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Driven by the recent experimental hints of lepton-flavor-universality violation in the bottom-quark
sector, we consider a simple extension of the Standard Model (SM) with an additional vector leptoquark
V1o(3,1,2/3) and a scalar diquark Spo (6, 1,4/3) under the SM gauge group SU(3),. x SU(2), x U(1)y,
in order to simultaneously explain the b — s£*¢~ (with £ = e, p) and b — cl~7; (with [ = e, u, ) flavor
anomalies, as well as to generate small neutrino masses through a two-loop radiative mechanism. We
perform a global fit to all the relevant and up-to-date b — s¢*¢~ and b — c¢I~1; data under the assumption
that the leptoquark couples predominantly to second and third-generation SM fermions. We then look over
the implications of the allowed parameter space on lepton-flavor-violating B and 7z decay modes, such as
B, - IfI7, B — KI5, B, — ¢l 17, Y (nS) — pr, and © — py, = — pugp(n"), respectively. Minimally
extending this model by adding a fermion singlet (1,1, 0) also explains the ANITA anomalous upgoing
events. Furthermore, we provide complementary constraints on leptoquark and diquark couplings from

high-energy collider and other low-energy experiments to test this model.

DOI: 10.1103/PhysRevD.102.095012

I. INTRODUCTION

Over the last few years, several B-physics experiments,
such as the LHCDb [1-10], as well as the B factories BABAR
[11,12] and Belle [13-17], have reported a number of
deviations from the Standard Model (SM) expectations at
the level of (2—4)o [18] in the rare flavor-changing neutral-
current (NC) and charged-current (CC) semileptonic
B-meson decays involving the quark-level transitions
b— st¢t¢~ (with £ =e, p) and b — cl"p; (with [=e,
U, 7), respectively, which provide intriguing hints of new
physics (NP) beyond the SM (BSM). The nonobservation
of any new heavy BSM particle through direct detection at
LHC experiments makes these indirect hints a powerful
tool in the NP exploration. A more careful analysis of these
tantalizing hints for lepton-flavor-universality violation
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(LFUV), taking into account the possibility of statistical
fluctuations and yet unknown systematic and/or theoretical
issues, is absolutely essential to confirm or rule out the
possible role of NP in the B-sector. However, given
their possible impact on NP searches, it is worthwhile to
scrutinize these experimental results at their face values in
light of possible NP scenarios.

Since the above-mentioned anomalies associated with
b — s¢T¢~ and b — cly, transitions probe different NP
scales [19], most of the theoretical studies in the literature
have attempted to address either the NC or the CC sector, but
not both on the same footing. Only a few specific models,
mainly those involving the color-triplet leptoquark (LQ)
boson [20-54] which allows tree-level couplings between
quarks and leptons, have been successful in explaining
both kinds of flavor anomalies simultaneously (see also
Refs. [55—-67] for other plausible simultaneous explanations
of the B-anomalies). As discussed in Refs. [22,44,48,68],
models with a single scalar LQ cannot address both these
anomalies simultaneously. With the aim of understanding
the experimental observations linked with both types of
processes in a common framework, here we consider a
simple extension of the SM by adding a single vector
leptoquark (VLQ) Vi which transforms as (3,1,2/3)
under the SM gauge group SU(3), x SU(2), x U(1)y.
The existence of VLQ at low energy can be theoretically
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motivated from many ultraviolet (UV)-complete frame-
works [69], such as grand unified theories [70-73], Pati-
Salam model [74-76], technicolor model [77-80], etc.
In the literature, the flavor anomalies have been investigated
in the VLQ scenario [20,22-24,27-30,35,38-40,42,45,
46,57,62,81-91]. Here we update this discussion with
the latest experimental data and also minimally extend
the VLQ model by introducing a scalar diquark (SDQ)
Spo(6,1,4/3), to explain the light neutrino mass generation
through a two-loop radiative mechanism. Moreover, the
observation of LFUV generically implies the existence of
lepton-flavor-violating (LFV) decay modes [92]. Even
though some theoretical works [20,93] contradict this
precept, the link between LFV and LFUV persists in several
models. In this connection, we will also investigate the
LFV decays of neutral and charged mesons, as well as
of the tau lepton, in conjunction with the LFUV parameters
for the VLQ case. Moreover, as it turns out, minimally
extending this VLQ-SDQ model with an additional fermion
singlet y(1,1,0), we can also accommodate the recent
ANITA anomaly [94,95]. Finally, we provide complemen-
tary constraints on leptoquark and diquark couplings
from collider and other low energy experiments to test
this model.

The organization of this paper is as follows. In Sec. II,
we present the effective Hamiltonian in terms of
dimension-six operators, describing b — s£T£~ and
b — ctv; quark-level transitions. In Sec. III, we discuss
our model framework and the NP contributions arising due
to the exchange of VLQ. The set of relevant observables
that have been used to constrain the NP parameters are
listed in Sec. IV. The numerical fit to the new Wilson
coefficients from the existing experimental data on
b— stt¢~ and b — ctp, processes is presented in
Sec. V. Section VI contains the implication of VLQ on
the LFV B, Y(nS) and 7 decay modes. In Sec. VII, we
discuss a two-loop radiative neutrino mass generation with
the VLQ and SDQ particles. The SDQ signal at LHC is
illustrated in Sec. VIII. Section IX presents an explanation
of the ANITA anomaly in our model with an additional
fermion singlet. Our conclusion is given in Sec. X. In
Appendix A, we list the experimental data used in our
numerical fits. Appendix B (C) contains the expressions
required for B — K¢,/ ; LFV decays. The loop functions
for 7 — py are provided in Appendix D.

II. GENERAL EFFECTIVE HAMILTONIAN

The effective Hamiltonian responsible for the CC
b — ctv; quark level transitions is given by [96]

4G
HEE = TzF Vepl(81: + C O, + €}, O} + C§ OF

+ CL 0% + CLO%], (1)

where Gy is the Fermi constant, V., is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, and Cé( are
the Wilson coefficients, with X =V, 5, S;,, T, which are
zero in the SM and can arise only in the presence of NP.
The corresponding dimension-six effective operators are
given as

Oy, = (ey*br) Fry,in). O, = (crr"br) (TLyuvin)-
O, = (¢.bg) (Trir), O, = (¢rby) (Trir),

O} = (¢re™by)(Trov1L) (2)

where f1 gy = Prr)f are the chiral fermion (f) fields with
Prr) = (1 F 75)/2 being the projection operators.

The effective Hamiltonian mediating the NC leptonic/
semileptonic b — s£+ ¢~ processes can be written as [97,98]

4Gr
V2

4 §j<awwﬁ4mmaﬁ. (3)
i=7.9,10,8.P

NC _ _
Her =

6
VinVis [Z Ci(m)O;
i=1

Here V,, V7, is the product of CKM matrix elements, C;’s are
the Wilson coefficients [99] and O,’s are the dimension-six
operators, expressed as

acm - v
OQ = ar (36, (msPr gy + myPgr))b]F*,

47
aem =
Of =72 (5PLb)(20).
acm = 7
Op =32 (P b)(Zrst). (4)

where a, is the electromagnetic fine structure constant. The
SM has vanishing contribution from primed as well as
(pseudo)scalar operators, which can be generated only in
the BSM theories.

III. MODEL FRAMEWORK

We build a simple model by extending the SM
by a color-triplet, SU(2),-singlet vector leptoquark
V1o(3.1,2/3) for explaining the flavor anomalies (see
Sec. V). We also add a color-sextet, SU(2), -singlet SDQ
Spo(6,1,4/3) to explain the neutrino masses by radiative
mechanism (see Sec. VII), with some interesting collider
signatures as well. Finally, we add a fermion singlet
x(1,1,0) to account for the ANITA anomaly (see
Sec. IX). The relevant interaction Lagrangian is given by
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L5 250107 Vig,Lip + HsdrarVigulrs
+ 1sViQV10,Sho + (As)apiattrpSixg
+ (Ax)aﬁRayﬂ VLQ;A)(’ (5)

where Q;(L;) is the left-handed quark (lepton) doublet,
ug(dg) is the right-handed up (down) quark singlet, I is the
charged lepton singlet, and a, f# are the generation indices.
Here /1(1/(,, ) are the coefficients of VLQ couplings to left
(right) handed quarks and leptons, (4 S)aﬂ are the coefficients
of SDQ couplings to up type quarks, and g represents the
strength of VoV qSpq three-point interaction. We also
include a coupling (4,), between the VLQ, singlet fermion
and right-handed up-type quarks for the ANITA phenom-
enology. We choose the diquark couplings in Eq. (5) to be
flavor-diagonal, i.e., (45),5 = (45),04p, SO that the diquark
does not contribute to any flavor-changing processes at
leading order. Also note that the coupling ug in the
Lagrangian (5) softly breaks lepton number by two units
while the baryon number is conserved, so there is no proton
decay in this model, while a nonzero Majorana neutrino mass
can be induced (see Sec. VII). The inclusion of these new
fields can be realized in gauged B — L extensions of SM or
in UV-complete models. For illustration, one such UV-
completed scenario is the asymmetric left-right extension
of the SM with gauge group SU(3), x SU(2), x U(1)gx
U(1)g_,. in which the electric charge relation is defined as
Q=T +Tsxg+(B—L)/2=T3;, +Y, where T3; and
Tsp are the third components of isospin generators
corresponding to the gauge groups SU(2), and U(1)g,
respectively, and B — L is the difference between baryon
and lepton numbers. Apart from these usual quarks and
leptons, these extra fields like the VLQ, SDQ as well
as the singlet fermion are transforming under this asymmetric
left-right gauge symmetry as Vio(3¢,1..0x.4/35-1),
Spq(6c.1.,08,8/351), and  y(le.1.,1/2.—1p 1)
However, in this work we will not focus on any specific
model details. Instead, we work with the -effective
Lagrangian (5) and discuss its phenomenology in subsequent
sections.

