays into dielec-
trons, dimuons, and e�μ∓, while at the same time, those
into ditaus, e�τ∓, and μ�τ∓ could remain prompt.
Last, for models with QF ¼ 0 fermion decays S → ψ̄0

jνi
are also allowed forMS > MF, occurring at order yθ

0;M
L for

models B, E, and F and at order κ0 for model C. In the case
of model E, this is the only available decay mode of the Sij
(apart from S → ψ̄ψ if allowed), leading to below-pico-
second lifetimes for yθ0;EL ≃ yκvh=

ffiffiffi
2

p
MF ≲ 10−7. Study of

the different S decay modes into various gauge bosons or
fermions can be used for experimental discrimination of
models. The patterns of final state leptons in LFV-like2

decays, e, μ, or τ can help to understand hierarchies.

2. Impact on Z, W, and Higgs couplings

Fermion mixing gives rise to tree-level effects in
the couplings of leptons and vectorlike fermions to the
massive electroweak bosons. In the case of the Z couplings
to two leptons, the Lagrangian in the fermion mass basis
LZ ¼ g2

2 cosθw
½l̄γμðglV − γ5glAÞlþ gνν̄γμð1− γ5Þν�Zμ acquires

couplings

glV
A
¼ gl;SMV

A
þ s2θLðT3

ψ−1 þ 1=2Þ � s2θRT
3
ψ−1 ; ð62Þ

with respect to their SM values glV ¼ −1=2þ 2s2w and
glA ¼ −1=2, and where T3

ψ−1 is the isospin of the QF ¼ −1
component of the vectorlike fermions in each model. The
rotation angles are to be taken from Table VI according to
the chosen vacuum structure and the lepton flavor l. In the
case of model A (C), one finds T3

ψ−1 ¼ 0 (T3
ψ−1 ¼ −1=2),

yielding modifications purely proportional to s2θL (s2θR ). In
models B, E, and F one finds θR ≪ θL, while model D
presents θL ≪ θR, so that in all models the gl present
modifications proportional to κvh=MF. In models with
QF ¼ 0 fermions (B, C, E, and F), the Z couplings to two
neutrinos become

FIG. 17. Reduced decay rates Γ=ðMSαyÞ of the flavor-specific
components of the BSM scalar S (58) and (59) in model B.
Full (dashed) lines correspond to the scalar (pseudoscalar)
decays. The decay rates in model B into WW and γγ satisfy
ΓB
ZZ > ΓB

γγ > ΓB
WW > ΓB

Zγ .

TABLE VI. Mixing angles of the QF ¼ −1 fermions
(θM) and the QF ¼ 0 fermions (θ0;M) (see Table I), with
m2 ¼ MF þ yvs=

ffiffiffi
2

p
. In V−, the direction that is aligned with

the vacuum (second generation) presents different mixing angles.
We have θCL;R ¼ θAR;L for model C and θDL;R ¼ ffiffiffi

2
p

θBR;L for

model D. We also find θ0;EL ¼ ffiffiffi
2

p
θ0;FL ¼ θ0;BL and θFL;R ¼

ffiffiffi
2

p
θBL;R

in models E and F. The additional factor of 1=
ffiffiffi
2

p
in θB and

θ0;F originates from Clebsch-Gordan coefficients (31); see
Appendix D for details.

Vacuum θAL θAR θBL θBR θ0;BL θ0;CL

Vþ κvhffiffi
2

p
m2

κ0vsffiffi
2

p
m2

κvh
2m2

κv2hyl
2
ffiffi
2

p
M2

2

κvhffiffi
2

p
m2

κ0vsffiffi
2

p
m2

V−ðψ2 − l2Þ κvhffiffi
2

p
MF

κ0vsffiffi
2

p
m2

κvh
2MF

κv2hyl
2
ffiffi
2

p
M2

F

κvhffiffi
2

p
MF

κ0vsffiffi
2

p
m2

V−ðψ1;3 − l1;3Þ κvhffiffi
2

p
MF

κv2hyl
2M2

F

κvh
2MF

κv2hyl
2
ffiffi
2

p
M2

F

κvhffiffi
2

p
MF

0
2Despite the different lepton flavors in the final state processes

such as Sij → l�
i l

∓
j are, strictly speaking, LFV-like only because

flavor is conserved in the decay.
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gν ¼ gν;SM þ Δgν ¼ gν;SM þ s2
θ0L
½T3

ψ0 − 1=2� ð63Þ

with gν;SM ¼ 1=2. In model C, for which T3
ψ0 ¼ 1=2, gν

remains unaffected. Therefore, in all models Z data mainly
constrains the mixing angles proportional to κvh=MF.
Measurements of the Z couplings to charged leptons
and the electron-flavored neutrinos demand Δg≲ 10−3

or smaller [53], which implies

ακ ≲ 4 × 10−4 ðMF=TeVÞ2: ð64Þ

Modifications of theW couplings remain also in agreement
with W decay measurements if (64) is fulfilled (see
Appendix E for details). Additionally, Higgs couplings
are modified by mixing as well. Since charged leptons
acquire mass from several Yukawa interactions, the cou-
plings of Lhll ¼ ylffiffi

2
p l̄lh in the mass basis fulfill

yl ¼ ySMl þ sin θlL

�
κ0
vs
vh

cos θlR −
ffiffiffi
2

p MF

vh
sin θlR

�
ð65Þ

for model A, while replacing L ↔ R gives the expression
for model C. In all other models, the κ0 term is absent.
For angles fulfilling Z vertex constraints according to
Eq. (64), Higgs signal strength bounds are avoidable for
all leptons [53,66].

3. Electroweak decays of vectorlike leptons

Finally, mixing induces decays of the vectorlike fer-
mions to weak bosons and leptons at tree level, with rates

ΓðψQ
i → ZfQi Þ

¼ MF

64π

g22
cos2θw

ðg2V þ g2AÞð1 − rZÞ2ð2þ 1=rZÞ;

ΓðψQ
i → W−fQþ1

i Þ

¼ MF

64π
g22½ðcWL Þ2 þ ðcWR Þ2�ð1 − rWÞ2ð2þ 1=rWÞ; ð66Þ

where ri ¼ M2
i =M

2
F, f

−1 ¼ l, f0 ¼ ν, and the coefficients
cWL;R and gV;A are collected in Tables X and XI, respectively,
for all models. Let us discuss the decays of the chargeless
ψ0 in model C, which occur exclusively through its
mixing unless ψ0 → Sν via κ0 is allowed. For the universal
vacuum Vþ and for the flavor in which the flavor-specific
vacuum V− points, it is important to note that the
ψ0 is lighter than the ψ−1 by ΔmC ¼ Mψ−1 −Mψ0 ¼
αPDG2 sin θ2WmZ=2 ≃ 0.4 GeV. This difference causes iso-
spin breaking in the mixing angles given in Table VI, which
induces a Cabibbo-Kobayashi-Maskawa-like misalignment
between up T3 ¼ 1=2 and down T3¼−1=2 sectors
θ0;CL − θCL ≃ θCLðΔmC=MFÞ, such that the decay ψ0 →
l0−Wþ� → l0−lþν can take place. Assuming θCR ≪ θCL ,

we estimate Γðψ0→l0−lþνÞ∼G2
FjθCLj2Δm2

CM
3
F=ð192π3Þ≃

4×10−6GeVjθCLj2ðMF=½TeV�Þ3. Unless θCL ≲ 10−3, the ψ0

decays faster than picoseconds.
For the flavors k in the lepton-specific vacuum V− which

do not get a corresponding VEV in S, the left- and right-
handed angles have the opposite hierarchy, fulfilling
θCL ≪ θCR. Since θ0;CR ¼ 0, the ψ0

k decay promptly through
ψ0
k → W−lþ

k with jcWR j ¼ sin θCR ≃ κvh=
ffiffiffi
2

p
MF.

