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Quantum black hole production at the Large Hadron Collider is investigated using the horizon quantum
mechanics model. This model has novel implications for how black holes might be observed in collider
experiments. Black hole production is predicted to be possible below the Planck scale, thus leading to the
intriguing possibility that black holes could be produced even if the Planck scale is slightly above the
collider center of mass energy. In addition, the usual anticipated resonance in the black hole mass
distribution is significantly widened in this model. For values of the Planck scale above the current lower
limits, the shape of the black hole mass distribution is almost independent of the Planck scale and depends
more on the number of extra dimensions. These model features suggest the need for alternative search
strategies in collider experiments.
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I. INTRODUCTION

Low-scale gravity provides an interesting possibility for
gaining insight into the hierarchy problem. A wide variety
of models based on different paradigms [1–3] have been
proposed. A speculative, but intriguing, possibility of most
models is the production of quantum black holes in hadron
colliders [4,5].
The cross section for black hole production is typically

chosen to be the classical geometric form σ̂ ≈ πr2g, where rg
is the gravitational radius which is a function of the black
hole mass M and depends on the fundamental parameters
of the model. In the large extra dimensions paradigm
proposed in Refs. [1,2], the model parameters are the
higher-dimensional Planck scale MD and total number of
space-time dimensions D. We will consider the case of a
tensionless non-rotating spherically symmetric solution for
the gravitational radius [6].
In proton-proton collisions, only a fraction of the total

center of mass energy
ffiffiffi
s

p
is available in the hard-scattering

process. We define sxaxb ≡ sτ≡ ŝ, where xa and xb are the
fractional energies of the two colliding partons (assumed
massless) relative to the proton energies. The full particle-

level cross section σ is obtained from the parton-level cross
section σ̂ by using [7]

σpp→BHþXðsÞ ¼
X
a;b

Z
1

M2=s
dτ

Z
1

τ

dx
x
fa

�
τ

x

�
fbðxÞ

× ΘðM −MthÞσ̂ab→BHðŝ ¼ M2Þ; ð1Þ

where a and b are the parton types in the two protons, and
fa and fb are parton distribution functions (PDFs) for the
proton. The sum is over all possible quark and gluon
pairings. While several prefactors to the cross section have
been suggested (see Ref. [7] for a summary) they are not
important for this study and will not be considered.
The usual ansatz is that black holes cannot be produced

with M below some minimum mass threshold Mth. This is
emphasized by the use of the Heaviside step function Θ in
Eq. (1). The value of Mth is typically taken to be MD for
quantum black holes or a few times MD for classical black
holes. Unfortunately, results depend on the subjective
choice of the Mth cutoff.
A modification to the typical model of black hole

formation in hadron colliders is made by the horizon
quantum mechanics (HQM) model [8,9]. The wave func-
tion for a localized massive particle (source) is taken to be a
spherically symmetric Gaussian wave packet in (D − 1)
spatial dimensions of width l. It is postulated that the form
of the wave packet in momentum space is also a Gaussian
with width Δ ¼ ℏ=l. The simplest case for black hole
formation is considered; a D-dimensional Schwarzschild
metric and its classical horizon of radius RDðMÞ. The
relativistic mass-shell relation in flat space E2 ¼ p2 þm2

is assumed, where the energy E of the particle is expressed
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in terms of the horizon radius rH ¼ RDðEÞ andm is the rest
mass of the source. The momentum-space wave function
can then be written in terms of the horizon radius and
normalized to give the horizon wave function ψHðrHÞ. The
horizon wave function is used to calculate the probability
PSðr < rHÞ that the particle is inside a (D − 1)-ball of
radius rH and the probability density PHðrHÞ that the radius
of the horizon equals rH. In this case, the black hole
probability depends on the Gaussian width l, particle mass
m, and number of spatial dimensions D. It is further
assumed that l ¼ MDlD=m is the Compton wavelength
of the source, which represents the minimum uncertainty in
its size, so that Δ ¼ m, and the probability only depends on
m and the number of dimensions D. The system exhibits
properties of a black hole when the source is located within
the quantized horizon, with the probability of the system
being a black hole given by