C Ur

FIG. 1.

After expanding the SU(2) indices in Eq. (5) and
performing the Fierz transformation, we obtain the new
Wilson coefficients for the process b — ctv; [cf. Eq. (1)]
as [81].

LQ _ - /151/%3*
CVl - Z
226V, GF b = VLQ
1 L 2k aR
Cl=—sm > Va2 (6)
2\/§GFVcb k=1 M Vio

where V;; denotes the CKM matrix element. There are

also additional contributions from C N (i=9,10,8,P)
Wilson coefficients to the b — sf;“f  processes as [81]

Lo Lo P Z3: ﬂL /1L *
CR=-CQ=— —— Vo Viy
V26V Viaen 52, " " MY,
Lo Lo R/1R *
Co’=Clp°=—(7—"—— ViV, o
\/_GF tbvtxaem mznzl M%/LQ
3 *
—CR— Q= _ Vo Z vV, iV i)
P § GFthVtsaem —1 " "2 M%/LQ '
\/Eﬂ' 3 ﬁRﬂL ¥
Cpl=C%= "N V, Vi, 2" ()
P § GF th V;Ksaem m;l " " M%/LQ

It should be noted here that the SU(2), -singlet VLQ does
not provide any additional tensor-type contribution to either
b — ctv; or to b — s£¢ channels. The tree level Feynman
diagram for b — ctv, (left panel) and b — s£7¢ (right
panel) processes mediated via VLQ are shown in Fig. 1.
After having the idea about the NP contributions to
the Wilson coefficients for both b — s£7 and b — cty,,
we now move forward to constrain these new parameters.
For this purpose, we classify the new parameters into the
following four scenarios:
(i) Scenario-I (S-I): Includes C° for b — ctp,
and C5Q = —C'Q for b — s¢¢ (contains only LL
couphngs)

b 14

VLQ

s 14

Feynman diagrams for b — ¢z~ o, (left panel) and b — s£T¢~ (right panel) processes mediated via VLQ, where £ = u, 7.
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(ii) Scenario-ll (S-H): Includes Cy? =—C"X for
b — s¢¢ (involves only RR couphngs)
(iii) Scenario-IlI (S-II): Includes Cg? for b — ctb,

and CLQ CLQ for b — s¢¢ (only LR couplings
present).
(iv) Scenario-IV (S-1V): Includes C’LQ C’SLQ for

b — sZ¢ (involves only RL couphngs).
These new couplings for various scenarios are constrained by
performing a global fit (as discussed in Sec. V), to the relevant
experimental observables as listed in the next section.

IV. OBSERVABLES USED FOR NUMERICAL FIT

In our analysis, we consider the following most relevant
flavor observables to constrain the new parameters.

A.b—>sutpu~

In the b — sup sector, we include the following observ-
ables and their corresponding experimental data.
(1) Rk and Rg-: The lepton flavor universality violation

ratios Ry and Rg- are defined as
Ry — BR(BT - K utu™)
K7 BR(BT > Ktete)’
BR BO K*O +,,—
Re — ( =K ﬂ_)‘ (8)
BR(B’ - K*ete™)

In 2014, the measurement on the LFUV parameter
Ry, in the low ¢ € [1,6] GeV? region by the LHCb
experiment [4]:

BR(BT = K putu™)
" BR(BT = Kfete)
= 0.74510 55 £0.036

RLHCb 14 _

©)

(where the first uncertainty is statistical and the
second one is systematic), has attracted a lot of
attention, as it amounted to a deviation of 2.6¢ from ..
its SM prediction [100] (see also [101]), (i1)

RM = 1.0003 £ 0.0001. (10)
The updated LHCb measurement of Ry in the ¢> €
[1.1,6] GeV? region obtained by combining the data
collected during three data-taking periods in which
the c.o.m. energy of the collisions was 7, 8, and
13 TeV [10],

RLHCbl9 0. 846+0 .060+0.016

—0.054-0.014 »

(11) (1ii)
also shows a discrepancy at the level of 2.5¢.

Analogously, the LHCb Collaboration has also
measured the Rg- ratio in two bins of low- and
high-¢> regions [7]:

095012-4

LHCb
R

|

0.66010119 +0.024  ¢* € [0.045, 1.1] GeV?,
0.685 004 £0.047 g% € [1.1,6.0] GeV>.

(12)

which have, respectively, 2.26 and 2.46 deviations
from their corresponding SM results [102]:

R;“;M—{

0.924+0.02 ¢* € [0.045,1.1] GeV?,
1.00£0.01 ¢

€ [1.1,6.0] GeV>.
(13)

In addition to these LHCD results, Belle experiment
has recently announced new measurements on Ry
[17] and Rg+ [15] in several other bins:

0.957031 £0.06
0.817058 +0.05
0.987927 +0.06
1115932 £0.07

Belle __
Rge =

q* €10.1,4.0] GeV?,
q* € 4.0,8.12] GeV?,
q* €[1.0,6.0] GeV?,
q*> > 14.18 GeV?,

(14)

0.527038 +£0.05
0.967035 +0.11
0.907037 +0.10
1187935 £0.10

0.045,1.1] GeV2,
[1.1,6] GeV2,
[0.1,8.0] GeV2,
[15,19] GeV2.
(15)

One can notice that the Belle results have compa-
ratively larger uncertainties than the LHCb mea-
surements on Rg-; therefore, we do not include the
Belle results for Ry in our fit for constraining the
new parameters.

B, = ptu~: The current experimental value of the
branching ratio of B; — utu~ process is [103]:

q- €
RBelle — q2€
q- <
g’ e

BR(B! — utu~) = (3.0+£04) x 10, (16)

which is compatible with the SM prediction [104]

BR(BY — putpu™ )™ = (3.65 £ 0.23) x 107°, (17)
at 1.60 confidence level (CL).

Semileptonic By, decays: We use the differential
branching ratio measurements of B* — K+t~
[3], B® = K™yt~ [3,105] and B, — ¢pu*pu~ [6]
in different q2 bins from LHCD, as listed in Table III.
We have considered the forward-backward asym-

metry (Apg), longitudinal polarization asymmetry
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(Fp), form-factor independent observables
(P23, 21568> CP- averaged angular coefficients

......

B.b — cti,

In this sector, we consider the following observables:
(1) Rp and Rp-: The lepton nonuniversality ratios Rp
and Rp- are defined as

BR(B - D™11,)
BR(B — DW¢p,)’

RD(*) =

(18)

with £ = e, pu. These observables have been mea-
sured by the Belle [13,14,106], BABAR [11,12], and
LHCb [5,8] has measured only the Rp+ parameter.
Combining all these measurements, the averaged
measured values of these ratios [18]:

RE® = 0.34 +0.027 + 0.013, (19)

g’ip—0295j:0011:t0008 (20)

induce a tension at the level of 3.08¢ with the
corresponding SM predictions [107-115]

RSM = 0.299 + 0.003, (21)
RSM = 0.258 = 0.005. (22)

(ii) R, Discrepancy of 1.7¢ has also been observed
between the experimental measurement of [9]

Exp __ BR(B - J/l//“_/r)
Jv " BR(B = J/ytD,)

=0.71£0.17 £ 0.184,
(23)
and the corresponding SM prediction [116-123]

R3), = 0.289 £ 0.01. (24)
(iii) Bf — tTv,: This channel has not been measured
yet, but indirect constraints on BR(B} — t1v,) <
30% have been imposed using the lifetime of B.
[124] (see also Refs. [125,126]). A stronger con-
straint of BR(B! — 77v,) < 10% was obtained
from LEP data at the Z peak [127]. However, it
assumes that the B, hadronization fraction measured
in proton-proton collisions can be simply translated
to et e collisions and it uses this method to predict
the number of B, mesons produced at LEP. How-
ever, B, production has not been observed at LEP,
so there is a large uncertainty in this number, which
was not considered in Ref. [127]. Therefore, we will

use the more conservative bound of 30% on the
B — v, branching ratio.

C.b->sttz”

In this sector, we consider the following two observ-
ables: BR(B,; — 777) < 6.8 x 1073 [128] and BR(B* —
K*tt77) < 2.2 x 1073 [129].

D. Comments

To estimate the SM values of the above-discussed
observables, we use all the particles masses and lifetime
of B, mesons from PDG [103]. The SM results of B; —
utu~(t777) processes are taken from Ref. [104]. The B —
K form factors evaluated in the light cone sum rule (LCSR)
approach [130] are considered to estimate B — K¢£7
processes in the SM. For B(,) — K*(¢)¢¢ decay modes,
we use the form factors from Refs. [131,132]. The decay
constant of B, meson is considered as fp = 489 MeV
[133] to compute branching ratio of B, — 7v,.

Since the singlet (3,1,2/3) VLQ does not provide addi-
tional contributions to b — sv,v, type decay modes at tree
level due to charge conservation violation, the branching
ratio of B — K", remains SM-like. Though the charge
current D meson decays mediated by ¢ — sfuf transitions
suchas D — £*v,, DT — K°%¢*v,, D’ - K®~=¢*p, can
also play a pivotal role in constraining VLQ couplings;
however, they provide very weak bounds on these couplings.
Thus, we do not consider these decay modes in our analysis.
We further assume that the NP couplings associated with
first-generation down-type quark and leptons are negligible.
However, the coupling to up-type first generation quark can
be nonvanishing via CKM matrix. Since we are mainly
interested in the new couplings associated with second and
third generation fermions, we do not consider the constraints
coming from leptonic/semileptonic K(D) meson decay
modes and the K — K°(D° — DY) mixing. We also do not
consider the decays like B, — tv, which require new
couplings to the first-generation fermions to have the b —
utv, transition, which can be chosen to be small without
affecting the b — cruv, transitions, we are interested in.

