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Modifications to electrodynamics from physics beyond the Standard Model can be tested to a high
accuracy. Here we use two setups to place bounds on hidden photons, an Abelian boson kinetically
mixed with the photon. The first setup involves atomic force microscope measurements, originally
designed to study the Casimir effect at sub-μm distances. The second setup consists of two concentric
metal shells with the outer one exposed to a high voltage. By measuring the potential difference between
the shells it is possible to test Coulomb’s law. The limits obtained here cover regions already excluded, in
particular by astrophysical observations, but provide a more direct, laboratory-based confirmation of
these bounds.
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I. INTRODUCTION

The Standard Model (SM) unifies electromagnetism
to the strong and weak forces under the gauge group
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY. Its predictions have been
verified with great accuracy—prime examples are the
determination of the anomalous magnetic moment of the
electron and the discovery of the Higgs boson. Despite its
successes, the SM does not account for a range of
observations, such as the mass of neutrinos [1] or the
nature of dark matter and energy [2]. For overviews, see,
e.g., Refs. [3,4] and references therein.
Extensions of the SM, such as string theory, seek to

remedy these issues by expanding the symmetry group and,
an often encountered possibility, is the inclusion of an extra
Uð1ÞX [5–9]. This Abelian sector would mix with the weak
hypercharge Uð1ÞY, thus leading to a mixing with the
electromagnetic Uð1ÞEM in the low-energy limit. The new
spin-1 boson associated with Uð1ÞX, X is electrically
neutral and does not couple to SM matter fields directly.
This means that, apart from the mixing with the photon, X
remains invisible, being dubbed a hidden, or dark, photon.
The Lagrangian for the photon and hidden photon is, in

natural units,

L ¼ −
1

4
F2
μν −

1

4
X2
μν þ

χ

2
XμνFμν þm2

γ0
2

X2
μ; ð1Þ

where Xμν ¼ ∂μXν − ∂νXμ is the field-strength tensor of
the hidden photon. The unusual mixing in Eq. (1) can be
removed by field redefinitions [10]. There are two pos-
sibilities: A → A − χX or X → X − χA. In the first case, the
hidden photon and the electromagnetic current will interact,
so particles with an electric charge eQ acquire a hidden
charge−eχQ; this is the origin of the so-called minicharged
particles. In the second, the mixing is completely trans-
ferred to the mass terms, inducing a photon-hidden-photon
oscillation. For a review, see Ref. [11].
As will be discussed in Sec. II, the presence of hidden

photons would induce a Yukawa-like modification to
Coulomb’s law, thereby affecting the interaction between
electrically charged objects. It is therefore possible to look
for new physics by analyzing deviations from the standard
predictions of Maxwell’s electromagnetism. Here we ana-
lyze two experimental setups originally designed to search
for very different effects. The first consists of a metallized
plate and a sphere assembled in an atomic force microscope
(AFM) and precisely measured the Casimir force at
distances around 100 nm [12,13]. The second setup
implemented in 1936 by Plimpton and Lawton [14] was
composed of two concentric thin metal shells whose
potential difference was accurately measured. It was there-
fore conceived as a sensitive test of Coulomb’s law.
The two AFM experiments considered here [12,13] are

similar, consisting of a grounded gold-coated polystyrene
sphere mounted on the tip of an AFM and placed at varying
distances to an equally grounded gold-coated sapphire disk.
Despite the grounding, residual potentials of a few mV
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were measured between the sphere and the disk. These
experiments are improvements upon previous runs [15,16]
and display smaller experimental uncertainties—around
1% of the measured Casimir forces—at the shorter disk-
sphere separation distances. The reported rms theory-data
deviations are of a few pN and indicate that theory and
experiment are compatible at the ∼1σ level. Departures
from Coulomb’s law must then lie under the experimental
uncertainties, and these results were used to exclude a
region of the hidden-photon parameter space covering mass
scales in the 0.1–10 eV range and χ ≳ 10−0.5, as shown by
the red curve in Fig. 1.
The second experiment considered was performed by

Plimpton and Lawton [14]. Their setup consisted of two
concentric spherical metal shells, the outer one being held
at a harmonically varying potential. According to standard
electromagnetic theory, in the interior of a charged con-
ductor the electric field must vanish; i.e., the inner and outer
shells should be at exactly the same potential. The objective
was to detect minute electric potentials induced in the inner
shell, representing a precision test of Coulomb’s law. As
discussed in Sec. IV, the Yukawa-like term introduced by
hidden photons would induce a nonzero electric field inside
a conductor, thus leading to a potential difference between
the shells. No such difference could be measured within the
experimental uncertainties, and this null result allows us to
derive limits on the parameter space for hidden photons; the
excluded region is displayed in purple in Fig. 1.

Incidentally, other Cavendish-like experiments involving
multiple shells and precise measurements of potential
differences between them have been performed to constrain
the rest mass of the photon [19]. These tests may be readily
reinterpreted in terms of hidden photons and can be used to
probe distance scales of order ∼10 cm [20,21]. Atomic
spectra would also be modified at first order, and one can
take advantage of the exquisite precision attained in
measurements of, e.g., the frequency in the 1s1=2 − 2s1=2
transition in hydrogen to constrain hidden photons at
atomic length scales ∼0.1 nm [22,23]. Finally, static
magnetic fields would also be affected, and the non-
observation of such effects at planetary scales has also
been used to place constraints on very light hidden photons
[24,25]. These limits are indicated as “Cavendish,”
“Spectroscopy,” and “Jupiter þ Earth” in Fig. 1, respec-
tively. Other limits from astrophysics, collider, and labo-
ratory tests are shown in gray. For further discussion on
phenomenological limits, see Ref. [26].
This paper is organized as follows: In Sec. II, we derive

the potential energy and the force between point charges
due to the exchange of hidden photons. In Sec. III, we
analyze the AFM setups to determine the surface charge
distributions on the conductors and calculate the force due
to hidden-photon exchange, which is then compared to the
experimental results. Next, in Sec. IV we explore the results
of the Plimpton-Lawton experiment and extract further
limits. Finally, we dedicate Sec. V to our conclusions.