D. Drell-Yan

Modifications of the running of the electroweak
couplings can be constrained directly from charged and
neutral current Drell-Yan processes. Of particular interest
are the electroweak precision parameters W and Y, which
are linearly dependent on the BSM contribution to the
running of α2 and α1, respectively, as [67]

W;Y ¼ α2;1
C2;1

10

M2
W

M2
F
ðBSM

2;1 − B2;1Þ; ð67Þ

where C2 ¼ 1 and C1 ¼ 3=5. A lower limit on the mass of
the vectorlike fermions can be directly extracted from
experimental bounds on W, Y [68]. As shown in
Fig. 18, these require MF ≳ 0.1 TeV for model A and
MF ≳ 0.3 and 0.2 TeV for models B and C, respectively. In
models D and F one obtains MF ≳ 0.2 and 0.3, respec-
tively, while in model E one cannot extract bounds due to
the BSM sector being uncharged under the SM gauge
symmetries. The bound for model B excludes fixed points
B2 and B4, which can only be matched at MF ≃ 0.02 TeV.
Remarkably, the fixed points that remain viable in terms of
matching are only those which present a free α2. The effect
of two-loop corrections inW, Y may be estimated by taking
the effective coefficients Beff

i instead of B2;1 in (67). In our

FIG. 18. The electroweak parameters Y (full lines) and W
(dashed lines) for models A–D and F as functions of the BSM
fermion mass, and in comparison with the most stringent con-
straints from either LHC 8 TeVor the Large Electron and Positron
Collider (LEP, black lines), and the projected sensitivity of LHC
13 TeV (gray) taken from [68]. W constraints in models B, F
(orange dashed line) and C, D (blue dashed line) are identical.
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matching scenarios, this typically induces relative changes
of order 1% or less in W, Y with respect to the one-loop
values, and W, Y remain positive. The smallness of these
corrections is due to the fact that all couplings at low scales
present values of order 10−2–10−3, which are suppressing
the two-loop effects, while B2;1 are typically of order 1 or
larger.

E. Anomalous magnetic moments

The measurements of the electron and muon anomalous
magnetic moments are in tension with SM predictions,
offering hints for new physics. In the case of the muon, the
long-standing discrepancy amounts to [53]

Δaμ ¼ aexpμ − aSMμ ¼ 268ð63Þð43Þ × 10−11: ð68Þ

Adding uncertainties in quadrature, this represents a 3.5σ
deviation from the SM, while recent theory predictions find
up to 4.1σ [69,70].3 For the magnetic moment of the
electron, recent measurements lead to

Δae ¼ aexpe − aSMe ¼ −88ð28Þð23Þ × 10−14; ð69Þ

corresponding to a pull of −2.4σ from the SM prediction
[75,76]. For earlier BSM considerations, see Ref. [77].
From a model building perspective it is important to

understand which new physics ingredients are required to
explain the anomalies (68) and (69) simultaneously. Given
that the electron and muon deviations point in opposite
directions, it is commonly assumed that an explanation
requires the manifest breaking of lepton flavor universality.
BSM models which explain both anomalies by giving up
on lepton flavor universality have used new light scalar
fields [78–83], supersymmetry [84–87], bottom-up models
[88,89], leptoquarks [90,91], two-Higgs doublet models
[92,93], or other BSM mechanisms which treat electrons
and muons manifestly differently [94–102]. In the spirit of
Occam’s razor, however, we have shown recently that the
data can very well be explained without any manifest
breaking of lepton universality [40], which is in marked
contrast to any of the alternative explanations offered
by [78–101].
In this and the following subsection, we detail how the

models A, B, C, D, and F induce anomalous magnetic
moments at one-loop, and why, ultimately, only models A
and C can explain the present data. Note that model E does
not appear in the list, the reason being that the charged SM
leptons do no longer couple to BSM fermions after
electroweak symmetry breaking. The setting previously

put forward by us in [40] corresponds to model A and
model C of the present paper.
Specifically, new physics contributions to Δal arise

through the one-loop diagrams shown in Fig. 19. In the
limit where MF is much larger than the mass of the lepton
and the scalar propagating in the loop, the new physics
(NP) contribution typically scales as

aNPl ∼ αη
m2

l

M2
F
; ð70Þ

where ml denotes the lepton mass and η ¼ κ; κ0 is one of
the mixed Yukawa couplings; see Appendix B for details.
For couplings κ0; κ of comparable order, the largest con-
tribution comes from the latter, which couples the vector-
like fermions to the lighter scalar (the Higgs). The
parameter space ακ, MF compatible with (68) is shown
in Fig. 20. As obvious from (B2), Eq. (70) is manifestly
positive, and cannot account for Δae. For the muon
anomaly (68), the coupling ακM−2

F ≈ ð1.4� 0.4Þ TeV−2

in models A, C, and D as well as ακM−2
F ≈

ð4.2� 1.2Þ TeV−2 for models B and F is required. This
is, however, ruled out by the constraint (64). We learn that

FIG. 19. Contributions to Δal ðl ¼ e; μ; τÞwith a lepton chiral
flip (cross on solid line) via h (a) or Sil exchange, with i ¼ 1, 2,
3, only present in models A and C (b).

FIG. 20. Requisite values of ακ to account for Δaμ (68) for new
physics contributions scaling as (70) (full line) and (71) (dotted
line). The shaded region is excluded by Z-data (64).

3The possibility of rendering Δaμ insignificant has recently
been suggested by a lattice determination of the hadronic vacuum
polarization [71]. Further scrutiny is required [72] due to tensions
with electroweak data [73,74] and earlier lattice studies.
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the models B, D, E, and F cannot accommodate either of
the present data (68) and (69). Models A and C, on the
other hand, have an additional diagram from the S
exchange, Fig. 19(b). In fact, since the S field is a matrix
in flavor space the unobserved flavor index of the BSM
fermion ψ i in the loop makes this in total NF ¼ 3
contributions. The external chirality flip again induces a
contribution quadratic in lepton mass (70) which can
account for ðg − 2Þμ, since the coupling to the scalar singlet
κ0 is much less constrained than the one to the Higgs [40].
Certain NP scenarios, notably supersymmetric ones, can

evade one power of lepton mass suppression in (70) by
having instead the requisite chiral flip on the heavy fermion
line in the loop, as in Fig. 21, such that

aNP�l ∼ αη
ml

MF
; ð71Þ

opening up the possibility for larger contributions to g − 2,
and dipole operators in general. For g − 2 we explore this
further for models A and C in Sec. V F. Another application
is electric dipole moments, discussed in Sec. V G.