The VLQ also contributes to loop-level flavor-changing
processes, such as the B, — B, mixing, radiative b — sy
and b — svv decays, as well as Z — l,jj decays. However,
the simple VLQ model considered here is, by itself,
nonrenormalizable, which undermines the predictivity
of these loop-level processes, unless some UV-complete
framework generating the VLQ mass is explicitly specified;
see e.g., Refs. [36-39,61,134,135]. Therefore, in the
numerical analysis discussed below, we have considered
only those processes which occur at tree-level through the
exchange of a VLQ to derive constraints on our simplified
model parameter space. However, we will consider a few
loop-level processes for tau LFV prediction (see Sec. VIG)

095012-5
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and neutrino mass generation (see Sec. VII), which should
be used with caution due to this caveat.

V. NUMERICAL FITS TO
MODEL PARAMETERS

In this section, we consider the NP contributions to both
b — s¢¢ and b — ctr, processes, and fit the NP param-
eters by confronting the SM predictions with the observed
data. The expression for y* used in our analysis is given by

)(Z(C]»“Q) — Z [ ( %Q) exp]Z (25)
i (AOGX )2 + (A(f)th)Z ’

where OM(CHQ) are the theoretical predictions for the
observables used in this fit, which depend on the new
Wilson coefficients (C-?) arising due to the VLQ exchange
and AO"™ contains the lo error from theory. Here O;F

and AO?®, respectively, represent the corresponding
experimental central value and lo uncertainty for the
observables. All feasible new parameters of the VLQ model
with V1 4(3,1,2/3), which provide a good fit to both b —
s¢¢ and b — c7v, data are discussed in Refs. [29,35,62]. For
concreteness, we fix the VLQ mass at M Vie = 1.2 TeV in

the following analysis, which is consistent with the current
LHC constraints [136].
We consider various possible sets of data to fit different
scenarios of new Wilson coefficients. These different cases
are further classified as follows.
(1) [C-I]: Includes measurement on B decay modes
with only third generation leptons in the final state
(a) C-la: Only b — ctr,.
(b) C-Ib: Both b — cti, and b — stT7".

(2) [C-II]: Includes measurement on B decay modes
with only second generation leptons in the final
state, i.e., b = sutu~.

0.15F

0.05-

0.00%

L
A33

(d) C-III case of Scenario-I in
A — AL plane

0.00 0.05 0.10 0.15

L L
A33 A32

(b) C-Ib case of Scenario-I

(c¢) C-II case of Scenario-I

0.15+

0.05-

0.00t, . . L
0.00 0.05 0.10 0.15

L
/‘32

(e) C-III case of Scenario-I in

Ay — AL, plane

FIG. 2. Constraints on new VLQ couplings which include only LL type operators (Scenario-I) for different sets of observables.
Different colors represent the 1o, 20, and 36 contours, and the black dot stands for the best-fit value.
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TABLE L. Best-fit values of new VLQ couplings, ;(fmn /d.o.f and pull values for different cases of all scenarios (S-1, S-II, S-III, S-IV).
Scenarios Cases Couplings Best-fit Values ;(fnin /d.o.f Pull
C-la (A5, 4%,) (0.451, 0.631) 1.15 2.982
S C-Ib (A4, 45) (0.475, 0.595) 0.58 2.979
C-1I (25, 15,) (0.035, 0.035) 0.931 5.78
C-1I1 (Ahy, 25,25, 25) (0.56, 0.51, 0.0351, 0.0351) 0.926 6.1
S-1I C-II (2%,,2%) (0.0315, 0.0315) 1.04 3.499
C-Ia (A%, /123) (0.44,-0.44) 4.235 1.65
S-1IT C-Ib (25, 2%)) (0.42,-0.462) 2.11 1.66
C-lIl (2, l 5) (0.0254, 0.0254) 1.05 3.049
C-11I (A%, 2%, 25, 2R) (0.005, 0.005, 0.0258, 0.0258) 1.043 4.28
S-1vV C-II (2%, 25,) (0.0233, 0.0233) 1.063 2.67

(3) [C-III]: Includes measurement on B decay modes,
which decay either to third generation or second
generation leptons, i.e., b — ct0,, b — st"t~ and
b— sutu .

In Fig. 2, we show the constraints on new leptoquark
couplings by using different data sets of above discussed
observables for Scenario-I (see Sec. III), which includes
only LL type operators, i.e., C](,? contribution from b —
ctv, and Clg“flzo from b — s£+£~. Here, the constraint plots
for the new couplings for C-Ia (left), C-Ib (middle) and C-II
(right) cases are presented in the top panel. The bottom
panel of Fig. 2 represents the constraint plots for C-III in the
2Ly — 25 (left) and 4%, — A%, (right) panels. In each plot of
Fig. 2, different colors represent the 1o, 26, and 36 contours
and the black dot stands for the best-fit value. The
corresponding best-fit values obtained for various cases
are presented in Table I. In this table, we have also provided

the ;(rznin’VLQ sm/d.0.f as well as the pull = /&y — Xiesi_si
values. For C-Ia case, we have 4 observables with two

parameters for fit; thus the number of degrees of freedom
(d.o.f.) is 2. Here we find y2, /d.o.f =2.3/2=1.15,
which implies the fit is acceptable. The y2. /d.o.f for
C-Ib case is found to be 0.58; i.e., the singlet VLQ can
explain both » — ct, and b — st*7~ data simultaneously.
We find ygi, vigssm/d-0.f <1 for both C-II and C-III
cases, which implies the VLQ can accommodate b —
str(pp) anomalies as well as the issues in both b —
str(pp) and b — cto, very well. This analysis implies
that the presence of only LL type VLQ couplings can
illustrate the B anomalies associated with both b — c77,
and b — s£¢ kind of processes on equal footing.

In Scenario-1I with the new leptoquark couplings of RR
operator type, the constraint on the new couplings asso-
ciated with right-handed quark and lepton singlets is
depicted in Fig. 3. Since the VLQ has no A& ; type coupling

contribution to b — cti,, we fit the new /15- parameters
from only b — suu data (C-II case of our analysis).

In Table I, the best-fit values and the y2. /d.o.f for this
scenario are shown. Here the value of y2. /d.o.f = 1.04 is
very close to one, implying that the fit is acceptable.

Figure 4 depicts the constraints on LR-type couplings
(Scenario III) associated with unprimed pseudo(scalar)
operators for different sets of data. The corresponding
best-fit values and 2, /d.o.f for different cases are given in
Table L. The y2. /d.o.f is found to be 4.235(2.11) for C-la
(C-Ib), which means the fit is rather poor. The y2. /d.o.f
for both C-II and C-III cases are slightly greater than 1.
Thus, the presence of only pseudo(scalar) type couplings
arising due to the exchange of VLQ is not good enough
to explain the anomalies in both b — c7v, and b — s£¢
processes.

Figure 5 represents constraints on new RL-type cou-
plings (Scenario-IV) obtained from only b — suu observ-
ables (C-II case). The obtained best-fit value and y2, /d.o.f
are give in Table I. We notice that x2. /d.o.f is slightly

0.05

0.00x
0.00 005 010 015 020 025 030 035

R
A32

FIG. 3. Constraints on new VLQ couplings of RR-type with
quark and lepton singlets (Scenario-II). Here only C-II case is
relevant. Different colors represent the 1o, 20, and 3¢ contours,
and the black dot stands for the best-fit value.
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(b) C-Ib case of Scenario-III

(¢) C-II case of Scenario-III
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(e) C-III case of Scenario-III in
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FIG. 4. Constraints on new VLQ couplings which include only LR-type operators (Scenario-1IT) for different data sets of observables.
Different colors represent the 1o, 20, and 30 contours, and the black dot stands for the best-fit value.

0.25F T T T T =

0.05- 1

0.00+: n
0.00 0.0

0.10 0.15 0.20 0.25

R
A32

FIG. 5. Constraints on new VLQ couplings of RL-type with
quark and lepton singlets (Scenario-IV). Different colors re-
present the 1o, 20, and 3¢ contours, and the black dot stands for
the best-fit value.

larger than one. Though the fit is not as good as Scenario-I,
but still it is acceptable.

As can be seen from Table I, the case C-III in Scenario-I
with Cgfyp = —Clgnp Provides the best-fit to all the
observables in b — sy~ and Ry.. This is in agreement
with the recent global-fit results [137] which include the
latest LHCb measurements of Rg. If the fit is done
separately, i.e., one for all the data involving b — su*u~
and the other for R, observables, there is a slight tension
between the NP Wilson coefficients required to explain the
b — suu and the R, data, which can be addressed by
considering NP contribution to b — se™e™ process as well
[138]. However, in this case, one has to take into account
the additional constraint from the LFV process y — ey.
Since in our framework, the LQ is not coupled to the first
generation of fermions, we do not encounter any NP
contribution to b — se™ e~ process nor to the LFV process

u—ey.
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VI. IMPLICATIONS ON LEPTON FLAVOR
VIOLATING B AND TAU DECAY MODES

This section will be dedicated to the study of LFV two/
three body decay modes of B meson and 7 lepton in the
presence of the VLQ, V| (3,1,2/3). The rare leptonic/
semileptonic LFV B channels involving b — s/; [} quark-
level transition, occur at tree level due to the exchange of
VLQ. The left panel of Fig. 6 depicts the Feynman diagram

of b — stu LFV decay modes at tree level.
|

The total effective Hamiltonian for b — s/7 l}“ processes
in the VLQ model can be written as

Heff (b — Sll_ l;L) Heff Heﬁ s (26)

where the vector-axial vector (VA) and scalar-pseudoscalar
(SP) parts are given by

G Oem . , - _ - -
He = \;—” thVts[C9 (37*PLb)(Liy L) +C}(?(S}’”PL5)(11'7,47511)+C3L (57 Prb) (L7, j)+C/LQ(SVﬂPRb)(liVM}’SZj)]’
G Do . _ - _ - _ - _ -
Hofe = \;iﬂ Vi Vis[Cs2(5Prb) (1;1;) + CpR(5Prb) (Liysly) + Cs A (5P b) (1;1) + Cp A (3P, b) (Tiysl,))- (27)

This leads to the following LFV processes:

A. B, - I71Y
The branching ratio of the LFV B, — li‘l;r decay process in the presence of VLQ is given as [139]

aem G2

(M5, — (m; +m;)?]

