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We study the possibility to directly detect the boosted dark matter generated from the scatterings
with high energetic cosmic particles, such as protons and electrons. As a concrete example, we consider the
sub-GeV dark matter mediated by a Uð1ÞD gauge boson, which has a mixing with a Uð1ÞY gauge boson in
the Standard Model. The enhanced kinetic energy of the light dark matter from the collision with the
cosmic rays can recoil the target nucleus and electron in the underground direct detection experiments,
transferring enough energy to them to be detectable. We show the impact of boosted dark matter with
existing direct detection experiments as well as collider and beam-dump experiments.
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I. INTRODUCTION

The nature of dark matter (DM) is one of the unsolved
problems in the astro-particle physics that spans from the
small scales of the Galaxy to the large scales of the
Universe [1]. The underground direct-detection experiment
is one of the ways to search for the nongravitational nature
of DM, and the sensitivity of the elastic scattering cross
section with a nucleon now goes down to σχp ≳ 4.1 ×
10−47 cm2 at 30 GeV of DM mass [2]. The constraints
on the scattering cross section of DM with an electron is
σχe ≳ 3 × 10−38 cm2 at 100 MeV [3–5].
In these studies of the DM direct detection, the DMs are

assumed to be nonrelativistic with a Mawell-Boltzmann
distribution around the Milky Way galaxy, with a speed
around 10−3c, with the speed of light c. However, recently,
it was noticed that the elastic scattering of DMs in the
Milky Way with a cosmic ray can change the cosmic ray
spectra [6] and also boost DM [7–9]. The boosted DM
(BDM) can transfer large momentum to the target and make
the recoil energy above the detector threshold even with the
light DM. This was used to search for dark matter in simple
models [10–14].
In this paper, we apply this novel method to the light DM

mediated by a new Uð1ÞD gauge boson, which has a mixing
with Uð1ÞY in the Standard Model (SM) [15–17], which is

one of the simplest extensions of the SM. In this model, the
mixing connects the visible and hidden sectors through
the mediation of the gauge bosons and opens the portal to
the DM in the hidden sector. Here, the DMs can interact
with both nuclei and electrons, and therefore, it is necessary
to consider both scatterings with nuclei and electrons in the
BDM generation, as well as in the direct detection. This
gives different behavior and constraints compared to the
previous analysis, assuming a single kind of interaction. In
this study, we give the realization of the upscattered DM by
cosmic rays of a vector mediation [10] and complement the
existing constraints on this model [18–27].
In Sec. II, we introduce the model we consider, and in

Sec. III, we summarize the generation of BDM and
attenuation. In Sec. IV, we show the results with constraints
from BDM and conclude in Sec. VI.

II. MODEL

We consider a model of Dirac fermion dark matter with a
dark gauge symmetry Uð1ÞD, which mediates the inter-
action between dark and SM sectors through mixing with
Uð1ÞY in the Standard Model [21,28,29]. The Lagrangian is
given by

LZd
¼ −

1

4
ẐdμνẐ

μν
d þ sin ε

2
B̂μνẐ

μν
d þ 1

2
ðm0

Zd
Þ2Ẑμ

dẐdμ; ð1Þ

where B̂μν and Ẑdμν are the field strengths of Uð1ÞY in the
SM and Uð1ÞD in the dark sector, respectively, with a small
mixing term parametrized by sin ε, and mZd

is the mass of
dark gauge boson. Here, we assume that the hidden sector
gauge symmetry is spontaneously broken by additional
Higgs so that the mass of hidden gauge boson Zd is
generated. The fermion dark matter χ has gauge interaction
with hidden gauge boson with gauge coupling gd as
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Lint ¼ gdẐdμχ̄γ
μχ: ð2Þ

Below the electroweak symmetry breaking, the mass
eigenstates (without hat) are related to the bare gauge fields
(with hat) as

Â ¼ ASM − cWtεsXZSM þ cWtεcXZd;

Ẑ ¼ ðcX þ sWtεsXÞZSM þ ðsX − sWtεcXÞZd;

Ẑd ¼ −
sX
cε

ZSM þ cX
cε

Zd; ð3Þ

with the mixing angle θX given by

tan 2θX ¼ 2ðm0
ZÞ2sWtε

ðm0
ZÞ2ð1 − s2Wt

2
εÞ − ðm0

Zd
Þ2=c2ε

: ð4Þ

Here, m0
Z is the mass of Z boson in the SM, and we use the

abbreviations defined by sW ¼ sin θW, cW ¼ cos θW with
the Weinberg mixing angle θW , and tε ¼ tan ε, cε ¼ cos ε,
sε ¼ sin ε, and similarly for cX ¼ cos θX, and sX ¼ sin θX.
In the SM, the gauge interaction for a fermion ψ with