F. Scalar mixing and chiral enhancement

The scalar potential involving the SM and BSM scalars
H and S and the various quartic couplings and scalar mass
terms has been given in (21). To investigate the prospect of
chiral enhancement for dipole operators, such as those
responsible for (g − 2), EDMs, or μ → eγ, we need to
investigate the ground states. Using the methods of [12,51]
two ground states V� have been identified in (22), includ-
ing the conditions for couplings. The ground state Vþ
respects flavor universality in interactions with the SM
because it breaks SUð3ÞψL

× SUð3ÞψR
→ SUð3Þdiag due to

the diagonal VEV hSiji ¼ vsffiffi
2

p δij. Conversely, V− sponta-

neously violates flavor universality because it breaks
SUð3ÞψL

× SUð3ÞψR
to SUð2ÞψL

× SUð2ÞψR
×Uð1Þ by

only allowing a single diagonal component k to pick up
a nonvanishing VEV hSiji ¼ vsffiffi

2
p δi_kδj_k.

If both scalars S and H acquire a VEV, the portal
coupling δ induces a nondiagonal mass term in the potential

which allows the scalars to mix. Together with both
BSM Yukawas κ, κ0 chiral enhancement can occur in
models A and C. A corresponding contribution to g − 2
is shown in Fig. 21. First, we study the case V−, where a
single diagonal component of S generates a VEV. The Sii
component is chosen in order to target the generation i of
leptons in the term κ0Tr½ψ̄LSE�. We define

H¼
� hþ

1ffiffi
2

p ðhþihcþvhÞ
�
; Sii¼

1ffiffiffi
2

p ðsiiþisciiþvsÞ: ð72Þ

The mass matrix of the entire scalar sector is diagonal
except for the mixing of sii and h. Concentrating on this
subsystem, the mass eigenstates h1, h2 can be expressed in
terms of the mixing angle β as

�
h1
h2

�
¼

�
cos β sin β

− sin β cos β

��
sii
h

�
; ð73Þ

where

tan 2β ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðuþ vÞp mh

ms
ð1þOðm2

h=m
2
sÞÞ; ð74Þ

see Appendix D for details. Neglecting for the sake of this
discussion the mixing induced by the scalar VEVs in the
fermion system, the BSM Yukawa Lagrangian in the scalar
mass basis reads

Lβ ¼−ψ̄ j½ðκ sinβδjkPLþ κ0 cosβδijδikPRÞh1
þðκcosβδjkPL−κ0 sinβδijδikPRÞh2�lkþH:c:; ð75Þ

where we have again assumed κ; κ0 real and κjk ¼ κδjk.
Provided that the mass eigenstate h1 is much heavier
than h2 and ψ , and in the limit MF ≫ mh2 , the leading
contribution to ðg − 2Þl reads, for l ¼ i with hSiii ≠ 0,

aV
−

l ¼ −
ml

2MF

κκ0

16π2
sin 2β; ð76Þ

see Appendix B for details. This contribution is switched
on only when both left and right chiral couplings of the
lepton to the same scalar are present, a condition which is
met by scalar mixing, and which comes with an enhance-
ment factor MF

ml
ðακ0ακ

Þ1=2j sin 2βj with respect to NP contri-

butions such as (70). aV
−

l can have either sign.
If the vacuum is aligned in the muon direction, ðg − 2Þμ

benefits from chiral enhancement (76). Figure 22 shows for
which values of MF; j sin 2βj the contribution to ðg − 2Þμ
equals Δaμ (68) for some benchmark values of

ffiffiffiffiffiffiffiffiffiffi
ακακ0

p
.

Also shown is an upper limit on the mixing angle sin 2β <
0.2 from Higgs signal strength measurements [62].

FIG. 21. Chirally enhanced contribution to the anomalous
magnetic moment of a lepton l through scalar mixing (cross
on dashed line) and a ψl chiral flip (cross on solid line).
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Next we consider the case Vþ, where the BSM VEV is
universal in all flavors. Here mixing occurs between the h
and the three sii states acquiring the VEV. However, two of
the mass eigenstates contain no component in the h
direction, and thus only mix the sii states within them-
selves. The two normalized mass eigenstates that have
nonvanishing components in the h direction are

h10 ¼
1ffiffiffi
3

p ðcosβ0s11;cosβ0s22;cosβ0s33;
ffiffiffi
3

p
sinβ0hÞ;

h20 ¼
−1ffiffiffi
3

p ðsinβ0s11;sinβ0s22;sinβ0s33;−
ffiffiffi
3

p
cosβ0hÞ: ð77Þ

Hence, the mixing pattern with h is identical for all sii. The
enhanced contribution to the anomalous magnetic moments
affects all lepton generations and reads

aV
þ

l ¼ −
ml

2
ffiffiffi
3

p
MF

κκ0

16π2
sin 2β0: ð78Þ

As aV
−

l , it can a priori have either sign and can accom-
modate future ðg − 2Þμ data by adjusting κκ0δ=MF together
with the quartics. The parameter space β0;MF that fits Δaμ
is, up to a factor of

ffiffiffi
3

p
, the same as for V−, shown in

Fig. 22, and we note that this factor cancels with the one for
the angle β0, which obeys

tan 2β0 ¼
ffiffiffi
3

p
δffiffiffiffiffi

λu
p m0

h

m0
s
ð1þOðm02

h =m
02
s ÞÞ; ð79Þ

for v ¼ 0 and μdet ¼ 0; see Appendix D for details.
Owing to (78), we emphasize that fixing the parameter

sin 2β0 in Vþ to explain Δaμ in (68) also induces a

contribution to the anomalous magnetic moments of the
electron and the tau,

aV
þ

e ¼ ðme=mμÞaVþ
μ ≃ 1.4 × 10−11; ð80Þ

aV
þ

τ ¼ ðmτ=mμÞaVþ
μ ≃ 4.5 × 10−8: ð81Þ

The former, however, is in conflict with the data for Δae in
(69), both in magnitude and in sign, while the latter is 4
orders of magnitude away from present limits on Δaτ ≡
aexpτ − aSMτ [53].
On the other hand, larger couplings κ0=MF½TeV� ∼

Oð10Þ allow for a simultaneous explanation of both data
points (68) and (69). This mechanism uses the diagrams in
Fig. 19(b) to generate Δaμ, and the chirally enhanced
diagram of Fig. 21 to generate Δae, without introducing
flavor structure explicitly, and irrespective of the vacuum
being flavor blind ðVþÞ or electron-aligned ðV− with
l ¼ e). Moreover, the underlying mechanism is not fine-
tuned and could, in principle, accommodate a wide range of
deviations Δaμ and Δae different from present data.
Since the underlying Lagrangian does not break lepton

flavor, this mechanism leads additionally to a prediction for
the deviations of the tau anomalous magnetic moment Δaτ.
Using the data (68) and (69), our models predict

ΔaVþ
τ ≃ ð7.5� 2.1Þ × 10−7; ð82Þ

if the vacuum is flavor blind, or

ΔaV−
τ ≃ ð8.1� 2.2Þ × 10−7; ð83Þ

if the ground state is electron-aligned, respectively. Further
details of this scenario can be found in [40].
Within our set of models, we conclude that the muon

anomaly (68) alone, or the electron anomaly (69) alone, or
both anomalies together, can only be explained by models
A and C.

G. EDMs

Unlike in the remainder of this work, here we allow the
BSM Yukawas to be complex-valued. If the portal inter-
action δ is present, in models A and C a relative phase
between κ and κ0 induces an electric dipole moment (EDM)
of the SM leptons through the chirally enhanced one-loop
diagram Fig. 21. The EDM-Lagrangian can be written as

LEDM ¼ dlð−i=2Þl̄σμνγ5Fμνl; ð84Þ

where Fμν denotes the electromagnetic field strength
tensor and dl the lepton electric dipole moment with mass
dimension −1.