+[M235—(mi—m)]

where fp is the B, decay constant and

Ma,b,c) =a*+b*+ c* -

is the so-called triangle function.

M
(€52 = C52)(m; = mj) + (C59 = €5 —F—

fB Vi Vis P22 (Mp  m; m))

2 2

B. B — KI; I}

The differential branching ratio of B — K ll»‘lj+ process is given as [83]

dBR Gra,
dq2 ( Kl l ) 212 5M3
b [T
VLg
s TH e

FIG. 6. Feynman diagrams for lepton-flavor-violating b — st~

processes mediated via the VLQ.

my, + my
LQ /LQ LQ /LQ M% :
-C m; +m;)+ (Cp~—C — ], 28
R )+ (€12 - ¢ 5T (28)
2(a’b* + b c? + d*c?) (29)
6
MMy My, PV VP s, (30)
i=1
v
Vig Vig
T > d,i,b > K

S

(left panel), z — u¢(n")) (middle panel), and 7 — uy (right panel)
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The coefficients J; in Eq. (30) are given in Appendix B.

C.B - K7l and B; — ¢l 1}
Including the VLQ contribution, the differential branch-
ing ratio of B — K*l,-‘l;-’ decay process is given by [139]

BR 5 k)
dg J
1
=2 BIi(a*) +61i(q%) = I5(¢%) = 205(q%)]. (32)
where the expressions for the angular coefficients /;(g?)
are provided in Appendix C. The same expression can be
applied to By — ¢l;l; process with appropriate changes in
the particles masses and the lifetime of B, meson.
Assuming that there is no NP contribution to the first-
generation fermions, here we compute the branching
fractions for the LFV decay modes of B meson to second
and third generation leptons only. One can also notice
that the leptoquark couplings required to investigate the
above-defined LFV decay modes are present in the C-III

TABLE II.
model for C-III case in Scenario-I and Scenario-III.

scenario of our analysis, which includes both b — c¢zv, and
b — str(up) types of processes. For the numerical esti-
mates, all the required B meson masses and lifetimes are
taken from PDG [103]. Using f =(225.6+£1.1£5.4)MeV
[140] and the best-fit values of the constrained new
parameters of S-I and S-III from Table I, we present our
predictions on various LFV branching ratios of B mesons in
Table II. From the table, one can notice that the branching
ratios of the LFV B decays are quite significant in S-I
scenario and are within the reach of Belle or LHCb
experiments. However, the experimental limits on most
of these decay modes are not yet available. The only
LFV channels that have been looked for are BT —
Kty tt(utz7) [141] and By — t=uT [142] for which
we find our predictions for the branching ratios are well
below the current 90% CL experimental upper limits. Our
predictions on branching ratio of B, — tu¥ process,

BR(B, = t°u¥) = BR(B, = t"p”) + BR(B; — v7u")
6.0 x 1077 for S-1,
(33)
1.3 x 107 for S-III,

which are much lower than the current experimental limit at
90% C.L. [142]:

BR(B; — 75u¥)[F*P < 3.4 x 107°. (34)

Predicted branching ratios of lepton flavor violating decay modes of B meson and 7 lepton in the VLQ

Predicted values

Decay modes S-1 S-IIT Experimental limit (90% CL)
B, >y t" 2.7 x 1077 6.7 x 10710 <3.4 % 1079 [142]
Bt - Kty rt 1.3x107° 3.0 x 10710 <2.8 x 1077 [141]
BY - KOzt 1.2x107° 2.8 x 10710

Bt = K*tu~rt 2.6 x 107° 1.11 x 10710

B = K0yt 2.4x10°° 1.0 x 10710

B, - ¢u " 3.1x107° 1.4 x 10710

B, = 1 3.3 x 1077 6.7 x 10710 <3.4 % 1077 [142]
Bt - Ktutr 1.6 x 107° 3.0 x 10710 <4.5 x 1073 [141]
BY - KOutr™ 1.5x107° 2.8 x 10710

Bt - K*tutr 3.1 x10°° 1.1 x 10710

BY —» KOutz” 2.9 x 106 1.0 x 10710

B, = ¢utt 3.8 x 107 1.4 x 10710

Y(1S) —» 7" 1.8x 1071 7.7 x 10716

Y(28) = pzt 1.8 x 10~ 7.9 x 10716

Y(3S) - pu 7t 2.4 x 1071 1.0x 1071

Y(1S) - ptz” 1.8 x 1071 7.7 x 10710

Y(2S) - utr 1.8 x 10711 7.9 x 10710

Y(3S) - utr 24 %1071 1.0x 1071

T = U 2.0x 1078 1.0 x 10712 <8.4 x 1078 [145]
T =S uy 2.1 x10°8 1.1 x 1012 <6.5 x 1078 [103]
T >y 6.8 x 10710 3.5%x 1071 <1.3 x 1077 [103]
T s Uy 4.8 x 107 <4.4 x 1078 [146]
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Our estimated branching ratios of the LFV processes
By = (K. K*,¢)u~t"(u"77) even for Scenario-IIl are
reasonable and within the reach of future B-physics experi-
ments, such as LHCb upgrade [143] and Belle-II [144].

In Fig. 7, we show the variation of differential branching
ratios of Bt — KTy~ (top-left panel), Bt - K*tu~t*
(top-right panel), and B; — ¢u 7" (bottom panel) proc-
esses with respect to > for C-III of Scenario-I in the
presence of VLQ; cf. Egs. (30), (32).

In the following two subsections, we study the LFV
decay modes of Y (nS) and the 7 lepton.

D. Y(nS) — pz
The Feynman diagram for LFV Y'(nS) — uz channel can
be obtained from the diagram for b — sur decay mode (left
panel of Fig. 6) by replacing s — b. The branching ratio of
Y (nS) — u~7t decay mode is given by [29]

fZ n m3' n 2 :
BR(Y(nS) — p-r+) = LS TX(0S) <2_ m; ___m >

487TFY("S> m%'(nS) ml{'(nS)
2 L 9Lx|2
% <1_ ’2"1 > 1322/133 (35)
ms. M
Y (nS) Vo

The branching ratio expression for Y'(nS) — uz~ process
can be obtained from Y (nS) — p~ 7" by replacing the LQ

1.2

1.0}

0.8

0.6

(B*>K*u™t*)x107

0.4}

dBR
dqg?
o
S

o
=)

q° [Gev’]
(a) Bt - Ktu—r+

hed
)]

coupling A5,k — A% A5>. For numerical calculation, we
take all the particle masses and the width of Y(nS),
n = 1,2,3 from PDG [103]. The values of decay constants
of Y'(nS) used in our analysis are fy(;5 = (700+16) MeV,
fy‘(zs) = (496 + 21) MeV, and fy'(:;s) = (430 + 21) MeV
[29]. The case C-III of both S-I and S-III scenarios include
the LQ couplings required for Y(nS) — p™7~ branching
ratio computation, whose best-fit values are given in
Table I. Now, using all the input parameters, the predicted
branching ratios of Y'(nS) — u~t" (Y'(nS) - utr7) are
provided in Table II. Using the branching ratio expression
of Y(nS) — uFr* processes as

BR(Y(nS) = uFr*) = BR(Y(nS) - p~t")
+BR(Y(nS) = ), (36)

our predictions in the presence of VLQ are given by

BR(Y(1S) * oty {3.6x10‘11 for S-I,
— uTrt) =
K 1.5 % 10-15  for S-IL,
3.6 x 101" for S-I
BR(Y(2S) - uFrE) = ’
(Y(28) = w¥e?) {1.6x1o-15 for S-III.
48 % 10~ for S-I
BRY3S—>“FF_{ ’ 37
(XG> w7T) = 5 105 for s, O
3.0
S 2.5
é 2.0
'3
L 15
+T
@ 10}
[ g
Bl T o5
0.0

a 6 8 10 12 14 16 18
q° [Gev]
(b) BY — K*tp—r+

Noow
[ =)

(Bs» i *)x107
N
o

4 6 8

10 12 14 16 18

q° [Gev’]

(c) Bs — ¢u~ 7+

FIG. 7. The ¢? variation of branching ratios of B* — K*u~7" (top-left panel), B¥ — K**u~z" (top-right panel), and B, — ¢u~ 7+

(bottom panel) processes in the presence of VLQ.
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which are much lower than the current experimental upper
limits [103]:

BR(Y(1S) - uFe*)|B® < 6.0 x 107°
BR(Y(2S) — uFr)|[F® <33 x 1076
BR(Y(3S) — uFeH)|[F®P < 3.1 x 1076

95% CL,
90% CL.,
90% CL.  (38)

E. 7 - up

The Feynman diagram for ¢ — u¢ LFV decay process is
presented in the middle panel of Fig. 6. The branching ratio
of 7 — p¢ channel is given by [68]

BR(7 — ug)
2 4 * *
_ T2 ™My ’153'152 +/1§3'1§2 :
1287m’ M3,
m2 + m2) (mz _ mz)z
/11/2 27 2’ 2 -1 ( U T i T ’
X (m¢ m? mﬂ) + 2m(2/) ij})
(39)

where f is the decay constant of ¢ meson. Using the
values of various masses and lifetime of 7 from PDG [103],
fp = (238 £3) MeV from Ref. [147] and best-fit values
of required new parameters for C-III case of Scenario-I
and Scenario-III from Table I, we estimate the branching
fraction of 7 — p¢ as shown in Table II. We find that the
T~ — u~ ¢ branching ratio is substantially enhanced in S-I
scenario; it is just below the current experimental upper
limit [145] and within the reach of Belle-II experiment.