II. INTERACTION POTENTIAL MEDIATED
BY HIDDEN PHOTONS

Our target is to model the interaction between macro-
scopic bodies due to small modifications of electrostatics in
the presence of hidden photons. In the AFM setups, our
observable is a force, whereas in the Plimpton-Lawton
experiment, we work with electric potentials. Both can be
obtained once we know the potential energy between the
objects involved, which can be traced back to the structure
of the hidden-photon propagator. This is an ultimately
quantum mechanical calculation, but the potential energy is
a classical quantity, so it is interesting to evaluate it in the
nonrelativistic (NR) limit. Here we assume static sources,
thereby ignoring higher order velocity- and spin-dependent
corrections [27–29].
From Eq. (1) we see that hidden photons are, in

principle, decoupled from the visible sector, with the
exception of the mixing term, which may be treated as
an interaction vertex Vμν

γ−γ0 ¼ iχðημνq2 − qμqνÞ, where ημν
is the Minkowski metric and q is the 4-momentum carried
by the mediator. The sources are charged under Uð1ÞEM,
but not under Uð1ÞX, so the effect of hidden photons in the
interaction between them will be felt through the continu-
ous oscillation of the mediating photons into hidden
photons. It is expected that χ ≲ 1, what allows for a

FIG. 1. Excluded regions in parameter space for hidden
photons. Our bound from combining the force measurements
from the AFM setups in Refs. [12,13] is displayed in red. In black
we show the projected improvement for different sphere-plane
separations and a twofold improvement in experimental uncer-
tainty; cf. Fig. 6. Our bound from the Plimpton-Lawton experi-
ment [14] is shown in purple and, in orange, the projected
improvement with better sensitivity and different radii; cf. Fig. 8.
Remaining contours adapted from Refs. [10,17,18]. For a
discussion of hidden photons as a dark matter candidate, see
Ref. [11] and references therein.
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perturbative treatment of the corrections to the photon
propagator. Inserting the mixing vertex between photon and
hidden-photon lines, we obtain an effective propagator [29]

hAμAνieff ¼ −i
�
1

q2
þ χ2

q2 −m2
γ0

�
ημν þOðχ4Þ; ð2Þ

where a gauge-fixing-dependent term is omitted, since we
are dealing with conserved external currents.
The potential energy between two elementary point

charges separated by a distance r ¼ jrj is given by the
first Born approximation

UðrÞ ¼ −
Z

d3q
ð2πÞ3 MNReiq·r; ð3Þ

with MNR being the NR limit of the relativistic amplitude
M. Here, q is the 3-momentum exchanged between the
sources in an elastic collision, in which q0 ¼ 0. The NR
amplitude can be expressed as the contraction of the
electrically charged source currents—given by J0i ≈ e
and Ji ≈ 0 in the static limit—with the effective propagator
(2). The result, now expressed in SI units for later
convenience, is [22,29]

UðrÞ ¼ αℏc
r

ð1þ χ2e−mγ0cr=ℏÞ; ð4Þ

where α ¼ e2=4πϵ0ℏc is the electromagnetic fine-structure
constant.
Equation (4) shows how the Coulomb potential is

modified by a term screened by the mass of the hidden
photon, i.e., a Yukawa-like term, which is further sup-
pressed by the small mixing parameter χ. This result is the
basis for our analysis of the Plimpton-Lawton experiment
in Sec. IV. In order to incorporate the effects from hidden
photons in the analysis of the AFM setups in Sec. III, it is
useful to derive the electrostatic force between our point
charges, which is given by

FðrÞ ¼ αℏc
r2

�
1þ χ2

�
1þmγ0c

ℏ
r

�
e−mγ0cr=ℏ

�
: ð5Þ

We note that for χ → 0 the usual inverse-square character
of the Coulomb force is recovered. Formγ0 → 0, or rather for
masses mγ0 ≪ 1=dexp, where dexp is the typical length scale
of the system under study, the hidden photon and the photon
cannot be distinguished, and the electromagnetic coupling
constant is effectively redefined as α → αð1þ χ2Þ. This
observation is crucial when we try to extract meaningful
bounds from theAFM setups in the small-mass region. For a
very heavy hidden photon, the exponential term is strongly
suppressed, and the hidden photon would not be excited at
low energies, thereby leaving the Coulomb interaction
unchanged.

Equations (4) and (5) display macroscopic effects that
could give away the presence of hidden photons and are the
basic results for the following analyses. The experiments
considered here are sensitive probes to modifications of
Maxwell’s electromagnetism and can be used to constrain
new physics covering distance scales ranging from ∼50 nm
to ∼10 cm. Let us start with the AFM experiments.

III. LIMITS FROM AFM MEASUREMENTS

The correction to Coulomb’s force (5) is expected to be
very small and only detectable at very short distances.
Sensitive experiments are therefore necessary to search for
it. Atomic force microscopes are particularly useful tools to
measure very weak forces, such as the Casimir force—the
result of zero point vacuum fluctuations of the electromag-
netic field [30,31].
The Casimir force has been demonstrated in a variety of

geometries [32–34] and the agreement with theory—
including temperature effects and corrections for surface
roughness and finite conductivity—is in the 1% range.
Because of the difficulty in arranging perfectly parallel
plates at distances ∼μm, a commonly used geometry
involves a sphere of radius R at a distance a ≪ R from
a plane, which is considered infinite in comparison with the
other scales involved. This geometry is sketched in Fig. 2.
The experiments considered here involve precise mea-

surements of the force between a gold-coated polystyrene
sphere of radius R attached to the cantilever of an atomic
force microscope and a similarly gold-coated sapphire disk
with 1 cm diameter [12,13]. Both the sphere and the disk
are grounded, but residual potential differences V0 of a few
mV between the objects could not be eliminated. The
reported relative deviations from theory, i.e., Casimir and
electrostatic forces, represent in both experiments ∼1% of
the measured forces, which are of the same order of

FIG. 2. The geometry of the AFM setups described in
Refs. [12,13]. The point O—the center of the sphere—lies at
a distance Z0 ¼ Rþ a above the plane. The positions of the
image charges, as well as their values, are functions of Z0=R;
cf. Sec. III A. Both sphere and plane are grounded, but there is a
residual potential difference V0 between them; see Table I.
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magnitude as the experimental uncertainty. The relevant
parameters are summarized in Table I. Therefore, the data
are consistent with the theoretical predictions [35,36], and
the results can only be used to set bounds on new physics.
Other geometries have also been used to test new physics,
such as non-Newtonian gravity [37–39] and other hypo-
thetical particles [40].
It is worth noting that a similar setup was investigated by

Bordag et al. [41]. The authors considered a hypothetical
Yukawa force felt by all atoms in each object and essentially
integrated over the entirety of the respective volumes. Even
though hidden photons also generate Yukawa-like forces,
the analysis here is entirely different due to the couplingwith
electrically charged sources. Both polystyrene and sapphire
are very poor conductors when compared to gold, sowemay
consider that there are no free charges in the bulks of the
sphere and plate, which are taken to be electrically neutral as
a whole. This means that the interior volumes of the
polystyrene sphere and sapphire plate will not feel the
Yukawa-like force (5). The thin gold layers, on the other
hand, are highly conducting and there is a small, but finite,
residual potential difference between the objects driving the
electric charges in the gold coatings to the surface, where
they settle in nontrivial distributions. It is these induced
superficial charges that will effectively contribute to the
overall Yukawa-like force from hidden photons. In this
sense, contrary to the analysis in Ref. [41], the bulks do not
contribute, whereas the charge distributions over the plane
and the sphere are of utmost importance.
In the following, we use the method of image charges

applied to the AFM setups described in Refs. [12,13] to
obtain the surface charge distributions on the plate and
sphere and, by numerically integrating over these surfaces,
we determine the expected force due to the exchange of
hidden photons.