SU(2) charge T3 and electromagnetic charge Q is given by

LSM;int ¼ ψ̄γμψ

�
eQÂμ þ

e
sWcW

ðT3 −Qs2WÞẐμ

�
; ð5Þ

where ψ ¼ νL; eL; eR, etc., and e ¼ jej. In the Appendix,
we show the corresponding interaction Lagrangian between
the DM and proton, neutron, electron, and neutrino, from
which the elastic scattering cross sections are calculated.
For the scattering with the nucleus, the cross section at

finite momentum transfer is corrected with a form factor as
given by

σχNðs; q2Þ ¼ σχNðsÞ × F2ðq2Þ; ð6Þ

where q2 ¼ 2mNTN , with the mass of the target mN and
recoil kinetic energy TN. Here, we use the Helm form factor
[30] with

Fðq2Þ ¼ 3
j1ðqrnÞ
qrn

e−q
2s2=2; ð7Þ

where j1 is the spherical Bessel function, s ¼ 1 fm is the
nuclear skin thickness, and rn ¼ ðc2 þ 7

3
π2a2 − 5s2Þ1=2

parametrizes the nuclear radius, with c ¼ 1.23A1=3 −
0.6 fm and a ¼ 0.52 fm, and A is the mass number of
the nucleus.
In Fig. 1, we show the total scattering cross sections

in terms of the initial kinetic energy of CRs of the
proton (blue), He (red), and electron (green), in the rest
frame of DMwith massmχ ¼ 10−3 GeV (left) and 0.1 GeV
(right). Here, we used the parameters mZd

¼ 0.03 GeV,
αd ≡ g2d=ð4πÞ ¼ 1, and sin2 ε ¼ 10−7. We can see that the
dependence of the cross section on Ti varies for different
mass parameters. When mχ < mZd

(left), the cross section
is enhanced at high Ti; however, when mχ > mZd

(right),
the cross section is suppressed at large Ti due to the
relations between the momentum transfer and the masses of
the relevant particles.

III. BOOSTED DARK MATTER FROM
SCATTERINGS WITH COSMIC RAYS

A. Boosted DM

The DMs in the galactic halo are scattered by the cosmic
rays. In the initial rest frame of DM, the recoiled kinetic
energy of DM after scattering Tχ can be written as

Tχ ¼ Tmax
χ

1 − cos θ
2

;

Tmax
χ ¼ T2

i þ 2miTi

Ti þ ðmχ þmiÞ2=ð2mχÞ
; ð8Þ

where mχ and mi are the mass of DM and the colliding CR
particle, respectively, and θ is the scattering angle in the
center-of-mass frame between the DM and CR particle.
Here, Tmax

χ is the maximum kinetic energy that the DM
can have after scattering. The mometum transfer in the

FIG. 1. The scattering cross section of DM and CRs in the DM rest frame with the kinetic energy Ti of CR with DM mass
mχ ¼ 10−3 GeV (left) and 0.1 GeV (right). Here, we used mZd ¼ 0.03 GeV, αd ¼ 1, and sin2 ε ¼ 10−7.
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collision can be written as Q2 ¼ 2mχTχ . In another way,
the minimum kinetic energy of the cosmic particles to make
DM with Tχ is given by

Tmin
i ¼

�
Tχ

2
−mi

��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Tχ

mχ

ðmi þmχÞ2
ð2mi − TχÞ2

s �
; ð9Þ

where þ for Tχ > 2mi, and − for Tχ < 2mi. When DM
collides with the nuclei in the rest frame, i and χ are
interchanged in the above equations.
To find the flux of BDM, we follow the method in

Ref. [7]. The differential flux of BDM with the kinetic
energy Tχ is obtained by integrating the flux of DM after
scattering with an initial kinetic energy of cosmic particle
Ti as

dΦχ

dTχ
¼

X
i¼p;He;e

Z
∞

Tmin
i

dTi
dΦχ

dTχdTi
;

¼ ρlocalχ

mχ
Deff

X
i¼p;He;e;ν

Z
∞

Tmin
i

dTi
dσχiðTiÞ
dTχ

dΦLIS
i

dTi
; ð10Þ

where Tmin
i is the minimum energy of cosmic rays to give

DM kinetic energy Tχ after collision. Here, we summed

over the contributions from each CR of the proton, helium,
and electron. In the second line, the scattering cross section
between the DM and CR σχi is a function of Ti. For the flux
of cosmic particles, we use the interstellar spectrum of the
high energy cosmic particles observed by Voyger 1 [31]. In
Fig. 2, we show the flux of CRs we used and assume that
the CR flux is uniform in the DM halo.
In the second line, the effective distance Deff is

defined as

Deff ¼ ðρlocalχ Þ−1
Z

dΩ
4π

Z
dl ρχ ; ð11Þ

where we used ρlocalχ ¼ 0.3 GeV=cm3. In this paper, as a
representative value, we use the effective distance
Deff ¼ 1 kpc.
In Fig. 3, we show the flux of the BDM generated

from scatterings with the proton (blue), He (orange),
electron (green), and the total (black) for reference
values of mχ ¼ 0.1 GeV, mZd

¼ 30 MeV, αd ¼ 1, and
sin2 ε ¼ 10−7. For heavier DM with mχ ¼ 0.1 GeV (right),
the proton and helium dominate; however, for the light DM
with mχ ¼ 1 MeV (left), the electron scattering is compa-
rable to those from the proton and helium. This can be
easily understood from Fig. 1. When the mass of DM is
lowered, the number of DM increases, and the cross section
to nuclei is, however, decreased at Ti ∼ GeV, and they
more or less compensate. However, for electron CR, the
cross section is almost the same, and thus, the BDM flux
increases for lighter DM. As can be seen from the Fig. 3
(left), with mχ ¼ 10−3 GeV, the contribution of the CR
proton and helium is dominant at Tχ ≲ 0.1 GeV, while the
electron contribution is larger at Tχ ≳ 0.1 GeV.