F. 7t — un"
The branching ratio of 7 — un'") process is given by [29]

2 3 * * 2
BR(z — up")) = Tff'?m M | 25055 + 455455 |2 | — o) .
i 1287 M%/LQ m?

(40)

Using f, ~—157.63 MeV [29], f, ~31.76 MeV [29],
along with other input parameters from [103] and the
best-fit values of LQ couplings from Table I, the estimated
values of branching ratios of 7 — un") are presented in
Table II, which are found to be well below the current
experimental upper limits.

G. -y

The right panel of Fig. 6 represents the one loop
Feynman diagram for radiative 7 — py channel. The
effective Hamiltonian for radiative 7~ — u~y decay mode
can be expressed as [148]

Her = e(Criige™ F 1y, + Crii 0" Ftg).  (41)

Here ¢ is the photon field strength tensor and the Wilson
coefficients Cp(g) generated due to VLQ exchange are
given as

NC 1 * *
c (— Uiy £ () + AR F (x,)

T 1eMy, \ 3
+ M55 f3(xp) 4+ 455257 Fa(x,)]
2 _ _
+ 3 (W% f2(xp) + 455245, 1 (%)

+ 53257 3 (xp) + 25545, f4 (xb)]> ) (42)

N, 1 ) *
R = W (-g (Ao  f1(xy) + AR 287 £ (xp)

+ 45345 fa(xp) + 4525 " f3(x,)]

2 _ _
+ § [/1,%3/1,%271 (xb) + A§3f1§2*f2 (xb)
LR () + AR AL F <xb>])’ (43)

where x, = m%/MZLQ, N. =3 is the color factor, and
the expression for the loop functions fi,34(x,) and

f123.4(xp) are given in Appendix D. The branching ratio
of this process is [148]

(m2 — mj)?
3

e ICRP) (44)

BR(t7™ »p7y) =1,

where 7 is the lifetime of 7 lepton. In the presence of VLQ,
the predicted branching ratio of 7z — uy for C-III of
Scenario-I is given in Table II which is roughly an order
of magnitude below the current experimental limit [146]. It
should be noted that, except for C-III of S-I, none of the
scenarios can provide the required new parameters to study
the 7 — puy process.

Though the muon anomalous magnetic moment gets an
additional contribution through one-loop diagram with
internal VLQ and down-type quark in the loop, the
observed discrepancy cannot be accommodated by using
our predicted allowed parameter space.

VII. RADIATIVE NEUTRINO
MASS GENERATION

With the particle content of the model discussed in
Sec. 111, there are no tree level contributions to light neutrino
masses as well as no one-loop level contributions. However,
there is a two-loop contribution to light neutrino masses,
similar to a colored variant of the Zee-Babu model
[149,150], where the lepton doublet is replaced by up-type
quark while the singly and doubly charged scalars are
replaced by VLQ and SDQ, respectively. The corresponding
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Hs

Spq
L = V4 (V4
vy, ur, 7 ur Mg urp’"  up vy
FIG. 8. Feynman diagram for two-loop neutrino mass gener-

ation via VLQ and SDQ mediators, cf. Eq. (5).

Feynman diagram for two-loop neutrino mass generation is
displayed in Fig. 8. Somewhat related models with scalar
LQ and SDQ to generate radiative neutrino mass was
studied in Refs. [151,152].

The two-loop contribution to light neutrino masses in the
flavor basis is given by

M, = 32/1(Lljmuj,u5(ASI)jkmuk/liﬁ, (45)

where the finite part of the two-loop integral is given by

B d*k d*p 1 1
2= | Gy | G = mi) (@ =5,

Vig
1 1 1
x - (40)

(p* =my,) (P> = M5, ) (p +k)* = M5,

The evaluation of this loop-integral can be done following
Ref. [151]. Assuming that the VLQ and SDQ are much
heavier than the SM quarks in the loop, the loop function
can be reduced to [153]

I I 2 - (M5
IO () (max(My, M )73 MY,
where the function Z(x) has closed-form analytic expres-
sion in the following limits:

. {1+%{(1nx)2—1} for x> 1

T(x) = (48)

1 for x < 1.

Note that here we have assumed the VLQ loops in Fig. 8 are
regularized with a suitable gauge choice (for instance, the
nonlinear R gauge [154]), without affecting the phenom-
enology discussed here. In general, vector boson propa-
gators cause divergences that result in a bad UV behavior.
Analogous to the SM case where the UV divergence
in gauge boson loops are canceled by the Higgs loop, a
heavy Higgs boson giving masses to the VLQs can cancel
these UV divergences. However, the details depend on
the specific UV-completion; see Refs. [36-39,61,89,
134,135,155,156] for concrete examples. Reference [24]
considered two VLQs (instead of a VLQ and a SDQ as in
our case) to cancel the remaining infinities contained in the

Passarino-Veltman function by summing over both VLQs.
In their case, the neutrino mass can be generated at one-
loop level by Higgs-VLQ mixing.

Since for the flavor anomalies, we have only considered
couplings to third and second generation fermions, and,
therefore, do not have full information on all the igj
couplings needed to fit the 3-neutrino oscillation data
using Eq. (45); we will only derive an order-of-magnitude
estimate for the neutrino mass constraint on the model
parameters. For illustration, let us take the Scenario-I
Case-IlIl which provides the best-fit to both b — czr;
and b — sZ¢ anomalies, as discussed in Sec. V. In this
case, the best-fit values of the relevant A" couplings,
(4%, 2%) = (0.56,0.51) can be read off from Table L.
Also recall that we have fixed the VLQ mass at M Vip =

1.2 TeV for the flavor anomalies. We still have three
unknowns in Eq. (45), namely, the trilinear mass term
Hs, Yukawa coupling 4g, and the SDQ mass My, . As we

will see in Sec. VIII, the Ag coupling cannot be arbitrarily
large due to collider constraints from diquark searches.
Similarly, the trilinear mass term ug cannot be arbitrarily
large due to perturbativity constraints in the scalar sector,
similar to the Zee-Babu model case [157], and we expect
ps Smin(My, Mg, ). We will assume pg <My, , <My, .
which allows us to have larger 1y couplings, while being
consistent with the dijet constraints (see Sec. VIII). In
Fig. 9, we have shown the contours of the neutrino mass
parameter M%; in units of eV in the (Mg, . 4s) plane for a
fixed ug = 1.0 MeV. For a desired neutrino mass value,
increasing the value of ug will result in a smaller corre-
sponding Ay, according to Eq. (45). Here we have taken
m, =m, =m = 173 GeV in Eq. (45).

0.100

As

0.010}

0.001}

2 4 6 8 10
Ms,, [TeV]
FIG.9. Contours of neutrino mass parameter M%; in units of eV
in the SDQ mass M Spo Versus its Yukawa coupling Ag plane. The

shaded region is excluded at 95% CL from a recent CMS dijet
resonance search [158].
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VIII. SCALAR DIQUARK AT THE LHC

The new TeV-scale colored particles in our model
predominantly couple to third- and second-generation
fermions, and offer rich phenomenology at current and
future hadron colliders, such as the LHC and its high-
luminosity phase, as well as future hadron colliders. The
collider phenomenology of color-triplet VLQs coupling to
third-generation fermions has been extensively studied; see
e.g., Refs. [159-164]. In our numerical fits for the B-physics
anomalies, we have fixed the VLQ mass at 1.2 TeV, which is
consistent with the current LHC constraints [136].

On the other hand, the color-sextet SDQ introduced here
to explain the neutrino mass is not constrained by the
B-physics sector. In this section, we explore the collider
constraints on the SDQ and its future detection prospects.
At the LHC, the SDQ can be either singly produced by the
annihilation of two up-type quarks, or pair-produced via
the gluon-gluon annihilation. The single production has the
advantage for relatively heavy SDQ due to the s-channel
resonance [165,166], so we focus on this channel only. The
single production cross section is governed by the Yukawa
coupling Ag in Eq. (5), which in general has a flavor
structure. For simplicity, we assume Ag to be proportional to
the identity matrix, so that it couples with equal strength to
uu, cc, and r¢. Note that for the neutrino mass generation, it
might suffice to have a nonzero coupling to 7 and cc only;
however, for its production at LHC, an SDQ coupling to uu
is desirable due to the large u-quark PDF inside a proton.

Once produced on-shell, the SDQ will decay back
to the diquark final states. For M > 2m,, the branching
ratios to all quark flavors is roughly the same; for My

close to the 2m, threshold, one has to include the phase
space suppression factor of (1 —4m?/ M§D0)3/ Zin the S — 1t
partial decay rate. In our model, for M Spo > 2M Vigs the

SDQ can also decay into a pair of VLQs; however, we will
choose the corresponding coupling strength pg to be small,
so that the diquark decay modes are the dominant ones.
A small pg is also favored by the neutrino mass constraint,
if we allow for relatively large Ag values.