A. Electrostatic potential between perfectly
conducting sphere and plane

Our main goal is to use the reported results of AFM
measurements [12,13] to place bounds on the parameters of
a possible hidden-photon modification to the electrody-
namics. Thus, we must, before anything else, understand
how such a modification would affect the forces measured
in the experimental setup. Our strategy is simple: We obtain
the charge distributions over both the sphere and the plane,
which in turn are used to compute the Yukawa force
between the two conductors.
Clearly, the hidden photon—as well as any potential

modification to the electromagnetic sector—can only

generate a small deviation from Maxwellian electrodynam-
ics. In this spirit, we assume that the charge distributions
over the conductors are sufficiently well described by the
classical ones, even in the presence of the hidden photon. In
this section. we derive such distributions.
In line with the discussion above, we use two simplifying

assumptions when modeling the AFM setup: We trade the
disk for an infinite plane and treat both the former and the
sphere as perfectly conducting. Although apparently sim-
ple, wewere unable to find, in the standard electrodynamics
textbooks (see, for instance, Ref. [42] and references
therein), the solutions to the electric potential and fields
for the configuration being considered; Refs. [43,44] were
the only sources we came across that address this problem.
In Ref. [43], the author approaches the problem through

a power-series solution to Laplace’s equation followed by a
multipole expansion, in a mathematical-physics tour de
force. The final result for the electric potential is given in
terms of two power series: the first valid for the points
whose distance to O is smaller than 2a, and the second for
points at distance greater than 2a. However, the proposed
solution fails for points exactly at a distance of 2a from O.
This is a major difficulty for our purposes, as we need to
determine the surface charge density on the entire plane.
The solution proposed in Ref. [44] is solely based on the

method of image charges. This approach is not only very
elegant and easy to follow, but also yields expressions that
are immediately suitable to our goals. Below we reproduce
the main aspects of the argument and derive the expression
that will be used later on.
It is well known that, given a set of boundary conditions,

the solution to Laplace’s equation is unique. Thus, if one
manages to construct a solution fulfilling the boundary
conditions, this must be the searched solution. The method
of image charges explores this uniqueness in swapping the
problem of interest by another one which is much simpler
to analyze: a distribution of point charges. I.e., the idea is to
place auxiliary point charges outside of the physical
domain, in such a way that the boundary conditions of
the original problem are satisfied. In our case, we shall
place the image charges inside the sphere and below
the plane.
In order to apply the method of image charges, one must

first determine the boundary conditions. As we are working
in the perfect conductor approximation, the sphere and the
plane will represent equipotential surfaces. Thus, the
boundary conditions will be simply given by the potential
at each of the conductors. As in the AFM setups there exists
a residual potential V0 difference between the probe and the
disk, we can, with no loss of generality, demand that the
potential on the plane vanishes, what makes the potential on
the surface of the sphere V0.
Clearly, an image charge

Q0 ¼ 4πϵ0V0R ð6Þ

TABLE I. Basic parameters of the AFM setups considered.

Ref. R (μm) a (nm) V0 (mV) σrms (pN) σexp (pN) ΔM=M

[12] 95.7 62 3 3.8 3.5 1%
[13] 100.9 100 7.9 2.0 1.3 1%
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placed on the point O saturates the boundary condition on
the surface of the sphere. Then, to ensure the condition
V ¼ 0 on the plane, an image charge −Q0 must be
introduced. This charge must be positioned exactly below
the original image charge and at a distance of Z0 ¼ Rþ a
below the plane.
Notice that the inclusion of the second image charge,

while reinforcing the boundary condition over the plane,
modifies the potential over the sphere. We can compensate
for such a difference by including a third image charge, this
time inside the sphere, but then a new one under the plane
will also be needed; this procedure will lead to the inclusion
of infinitely many pairs of image charges.
In short, when a chargeQi is placed inside the sphere at a

distance Zi from the plane, a companion charge −Qi must
be placed exactly beneath it at a distance Zi below the
plane. The image charges and their positions satisfy the
following recurrence relations:

ζi ≡ Zi

R
¼ ζ0 −

1

ζ0 þ ζi−1
; ð7aÞ

Qi ¼
Qi−1

ζ0 þ ζi−1
: ð7bÞ

It is interesting to notice that the position of theNth charge
pair can be written in terms of a continued fraction as

ζN ¼ ζ0 −
1

2ζ0 − 1
2ζ0− 1

. .
.

− 1
2ζ0

9>>=
>>;
N denominators:

Clearly, this continued fraction converges for N → ∞,
meaning that, as N increases, the image charges will be
closer and closer to the accumulation point

ζ∞ ≡ lim
N→∞

ζN ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ20 − 1

q
: ð8Þ

Finally, for every point above the plane and on the
outside of the sphere, the electric potential is given by the
series

Vðz;ρÞ ¼ 1

4πϵ0

X∞
i¼0

�
Qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZi − zÞ2 þ ρ2
p −

Qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZi þ zÞ2 þ ρ2

p
�
:

ð9Þ

The equipotential surfaces obtained from the expression
above are shown in Fig. 3 for Z0 ¼ 2R. The z and ρ
components of the electric field in the region between the
two conductors are given by

Ezðz; ρÞ ¼ −RV0

X∞
i¼0

�
Zi − z

½ðZi − zÞ2 þ ρ2�3=2

þ Zi þ z

½ðZi þ zÞ2 þ ρ2�3=2
�
Qi

Q0

; ð10aÞ

Eρðz; ρÞ ¼ RV0

X∞
i¼0

�
ρ

½ðZi − zÞ2 þ ρ2�3=2

−
ρ

½ðZi þ zÞ2 þ ρ2�3=2
�
Qi

Q0

: ð10bÞ

From these expressions, one can readily obtain σp and σs,
the surface charge densities over the plane and sphere
(cf. Fig. 4), respectively,

σpðρÞ ¼ ϵ0Ezð0; ρÞ; ð11aÞ

σsðθÞ ¼ ϵ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
zðzs; ρsÞ þ E2

ρðzs; ρsÞ
q

; ð11bÞ

with zs ≡ aþ Rð1þ cos θÞ and ρs ≡ R sin θ.