FIG. 22. The mixing angle j sin 2βj as a function of MF that
explains the ðg − 2Þμ anomaly within its 1σ uncertainty (68) for a
muon-aligned vacuum V− (76) and for different values of

ffiffiffiffiffiffiffiffiffiffi
ακακ0

p
,

with the upper bound from Higgs signal strength measurements
[76]. For Vþ the corresponding, requisite value of j sin 2β0j is a
factor of

ffiffiffi
3

p
larger (78).
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For model A, and in the large-MF limit, we find

dV
−

l

e
¼ −

sin 2β
4MF

Im½κ�κ0�
16π2

; ð85Þ

where the flavor-specific vacuum V− is assumed with l
denoting the flavor distinguished by the ground state
ðhSlli ≠ 0Þ. Here, an EDM arises solely for the lepton
flavor selected spontaneously by the vacuum. In turn,
assuming the vacuum Vþ and provided that the CP-phases
are lepton universal, we find instead

dV
þ

l

e
¼ −

sin 2β0

4
ffiffiffi
3

p
MF

Im½κ�κ0�
16π2

; ð86Þ

for any flavor, and all EDMs are predicted to be equal. The
same expressions (85), (86) and results hold true for model
C except for the replacement κ�κ0 → κκ0�.
The current experimental bounds on de and dμ,

jdej < 1.1 × 10−29 e cm;

jdμj < 1.5 × 10−19 e cm; ð87Þ

by the ACME and Muon g-2 collaborations at 90% and
95% C.L. [103,104], respectively, imply the bound

j sin 2βIm½κ�κ0�j=16π2 < 2.2 × 10−12ðMF=TeVÞ; ð88Þ

from the electron data, while the bound from muons is 10
orders of magnitude weaker. Comparing this to Δaμ (68)
induced by the same mechanism (see Fig. 22), the
CP-phases must be suppressed at the order 10−7 (de bound)
and are unsuppressed by the muon EDM data. If the
lepton EDMs are induced by a lepton flavor nonuniversal
mechanism, by flavor-dependent CP-phases, or in a vac-
uum V− pointing in the muon direction, the electron EDM
bound could be bypassed and the muon EDM could be as
large as dμ ∼ 2.5 × 10−22 e cm given (68) with order one
phases. Interestingly, this is in reach of future experiments
jdμj ∼ 5 × 10−23 e cm [88].

H. Charged LFV processes

In the setup with Yukawa interactions (3), (7), and (8)
flavor is conserved. While there is intergenerational mixing
in Yukawas with S, no charged LFV proper occurs; see
footnote 2. Here we envision a situation beyond (8) and
allow for additional flavor off-diagonal couplings. Our aim
is to see whether and how well such variants can be probed
in LFV processes.
The li → ljγ decay rate induced by a Higgs-fermion

loop in all models except the singlet model E forml; mh ≪
MF and mj ≪ mi can be written as [105]

Γðli → ljγÞ ¼
αe
576

ðαijκ Þ2 m
5
i

M4
F
; ð89Þ

with

αijκ ¼ 1

ð4πÞ2
X
m

κmiκmj; ð90Þ

where m corresponds to the flavors of the BSM fermion in
the loop; see Appendix C for details. In (90), a flavor
pattern proportional to κδij plus small off-diagonal entries
of the order κϵ is assumed that is responsible for charged
LFV. Hence, αijκ ∝ ακϵ, and Γðli → ljγÞ arises at order ϵ2.
Figure 23 shows how present bounds [53]

Bðμ → eγÞ < 4.2 × 10−13;

Bðτ → eγÞ < 3.3 × 10−8;

Bðτ → μγÞ < 4.4 × 10−8; ð91Þ

at 90% C.L. and projected bounds Bðμ → eγÞ≲ 2 × 10−15

from the MEG-II experiment [106] constrain αμeκ ; ατμκ
depending on MF. Also shown for comparison is the
constraint on diagonal couplings from Z data (64). While
present constraints on the off-diagonal entry αμeκ (blue
line) are comparable to the diagonal ones from Z → ll,
the ones on ατμκ and ατeκ (red line) are significantly weaker.
LFV decays into three lepton final states are also

possible, receiving contributions from both penguin and
box diagrams with κ; κ0. We estimate [107]

Bðμ → eeēÞ ∼ 3ð4πÞ2α2e
8G2

F

ðαμeκ Þ2
M4

F
Bðμ → eν̄eνμÞ; ð92Þ

FIG. 23. Allowed regions (shaded) for αμeκ ; ατμκ , and MF
from LFV decays (91). Because of the proximity of upper
limits on Bðτ → eγÞ and Bðτ → μγÞ only the latter is shown.
The projected sensitivity of the MEG-II experiment [106] is
shown by the solid gray line. The dashed gray line denotes the
Z → ll-constraint (64).
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which is ϵ2 suppressed as (89). Present bounds from the
SINDRUM collaboration Bðμ → eeēÞ < 10−12 [108] give
αμeκ =ðMF½TeV�Þ2 < ð2 − 3Þ × 10−4. This is indeed compa-
rable with μ → eγ bounds in Fig. 23, yet not more
excluding. The parameter space will be further probed
by the Mu3e experiment, which aims at a reach of
Bðμ → eeēÞ < 10−16 [109]. For τ decays to three charged
leptons, present bounds pose loose constraints on off-
diagonal couplings, ατlκ =ðMF½TeV�Þ2 ≲ 0.1.
On the other hand, μ to e conversion processes

have a limit in gold nuclei on the conversion rate
(CR) of CRðμ − e;AuÞ≲ 7 × 10−13 at 90% C.L. by the
SINDRUM II collaboration [110]. In our models the
conversion process is possible through Z and γ penguin
contributions which receive ϵ2 suppression. We estimate
CRðμ−e;AuÞ∼Oð10−12Þðαμeκ =10−4Þ2=ðMF½TeV�Þ4 [111],
in close competition with μ → eγ bounds. The future
Mu2e experiment [112], with expected sensitivity
CRðμ−e;AuÞ<6.7×10−17, can improve the bound from
SINDRUM II on αμeκ by about 2 orders of magnitude.
Along the lines of the anomalous magnetic moments,

scalar mixing induces chirally enhanced contributions to
LFV dipole operators if κ contains nonvanishing off-diago-
nal elements. For instance, the rate for μ → eγ becomes

Γðμ → eγÞ ¼ αe
64

�
κeμκ

0 sin 2β
16π2

�
2 m3

μ

M2
F
; ð93Þ

in the same approximations as in (76) andV− pointing in the
muon direction. (There is a similar contribution induced by
κμe which requires a scalar VEV in the electron direction.)
Constraints on αμeκκ0δ ¼ κeμκ

0 sin 2β=ð16π2Þ from the chirally
enhanced amplitude are stronger than on αμeκ by a fac-
tor mμ=3MF.