In Fig. 10, we show the SDQ single production cross
section (normalized to |Ag|> = 1) times branching ratio into
dijet (uu + cc) and ditop (#7) final states at /s = 13 TeV
LHC. These numbers were obtained at parton level using
MadGraph5 [167] at the leading order. We have used
NNPDF3.1 PDF sets [168] with default dynamical
renormalization and factorization scales. Also shown is
the current 95% CL upper limit on the dijet cross section
times branching ratio times acceptance from a recent
CMS analysis [158]. Comparing the dijet cross section
with the corresponding CMS upper limit, one can derive an
upper limit on the coupling Ag as a function of the SDQ
mass, as shown by the blue shaded region in Fig. 9. We
find that the dijet constraint requires 4g < 0.01-0.1 for a
multi-TeV SDQ.

"— jj — LHC13 jj
100l i i |
— tt — LHC13 tt
o«
m
x 1f
)
=
® 0.01}
104 .
2 3 4 5 6 7 8
Ms,, [TeV]

FIG. 10. Cross section times branching ratio (normalized to
|A|* = 1) in the dijet and ditop channels from the SDQ resonance
at the /s = 13 TeV LHC. Also shown are the experimental
upper limits at 95% CL from recent LHC dijet [158] and same-
sign top-pair [169] searches.

The same-sign top pair (#¢) final state offers a promising
test of the SDQ in this model, since the SM background is
very small [170-174]. The current experimental limit at
95% CL from a recent ATLAS analysis [169] is shown in
Fig. 10, which only goes till 3 TeV resonance mass. The
corresponding constraint on Ag turns out to be weaker than
the dijet constraint derived above. However, we expect the
ditop sensitivity to improve in the high-luminosity phase
and/or in the future hadron colliders.

IX. ANITA ANOMALY

Recently, the ANITA collaboration has reported two
anomalous upward-going ultrahigh energy cosmic ray
(UHECR) air shower events with deposited shower ener-
gies of 0.6 = 0.4 EeV [94] and 0.56705 EeV [95]. This is
difficult to explain within the SM framework due to the low
survival rate (<107%) of EeV-energy neutrinos over long
chord lengths in Earth ~7000 km, even after accounting for
the probability increase due to v, regeneration [175-178].
Moreover, as pointed out in Refs. [179,180], the strength of
isotropic cosmogenic neutrino flux needed to account for
the two events is in severe tension with the upper limits set
by Pierre Auger [181] and IceCube [182]. Therefore, a NP
explanation with an anisotropic astrophysical source with
some exotic generation and propagation mechanism of
upgoing events is desirable to solve the ANITA anomaly;
see e.g., Refs. [45,67,175,179,180,183-195].

As already pointed out in Ref. [45], the observed ANITA
events can be explained in our VLQ model framework by
including a fermion singlet field y(1,1,0), which couples
to the VLQ as given by the last term in Eq. (5). Note that
this is one of the handful of models that admit LQ coupling
to a singlet fermion (aka sterile neutrino) [44,69,196]. This
new coupling leads to the production of y in the neutrino
interactions with up-type quarks (u#, c¢) in Earth matter
mediated by the VLQ, which can be resonantly enhanced
for TeV-scale VLQ. This occurs for the incoming neutrino
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FIG. 11.

|
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VLQ mediated Feynman diagram for neutrino-quark interaction resulting into production of a long-lived particle y (left

panel) and the decay of this long-lived particle y into Dy ¢~ (right panel).

energy E, =My, /2myx, where my=~1GeV is the nucleon
mass and x is the Bjorken scaling variable, which has an
average value of ~1073 for these deep inelastic scattering
processes. The y being a SM-singlet can in principle be
long-lived and traverses the required chord length before
decaying via the same interactions into a D; meson and a
charged lepton; see Fig. 11. We will assume that the
charged lepton produced from the y decay is a tau lepton,
which comes from the 445 coupling of the VLQ that is also
relevant for the B-anomalies discussed above.

After integrating out the VLQ and performing Fierz
transformation, the relevant interaction Lagrangian obtained
from Eq. (5) becomes

2(/1)()0,2!41. ~ _
— = (ligad;r ) (ij)(R)’ (49)

2
Vig

LD

where the generation indices are as follows: @ = 1, 2, 3 and
i, j = 2, 3. Using Eq. (49), the rate of y — 7D, decay mode
is given by

ll/Q M27M2+’m% AL M2+ N 2
[(y — D7) = (M3, M}, )<H3>( D,‘_fp\.>

16zM; M2VLQ m, + my
x (M = M, +m3). (50)

where we have denoted (4, ), simply as 4,. The masses of D
meson and 7 lepton are taken from PDG [103] and the decay
constant f+ = 257.86 MeV. We simulate the production
of y by implementing our model file into MadGraphs [167] at
the leading order and using the NNPDF3 . 1 PDF sets [ 168].
This is followed by the decay of y given by Eq. (50) to
estimate the event rate at ANITA [179]:

N = /dE,,(AeprQ)-T"Pw (51)

where T = 53 days for the total effective exposure time,
®,=2x1072°(GeV-cm?-s-sr)~! for the cosmic neutrino

flux, and (A. - AQ) is the effective area integrated over
the relevant solid angle, averaged over the probability for
interaction and decay to happen over the specified geometry.
The effective area contains all the information of the
geometry, decay width of y, and the cross section for the
 production; see Ref. [179] for the explicit expression for an
analogous bino production in supersymmetry. In particular,
the mean lifetime of the y particle should be fixed at around
0.022 s in the laboratory frame in order to achieve a chord
length of ~7000 km inside the Earth, as required by the
ANITA observation. Such long lifetime ensures that there
are no direct laboratory constraints on the y couplings. From
Eq. (51), we know that the overall event number N is a
function of m, and 4, for a given VLQ mass. Therefore,
comparing the simulated event numbers with the ANITA
observation of two anomalous events gives us the best-fit
parameter region at a given CL. This is shown in Fig. 12,
where the dark and light blue-shaded regions can explain
the ANITA events at 26 and 30 CL, respectively, for

®,=2x10"%
(GeV -em? -5 - sr) 7!
10% My,q = 1.2TeV
~ L
~
]
:
10_1 - Cg Amp allowed\range
g :
B e
b4
I I I
2 5 10 20

M,(GeV)

FIG. 12. The 26 and 3¢ preferred region in the (M,.4,)
parameter space to explain the ANITA anomalous events in
our VLQ model. The green-shaded region is allowed by the
D° — D° mixing constraint. In the vertical gray-shaded region,
the y decay shown in the right panel of Fig. 11 is not
kinematically allowed.
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VLQ

LQ

FIG. 13.

My, , = 1.2 TeV. The vertical gray-shaded region is kine-
matically forbidden for the y decay shown in the right panel
of Fig. 11. Note that our results for the ANITA-preferred
region in Fig. 12 are slightly different from those given in
Ref. [45]. We also include the D° — D® mixing constraint, as
discussed below.

In presence of the singlet y, there will be a new
contribution to the DY — D° mass difference from the
box diagrams with the VLQ and y flowing in the loop,
as shown in Fig. 13. The effective Hamiltonian for D° — D°
mixing in the presence of VLQ is

Hat = Cop(y" (1 —ys)e)(@y'(1 - ys)e),  (52)
where the NP Wilson coefficient is given as

4y

% F(x,.x,). 53
1287°M3, (%% (53)

Cpp =

with x, = M3/ M%,LQ and the loop function

B 1 x?log x;
Pl = =) 0w —x)
x7log x;
(1= x)*(x; —x;) o

The SM contribution to the mass difference is negligible
and the corresponding measured value is given by [103]

AMp, = 0.00957 5908 ps~!. (55)

The green-shaded region in Fig. 12 shows the allowed
parameter space from this constraint.

The presence of y also leads to an additional contribution
to the B — 71w process, via a diagram similar to the right
panel of Fig. 11 (with s replaced by b), since the y
practically behaves like a neutrino for the energies involved
in the B-decays. The corresponding branching ratio is
given by

X

%76) 1%76)

X

Feynman diagram for one loop box diagram for D® — D° mixing mediated by the singlet y and the VLQ.

¢ - c

SIIM%C M%,LQ
M2, fpi\2
B/ B:

X (mbTm) (Mj, —mz—Mj3).  (56)
For My = 6.25 GeV and m, = 1.77(m, = 0.106) GeV
[103], the maximum mass value of y for which the
Bf — ¢y process can occur kinematically is M, =
4.47(6.144) GeV. However, from Fig. 12, we see that
the overlap between the ANITA and Amp preferred regions
occurs only between M, = [6,30] GeV. Hence, the B} —
7Ty decay is not relevant here.

X. CONCLUSION

The recently observed various flavor anomalies in the
CC and NC mediated semileptonic B meson decays may be
considered as one of the most compelling hints of NP at the
TeV scale. To explain these intriguing sets of discrepancies
in a coherent manner using a single framework is a
challenging task, as the NP scales involved in the CC
and NC sectors are significantly different from each other.
To achieve this goal, in this article we considered a minimal
extension of the SM with an additional TeV scale vector
leptoquark, which transforms as (3,1,2/3) under the SM
gauge group. The interesting feature of this model frame-
work is that both the transitions b — c7o, and b — s£¢~
occur at the tree level through the exchange of the VLQ,
and it also provides the required NP contributions to
simultaneously resolve the anomalies. Assuming that NP
can couple only to second and third generation fermions
and taking into account all possible chiral couplings (LL,
RR, LR, RL) of the SM quarks and charged leptons with
the LQ, we performed a global fit to constrain the NP
parameters by using the observables associated with b —
su~ut(r77") and b — ct, transitions. We find that for a
TeV-scale VLQ, only the LL-type couplings can simulta-
neously explain both b — s£#*¢~ and b — c7l, anomalies
with a 2. /d.o.f. < 1. The model predictions for lepton
flavor violating B-meson, Y(nS) and z-lepton decays
(see Table II) can be used to test this scenario in the

095012-16



UNIFIED EXPLANATION OF FLAVOR ANOMALIES, ...