B. Application to hidden photons

Because of the rotational symmetry around the z axis,
cf. Fig. 2, we may ignore any dependence on azimuthal or
polar angles on the sphere and plane, respectively. This
allows us to consider infinitesimal rings on the sphere and
on the plane carrying infinitesimal charges dqs;p ¼ edNs;p

with

dNs ¼ 2πR2

�
ϵ0V0

eR

�
σ̃sðθÞ sin θdθ; ð12aÞ

3 2 1 0 1 2 3
0

1

2

3

4

R

z
R

FIG. 3. Equipotential surfaces for the AFM setups with a sphere
of radius R centered at Z0 ¼ 2R; the conducting plane, which is
grounded, is located at z ¼ 0. The white circle corresponds to the
volume of the sphere, within which the potential is taken as
constant. The boundary conditions at the surfaces of the con-
ducting plane and sphere are duly fulfilled (color scale arbitrary).
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dNp ¼ 2πR2

�
ϵ0V0

eR

�
σ̃pðρ̃Þρ̃dρ̃; ð12bÞ

where ρ̃ ¼ ρ=R. Here, σ̃sðθÞ and σ̃pðρ̃Þ are the dimension-
less surface charge distributions; cf. Eqs. (11a) and (11b).
The infinitesimal ring on the sphere is located at zs and

ρs, whereas the infinitesimal ring on the plane is at zp ¼ 0

and ρp ¼ ρ. The distance between them is given by
r2 ¼ ðzs − zpÞ2 þ ðρs − ρpÞ2, which can be expressed as
r ¼ Rr̃, where

r̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðãþ 1þ cos θÞ2 þ ðρ̃ − sin θÞ2

q
ð13Þ

with ã ¼ a=R. Setting m̃γ0 ¼ mγ0cR=ℏ and using Eq. (5),
the infinitesimal vertical force between the two rings can be
written as

dFHP
z ¼ αχ2ℏc

ð1þ m̃γ0 r̃Þe−m̃γ0 r̃

r2
zs
r
dNsdNp; ð14Þ

so that, applying Eqs. (12a) and (12b), we finally obtain

FHP
z ðaÞ ¼ αχ2κIða;mγ0 Þ; ð15Þ

where κ ¼ ℏcð2πϵ0V0=eÞ2, which can be numerically
expressed as

κ ¼ 3.8 × 10−3 pN

�
V0

mV

�
2

ð16Þ

and

Iða;mγ0 Þ ¼
Z

∞

0

Z
π

0

dρ̃dθσ̃sðθÞσ̃pðρ̃ÞKðρ̃; θÞ ð17Þ

with

Kðρ̃; θÞ ¼ ρ̃ðãþ 1þ cos θÞ sin θ
r̃3

ð1þ m̃γ0 r̃Þe−m̃γ0 r̃: ð18Þ

The residual potential between the sphere and the plane
generates surface charge distributions (cf. Fig. 4), and
Eq. (15) is the hidden-photon contribution to the total
vertical electrostatic force between the objects. As the
value of κ indicates, this force is expected to be extremely
weak. Incidentally, if we make χ ¼ 1 and mγ0 ¼ 0 in
Eq. (15), we recover the Coulombian electrostatic force.
The function (18) encodes the mass dependence of the
force, and we expect it to be strongest at closest separation
dexp ¼ a ∼Oð100 nmÞ, i.e., for masses mγ0 ∼ 1 eV.
As already clear from Eq. (4), for very small masses the

Coulomb potential is reobtained, but with α → αð1þ χ2Þ.
This means that, for very light hidden photons, the fine-
structure constant is substituted by the relation above, but

this redefinition would not be observable, since α is
experimentally determined. In other words, a massless
hidden photon would be indistinguishable from the usual
photon, so no modification to electromagnetic phenomena
should be observed.
The arguments above imply that bounds on χ should

weaken as we scan smaller masses. However, looking at
Eqs. (15) and (18), we see that this is not the case: FHP

z
tends to a nonzero, mass-independent value. This is not
physically meaningful. A similar situation is discussed in
Ref. [22] in connection to the transition 1s1=2 − 2s1=2 in
hydrogen, for which the naive bound also fails to weaken as
mγ0 → 0. The reason is the same: For small masses, α is
redefined and depends on χ; i.e., we have two unknown
parameters to be determined, α and χ.
A solution to this problem is put forward by the authors

of Ref. [22]. They consider two independent measurements
Mi (i ¼ 1, 2), not necessarily of the same system, which are
quoted in the formMexp

i −Mth
i ¼ δMi þ ΔMi. Here, δMi is

the measured difference between theory and experiment,
and ΔMi is the experimental error. In our case, the δMi are
compatible with zero within the experimental errors for α ¼
α0 and χ2 ¼ 0, i.e., in the absence of hidden photons. The
Mth

i ðα; χ2Þ may then be expanded in a Taylor series around
the unperturbed couplings α ¼ α0 and χ2 ¼ 0 resulting in a
system of linear equations in δα ¼ α − α0 and χ2 that can
be inverted to determine the values of the latter as

χ2 ≤
ð∂αM1ÞjΔM2j þ ð∂αM2ÞjΔM1j

ð∂αM1Þð∂χ2M2Þ − ð∂αM2Þð∂χ2M1Þ
; ð19Þ

with the partial derivatives evaluated at α ¼ α0 and χ2 ¼ 0.
In more concrete terms, we may model the theoretical
predictions as

Mth
i ðα; χ2Þ ¼ ciαni ½1þ χ2fiðmγ0 Þ�; ð20Þ

FIG. 4. Normalized surface charge densities for Z0=R ¼ 1þ
0.001. The dashed lines on the upper panel indicate the region on
the plane directly below the sphere.
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where ci are dimensional factors and fiðmγ0 Þ contain the
mass dependence of the observable. By plugging the
equation above into Eq. (19), we finally obtain

χ2 ≤
n1jΔM2j
M2ðα0;0Þ þ

n2jΔM1j
M1ðα0;0Þ

jn1f2ðmγ0 Þ − n2f1ðmγ0 Þj
: ð21Þ

To see how this helps solve our problem, consider the
massless case, where Mth

i ¼ ciαni → ciαnið1þ χ2Þni .
Given that χ2 ≪ 1, we may expand ð1þ χ2Þni ≈ 1þ
niχ2 and, comparing with Eq. (20), we find that fiðmγ0 Þ →
ni for mγ0 → 0. Therefore, at this limit, the denominator of
Eq. (21) tends to zero and χ increases, i.e., the bound
weakens, as expected on physical grounds.
We apply the procedure above by combining the AFM

measurements in Ref. [12] (M1) and Ref. [13] (M2). From
Eq. (15), we see that n1 ¼ n2 ¼ 1 and

fiðmγ0 Þ ¼ Iðai;mγ0 Þ=Iðai; 0Þ: ð22Þ

Incidentally, the fiðmγ0 Þ also represent the fractional
deviation of the total force relative from the pure
Coulombian contribution, modulo a factor of χ2. The
dependence of fiðmγ0 Þ on the sphere-plane separation for
different values of the hidden-photon mass is shown
in Fig. 5.
Using Eqs. (21) and (22) with jΔMij=Miðα0; 0Þ ¼ 10−2,