PBH ¼
Z

∞

0

PSðr < rHÞPHðrHÞdrH: ð2Þ

Explicit expressions of these probabilities are giving in
Refs. [8,9]. Qualitatively, the use of the HQM probability in
the calculation of the proton-proton cross section is akin to
replacing the step function located at Mth with a sigmoid-
like function that varies with M=MD and depends on D.
The ingredients that go into deriving Eq. (2) are not free

of assumptions. In addition, using standard quantum
mechanics in the strong gravity regime is ill defined and
the formalism is not free of problems. The idea of
improving the geometrical cross section by a smoothed
step function is not new [10]. Using guiding physical
principles similar results to Eq. (2) can be obtained on
empirical grounds [10].
The common phenomenology of semiclassical micro-

scopic black holes is not important in this work. Such
objects have significant entropy and Hawking evaporate.
The evaporation process occurs when the mass of the black
hole is well above the Planck scale and thus not close to
where HQM effects are important. We thus consider, so
called, quantum black holes (QBH), where the object has
an event horizon but negligible entropy, and behaves more
like a particle in its decay to a few-body—two in our case—
final state. Such objects by definition have mass close
to the Planck scale and are significantly affected by the
HQM model.
The purpose of the work presented here is to evaluate the

impact of the HQM model on the production of quantum
black holes with emphasis on the signatures for experi-
ments at the Large Hadron Collider (LHC). We begin with a
brief description of Monte Carlo (MC) event generation in
the HQM model, with more details of the implementation
described in the Appendix. We discuss the effects of HQM
on the total proton-proton cross section and the differential
proton-proton cross section as a function of M. The

possibility of quantum black hole detection in the HQM
model in LHC experiments is discussed. A previous
publication [11] on this topic made use of ATLAS and
CMS results from about 20 fb−1 of data at

ffiffiffi
s

p ¼ 8 TeV.
We make use of the following conventions. When

comparing models, the QBH model refers to the quantum
black hole model with Heaviside step function turn-on
typically used by ATLAS and CMS searches at

ffiffiffi
s

p
of

7 TeV [12–14], 8 TeV [15–20], and 13 TeV [21–28] that
does not include any HQM effects. The HQM model will
be the model with horizon quantum mechanics effects
included. The only difference between these two models is
their production turn-on behavior inM=MD for differentD.
The total number of space-time dimensions D ¼ nþ 4,
where n is the number of extra dimensions.

II. BLACK HOLE PRODUCTION PROBABILITY

For the purpose of cross section calculations along with
event generation, the QBH 3.00 MC quantum black hole
event generator [29] is used [30]. In this model [31–33], we
consider tensionless nonrotating black holes. The generator
only allows for dominant two-body decay of the QBH
states. The leading-order CTEQ6L1 [34] PDF set is used
for the hard-scattering process. Considering only two-body
decays and using the CTEQ6L1 PDF set are consistent with
the ATLAS and CMS experiment’s QBH searches. The
default settings in QBH are used and the proton-proton
center of mass energy is set to 13 TeV. The only parameters
that are varied are MD and D. Cross section calculations in
QBH are independent of the number of events generated.
For kinematic distributions, 21000 events were generated
for each ðD;MDÞ pair. We work at the parton level and do
not hadronize the partons or decay the final state particles; a
hadron is considered as a single jet. No energy-momentum
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FIG. 1. Horizon quantum mechanics (HQM) probability curves
PBH versus black hole massM relative to the Planck scaleMD for
selected total number of space-time dimensions D. The dashed
black line represents the step function used in quantum black hole
(QBH) models.
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smearing or detector simulation has been performed. HQM
effects are added to the proton-proton cross section by
including the factor PBH of Eq. (2) into Eq. (1):

σpp→BHþXðsÞ ¼
X
a;b

Z
1

M2=s
dτ

Z
1

τ

dx
x
fa

�
τ

x

�
fbðxÞ

× PBHðMÞσ̂ab→BHðŝ ¼ M2Þ; ð3Þ

where PBH requires another numerical integration. The
cross section formula is now independent of Mth and the
model has one less free parameter.
In order to visualize how the HQM probability varies

with M;MD, and D, we have computed the integral in
Eq. (2) explicitly, as shown in Fig. 1.
The probability curves suggest some interesting phe-