VI. CONCLUSIONS

We have studied SM extensions with three generations of
vectorlike leptons and a new singlet matrix scalar field,
inspired by asymptotic safety. The main focus has been on
new physics implications for settings where the running
couplings remain finite and well-defined at least up to the
Planck scale, and possibly beyond. A key novelty over
earlier models are Higgs and flavor portals (Table I) which
are explored in depth. Within this setup we show that the
number of new fermion generations required for asymp-
totically safe or Planck safe extensions can be much lower
than thought previously.
Using the renormalization group, we have provided a

comprehensive study of six basic models. All of them are
found to be well-behaved up to the Planck scale in certain
parameter regimes, owing to Yukawa couplings linking SM
and BSM fermions with the Higgs (Figs. 7–10). The TeV
scale initial conditions for BSM couplings (Fig. 13) illus-
trate parameter regions which do not run into Landau poles

and vacuum instabilities or metastabilities. Similar results
are found for models which admit a secondary Yukawa
coupling between SM and BSM fermions and the new
scalars (Figs. 11, 12) with a corresponding critical surface
of parameters (Fig. 14). Very explicitly we learn that the
requirement for safety up to the Planck scale provides a
testable selection criterion in the BSM parameter space.
A conceptual novelty is the use of both top-down and

bottom-up searches to find fixed points and Planck safe
parameter regions. On the technical side, we have retained
the RGEs for the gauge, Yukawa, and quartic couplings up
to the complete two-loop order, extending upon previous
studies. New features are walking regimes, and new
patterns for fixed points are due to a competition between
Yukawa, portal, and gauge couplings. Theories where the
running of couplings can be extended to infinite energy are
of interest in their own right. Our asymptotically safe
extensions are the first ones that achieve this for the key SM
and BSM couplings, and in accord with the measured
values of the gauge couplings and the Higgs, top, and
bottom masses.
Our models also offer a rich phenomenology due to their

close ties with the SM through Yukawa and Higgs portals.
Genuine features are LFV-like signatures in scalar decays

Sij → l�
i l

∓
j ;

also with displaced vertices for sufficiently small coupling.
The vectorlike leptons can have exotic charges that can lead
to displaced vertex signatures. The models can be exper-
imentally probed at colliders (Fig. 15), specifically through
ψ̄ψ and Drell-Yan production, and additionally, at eþe− or
μþμ− machines, through single ψ production [113,114].
The BSM scalars can be pair produced at lepton colliders,
or in pp, if portal effects are present. It would be interesting
to check whether existing new physics searches at the
LHC in lepton-rich final states lead to constraints on model
parameters. As no dedicated analysis for the models here
has been performed, however, this requires a reinterpreta-
tion of existing searches that is beyond the scope of
this work.
Finally, we comment on outstanding features related to

lepton universality and low-energy probes for new physics,
i.e., measurements of the lepton’s magnetic or electric
dipole moments. Except for the breaking by SM Yukawas,
lepton universality is manifest in all our models and may or
may not be broken spontaneously by the vacuum.
Irrespective of the ground state, however, we find that
two of the six basic models can explain the electron
anomaly alone, the muon anomaly alone, or both anomalies
together. The latter is rather remarkable in that it also entails
a prediction for the tau anomalous magnetic moment [40],
whereas any other BSM explanation of the muon and
electron anomalies requires a manifest breaking of lepton
universality [78–101]. In addition, provided the vacuum is
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flavorful and points into the muon direction, we find that
the electron EDM bound can be bypassed with a sizable
muon EDM at the level of ∼10−22 e cm.
We look forward to further exploration of asymptotically

safe model building and searches.
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APPENDIX A: TWO-LOOP β-FUNCTIONS

The following Appendixes collect technical details and
useful formulas used within the main manuscript.
In this Appendix, we detail β-functions for the models

A–F up to two-loop order. The results are based on [42–48].
The two-loop gauge and one-loop Yukawa RGEs can be

expressed as

βi ¼ −α2i

�
Bi −

X
j¼gauge

Cijαj þ
X

n¼Yukawa

Dinαn

�
;

βn ¼ αn

� X
m¼Yukawa

Enmαm −
X

i¼gauge

Fniαi

�
; ðA1Þ

corresponding to (13) and (14) in the main text. Some
of the loop coefficients are model specific and are
listed in Table VII, while others are universal or can be
expressed in a general way in terms of the representation R2

of the vectorlike fermions under SUð2ÞL and their hyper-
charge Y. In what follows, C2ðR2Þ denotes the quadratic
Casimir invariant and S2ðR2Þ the Dynkin index (see [11] for
details).
For the hypercharge coupling, these generic coefficients

read

B1 ¼ −
41

3
− 8dðR2ÞY2;

C11 ¼
199

9
þ 24dðR2ÞY4;

C12 ¼ 9þ 24C2ðR2ÞdðR2ÞY2;

C13 ¼
88

3
; D1t ¼

17

3
; D1b ¼

5

3
;

D1y ¼ 36dðR2ÞY2: ðA2Þ

For the weak coupling, one obtains

B2 ¼
19

3
− 8S2ðR2Þ;

C21 ¼ 3þ 24S2ðR2ÞY2;

C22 ¼
35

3
þ 12S2ðR2Þð2C2ðR2Þ þ 20=3Þ;

C23 ¼ 24;

D2t ¼ D2b ¼ 3;

D2y ¼ 36S2ðR2Þ: ðA3Þ

Finally, for the strong coupling the coefficients are inde-
pendent of the BSM sector

B3 ¼ 14; D3t ¼ 4; D3b ¼ 4;

C31 ¼
11

3
; C32 ¼ 9; C33 ¼ −52: ðA4Þ

For the Yukawa coefficients, we note that only ακ couples
into the one-loop running of the top and bottom Yukawas
βt;b; see Tables VII. Further loop coefficients for Yukawa
couplings at one-loop are given by

Ett ¼ Ebb ¼ 9; Etb ¼ Ebt ¼ 3;

Ft1 ¼
17

6
; Fb1 ¼

5

6
;

Ft2 ¼ Fb2 ¼
9

2
; Ft3 ¼ Fb3 ¼ 16: ðA5Þ

In a similar vein, there are no one-loop contributions from
α3;t;b to βy and βκ0 . For βy one finds

TABLE VII. Model-specific loop coefficients for the gauge and Yukawa beta functions (A1).

Model D1κ D1κ0 D2κ D2κ0 Etκ Ebκ Eyκ Eyκ0 Eκκ Fκ1 Fκ2 Eκ0κ0 Eκ0y Eκ0κ Fκ01 Fκ02

A 15 36 3 0 6 6 2 8 9 15=2 9=2 8 8 0 12 0
B 45=4 0 33=4 0 9=2 9=2 1=2 0 23=4 15=2 33=2
C 15 18 3 18 6 6 1 10 9 15=2 9=2 10 10 0 3 9
D 39 0 3 0 6 6 1 0 9 39=2 9=2
E 3 0 3 0 6 6 2 0 9 3=2 9=2
F 9=4 0 33=4 0 9=2 9=2 1=2 0 23=4 3=2 33=2
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Eyy ¼ 2ð3þ dðR2ÞÞ;
Fy1 ¼ 12Y2;

Fy2 ¼ 12C2ðR2Þ: ðA6Þ

Loop coefficients for βκ which are universal in all models
are given by

Eκt ¼ Eκb ¼ 6;

Eκy ¼ 3;

Eκκ0 ¼ Fκ3 ¼ 0; ðA7Þ

while those which are model specific are summarized in
Table VII.
For the scalar couplings at one-loop, it is convenient to

use the definition

α̃y ¼
�
ακ0 þ αy modelsA;C

αy models B;D;E; F
: ðA8Þ

In this convention, the one-loop RGEs for the scalar
quartic couplings read

βð1Þλ ¼ βSMð1Þ
λ þ 9α2δ þ Iκακαλ − Jλκκα2κ ;