cf. Table I, we obtain the excluded regions shown in Fig. 6.
In particular, the red curve shows the bound with the
parameters reported in Refs. [12,13], which exhibits the
physically correct behavior for both small and large masses.
This bound is also shown in Fig. 1 in the context of

previous limits; it is clear that it covers an area already
excluded by atomic-physics tests [22].
Given that we are not able to avoid other laboratory-

based limits, it is interesting to discuss possible improve-
ments that could be pursued in future AFM experiments.
We expect the bound to be most sensitive for mγ0 ∼ 1=a.
This is clear from the red curve in Fig. 6, which displays
our bound combining measurements at separations
a ∼ 100 nm. Note that a1 and a2 are relatively similar,
so it is worthwhile checking how the bounds would behave
for other choices of sphere-plane separation. To this end, in
Fig. 6 we also show the projected bounds for different
combinations of sphere-plane separations a1 < a2. We see
that, simultaneously increasing a1 and a2 by a common
factor of 10, we obtain the blue curve, which is identical to
the red one, but shifted to the left toward smaller masses.
Had we reduced the separations, the bound would have
moved to the right, though this direction is certainly more
challenging to implement from a practical point of view.
Finally, it is clear that the extent of the high- (low-) mass

branch of the bound is determined by the shorter (larger)
separation. The green curve in Fig. 6 exemplifies a situation
where a1 is held fixed, but a2 is increased, thereby not only
improving the bound in terms of couplings excluded, but
also extending the covered mass range. This result does not
include a possible improvement on the experimental uncer-
tainty, but, assuming the same parameters and only reducing
the uncertainty by a modest factor of 2, we obtain the black
curve. This shows that simply increasing the sphere-plane
separation can be a promising strategy as to directly probe,
via precise AFM force measurements, the area between the
“Cavendish” and “Spectroscopy” limits in Fig. 1, which is
already constrained by more indirect astrophysical tests.

FIG. 5. The function fðmγ0 Þ, cf. Eq. (22), for different hidden-
photon masses as a function of the sphere-plane separation. It is,
apart from a factor of χ2, the fractional deviation of the total
electrostatic force due to hidden photons. For small masses,
fðmγ0 Þ ∼ 1, which is a symptom of the ambiguity regarding the
definition of α. For heavy hidden photons fðmγ0 Þ ∼ 0, as it
should.

FIG. 6. Bounds on hidden photons from combining AFM data
at different sphere-plane separations. Our bound with a1 ¼
62 nm and a2 ¼ 100 nm [12,13] is shown in red. In blue and
green are the projected improvements when other separations are
considered while keeping the relative experimental uncertainties
at 1%—for the black curve, we assume a realistic twofold
improvement to 0.5%.

CONSTRAINING HIDDEN PHOTONS VIA ATOMIC FORCE … PHYS. REV. D 102, 095015 (2020)

095015-7



IV. LIMITS FROM THE PLIMPTON-LAWTON
EXPERIMENT

Coulomb performed his famous experiments in 1785,
but already in 1773 Cavendish tested the electromagnetic
interaction between charges by using concentric metallic
shells. His experiments were designed to show that free
charges flow to the surface of conductors rather than
accumulating in the bulk volume. The observed absence
of charge in the interior of the conducting body could be
explained if the electric field followed an inverse-square
law. In fact, his null results were precise enough to be used
to place limits on deviations from this behavior. A very
important scenario where this could happen is the case of a
small, though finite, photon mass. For an excellent review
on this issue, see Ref. [19].
In 1936, Plimpton and Lawton [14] devised an experi-

ment to test the validity of Coulomb’s law by employing
two concentric conducting spherical shells of radii R� ¼
0.61 m and R ¼ 0.76 m, a geometry close to that used by
Cavendish in his original experiments [19]. The internal
shell is grounded, while the external one is subject to a 2 Hz
harmonically oscillating potential with and amplitude
V0 ¼ 3 kV. According to standard electromagnetic theory,
there should be no potential difference between the two
shells. However, if the inverse-square law is not exact, this
conclusion would not hold.
Let us now consider a conducting sphere with an overall

electric charge Q in the presence of a hidden photon.
Because of the spherical symmetry of the problem, the
electric charge will be homogeneously distributed on the
surface, and the potential is given by

VðrÞ ¼ Q
8πϵ0Rr

�
rþ R − jr − Rj

−
χ2

m̃
ðe−m̃ðrþRÞ − e−m̃jr−RjÞ

�
ð23Þ

with r the distance to the center of the sphere and
m̃ ¼ mγ0c=ℏ. Note that, for χ ¼ 0, the potential is constant
inside the sphere, as it should be. However, if hidden
photons are present and χ ≠ 0, there is a clear deviation
from the constant potential due to the exponential terms,
thus indicating a nonvanishing electric field in the interior
of a conductor.
In the limit of infinitely heavy hidden photons, we

recover the usual Coulomb potential, as required.
However, for very small masses, there is an effective
redefinition of the interaction strength—this is the same
situation discussed in Sec. III. Even though this amounts to
a renormalization of the coupling constant, the procedure
given in Ref. [22] is not needed, as will be clear from the
discussion below.
We are interested in the relative potential difference

between the outer shell at r ¼ R and the inner shell at

r ¼ R� < R, that is, ΔV=VðRÞ≡ γ. Using Eq. (23), we
obtain

γ ≡ 1 −
VðR�Þ
VðRÞ ¼ 1 −

1þ χ2hðmγ0 Þ
1þ χ2gðmγ0 Þ

; ð24Þ

where

hðmγ0 Þ ¼
1

2m̃R� ðe−m̃ðR−R�Þ − e−m̃ðRþR�ÞÞ; ð25aÞ

gðmγ0 Þ ¼
1

2m̃R
ð1 − e−2m̃RÞ: ð25bÞ

By manipulating Eq. (24), it is easy to write χ in terms of
mγ0 as

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ

ð1 − γÞgðmγ0 Þ − hðmγ0 Þ
r

: ð26Þ

It is worthwhile noting that, contrary to the potential
(23), Eq. (26) shows the correct behavior in both massless
and massive limits, which are given by

lim
mγ0→0

χ2 ¼ 6γm̃−2

R2 − R�2 − 6γm̃−2 ; ð27aÞ

lim
mγ0→∞

χ2 ¼ 2m̃R; ð27bÞ

meaning that, for large masses χ ∼ ffiffiffiffiffiffiffimγ0
p , whereas for small

masses χ ∼ 1=mγ0 , and the renormalization procedure
suggested in Ref. [22] and performed in the previous
section is not necessary. The reason for this is simple:
Our observable, the sensitivity γ, does not explicitly depend
on electromagnetic parameters, which drop out from the
ratio of VðR�Þ and VðRÞ; cf. Eq. (24).
In the Plimpton-Lawton experiment, the accuracy of the