nomena that are not seen in the QBH model. First, instead
of a step function at M ¼ MD, the new curves are smooth.
The most notable consequence is that there is a finite
probability that a black hole can be formed with M < MD.
Second, we see that the probability for a black hole to be
produced nearMD is suppressed for highD. In other words,
one generally expects more black holes to be produced for
low D. This is at odds with the usual effect of dimension-
ality in the QBH model, where greater D corresponds to a
greater geometric cross section. A third observation is that
most of the curve is significantly above the value of
M=MD ¼ 1. And lastly, the slope in the curves at PBH ¼
0.5 is not particularly steep.
We can roughly quantify the extent to which the PBH

curves create a threshold in the M distribution by consid-
ering the midpoint of each curve as the point where
PBH ¼ 0.5. These values are shown in Table I. For
D ¼ 6, the black hole mass threshold rises to slightly
above the usual MD threshold in the QBH model. For
D ¼ 10, the threshold is more than twice MD. This means
that more dimensions will cause heavy suppression of
black hole production in the HQM model, unlike the QBH
model in which more black holes will be produced at higher
D. The actual values in Table I are model dependent but the
trends are indicative.

III. PROTON-PROTON TOTAL CROSS SECTION

We start by analyzing how the inclusion of HQM
impacts the proton-proton total cross section as a function
of MD and D. There are two competing factors at play. On
one hand, we are multiplying the parton-level cross section
by a factor between 0 and 1, which in general decreases the

cross section. On the other hand, we are considering a
wider range of possible M than in the QBH model. In
addition, while it is unreasonable to think of producing
events in the QBH model if MD >

ffiffiffi
s

p
, the smooth cutoff

imposed by HQM allows for black holes whenMD is above
the collider energy. The phenomena are shown in Fig. 2.
The inclusion of HQM suppresses the total cross section

for low MD but predicts a higher cross section than the
QBH model at high MD. It is also interesting to note how
the role of dimensionality is reversed in the twomodels. For a

TABLE I. Ratio of black hole mass M to Planck scale MD at
PBH ¼ 0.5 for different total number of space-time dimensionsD
in the horizon quantum mechanics model.

D 6 7 8 9 10 11
M=MD 1.4 1.6 1.8 2.0 2.1 2.2
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FIG. 2. Proton-proton total cross section σ versus Planck scale
MD at a center of mass energy of 13 TeV. Curves for different
models and total number of space-time dimensions D are shown.
Solid curves are used for the horizon quantum mechanics (HQM)
model and dashed curves are used for the quantum black hole
(QBH) model.
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FIG. 3. Luminosity required to produce ten black hole events as
a function of Planck scale MD at a center of mass energy of
13 TeV. Curves for different models and total number of space-
time dimensions D are shown. Solid curves are used for the
horizon quantum mechanics (HQM) model and dashed curves are
used for the quantum black hole (QBH) model. The horizontal
dotted line represents a luminosity of 139 fb−1.

QUANTUM BLACK HOLES IN THE HORIZON QUANTUM … PHYS. REV. D 102, 095020 (2020)

095020-3



given MD, higher cross sections occur at lower D in the
HQM model, except for a small region below about 2 TeV.
Also, in the HQM model the cross section at a given MD is
significantly different for differentD asMD increases. Thus
over most of the MD range, dimensionality is significantly
more important in the HQM model.
It is also useful to determine the MD value at which the

HQM model cross section crosses over the QBH model
cross section, and thus where the HQM model might
become more significant. For D ¼ 6, D ¼ 8, and
D ¼ 10, the crossovers in MD occur at approximately
5.4 TeV, 8.2 TeV, and 9.7 TeV, respectively. To understand
which region of MD is interesting, we consider the current
lower-limits, at the 95% confidence level, on MD of
9.9 TeV, 6.3 TeV, and 5.3 TeV for D ¼ 6, D ¼ 8, and
D ¼ 10, respectively, set by the CMS [35] and ATLAS [36]
experiments. At these MD limits, black hole production in
the HQM model is still well below the QBH model except
for D ¼ 6 where the HQM model predicts a cross section

of about three orders of magnitude higher than the QBH
model.
The lower limits onMD are based on graviton searches in