βð1Þδ ¼ αδ

�
4αδ þ 12αλ þ 24αu þ 40αv þ 6αt þ 6αb þ

1

2
Iκακ þ 2dðR2Þα̃y −

3

2
α1 −

9

2
α2

�
−
1

3
Iκακαy;

βð1Þu ¼ 24αuðαu þ αvÞ þ 2dðR2Þα̃yð2αu − α̃yÞ;
βð1Þv ¼ 52α2v þ 12αuðαu þ 4αvÞ þ 2α2δ þ 4dðR2Þα̃yαv: ðA9Þ

Here, βSMð1Þ
λ denotes the one-loop β-function of the Higgs quartic in the SM. The one-loop coefficients Iκ and Jλκκ are

tabulated in Table VIII.
At two-loop order, running of the couplings αt;b;λ is modified via

βð2Þt

αt
¼ βSMð2Þ

t

αt
þ 9α2δ −

9

4
Jλκκα2κ −

27

24
Iκακ

�
αy þ αt −

15

27
αb

�
þ 5

4
ðD1κα1 þ 3D2κα2Þακ þ 6S2ðR2Þα22 þ

58

9
Y2dðR2Þα21;

βð2Þb

αb
¼ βSMð2Þ

b

αb
þ 9α2δ −

9

4
Jλκκα2κ −

27

24
Iκακ

�
αy þ αb −

15

27
αt

�
þ 5

4
ðD1κα1 þ 3D2κα2Þακ þ 6S2ðR2Þα22 −

2

9
Y2dðR2Þα21;

βð2Þλ ¼ βSMð2Þ
λ − 90α2δαλ − 36α3δ − 18dðR2Þα̃yα2δ − 12Iκακα2λ −

1

2
Jλκκα2καλ −

27

12
Iκακαyαλ þ 3Jλκκαyα2κ þ 3Hλ

κκκα
3
κ

− Lλ
1κα1α

2
κ − Lλ

2κα2α
2
κ þ

5

2
ðD1κα1 þ 3D2κα2Þακαλ − Kλ

11κα
2
1ακ − Kλ

12κα1α2ακ − Kλ
22κα

2
2ακ

þ 30S2ðR2Þα22αλ þ 10dðR2ÞY2α21αλ − 4dðR2ÞY2ðα1 þ α2Þα21 − 4S2ðR2Þðα1 þ 3α2Þα22; ðA10Þ

using coefficients in Tables VII and VIII, and βSMð2Þ
t;b;λ denote the two-loop beta functions of the SM.

TABLE VIII. Model-specific loop coefficients for the quartic and Yukawa beta functions (A9), (A10), and (A12).

Model Iκ Jλκκ Kλ
11κ Kλ

12κ Kλ
22κ Hλ

κκκ Hδ
κκy Lλ

1κ Lλ
2κ Lδ

1y Lδ
2y

A 12 6 75=4 −33=2 9=4 10 14 12 0 12 0
B 9 15=8 225=16 −51=8 −21/16 47=32 39=8 15=4 15=2 9 18
C 12 6 75=4 −33=2 9=4 10 16 12 0 6 6
D 12 6 219=4 39=2 9=4 10 16 36 0 30 6
E 12 6 3=4 3=2 9=4 10 14 0 0 0 0
F 9 15=8 9=16 57=8 −21=16 47=32 39=8 0 15=2 0 18
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Two-loop RGEs of αy;κ;κ0 read

βð2Þκ

ακ
¼ −Pκ

κκα
2
κ −

9

4
ð1þ 2dðR2ÞÞα̃yαy −

3

32
½90þ dðR2Þð89 − 27dðR2ÞÞ�αyακ þ Rκ

11α
2
1

−
1

6
½49þ dðR2Þð39 − 19dðR2ÞÞ�α22 þQκ

1yα1αy þQκ
2κα2ακ þQκ

12α1α2 þQκ
1κα1ακ

þ 5

12
α1½17αt þ 5αb� þ

45

4
α2½αt þ αb� þ 40α3½αt þ αb� − 6S2ðR2Þ½1 − 2dðR2Þ�α2αy

−
27

2
½α2t þ α2b� þ 3αtαb − JλκκI−1κ ð27αt þ 27αb þ 48αλÞακ

− 12αyαδ þ 9α2δ þ 12α2λ ;

βð2Þκ0

ακ0
¼

�
211

3
þ 2Y2ð20dðR2Þ − 3Þ

�
Y2α21 −

�
257

3
þ 6C2ðR2Þ − 40S2ðR2Þ

�
C2ðR2Þα22

− 12C2ðR2ÞY2α1α2 þ ½48þ 10dðR2Þ�Y2α1α̃y þ ½48þ 10dðR2Þ�C2ðR2Þα2α̃y
þ 8½5α2u þ 5α2v þ 6αuαv� þ 2α2δ − 16ð5αu þ 3αvÞα̃y −

�
1

2
þ 18dðR2Þ

�
α̃2y

− Py
κκα2κ þQy

1κα1ακ þQy
2κα2ακ −

3

2dðR2Þ ð2dðR2Þ þ 1Þαyακ;

βð2Þy

αy
¼

�
211

3
þ 2Y2ð20dðR2Þ − 3Þ

�
Y2α21 −

�
257

3
þ 6C2ðR2Þ − 40S2ðR2Þ

�
C2ðR2Þα22

− 12C2ðR2ÞY2α1α2 þ ½48þ 10dðR2Þ�Y2α1α̃y þ ½48þ 10dðR2Þ�C2ðR2Þα2α̃y
þ 8½5α2u þ 5α2v þ 6αuαv� þ 2α2δ − 16ð5αu þ 3αvÞα̃y −

�
1

2
þ 18dðR2Þ

�
α̃2y

− Py
κκα2κ þQy

1κα1ακ þQy
2κα2ακ

− 2−dðR2Þ½18αt þ 18αb þ 3ð2dðR2Þ þ 1Þαy þ 16αδ�ακ; ðA11Þ

also using the loop coefficients tabulated in Table IX.
Finally, the two-loop contributions for the BSM scalar quartics are

TABLE IX. Model-specific two-loop coefficients for the BSM Yukawa beta functions (A11).

Model Py
κκ Pκ

κκ Qy
1κ Qy

2κ Qκ
1y Qκ

2κ Qκ
1κ Qκ

12 Rκ
11

A 19=2 24 37=4 51=4 6 225=8 279=8 9=2 721=12
B 57=32 59=8 37=16 −101=16 6 1343=32 785=32 −3=2 1249=12
C 5 24 55=8 33=8 15 225=8 279=8 9=2 589=12
D 5 24 95=8 33=8 27 225=8 831=8 27=2 4541=12
E 19=2 24 17=4 51=4 0 225=8 123=8 −9=2 35=12
F 57=32 59=8 17=4 −101=16 0 1343=32 205=32 3=2 35=12
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βð2Þu ¼ −336α3u − 1056α2uαv − 688αuα
2
v þ ½Y2dðR2Þα1 þ 3S2ðR2Þα2�½20αu − 8α̃y�α̃y

− 48dðR2Þα̃yðαu þ αvÞαu þ 2dðR2Þ½6α̃y − 9αu þ 4αv�α̃y − 20α2δαu þ Iκακαy

�
1

3
α̃y −

1

2
αu

�
;

βð2Þv ¼ −288α3u − 688α2uαv − 1056αuα
2
v − 816α3v þ 20½Y2dðR2Þα1 þ 3S2ðR2Þα2�α̃yαv

− 24dðR2Þ
�
α2u þ 4αvαu þ

13

3
α2v

�
α̃y þ 2dðR2Þ½4αu − 9αv þ 2α̃y�α̃2y −

1

2
Iκακαyαv

þ 4

�
α1 þ 3α2 − 3αt − 3αb −

1

4
Iκακ − 5αv − 2αδ

�
α2δ;