galvanometer was ∼1 μV and no potential difference
between the metal shells was detected. Using V0 ¼ 3 kV,
we have a sensitivity γ ¼ 3.3 × 10−10 so that, with Eq. (26)
we are able to exclude the purple region in Fig. 7, in
which we also include the exclusion limits from Cavendish-
like experiments [10,19–21].
The qualitative features of our limit deserve some

remarks. In Ref. [21], the authors review the experiments
performed in late 1960 and early 1970, which employed
three to four metallic shells held at different potentials. The
general strategy was to look for unexpected potential
differences between the inner shells once the exterior ones
were held at some known potential. Let us consider an
experiment with four concentric shells of radii a<b<c<d
in which the potential difference Vcd is held fixed by the
experimenters. The potential difference between the inner
shells Vab should be zero in a perfectly Coulombian world,
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and a deviation from this could be a potential signal of new
physics. The sensitivity in this situation is γ� ¼ Vab=Vcd,
which is typically better than one part in 1012.
For small masses, the bound from the multishell

Cavendish-like experiments displays the asymptotic behav-
ior shown in Eq. (27a). For m̃2 ≲ 6γ=ðR2 − R�2Þ, the bound
rises much more sharply—with the physical parameters of
the Plimpton-Lawton setup, this happens at a mass
mγ0 ≈ 0.02 neV. Interestingly enough, in the large-mass
limit the Cavendish-like and Plimpton-Lawton setups
provide very different bounds. This is due to the presence
of an exponential factor χ2 ∼ exp ðþm̃ðc − bÞÞ [21] that is
not present in the Plimpton-Lawton setup; cf. Eq. (27b).
Besides this, three radii, namely, b, c, and d, contribute in
this limit, and it is clear that this result cannot be easily
reduced to the two-shell configuration of the Plimpton-
Lawton experiment. The reason for this is the fundamental
differences in what is actually being measured in each
experiment.
To see this, let us look at the setups in more detail. In the

Plimpton-Lawton experiment, there are only two shells—
the outer one held at a potential—and the sensitivity is
simply the potential difference between them. In this case,
there are only two radii that can appear in the sensitivity;
cf. Eqs. (25a) and (25b). The Cavendish-like setups are
more complex: The two outer shells are held at a given
potential, and the signal to be measured is the potential
difference between the two innermost shells. This
means that there is no direct measurement of the potential
difference between inner and outer shells. Because of the
functional form of the factors appearing in our Eqs. (25a),
(25b), and in Eq. (6) from Ref. [21], we see that the small-
mass limit must be the same. However, the fact that the
sensitivity in the Cavendish-like experiments does not
include Vbc—or any combination of inner and outer shells,
such as Vbd, Vac, or Vad—makes a sensible comparison
with our limits impossible; i.e., not only are the geometries

different, but also the quantities being measured. This is
particularly visible in the large-mass limit.
Plimpton and Lawton performed their experiment almost

90 years ago and, even with a worse sensitivity and a
simpler arrangement, their setup provides a limit that goes
beyond the excluded region from Cavendish-like experi-
ments for mγ0 ≳meV. It is worthwhile checking whether
the bounds could be improved if a similar setup were
designed today. In particular, we wish to find an optimal set
ðR�; RÞ that would increase the area of no overlap to the
right on Fig. 7, i.e., the area which is originally constrained
only by astrophysical tests (cf. gray region in Fig. 1). For
small masses, our bounds behave according to Eq. (27a),
and we see that χ ∼ 1=ðmγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − R�2p

Þ. Therefore, it is
advantageous to maximize the denominator by choosing as
small R� and large R as practically possible. On the other
hand, for large masses, the inner radius only appears in
hðmγ0 Þ, cf. Eq. (25a), but this function tends to zero in the
large-mass limit. Consequently, only gðmγ0 Þ, cf. Eq. (25b),
contributes, and the value of R� is irrelevant. With this, the
bound behaves as χ ∼

ffiffiffiffiffiffiffiffiffiffi
mγ0R

p
and it is better to choose a

small R.
In the intermediate mass range, the radius of the outer

sphere sets the scale for the highest sensitivity. Since we are
interested in increasing the nonoverlap with the excluded
region from the Cavendish-like experiments (cf. Fig. 7), we
should move our bound as much toward large masses as
possible. This means that we should choose a radius
R < 76 cm, but a drastic reductionmay not be experimentally
feasible. For this reason, we fixR� at 1 cm and varyR from 10
to 100 cm, as shown in Fig. 8. The most interesting choice is
then clearly the orange curve, which is also shown in Fig. 1
together with other bounds.

FIG. 7. Excluded region in parameter space for hidden photons
based on Cavendish-like [10,19–21] (green) and Plimpton-
Lawton experiments [14] (purple); cf. Eq. (26).

FIG. 8. Bounds on hidden photons based on the Plimpton-
Lawton experiment [14]. In purple we show the bound with the
original parameters. The other curves show the projected limits if
we consider spheres with different radii and assume a sensitivity
γ ¼ 10−15, compatible with the one reached in more recent
Cavendish-like experiments [19].
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V. CONCLUDING REMARKS

We have considered modifications to classical electro-
dynamics caused by the presence of hidden photons. These
hypothetical spin-1 bosons would be kinetically mixed with
the photon and could generate small modifications to
Coulomb’s law that could be detected in sensitive experi-
ments. With this in mind, we have analyzed two AFM
setups [12,13] and the Plimpton-Lawton experiment [14].
The former were originally conceived to measure the
Casimir force at sub-μm distances, whereas the latter is
a null test of deviations from Coulomb’s law at the ∼10 cm
scale. In both cases, hidden photons could be detected via
Yukawa-like terms in the force (5) or in the potential (23),
respectively.
In our analyses, we have excluded regions in parameter

space which were mostly already constrained by other
laboratory-based tests, such as Cavendish-like experiments
and atomic spectroscopy, therefore reinforcing those limits.
The gray regions in Fig. 1 are constrained only by astro-
physical and cosmological observations, which, despite
being very sensitive, are more model dependent than
tabletop, laboratory experiments such as the ones considered
here. Let us, then, briefly discuss how to improve our limits.
Our bound from the AFM experiments is shown in red in

Figs. 1 and 6, while the black curve displays a projection if
other sphere-plane separations are consideredwith a twofold
reduction in the experimental uncertainty. Nonetheless, the
latter still overlaps the region excluded in Ref. [22], which
starts at mγ0 ≃ 4 meV. It is, therefore, important to consider
measurements with even larger sphere-plane separations—
reaching ideally a few μm—in order to move the bound
further toward lower masses. More recent AFM measure-
ments of the gradient of the Casimir force, employing the
same geometry as the one analyzed here, have been con-
ducted over μm-scale sphere-plane separations by the same
group [45,46]. For separations close to 200 nm, they do
reach a better relative uncertainty of ∼0.3% by reducing the
residual electrostatic potential through better cleaning
techniques. At this distance, however, we do not expect a
large enough improvement on the red curve in Fig. 6.
Moreover, the relative experimental uncertainties attained at
the largest—and more interesting—separations around μm
are at least 15 times larger than those quoted inRefs. [12,13];
cf. Table I. This would dramatically reduce the already
limited reach of our AFM bounds, so we refrain from
pursuing a more detailed analysis.