the same large extra dimensions paradigm [1,2] as used for
black hole models, and we thus take them to be applicable
to both the QBH and HQM models considered here.
Searches for QBHs have set limits on Mth (or MD as a
function of Mth), and thus do not constrain the HQM
model; there are currently no limits onMD using the HQM
model.
The most glaring difference between models occur above

the MD lower limits. While the QBH model cross sections
falls sharply as Mth ¼ MD is pushed toward

ffiffiffi
s

p
, the HQM

model cross sections exhibit a more gradual drop that
becomes less steep at higher MD. This results in some
notable properties unique to the HQM model. First, black
holes may be produced even if MD >

ffiffiffi
s

p
. Second, since

the cross sections do not converge to zero at MD ¼ ffiffiffi
s

p
,

dimensionality plays a greater role at high MD.
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FIG. 4. Quantum black hole (QBH) model and horizon quantum mechanics (HQM) model mass M distributions normalized to unity
for (a) MD ¼ 1 TeV, (b) MD ¼ 4 TeV, (c) MD ¼ 8 TeV, and (d) MD ¼ 12 TeV. The center of mass energy is 13 TeV and D ¼ 10.
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Of particular importance for observing quantum black
holes in experiments is the number of black hole events we
are able to produce. Typically, a minimum of ten signal
events is sought to form a reasonable claim of discovery
[37] In Fig. 3, we plot the luminosity required to produce
ten events in proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV.
Analysis performed by ATLAS and CMS using the full
run-2 dataset typically quote a luminosity of about
139 fb−1. Using this luminosity, more than ten events
can be produced in the QBH model for MD less than
about 8.7 TeV, 9.2 TeV, and 9.5 TeV forD ¼ 6,D ¼ 8, and
D ¼ 10, respectively. The lower limits on MD would
exclude D ¼ 6 black holes in the QBH model. The current
best lower limit from a direct QBH search is Mth ¼ MD >
9.4 TeV forD ¼ 10 [28]. Even with a luminosity of 1 ab−1

at
ffiffiffi
s

p ¼ 13 TeV, the limit on Mth in the QBH model is
unlikely to go above about 10.5 TeV. Thus, the QBHmodel
is being significantly restricted even at current luminosities.
The LHC is able to produce black holes at much higher

values of MD in the HQM model for most D. At a current
luminosity of 139 fb−1, values of MD in the HQM model
are not constrained by the lower limits onMD, and quantum
black holes could exist in the LHC experiment’s current
datasets. However, as we will see next it will be nontrivial
to detect HQM black holes in current ATLAS and CMS
datasets even if produced.

IV. PROTON-PROTON DIFFERENTIAL CROSS
SECTION

The inclusion of HQM in quantum black hole production
has notable implications on the M distribution of black
holes. Since the cross sections of QBH and HQM models
typically differ by over an order of magnitude (except at
very low MD and near the crossing), it is illustrative to
compare the normalized shapes of distributions for MD of
interest. Figure 4 compares M distributions for four
selected values of MD and D ¼ 10.
For a smallMD, the HQMmodel gives the peak structure

of the QBHmodel, but this changes for higherMD, andM is
distributed over a wide range: 2≲M ≲ 10 TeV. This differ-
ence in shape is a direct consequence of the shapes of the
PDFs and thePBH curve fromHQM.ThePDFs fall rapidly as
parton energies approach

ffiffiffi
s

p
=2. For MD ¼ 12 TeV in the

QBHmodel, a very small cross section is expected sinceM is
limited to the range 12 < M < 13 TeV. In the MD ¼
12 TeV HQM model, the lower mass for black holes is
dictated by the PBH curve. Black hole masses below 2 TeV
are suppressed since PBH ≈ 0, and likewise black holes with
mass above about 10 TeVare suppressed by the PDFs. This
interplay in the HQM model between the convolution of
PDFs and PBH gives rise to the shape of theM distributions.
The peak in the QBH M distribution moves up with

increasingMD since the model’s definition ofMth is a strict
cutoff in M. In contrast, the HQM model M distribution

does not appear to shift up much aboveMD ≳ 7 TeV. This
phenomena is explored further in Fig. 5. While the QBH
model M distribution moves up with increasing MD acting
as a minimum mass threshold, the HQM model M
distributions are much more spread out and the shape of
the distributions do not change significantly once MD
exceeds a few TeV. We also observe that in the HQM
model it is very difficult to produce black hole masses
above ∼11 TeV, even though MD is not limited.
The progression of black hole M distributions with MD

in both models is shown in Fig. 6, which plots the meanM
as a function of MD. The QBH model curve gives exactly
what is expected, since most black holes are produced with
mass MD, a linear increase in the mean M is observed for
all D. This is in contrast to the HQM model which
resembles a linear increase only for small MD and then
levels off at a constant meanM forMD ≳ 8 TeV. The value
of the mean M to which the trend converges is dependent
on D. The reason for this is an interplay between the PBH