PHYS. REV. D 102, 095012 (2020)

future B-physics experiments, such as LHCb upgrade and
Belle-II.

In addition, augmenting the VLQ model with a color-
sextet SDQ can explain the neutrino mass at two-loop
level (see Sec. VII). We discussed the LHC constraints on
the SDQ mass and Yukawa coupling with up-type quarks,
and identified the same-sign top-pair production as an
excellent probe of this scenario for a multi-TeV SDQ
in the future high-energy collider experiments, such as
high-luminosity LHC (see Sec. VIII). Further, adding a
GeV-scale SM-singlet fermion to the VLQ model can
also explain the ANITA anomalous upgoing events. It

was shown to be consistent with the D — D° mixing
constraint (see Fig. 12). In summary, we have proposed a
unified explanation of the flavor anomalies, radiative
neutrino mass and ANITA events. Different aspects of
the model can be tested in future collider and B-physics
experiments.
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APPENDIX A: EXPERIMENTAL DATA
USED IN FIT

The experimental measured central values, statistical and
systematic uncertainties of all the observables used in our
analysis are presented in the following Tables ITI-VII.

APPENDIX B: B — KIl;

The matrix elements of the various hadronic currents
between the B meson and the K meson can be parametrized
in terms of the form factors f, and f, as [100]

(K(px)I57.b|B(ps)) = 2ps — q),.f+(4*)
2 a2
Mo = Mk o, 10(a®) - 11 (a2)]

=
(B1)

The coefficients J; appearing in the differential branching
ratio of B — K7;Z; [Eq. (30)] are given by [83]

TABLE III. Experimental measurements on the differential
branching ratios of B¥ — K+u*u~[3],B® = K%u*u~ [3], Bt —
K* 'ty [3], B —» K™t~ [197], and B, — ¢~ [6] proc-
esses in bins of qz. Here the first uncertainties are statistical, the
second are systematic, and the third arise due to the uncertainty on
the B — J/wK*° (BY — J/w¢p) and J/w — u*p~.

Decay processes  ¢> bin (GeV?)  dBR/dq”> x 1077(GeV~2)

BT - K'u"u~™  0.10<¢*<0.98  0.33240.018+0.017
1.1<g*<2.0 0.23340.015+0.012
2.0<¢*><3.0 0.28240.016+0.014
3.0<q?><4.0 0.25440.015+0.013
4.0<¢*<5.0 0.22140.01440.011
5.0<¢*<6.0 0.23140.014+0.012
1.1<¢*<6.0 0.24240.007+0.012

B - Koy~ 0.10<¢*<2.0 0.12270022 +£0.006
2.0<¢*<4.0 0.187X00 £0.009
4.0<q><6.0 0.17310:933 +0.009
1.1<¢*<6.0 0.18725035 £0.009

Bt — K*'utum  0.10<¢*><2.0 0.59270154 +0.004
20<q*<4.0 0.55970137 +0.038
4.0<¢*<6.0 0.2497 040 £0.017
1.1<¢*<6.0 0.366 03 +£0.026

B’ - K%t~ 0.10<¢*<0.98 1.0167097 +£0.029+£0.069
1.1<g><25 03267007 +£0.0104+0.022
25<q*<4.0  0.33470%31 £0.009+£0.023
40<g*<6.0  0.35470027+0.009+0.024
11<g?><6.0  0.34250017£0.009£0.023

By — ¢utu 0.10<¢*<2.0 0.58510%%5 £0.0144+0.044
20<¢*<50  0.25670042+0.006+0.019
1.0<g?<6.0  0.25870 57 £0.008+£0.019

(mi - m')2 1
J= 4[<1 =) 3047+ () HYP

U Gy PP
s =4 (1= ) 0+

) (g2 = (m, —m,->2>|H;|2]

2

q
J3 = 4[g* — (m; + m;)*]|Hy
Jy = 4[42 - (mi - mj>2”HP

’

2

’

Js = 8% (4%  (m, + m P Re[H HY,
Jo= 8 2 o PIRe[HH. (B2)

\/?

The expression for the helicity amplitudes, which depends
on the form factors and new LQ couplings are given by [83]
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TABLEIV. CP-averaged angular observables of B® — K*0u* i~ process in bins of g2, evaluated using the method
of moments [197]. We have used the ¢*> € [1.1, 6.0] bin result evaluated by the unbinned maximum likelihood fit.
Here the first uncertainties are statistical and the second are systematic.

Observable q* bin (GeV?) Measurement Observable ¢? bin (GeV?) Measurement

F, 010 <¢* <098 02427098 £0.026  Apg  0.10 < g*> <098 —0.138:00%3 +0.072
LI<q*<20 07687014 +0.025 L1<¢*><20 —0333012+0012
20<¢* <30  0.69070 45 +0.023 20<¢* <30  —0.15870%9 4+ 0.008
30<q* <40 087310154 £0.023 30<g* <40  —0.04150%! +0.002
40<¢*<50  0.899101% +0.023 40<¢> <50  0.052:090 4+ 0.004
50<¢*><60  0.64470130 +0.025 50<¢* <60 0.057 506 % 0.006
L1<g> <60  0.69070%5 +£0.017 1.1 <g® <60 —0.07550%52 +0.007

S5 0.10 < g < 0.98 —0.014109% +0.008 S4 0.10 < ¢*> <098  0.03970%: £0.015
L1<g? <20 00659137 +0.007 Ll <g® <20 01277018 +0.027
20<¢q* <30  0.006°91% +0.007 20<¢*<3.0 033970115 +0.041
30<¢* <40  0.07873 4 0.008 30<¢* <40  —0.04610[5% +0.046
40<q> <50 02007049 +0.007 40 < g’ <50  —0.14810%} +0.047
50<¢*><60 —0.122791, +0.009 50<¢* <60 —0273107} +0.048
L1<g> <60 00127098 +0.004 L1 <g*> <60  —0.15550037 +0.004

Ss 0.10 < > <098  0.129*09% + 0.011 S 010<¢g><098  0.03809% + 0.009
11<g*><20  0.28601% 40.009 L1 <¢* <20  —0.293701% +0.005
20<¢><30 020670131 +0.009 20<¢* <30 -0.252713] +0.002
30<g* <40  —0.110105 £0.004 30<g*<40 017153 £0.002
40<q* <50 -0.306101;F +0.004 40<¢* <50 —0.0821)% +0.001
50<¢* <60 —0.095'0137 £+ 0.004 50<¢*<60  0.03879132 +0.002
LI<q*<60  —0.02379%9 +0.005 L1<¢*<60 —0.0779%0 +0.006

Ss 0.10 < ¢> <0.98  0.0637397 +0.009 So 0.10 < ¢* <0.98 —0.11370:96! -+ 0.004
L1 <g*<20 —0.11470185 +0.006 1.1 <¢*><20 —0.110705 £0.001
20<¢* <30 —0.17611¢ +0.006 20<q> <30  —0.000*31% +0.003
30<g*<40 009755 £0.002 30<g> <40  —0.203%37 £0.002
40<q> <50  0.1071914% +0.003 40 <g* <50  0.18115% +0.001
50<q*<60 —0.03710% +0.003 50<¢q><60 —0.080%9117 +0.001
1.1 <g*> <60  0.028700% +0.008 L1 <g¢* <60  0.064007 +0.004

TABLE V. CP asymmetries of B® — K*0u*yu~ process in bins of ¢?, evaluated using the method of moments
[197]. We have used the g> € [1.1, 6.0] bin result evaluated by the unbinned maximum likelihood fit. Here the first

uncertainties are statistical and the second are systematic.

Observable

g* bin (GeV?)

Measurement

Observable

4% bin (GeV?)

Measurement

Az

0.10 < ¢*> < 0.98

1.1 <¢*><20
20<¢*><3.0
30< 4> <40
40<q*><50
5.0 <¢q*><6.0
1.1 <¢*><60

—0.0407595 £+ 0.007
—0.13410126 +0.003
—0.018+%-19% +0.001
—0.118§13) +0.007
—0.06410 %08 +0.005
—0.07671)3 & 0.004
—0.17313:979 4 0.006

Ay

0.10 < ¢* < 0.98

1.1 <¢*><20
20<¢q*<3.0
30<g* <40
40<¢*> <50
50<¢*><6.0
1.1 <¢*> <60

—0.04773999 +£0.013
0.2831 0191 +0.028
—0.26170-13% £ 0.042
0.0021 108 +0.045
0.076 70137 +0.047
—0.4571 147 £ 0.048
—0.1687005¢ £ 0.008
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TABLE V. (Continued)

Observable

q* bin (GeV?)

Measurement

Observable

¢* bin (GeV?)