The Plimpton-Lawton experiment yields bounds that go
beyond the limits from Cavendish-like tests, thus covering
regions previously tested only by astrophysical observa-
tions; cf. Fig. 7. This is a welcome result, since it
strengthens our confidence in the exclusion of those areas
in parameter space. It is worth keeping in mind that the
original experiment was performed in 1936 and, since then,
the instrumentation and experimental techniques have
drastically improved. Already in 1971, Williams et al.
[20] used a lock-in to measure potential differences at the
pV level, many orders of magnitude better than what
Plimpton and Lawton could achieve. A similarly high
sensitivity, γ ¼ 10−15, was assumed to obtain the projected
bounds shown in Fig. 8. Furthermore, as already discussed,
it is important to reduce the radii as much as practically
possible, so as to shift the bound toward larger hidden-
photon masses. These strategies go in the opposite direction
of what is typically needed to set stronger upper bounds on
the photon mass [19]. In any case, higher applied voltages
and better sensitivities to potential differences could be
used to surpass even the most optimistic projection in
Fig. 8, potentially crossing into unconstrained regions in
the parameter space.
As a closing remark, let us mention that the experiments

considered here have been designed to probe features of
standard electrodynamics: classical in the case of the
Plimpton-Lawton experiment and quantum mechanical in
the AFMmeasurements. Nonetheless, the respective results
could be reinterpreted to constrain hidden photons, i.e.,
new physics. In this sense, an improved redesign of, e.g.,
the Plimpton-Lawton setup could be performed not (only)
to search for an even better lower bound on the photon
mass, but rather to indirectly detect new physics, be it
massive hidden photons or other beyond the SM particle
that may alter the electromagnetic properties of the system.
Therefore, it would be worthwhile revisiting the roughly
90-year-old experiment of Plimpton and Lawton to tackle
more contemporary questions.

ACKNOWLEDGMENTS

We acknowledge correspondence with U. Mohideen, A.
Caputo, and P. Fayet. The authors are grateful to J. A.
Helayël-Neto and J. Jaeckel for helpful comments and for
reading the manuscript. We also thank the anonymous
referee for his/her relevant comments.

D. KROFF and P. C. MALTA PHYS. REV. D 102, 095015 (2020)

095015-10



[1] S. Bilenky, Neutrino oscillations: From a historical per-
spective to the present status, Nucl. Phys. B908, 2 (2016).

[2] K. Arun, S. B. Gudennavar, and C. Sivaram, Dark matter,
dark energy, and alternate models: A review, Adv. Space
Res. 60, 166 (2017).

[3] J. Elis, Outstanding questions: Physics beyond the standard
model, Phil. Trans. R. Soc. A 370, 818 (2012).

[4] D. I. Kasakov, Prospects of elementary particle physics,
Phys. Usp. 62, 4 364 (2019).

[5] L. B. Okun, Limits of electrodynamics: Paraphotons?, Sov.
Phys. JETP 56, 502 (1982).

[6] B. Holdom, Two U(1)’s and epsilon charge shifts, Phys.
Lett. 166B, 196 (1986).

[7] S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze, and
A.Ringwald,Kineticmixing of the photonwith hiddenU(1)s
in string phenomenology, J. High Energy Phys. 07 (2008)
124.

[8] S. Abel and J. Santiago, Constraining the string scale: From
Planck to weak and back again, J. Phys. G 30, R83 (2004).

[9] P. Fayet, Extra U(1)’s and new forces, Nucl. Phys. B347,
743 (1990).

[10] J. Jaeckel, A force beyond the standard model—Status of
the quest for hidden photons, Frascati Phys. Ser. 56, 172
(2012).

[11] M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, The dark
photon, arXiv:2005.01515.

[12] A. Roy, C.-Y. Lin, and U. Mohideen, Improved precision
measurement of the Casimir force, Phys. Rev. D 60, 111101
(R) (1999).

[13] B. W. Harris, F. Chen, and U. Mohideen, Precision meas-
urement of the Casimir force using gold surfaces, Phys. Rev.
A 62, 052109 (2000).

[14] S. Plimpton and W. Lawton, A very accurate test of
Coulomb’s law of force between charges, Phys. Rev. 50,
1066 (1936).

[15] U. Mohideen and A. Roy, Precision Measurement of the
Casimir Force from 0.1 to 0.9 μm, Phys. Rev. Lett. 81, 4549
(1998).

[16] A. Roy and U. Mohideen, Demonstration of the Nontrivial
Boundary Dependence of the Casimir Force, Phys. Rev.
Lett. 82, 4380 (1999).

[17] A. Caputo, H. Liu, S. Mishra-Sharma, and J. T. Ruderman,
Dark photon oscillations in our inhomogeneous Universe,
arXiv:2002.05165 [Phys. Rev. Lett. (to be published)].

[18] A. Caputo, H. Liu, S. Mishra-Sharma, and J. T. Ruderman,
Modeling dark photon oscillations in our inhomogeneous
Universe, arXiv:2004.06733.

[19] L.-C. Tu, J. Luo, and G. T. Gillies, The mass of the photon,
Rep. Prog. Phys. 68, 77 (2005).

[20] E. R. Williams, J. E. Faller, and H. A. Hill, New Exper-
imental Test of Coulomb’s Law: A Laboratory Upper Limit
on the Photon Rest Mass, Phys. Rev. Lett. 26, 721 (1971).

[21] D. F. Bartlett and S. Loegl, Limits on an Electromagnetic
Fifth Force, Phys. Rev. Lett. 61, 2285 (1988).

[22] J. Jaeckel and S. Roy, Spectroscopy as a test of Coulomb’s
law: A probe of the hidden sector, Phys. Rev. D 82, 125020
(2010).

[23] C. G. Parthey et al., Improved Measurement of the Hydro-
gen 1s − 2s Transition Frequency, Phys. Rev. Lett. 107,
203001 (2011).

[24] A. S. Goldhaber and N. M. M. Nieto, Terrestrial and extra-
terrestrial limits on the photon mass, Rev. Mod. Phys. 43,
277 (1971).

[25] A. S. Goldhaber and N. M.M. Nieto, New Geomagnetic
Limit on the Mass of the Photon, Phys. Rev. Lett. 21, 567
(1968).

[26] J. Jaeckel and A. Ringwald, The low-energy frontier of
particle physics, Annu. Rev. Nucl. Part. Sci. 60, 405 (2010).