0 2 4 6 8 10 12
 [TeV]MBlack hole mass, 

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

610

710

810

 [
fb

/T
eV

]
/d

M
d

p
-p

 c
o

rs
s 

se
ct

io
n

, 

QBH
 = 13 TeVs

 = 10D

(a)  = 1 TeVDM
 = 2 TeVDM
 = 3 TeVDM
 = 4 TeVDM
 = 5 TeVDM
 = 6 TeVDM
 = 7 TeVDM
 = 8 TeVDM
 = 9 TeVDM
 = 10 TeVDM
 = 11 TeVDM

0 2 4 6 8 10 12
 [TeV]MBlack hole mass, 

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

610

710

810

 [
fb

/T
eV

]
/d

M
d

p
-p

 c
o

rs
s 

se
ct

io
n

, 

HQM
 = 13 TeVs

 = 10D

(b)  = 1 TeVDM
 = 2 TeVDM
 = 3 TeVDM
 = 4 TeVDM
 = 5 TeVDM
 = 6 TeVDM
 = 7 TeVDM
 = 8 TeVDM
 = 9 TeVDM
 = 10 TeVDM
 = 11 TeVDM
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quantum mechanics (HQM) model (b) proton-proton differential
cross sections dσ=dM versus black hole mass M for selected
values of the Planck scale MD. The center of mass energy is
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curves which approach zero as M approaches zero and the
PDFs which approach zero as M approaches

ffiffiffi
s

p
. The

consequence is a “pinching off” that serves to create a mass
distribution that does not change shape significantly
between the two mass regions where the production of
black holes is vanishingly small. The mean M increases
with D due to the PBH curve being shifting higher in
M=MD with increasing D, as previously shown in Fig. 1.
Finally, the shape of the HQM modelM distribution has

implications on how black holes in this model may be
detected in the ATLAS and CMS experiments. In the QBH
model, black holes are expected to predominantly decay
into two-body final states. The majority of these decay
products would be quarks and gluons that would hadronize
to produce jets. For this reason, ATLAS and CMS have
searched for resonances in the mass distribution of dijet
events. The branching fraction to dijets is greater than 96%
[23]. The experiments have taken the branching fraction to
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FIG. 7. Black hole dijet mass distributions scaled by cross section to the ATLAS data luminosity and added on top of the ATLAS dijet
mass mjj spectrum measured at a center of mass energy of 13 TeV and a luminosity of 139 fb−1 [28]. The results are shown for the
quantum black hole (QBH) model and horizon quantum mechanics (HQM) model for various values of the Planck scale MD and the
total number of extra space-time dimensions D.
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dijets to be unity and have accounted for events with less
than two jets in the efficiency. In our study, we have ignored
this inefficiency.
To investigate how black holes in the HQMmodel would

appear in these searches, we use 139 fb−1 of ATLAS data
recorded during run-2 at

ffiffiffi
s

p ¼ 13 TeV [28,38]. Quantum
black hole events are simulated using the same selection
criteria, at the particle level, as in the ATLAS analysis. We
understand that particle-level selection will only roughly
emulate the geometrical acceptance of events in the ATLAS
detector, but the signal yields should be indicative of a full
experimental analysis [39].
In Fig. 7, the black hole events have been scale by the

cross section times luminosity divided by the number of
generated events. Fractional events are possible. Figure 7(a)
shows an example QBH resonance for MD ¼ 9.5 TeV and
D ¼ 10. This resonance is beyond the highest dijet mass
event obtained by ATLAS. In addition, the decisive lack of
such a resonance structure in the dijet mass spectrum has
allowed ATLAS to limit black holes in the QBH model to
Mth > 9.4 TeV for D ¼ 10 at the 95% confidence level
[28]. Thus, the QBH model in its simplest form is close to
being ruled out.
For the HQM model, dijet distributions are shown in