βð2Þδ ¼
�
557

48
þ 5Y2dðR2Þ

�
α21αδ þ

15

8
α1α2αδ þ

�
−
145

16
þ 15S2ðR2Þ

�
α22αδ þ

�
85

12
αt þ

25

12
αb

�
α1αδ

þ 45

4
½αt þ αb�α2αδ þ 40½αt þ αb�α3αδ þ 10½Y2dðR2Þα1 þ 3S2ðR2Þα2�α̃yαδ

−
27

2
½α2t þ α2b�αδ − 21αtαbαδ − dðR2Þ½48αu þ 80αv þ 9α̃y�α̃yαδ −

17

24
Iκακαyαδ −

27

12
Jλκκα2καδ

− 200

�
α2u þ

6

5
αuαv þ α2v

�
αδ þ 12

�
2α1 þ 6α2 − 6αt − 6αb −

1

2
Iκακ − 5αλ

�
αλαδ

þ ½α1 þ 3α2 − 12αt − 12αb − 144αu − 240αv − Iκακ − 4dðR2Þα̃y − 19αδ − 72αλ�α2δ
þ 15

4

�
1

3
D1κα1 þD2κα2

�
ακαδ þ

5

2
Iκακαyα̃y þHδ

κκyα
2
καy

− 12Y2dðR2Þα21α̃y − 36

�
5

3
dðR2Þ − 4

�
S2ðR2Þα22α̃y − Lδ

1yα1αyακ − Lδ
2yα2αyακ; ðA12Þ

with model-specific loop coefficients tabulated in
Table VIII.

APPENDIX B: BSM CONTRIBUTIONS TO g− 2
Results for weak corrections to g − 2 in general gauge

models can be found in [115]. In this work the relevant
BSM contribution comes from a neutral scalar-ψ loop.
Using the general Yukawa Lagrangian with chiral projec-
tors PL=R ¼ ð1 ∓ γ5Þ=2

LY ¼ ψ̄ðcLiPL þ cRiPRÞliH þ H:c:; ðB1Þ
where ψ is a fermion with charge QF ¼ −1, H is a neutral
scalar, and li is a charged lepton of flavor i,

aNPi ¼ m2
i

8π2

Z
1

0

dx
1
2
ðc2Li þ c2RiÞðx2 − x3Þ þ MF

mi
cLicRix2

m2
i x

2 þ ðM2
F −m2

i Þxþm2
Hð1 − xÞ

¼ m2
i

16π2m2
H

�
1

2
ðc2Li þ c2RiÞI1ðM2

F=m
2
HÞ

þMF

mi
cLicRiI2ðM2

F=m
2
HÞ
�
; ðB2Þ

where we assumed real couplings cLi; cRi. For mi → 0 in
the integrals with t ¼ M2

F=m
2
H one obtains

I1ðtÞ ¼
t3 − 6t2 þ 3tþ 6t lnðtÞ þ 2

3ðt − 1Þ4 ;

I2ðtÞ ¼
t2 − 4tþ 2 lnðtÞ þ 3

ðt − 1Þ3 : ðB3Þ

The limits t → ∞ (heavier fermion) and t → 0 (heavier
scalar) yield

aNP;Fi ¼ 1

16π2
m2

i

M2
F

�
1

6
ðc2Liþc2RiÞþ

MF

mi
cLicRi

�
;

aNP;Hi ¼ 1

16π2
m2

i

m2
H

�
1

3
ðc2Liþc2RiÞ−

MF

mi
cLicRi

�
2ln

M2
F

m2
H
þ3

��
;

ðB4Þ

respectively. For t ¼ 1, the integrals are well-defined,
I1ð1Þ¼1=6, I2ð1Þ ¼ 2=3. The presence of both Yukawas
cLi; cRi ≠ 0 switches on the rightmost terms in (B4) with
enhancement factors MF=mi.

APPENDIX C: LFV BRANCHING RATIOS

Here we provide the li → ljγ decay rate mediated by
Yukawa interactions with a neutral scalar for a general
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Lagrangian (B1). We consider only the cases where either
the fermion F or the boson H propagating in the loop are
much heavier than the leptons. If the interaction is purely
left- or right-handed (either cLi ¼ 0 or cRi ¼ 0 for all i), the
decay rate is [105]

Γðli→ljγÞ
¼ αe
4m3

i
ðm2

i −m2
jÞ3ðm2

i þm2
jÞðc�XjcXiÞ2jF1ðM2

F=m
2
HÞj2;

ðC1Þ

where X ¼ L, R, and FðtÞ in the limit m2
i ; m

2
j → 0 reads

F1ðtÞ ¼
i

16π2m2
H

�
t2 − 5t − 2

12ðt − 1Þ3 þ
t lnðtÞ

2ðt − 1Þ4
�
: ðC2Þ

Taking t → ∞ and mi ≫ mj one recovers Eq. (89). For a
scalar more massive than the fermion F, taking t → 0 and
mi ≫ mj we obtain

ΓHðli → ljγÞ ¼
αe
144

�
c�XjcXi
16π2

�
2 m5

i

m4
H
: ðC3Þ

If both left- and right-handed interactions are present, the
leading contribution reads

Γðli → ljγÞ ¼
αe
4m3

i
ðm2

i −m2
jÞ3M2

FjF2ðM2
F=m

2
HÞj2

× ½ðc�RjcLiÞ2 þ ðc�LjcRiÞ2�; ðC4Þ

with

F2ðtÞ ¼
i

16π2m2
H

�
t − 3

2ðt − 1Þ2 þ
lnðtÞ

ðt − 1Þ3
�
: ðC5Þ

For t → 0, t → ∞ and mi ≫ mj yields, respectively,

ΓFðli → ljγÞ ¼
αe
16

��
c�RjcLi
16π2

�
2

þ
�
c�LjcRi
16π2

�
2
�
m3

i

M2
F
;

ΓHðli → ljγÞ ¼
αe
4

��
c�RjcLi
16π2

�
2

þ
�
c�LjcRi
16π2

�
2
�

×
m3

i M
2
F

m4
H

�
3

2
þ ln

M2
F

m2
H

�
2

: ðC6Þ

Hereweneglected terms proportional to ðc�XjcXiÞ2; assum-
ing ðc�XjcXiÞ2¼Oðc�RjcLi;c�LjcRiÞ2, the results (C4)–(C6)
are valid up to corrections of order mi=MF. The results
apply for the BSM Yukawa couplings with the physical
Higgs in models A, C, D and in model B for αijκ → αijκ =2.