Measurement

As

0.10 < ¢*> < 0.98

1.1 <g*><20
20<¢*> <30
30 < g% <40
40<¢*><50
5.0 < ¢><6.0
1.1 <¢*><6.0

0.10 < ¢> < 0.98

1.1 <g*><20
20<¢*><30
30< 4> <40
40<¢*><50
5.0 < ¢*><6.0
1.1 <g*><6.0

—0.00870-9%¢ £+ 0.011
—0.11019-15¢ 4 0.008
0.028124 +0.008
0.01510187 £ 0.005
—0.0517143 £ 0.005
—0.0117135 & 0.006
—0.05979:97 +0.011
0.0211098%0 +0.012
0.130707%3 +0.008
—0.060013% 4 0.006
0.00570188 +0.003
0.183%020 £ 0.001
—0.1951912% + 0.007
0.00470:993 +0.005

Aq

Ag

0.10 < ¢*> < 0.98

1.1 <g*><20
20<¢*> <30
30 < g* <40
40<q*><50
50 < ¢><6.0
1.1 <¢*><6.0

0.10 < ¢> < 0.98

1.1 <g*><20
20<¢q*<3.0
30< 4> <40
40<¢q*><50
50 <¢> <60
1.1 <¢><6.0

0.1127098 +0.010
—0.19310257 £ 0.006
—0.16270139 +0.003
—0.0047319% £ 0.003
—0.146713 +0.003

0.11610/2} +0.003

0.04170583 4+ 0.004

0.0437098 £ 0.009
—0.12670/3% +0.010

0.0137{9% 4 0.007
—0.12978172 £ 0.003

0.160701% £ 0.008
—0.0017-18 & 0.002

0.0620978 4 0.004

TABLE VL

Form-factor-independent optimized observables of B® — K*u* i~ process in bins of ¢, evaluated
using the method of moments [197]. We have used the ¢*> € [1.1,6.0] bin result evaluated by the unbinned
maximum likelihood fit. Here the first uncertainties are statistical and the second are systematic.

Observable g2 bin (GeV?) Measurement Observable  ¢” bin (GeV?) Measurement
Py 0.10 < ¢*> <0.98 —0.038%27 +0.020 Py 0.10 < ¢* <0.98  —0.1197548) +0.063
11<q><20 04391101 +0012 11<q> <20  —0.66704 +0.017
20<q><30  0.0555057 +0.007 20<¢* <30  —0.323701 +0.033
30<¢* <40 042171335 +0.018 30<q> <40 —0.117104% +£0.015
40<q> <50 22967771 +0.024 40<q> <50  0.174139¢ £0.010
50<q> <60  —0.5407052 +0.025 50<¢><60  0.0897)75 £0.012
L1 <q*><60  0.080155% +0.044 Ll <¢*> <60 —0.16215073 +0.010
P, 0.10 < ¢> <0.98  0.1477098¢ + 0.005 P, 0.10 < ¢> <098  0.0867 923! +0.026
Ll<g><20  03631)%8 +0.001 L1 <g*> <20 —026610%3 +0.057
20<¢* <30  0.005555% +£0.012 20<¢* <30 —0.76519325 +0.099
30<¢*><40 0905553 +0.009 30<¢*> <40 —0.1347050 £0.108
40<¢> <50 08011221 +0.007 40<¢> <50 04157757 £0.104
50<¢><60  0.1781955 £0.007 50<¢> <60 —0.5617078 £0.101
L1<g*><60 020513 +0.017 1.1<¢*><60 -03361012 +£0.012
Pl 0.10 < ¢> <0.98  0.30071) +£0.023 Py 0.10 < g*> <0.98  0.0867 0122 +0.024
L1 <g><20 =0.632103¢] +0.009 L1 <g* <20 —024413033 +£0.012
20<¢* <30  —0.17601% +0.006 20<¢*<3.0  —0.000519 +0.003
30<¢> <40  —0.5497027¢ + 0.005 3.0 <¢> <40  —0.39370332 +0.002
40<q> <50  0.44915% +0.007 40<g> <50 0303131 +0.006
50<¢* <60  —0.799192¢ +0.022 50<¢? <60 —0.21510377 +0.006
L1<g® <60  —0.049701%7 +0.014 L1 <g® <60 —0.1667010§ +0.021
P 0.10 < ¢> <098  0.1437019% +0.022
Ll <q*> <20 -02447083 +£0.012
20<¢* <30  —-0.39379332 +0.002
30<¢* <40 030337 +0.006
40<g* <50  0.2937132 4+0.006
50<¢ <60 —0.068793% 4+ 0.006
1.1<¢*><60  0.0607)57 +0.009
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TABLE VII. CP-averaged angular observables and CP asymmetries of B, — ¢u*u~ process in bins of ¢2, evaluated using the method
of moments [6]. Here the first uncertainties are statistical and the second are systematic.
Observables q* bin (GeV?) Measurement Observables g* bin (GeV?) Measurement
F 0.10 < g2 < 2.0 0.2070% £ 0.02 S3 0.10 < 2 < 2.0 -0.057013 +0.01
20<¢* <50 0.69791¢ +0.03 20<¢* <50 —0.0679-12 +0.01
1.0 < g% < 6.0 0.6370:% +0.03 1.0 < ¢*> < 6.0 -0.021913 £0.01
S, 0.10 < ¢* < 2.0 0.271978 £0.015 S, 0.10 < > < 2.0 0.047515 £ 0.0
20<¢> <50 -0.471039 £0.01 20<¢* <50 -0.0310,% £0.01
1.0<¢*> <60 -0.19%03 £0.01 1.0 < ¢*> < 6.0 -0.03%4 £0.00
As 0.10 < ¢> < 2.0 —0.027913 £ 0.00 Aq 0.10 < ¢*> < 2.0 -0.190-12 £ 0.01
20< ¢ <50 0.09*928 +0.01 20<¢* <50 0.097079 £ 0.02
1.0 < ¢* < 6.0 0.207¢3 & 0.00 1.0 < ¢* <6.0 0.08%17 £0.01
Ag 0.10 < ¢* < 2.0 0.1010-14 £ 0.00 Ag 0.10 < ¢*> < 2.0 0.03%014 £0.01
20<¢* <50 0.19795% £0.01 20<¢*<50 —0.13702% £ 0.01
1.0<¢*> <60 —0.00113 £ 0.00 1.0 < ¢*> < 6.0 -0.01703 £0.01

MMy, M. q%)

HY = 7 (€59 + CyOf1 (4P,
M3 — M?%
HYy = =2 —=5(C5% + C59) fo(4?),
V q
j,(MZ, M2 , q2)
HY = [FEE SR + AR a)
M2 _M2
H)y = —2=K(Ci¢ + C\)fo(4?),
VvV q
M% - M%( LQ /LQ 2
Hg = (Cs + Cy )fO(q )’
my
M2 _M2
Hp ==F——5(C}° + Cp)fo(a). (B3)
b

APPENDIX C: B — K*[jl;

The matrix elements of the various hadronic currents
between the B meson and the K* vector meson can be
parametrized as [198]

(K*(px+)|57,PLrD|B(P))

. Uk V(S) 1 *
= i€,p€"" P Clﬂm ¥5 (ey(MB + M)A (q%)
Ay (q°)
—(e-a\2p—qg) 221 )
(@) 2P =gy =y
2M g+
-2 (e () = APl ). )
where
Mg+ Mg-) (Mp — Mg-)
A 2 ( B K A 2\ _ A 2
3(4°) . ) Al
(C2)

The angular coefficients /;(¢*) appearing in Eq. (32) are
given by [157]

Ao+ 2" = (m? —=m?)*  4mm,
) = IALR + g+ (0 R 2 I S et 1 aLAT),
4 2 2\2
| el LTI
1) = 157+ g Re(AFAY" - ALAT)
(1 = )2 = P + )
-2 : (AL +1A%P)
q
S (42 /1 2 2
1) = L IALR + 1Ay + (2 R,
c( 2 /1‘1 L|2 R
15 = =24 (47 + 145, ©)
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with 4, = A(m?, m?, g*), with the triangle function A(a, b, ¢) defined in Eq. (29). The transversity amplitudes in terms of
form factors and new Wilson coefficients are given as [157]

\% 2
A = N VI [0+ 6% 7 (Clf + Ch |
B K*

L(R Al(qz)
AL = —NV2(ME - M3 (G5 = CY) F (O = )] =0
N ApAs(q)
ApR — K C? -y F (O - Ol (MZ—M%— 2)(Mp + M)A (¢?) — 22 :
0 2MK*\/?<(9 o) F (Co 10) | (M3 x —q) (Mg x)A1(q%) My + My
242 g CLQ_ QLR _ 1Q
AL<R) — N B CLQ _ C’LQ CLQ _ C/LQ S N P P An(g? , C4
t K\/? (Cs o) F (Cig 10)+mh+ms mi—m, + i+ m, o(q”) (C4)
with
2 2 1/2
2y _ * Ao G 1/2,1/2
Ng-(q°) = Vi Vi [TB,, 3% ;]OﬂjM% Ag Aq :| , (C5)

and 1z = A(M%, M%., ¢%).

APPENDIX D: 7 — py

The loop functions required to compute 7 — uy decay mode in the presence of VLQ are [148]

[—5x3 +9x7 —30x, +8  3xilnx,
Jil) =m: i 12(x, = 1)° 2(xp — 1)4}
[—5x3 +9x7 —30x, +8  3xilnx,
o) =my| =50 Ty 2(x, — 1)*]°
r2
B X, +x,+4 3x,Inx,
S0 = [, =1 ™ (e )
mom,my, [=2x3 + Tx, — 11 In x,,
o) = =" | ,
e myoo L 60n =17 (x-1)
Fi(w) [—4x] +45x7 —33x, + 10 3x; Inx,
xp) =m - ’
T | 12(x, — 1) 2(x, — 1)*
_ [—4x] +45x7 —33x, + 10 3x) Inx,
fa(xp) = m, i 12(x, — 1)° 2(x, — 1)

f_B(xb) =my

(%2 — 11x, + 4 Bx%Jlnxb]
[ 205,12 (= 1))

m.m,my, [x2 —5x, —6 —6x,(1 +x,)Inx,  xjInx, }

Jalww) = my,, 6(x, — 1)° (xp = 1)*

(D1)
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