Figs. 7(b), 7(c), and 7(d) for (MD ¼ 8 TeV, D ¼ 10),
(MD ¼ 8.5 TeV, D ¼ 8), and (MD ¼ 9 TeV, D ¼ 6),
respectively. Although ATLAS and CMS have not set
limits on the HQM model they have eliminated a wide
variety of resonances in the dijet mass spectrum from
trigger turn on to about 8 TeV. Thus HQM black hole
production resulting in sizable deviations from the
smoothly falling dijet mass distribution are not allowed.
The values of MD in the figures have been chosen high
enough to not result in a clear enhancement in the dijet
mass distribution that ATLAS and CMS have not seen. On
the other hand, if the MD values are chosen higher the
number of events becomes insignificant for masses above
the ATLAS and CMS data points. It would thus be
extremely difficult to observe black holes in the HQM
model in the current dijet invariant mass spectrum.

V. DISCOVERY POTENTIAL IN THE DIJET MASS
DISTRIBUTION

In order to predict the discovery potential for observing
quantum black holes, we take into consideration both the
number of events above background and the significance of
the signal. For the significance, we use the asymptotic
approximation without background uncertainty (see, for
example Ref. [40]). The formula comes from using the
asymptotic formulas for the distributions of profile like-
lihood test statistics.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
ðsþ bÞ ln

�
1þ s

b

�
− s

�s
; ð4Þ

where s is the number of signal events above background
and b is the number of background events excluding signal
events. The signal events are generated with QBH and the
ATLAS background model is taken as the background. We
understand that Eq. (4) is an approximation based on a cut-
and-count approach, and that one should really include
background uncertainties. However, such an analysis is
beyond the scope of this work, and is unlikely to change the
qualitative findings.
We consider a significant observation to be greater than

5σ. Using a cut-and-count method, significance is calcu-
lated by counting events aboveMth. While this is natural for
the QBH model, it is perhaps not so meaningful for the
HQM model since many of the events have M < MD. For
the sake of comparison, we consider two approaches to
calculating the significance for the HQMmodel. The first is
the usual definition, where we consider MD as a cutoff. In
this methodMD values beyond

ffiffiffi
s

p
cannot be probed. In the

second method, we consider all black hole events and count
the background from the least massive signal event. We
understand that the latter method would be extremely
difficult, and probably not even desirable, to realize in
an experiment’s analysis, but it might be more indicative of
a shape-fit procedure that might likely be used.
The event count and significance are presented in Figs. 8

and 9, respectively. While counting HQM model events
over the entire mass range gives the greater number of
events, the method of counting HQM model events only
above MD give better significances. This could have been
anticipated given the large number of background events at
low dijet masses. Using either approach to calculating the
significance, the discovery potential at allowed values MD
is less for the HQM model than the QBH model. Since the
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FIG. 8. Predicted number of black hole events versus Planck
scaleMD for a center of mass energy of 13 TeVand luminosity of
139 fb−1 when selecting events at the parton level according to
the same criteria as the search in Ref. [28]. The solid curves are
for total space-time dimension D ¼ 10 and the dashed curves
for D ¼ 6.
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ATLAS background that we are using does not extend
beyond 8.1 TeV, and because of the simple significance
formula Eq. (4), the significance curves in Fig. 9 end
at MD ¼ 8 TeV.
Using the M > MD counting method and by noting the

minimum MD value given by the ten event and 5σ criteria,
we assess the possibility of detecting HQM black holes in
ATLAS and CMS. ForD ¼ 10, the number of signal events
is greater than ten for MD ≲ 7.5 TeV. The corresponding
significance is greater than 5σ for MD ≲ 7.4 TeV, and this
sets the upper limit on MD to observe black holes in the
HQM model. For the D ¼ 6 case, greater than ten events
occurs when MD ≲ 8.0 TeV and the significance is greater
than 5σ at MD ≲ 8.0 TeV. However, with only one back-
ground event, the significance as defined in Eq. (4) slightly
overestimates the true significance. In any case, the lower
limit on MD from the CMS experiment [35] for D ¼ 6 is
9.9 TeV at the 95% confidence level, thus eliminating the
HQM model for D ¼ 6.
Given the increase in luminosity and