APPENDIX D: MASS MATRICES AND SCALAR
POTENTIAL

The VEVs in terms of the parameters of the potential
(21) are obtained as

v2s ¼
μ2s − δ

2λ μ
2

uþ nv − n δ2

4λ

;

v2h ¼
μ2 − δn

2ðuþnvÞ μ
2
s

λ − n δ2

4ðuþnvÞ
¼ 1

λ

�
μ2 − nδ

v2s
2

�
; ðD1Þ

with n ¼ 1, 3 for the vacuum solutions V− and Vþ,
respectively. If the trilinear term μdet is switched on, for
Vþ one should replace μ2s → μ2s þ μdetvs=

ffiffiffi
2

p
and solve

accordingly for vs. A detailed analysis of the vacuum
structure can be found in [116] for a similar case. Before the
scalars acquire these VEVs the potential is symmetric
under the transformation S→UψL

SU†
ψR , whereUi are 3 × 3

unitary matrices, each with 9 degrees of freedom. In the
case of a muon-aligned V−, the VEV in s22 breaks this
symmetry into Uð2ÞψL

×Uð2ÞψR
×Uð1Þ. The number of

massless modes in S is then 2 × 9 − 2 × 4 − 1 ¼ 9. In Vþ,
the universal VEVs break Uð3ÞψL

× Uð3ÞψR
→ Uð3Þdiag,

yielding 9 Goldstone modes as well. We assume that
additional mass terms prohibit the presence of massless
Goldstones. The symmetries involving the Higgs are the
same as in the SM, rendering three massless states, which
are eaten by W�; Z.
The S −H mixing in the mass Lagrangean Vmass in

vacuum V− is obtained from

∂2V
∂h∂h

����
S;H¼0

¼ m2
h ¼ −μ2 þ 3v2hλþ

1

2
δv2s

¼ 2ðuþ vÞμ2 − δμ2s
ðuþ vÞ − δ2=4λ

;

∂2V
∂s22∂s22

����
S;H¼0

¼ m2
s ¼ −μ2s þ 3v2sðuþ vÞ þ 1

2
δv2h

¼ 2λμ2s − δμ2

λ − δ2=4ðuþ vÞ ;

∂2V
∂h∂s22

����
S;H¼0

¼ msh ¼ δvsvh

¼ δ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðuþ vÞp msmh: ðD2Þ

Thus, h and s22 mix according to

Vmassðs22; hÞ ¼
1

2
ð s22; h Þ

�
m2

s msh

msh m2
h

��
s22
h

�
; ðD3Þ

with eigenvalues
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m1
2
¼ 1

2
½m2

s þm2
h �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

s −m2
hÞ2 þ 4m2

sh

q
�: ðD4Þ

The masses of the fields which do not get a finite VEV are
obtained as

∂2V
∂ðS2iiÞ

����
S;H¼0

¼ m̄2
s ¼ −μ2s þ v2svþ

1

2
δv2h

¼ −
u

2ðuþ vÞm
2
s for i ¼ 1; 3: ðD5Þ

Note m̄2
s is positive since u < 0 for V− (22).

The mass eigenstates h1, h2 can be expressed as in (73)
in terms of the angle β, where

tan 2β ¼ 2msh

m2
s −m2

h

¼ 2δvhvs
m2

s −m2
h

: ðD6Þ

Expanding for mh ≪ ms yields (74).
The VEVs of the S and H scalars induce mixing

between the BSM fermions and the leptons. Defining
fX ¼ ðeX; μX; τX;ψX1;ψX2;ψX3ÞT , X ¼ L, R, the corre-
sponding mass mixing term for model A can be written as

f̄LMffR ¼ vhffiffiffi
2

p ēLYeeR þ vhffiffiffi
2

p κēLψR þ vsffiffiffi
2

p κ0ψ̄L2μR

þ vsffiffiffi
2

p yψ̄L2ψR2 þMFψ̄LψR; ðD7Þ

where vhffiffi
2

p Ye ¼ vhffiffi
2

p diagðye; yμ; yτÞ. Diagonalizing MfM
†
f

and M†
fMf to get rotations for fL and fR, respectively,

with m2 ¼ MF þ vsffiffi
2

p y, reveals mixing angles at the order

θAL ≃
κvhffiffiffi
2

p
MF

; θAR ≃
κ0vsffiffiffi
2

p
m2

ðD8Þ

for liL − ψLi and μR − ψR2, respectively. The mixing
angles (up to order of magnitude) for the different models
are given in Table VI. In models B, C, E, and F, where the ψ
multiplets contain QF ¼ 0 states, left-handed rotations are
introduced between the νL − ψ0

L.
In Vþ, where all diagonal components of S acquire a

VEV, one obtains (i, j: no sum)

∂2V
∂h∂h

����
S;H¼0

¼ m0
h
2 ¼ −μ2 þ 3v2hλþ

3

2
δv2s ;

∂2V
∂sii∂sii

����
S;H¼0

¼ m0
s
2 ¼ −μ2s þ v2sð3uþ 5vÞ þ 1

2
δv2h;

∂2V
∂sii∂sjj

����
S;H¼0

¼ mss ¼ 2vv2s − μdet
vsffiffiffi
2

p ði ≠ jÞ;

∂2V
∂h∂sii

����
S;H¼0

¼ msh ¼ δvsvh: ðD9Þ

The normalized mass eigenstates in the basis ðs11; s22;
s33; hÞ read

h01 ¼
1ffiffiffi
3

p ðcos β0; cos β0; cos β0;
ffiffiffi
3

p
sin β0Þ;

h02 ¼ −
1ffiffiffi
3

p ðsin β0; sin β0; sin β0;−
ffiffiffi
3

p
cos β0Þ;

h03 ¼
1ffiffiffi
2

p ð−1; 0; 1; 0Þ;

h04 ¼
1ffiffiffi
2

p ð−1; 1; 0; 0Þ; ðD10Þ

with corresponding eigenvalues

m0
1
2

¼ 1

2
ðm0

s
2 þm0

h
2 þ 2mss

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0

s
2 −m0

h
2 þ 2mssÞ2 þ 12msh

q
Þ;

m0
4
3

¼ m0
s
2 −mss: ðD11Þ

Thus, the mixing of the Higgs with the BSM scalars
occurs only for the states h01;2 and is universal. Because of
the degeneracy of m0

4
3

, any linear combination of the states

h03;4 is an eigenvector, too. In the limit μdet; v → 0, the angle
β0 can easily be expressed as

tan 2β0 ¼ 2
ffiffiffi
3

p
msh

m02
s −m02

h

¼ 2
ffiffiffi
3

p
δvhvs

m02
s −m02

h

: ðD12Þ

For m0
h ≪ m0

s one obtains (79). For fermion mixing, we
find, similar to (D8),

θAL ≃
κvhffiffiffi
2

p
m2

; θAR ≃
κ0vsffiffiffi
2

p
m2

ðD13Þ

for liL − ψLi and liR − ψRi, respectively.

APPENDIX E: WEAK INTERACTIONS
AFTER EWSB

Chiral mixing between vectorlike fermions and leptons
modifies their couplings with the weak bosons. Explicit
rotations to the mass basis yield

ψ−1;gauge
X ¼ cθXψ

−1
X − sθXlX;

lgauge
X ¼ cθXlX þ sθXψ

−1
X ;

ψ0;gauge
L ¼ cθ0Lψ

0
L − sθ0LνL;

νgaugeL ¼ cθ0LνL þ sθ0Lψ
0
L; ðE1Þ

where X ¼ L, R and the angles θ are positive and can be
found for all models in Table VI. After rotating to the mass
basis, weak interactions are described by the Lagrangian

MODEL BUILDING FROM ASYMPTOTIC SAFETY WITH HIGGS … PHYS. REV. D 102, 095023 (2020)

095023-35



LW ¼ g2
2 cos θw

fQγμðgV − gAγ5Þf0QZμ

þ g2ffiffiffi
2

p fQγμðcWL PL þ cWR PRÞf0Qþ1W−
μ þ H:c:; ðE2Þ

and for all possible combinations of fermions f, f0 in our
models. The coefficients cWL;R can be found in Table X.
Expressions for the couplings gV;A are collected in
Table XI.
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