[27] B. R. Holstein and A. Ross, Spin effects in long range
electromagnetic scattering, arXiv:0802.0715.

[28] B. R. Holstein, Analytical on-shell calculation of low energy
higher order scattering, J. Phys. G 44, 1 (2017).

[29] G. P. de Brito, P. C. Malta, and L. P. R. Ospedal, Spin- and
velocity-dependent nonrelativistic potentials in modified
electrodynamics, Phys. Rev. D 95, 016006 (2017).

[30] H. B. G. Casimir, On the attraction between two perfectly
conducting plates, Proc. R. Netherlands Acad. Arts Sci. 51,
793 (1948).

[31] E. M. Lifshitz, The theory of molecular attractive forces
between solids, Sov. Phys. JETP 2, 73 (1956).

[32] S. K. Lamoreaux, Demonstration of the Casimir Force in the
0.6 to 6 μm Range, Phys. Rev. Lett. 78, 5 (1997).

[33] P. H. G. M. van Blokland and J. T. G. Overbeek, van der
Waals forces between objects covered with a chrome layer,
J. Chem. Soc., Faraday Trans. 1 74, 2637 (1978).

[34] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Meas-
urement of the Casimir Force between Parallel Metallic
Surfaces, Phys. Rev. Lett. 88, 041804 (2002).

[35] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang,
Proximity forces, Ann. Phys. (N.Y.) 105, 427 (1977).

[36] A. A. Maradudin and P. Mazur, Effects of surface roughness
on the van der Waals force between macroscopic bodies,
Phys. Rev. B 22, 1677 (1980).

[37] V. M. Mostepanenko and M. Novello, Constraints on non-
Newtonian gravity from the Casimir force measurements
between two crossed cylinders, Phys. Rev. D 63, 115003
(2001).

[38] E. Fischbach, D. E. Krause, V. M. Mostepanenko, and M.
Novello, New constraints on ultrashort-ranged Yukawa
interactions from atomic force microscopy, Phys. Rev. D
64, 075010 (2001).

[39] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M.
Mostepanenko, Constraints for hypothetical interactions
from a recent demonstration of the Casimir force and some
possible improvements, Phys. Rev. D 58, 075003 (1998).

[40] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M.
Mostepanenko, New constraints for non-Newtonian gravity
in the nanometer range from the improved precision
measurement of the Casimir force, Phys. Rev. D 62,
011701 (2000).

[41] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M.
Mostepanenko, Stronger constraints for nanometer scale
Yukawa-type hypothetical interactions from the new meas-
urement of the Casimir force, Phys. Rev. D 60, 055004
(1999).

[42] J. D. Jackson, Classical Electrodynamics (John Wiley and
Sons, New York, 1999); D. J. Griffiths, Introduction to
Electrodynamics (Prentice Hall, Upper Saddle River, NJ,
1999).

[43] C. A. Morrison, Report No. HDL-TR-2161, 1989.

CONSTRAINING HIDDEN PHOTONS VIA ATOMIC FORCE … PHYS. REV. D 102, 095015 (2020)

095015-11

https://doi.org/10.1016/j.nuclphysb.2016.01.025
https://doi.org/10.1016/j.asr.2017.03.043
https://doi.org/10.1016/j.asr.2017.03.043
https://doi.org/10.1098/rsta.2011.0452
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1088/1126-6708/2008/07/124
https://doi.org/10.1088/1126-6708/2008/07/124
https://doi.org/10.1088/0954-3899/30/3/R01
https://doi.org/10.1016/0550-3213(90)90381-M
https://doi.org/10.1016/0550-3213(90)90381-M
https://arXiv.org/abs/2005.01515
https://doi.org/10.1103/PhysRevD.60.111101
https://doi.org/10.1103/PhysRevD.60.111101
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRevA.62.052109
https://doi.org/10.1103/PhysRev.50.1066
https://doi.org/10.1103/PhysRev.50.1066
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.82.4380
https://doi.org/10.1103/PhysRevLett.82.4380
https://arXiv.org/abs/2002.05165
https://arXiv.org/abs/2004.06733
https://doi.org/10.1088/0034-4885/68/1/R02
https://doi.org/10.1103/PhysRevLett.26.721
https://doi.org/10.1103/PhysRevLett.61.2285
https://doi.org/10.1103/PhysRevD.82.125020
https://doi.org/10.1103/PhysRevD.82.125020
https://doi.org/10.1103/PhysRevLett.107.203001
https://doi.org/10.1103/PhysRevLett.107.203001
https://doi.org/10.1103/RevModPhys.43.277
https://doi.org/10.1103/RevModPhys.43.277
https://doi.org/10.1103/PhysRevLett.21.567
https://doi.org/10.1103/PhysRevLett.21.567
https://doi.org/10.1146/annurev.nucl.012809.104433
https://arXiv.org/abs/0802.0715
https://doi.org/10.1088/0954-3899/44/1/01LT01
https://doi.org/10.1103/PhysRevD.95.016006
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1039/f19787402637
https://doi.org/10.1103/PhysRevLett.88.041804
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1103/PhysRevB.22.1677
https://doi.org/10.1103/PhysRevD.63.115003
https://doi.org/10.1103/PhysRevD.63.115003
https://doi.org/10.1103/PhysRevD.64.075010
https://doi.org/10.1103/PhysRevD.64.075010
https://doi.org/10.1103/PhysRevD.58.075003
https://doi.org/10.1103/PhysRevD.62.011701
https://doi.org/10.1103/PhysRevD.62.011701
https://doi.org/10.1103/PhysRevD.60.055004
https://doi.org/10.1103/PhysRevD.60.055004


[44] F. F. Dall’Agnol and V. P. Mammana, Solution for the
electric potential distribution produced by sphere-plane
electrodes using the method of images, Rev. Bras. Ensino
Fís. 31, 3503.1 (2009).

[45] M. Liu, J. Xu, G. L. Klimchitskaya, V. M. Mostepanenko,
and U. Mohideen, Examining the Casimir puzzle with

upgraded technique and advanced surface cleaning, Phys.
Rev. B 100, 081406(R) (2019).

[46] M. Liu, J. Xu, G. L. Klimchitskaya, V. M. Mostepanenko,
and U. Mohideen, Precision measurements of the gradient
of the Casimir force between ultraclean metallic surfaces at
larger separations, Phys. Rev. A 100, 052511 (2019).

D. KROFF and P. C. MALTA PHYS. REV. D 102, 095015 (2020)

095015-12

https://doi.org/10.1590/S1806-11172009005000004
https://doi.org/10.1590/S1806-11172009005000004
https://doi.org/10.1103/PhysRevB.100.081406
https://doi.org/10.1103/PhysRevB.100.081406
https://doi.org/10.1103/PhysRevA.100.052511