ffiffiffi
s

p
in subsequent

LHC runs, these discovery potentials stand to increase
somewhat. With this thought in mind, we make some
predictions at

ffiffiffi
s

p ¼ 13 TeV on the luminosity required at a
given MD for a meaningful discovery. We assume that the
number of background events, based on the background
model from Ref. [28], scales linearly with luminosity.
When calculating the significance using M > MD as a
cutoff in the cut-and-count method, we have made the
additional assumption that event-count is the limiting factor
for MD > 8 TeV as this is the highest dijet mass at which
the ATLAS background estimate is given. The results are
shown in Fig. 10 where we only consider luminosities
above 139 fb−1. The luminosity axis of the plot extends out

to 4000 fb−1, inspired by the design integrated luminosity
of the High-Luminosity Large Hadron Collider. It is seen
that the increase in probing MD with a reasonable increase
in luminosity is not very significant, indicating that we are
close to exhausting the search for black holes in both QBH
and HQM models using the dijet mass distribution atffiffiffi
s

p ¼ 13 TeV. Although we have used a very simplistic
approach to estimating the discovery potential, this con-
clusion is unlikely to change with a more robust estimate.

VI. CONCLUSIONS

Microscopic black hole formation as predicted by HQM
was implemented in the QBH MC event generator to
investigate the impact on possible black hole production
at the LHC. The inclusion of the HQM model serves to
decrease the total black hole cross section for smallMD, but
the new model is not restricted by a threshold mass
requirement. Therefore, HQM predicts black holes may
be produced at MD ∼

ffiffiffi
s

p
. The HQM model is also highly

dependent on dimensionality and predicts that a greater
number of events may be produced with a smaller D. The
M distribution is also greatly affected by HQMwith a much
wider spread of black hole masses. In other words, there is
no resonance structure in the HQM model. This wide M
distribution converges to a constant shape for large MD,
which can be considered to be one of the defining features
of the HQM model.
The predicted signal in the dijet mass distribution along

with the ATLAS run-2 background model were used to
estimate the number of signal events and significance.
Observations of quantum black holes governed by HQM
were predicted to be limited to MD ≲ 8.0 TeV for D ¼ 6
and MD ≲ 7.2 TeV for D ¼ 10.
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Given the small potential for observation of HQM black
holes in the dijet mass distribution, a discovery in the
invariant mass variable is unlikely. Alternatively, an angular
search may be performed to distinguish an enhancement of
events due to black hole production above QCD back-
ground [12,13,21,23,24]. The HQM model does not yet
predict any modification to the usual decays in the QBH
model; there is no difference between the two models in
terms of the shape of angular distributions.
An example angular search could be in the variable χ

defined as

χ ¼ ejy1−y2j; ð5Þ

where y1 and y2 are the rapidities of the two jets. QCD t-
channel scattering constituting the background is approx-
imately constant in χ, while s-channel resonances tend to
be enhanced at low χ. Because of this, an angular search
could help uncover the wide s-channel mass enhancement
that is predicted by HQM. Since the predictions of an
angular search are highly dependent on the analysis and
detector details, we leave it to the ATLAS and CMS
collaborations to perform such a search.
Some of the above results were first mentioned in

Ref. [11]. Unfortunately, that paper could only make use
of ATLAS and CMS results from about 20 fb−1 of data at a
center of mass energy of 8 TeV. We view our analysis as
more comprehensive, benefiting from using recently avail-
able experimental data distributions, and up to date.
Lastly, although the HQM model has been used, we do

not believe the qualitative results presented here depend
specifically on the formula presented in Ref. [9]; similar
results would be obtained for any nonsteplike threshold
mass production of black holes such as those presented
in Ref. [10].
We have implemented and studied a benchmark model

and some of the quantitative results are model dependent. It
is not our intent to prove or disprove a particular model but
to point out the need for alternative search strategies for
quantum black holes such as a dijet angular analysis.
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APPENDIX: MONTE CARLO EVENT
GENERATION

In order to visualize how the HQM probabilityPBH varies
with D, MD, and M, we computed the integral in Eq. (2)
explicitly using numerical integration. As shown in Fig. 1,
good accuracy was achieved with the use of Simpson’s
method and an adequate large number of subdivisions.

A more elegant means of producing the appropriate PBH
factor can be performed by MC integration. As a check, we
have also produced the curves in Fig. 1 usingMC sampling.
By integrating and inverting the PH distribution, random
values of the horizon radius rH can be sampled using a
uniform distribution of random numbers. Since PH is a
probability density function, using random rH values to
calculate PS for a large number of samples effectively
computes the expected value for PS (or equivalently, PBH).
For completeness, we present this calculation.
We begin from Eq (3.7) in Ref. [9]:

PHðrHÞ ¼ a
d

d−2
2ðd − 2Þ
Γðs; 1Þ ΘðrH − RdÞ

× exp ð−a2r2ðd−2ÞH Þrd−1H ; ðA1Þ

where in this Appendix we use the notion of Ref. [9] except
we take the total number of spatial dimensions to be d. We
have define a ¼ ðd − 2Þ=ð2mÞ and s ¼ d=½2ðd − 2Þ�, and
used Δ ¼ m as in Ref [9]; Γðs; xÞ ¼ R

∞
x ts−1e−tdt is the

upper incomplete Gamma function. In addition, we are
using Planck units since we are only interested in lengths
and masses relative to MD.
By taking the Heaviside step function to be one, the

indefinite integral can be computed:

Z
PHðrHÞdrH ¼ −

Γðs; a2r2ðd−2ÞH Þ
Γðs; 1Þ : ðA2Þ

Substituting a lower limit of Rd ¼ ½2m=ðd − 2Þ�1=ðd−2Þ and
upper limit of rH, to allow calculation of the cumulative
distribution function, gives

CDF½PHðrHÞ� ¼ 1 −
Γðs; a2r2ðd−2ÞH Þ

Γðs; 1Þ : ðA3Þ

If we generate a uniform random real number u in the
interval (0,1) [or 1 − u in the interval (1,0)] and set it equal
to Eq. (A3), we can solve for rH by inverting the incomplete
Gamma function with respect to its second parameter:

rH ¼ Rd½Q−1ðs;Qðs; 1ÞuÞ� 1
2ðd−2Þ: ðA4Þ

Note that Q−1ðs;Qðs; xÞÞ ¼ x, where Q−1 is the inverse of
the regularized upper incomplete Gamma function
Qðs; xÞ ¼ Γðs; xÞ=ΓðsÞ. There are numerical methods to
optimize this inversion.
Upon randomly sampling the horizon radii from

Eq. (A4), we return values of PSðr < rHÞ as given by
Eq. (3.5) in Ref. [9]:

PSðr < rHÞ ¼
γðd

2
; m2r2HÞ
Γðd

2
Þ ; ðA5Þ
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where γðs; xÞ ¼ R
x
0 t

s−1e−tdt is the lower incomplete
Gamma function.
The above random horizon generation can simply be

looped over with an average of all PS values giving an
approximate value for PBH. We easily recreate the same
probability curves as in Fig. 1 which used Simpson’s
method.
Both the MC method and Simpson’s method for calcu-

lating PBH have been implemented in QBH. Despite both
methods producing the same results, there are technical
pros and cons of each method. The MC HQM calculation
just presented is the default method.
One additional technicality should be mentioned. Since

black hole production in the HQM model allows forM less
than MD there is no lower-mass cutoff in the generator.
Instead, the PBH curve imposes its own smooth limit as it

becomes arbitrarily small. To sample M via a power
transformation of the cross section used to increase
efficiency, we choose an arbitrary minimum of 100 GeV
since in practice it is exceedingly rare to generate an event
with M this low. For example, selecting a 200 GeV
minimum has a negligible impact on the results.
We point out that our curves of PBH are identical to the

corresponding figure in Ref. [11] within our ability to read
values from their figure. Equation (7) in Ref. [11] dis-
agrees with Eq. (3.8) Ref. [9], although the later cites the
former. We believe Eq. (7) in Ref. [11] has the inverse
power of ðmd=mÞ and a normalization difference of
ðD − 2Þ2. If the formula in the paper was actually use
to generate the plot, the curves continue to increase above
unity with increasing mass and do not represent proba-
bility distributions.
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