B. Attenuation

When the DMs come through the Earth’s crust, they can
interact with the medium and lose energy. This attenuation
of kinetic energy could make DMs undetectable because
the DMs cannot reach the detector, or the kinetic energy of

FIG. 2. Differential flux in terms of kinetic energy of the CR
proton, helium, and electron [31].

FIG. 3. Flux of BDM around Earth generated from scatterings with the proton (blue), He (orange), electron (green), and the total
(black). Here, we used mχ ¼ 10−3 GeV (left), and 0.1 GeV (right), with mZd

¼ 0.03 GeV, αd ¼ 1, and sin2 ε ¼ 10−7.
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DM becomes too small for the threshold in the direct
detection. The energy loss of DM particles per depth that
pass through the medium is [7]

dTχ

dz
¼ −

X
N

nN

Z
Tmax
r

0

dσχNðTrÞ
dTr

TrdTr; ð12Þ

where Tr is the energy lost by BDM in a collision with
nucleus N. In a realistic model, the energy dependence of
the cross section must be considered. By solving this
differential equation, we can find the relation between
the DM kinetic energies Tχ above the Earth and Tz

χ at depth
z below the Earth’s surface. In Fig. 4, we show the change
of the kinetic energy of BDM at depth z in the Earth due to
the attenuation with the nuclei and electron (solid) and
nuclei alone without electron (dashed) for three cases of
mixing with sin2 ϵ ¼ 10−2; 10−3; 10−4, with green, red, and
blue lines, respectively. For low DM mass, the attenuation
due to electron is also comparable to that from nuclei;
however, for heavy DM, the attenuation is dominated by
the collision with nuclei.
In a recent paper [32], they studied new diurnal effects

from the boosted dark matter due to the anisotropic boosted
DM flux and the Earth attenuation. However, in our paper,
the effect is averaged out since we add up the events for a
long period to compare with the experiments.

IV. DIRECT DETECTION OF BOOSTED DM

The DMs that survived the attenuation of the Earth’s
crust reach the underground detector and can scatter the
nuclei or the electrons.

A. DM-nucleus interaction

The BDMs that reach down to the Earth could collide
with target nucleus inside in the detector [7]. This time, the

nucleus is at rest, and the DM is moving, which is the
opposite situation for upscattering DM by cosmic rays. The
differential rate per target nucleus is obtained similarly to
that of Eq. (10) as

dΓN

dTN
¼

Z
∞

TχðTmin;z
χ Þ

dTχ
dσχNðTz

χÞ
dTN

dΦχ

dTχ
; ð13Þ

where the TχðTmin;z
χ Þ is kinetic energy of boosted DM

particle outside Earth, which gives the minimum kinetic
energy to make kinetic energy of target nucleus TN at the
depth z inside the Earth. The scattering cross section is a
function of the DM kinetic energy at the location of the
detector σχNðTz

χÞ, and here, Tz
χ is a function of Tχ after the

attenuation in the Earth, which is evaluated from Eq. (12).
Then, we can calculate the number of the events Nsig by

integrating between the experimentally accessible recoil
energies TN ∈ fT1; T2g, for the corresponding observatio-
nal time Δt and target number NT,

Nsig ¼ NT × Δt ×
Z

T2

T1

dΓN

dTN
; ð14Þ

and compare it with the observational constraint.
For the present bound, we use the DM search results

from a 1 ton-year exposure of Xenon-1T [2], where 1.3 ton
of xenon was exposed for 278.8 days with nuclear recoil
energy region between T1 ¼ 4.9 keV and T2 ¼ 40.9 keV,
and there was no excess found over the background, and
thus, we require that Nsig < 754. For future prospects, we
use factor of 10 for higher sensitivity with Xenon-nT [33]
and 500 to get to the neutrino floor.

B. DM-electron interaction

The BDM scatterings with electron can be probed if the
recoil energy of the electron Te is large enough [8]. Using
the results of Super-Kamiokande (Super-K) with 161.9 kton
yr [34] that is searching signals in the range
0.1 GeV < Te < 1.33 GeV, we apply that the number of
the events is smaller than 4042 for 2628.1 days of Super-K
to put the constraint.

C. Results

In Fig. 5, we show the constraints on the parameters of
ðmχ ; sin2 εÞ from BDM for the fixed values of αd ¼ 1 and
mZd

¼ 30 MeV. The red (blue) shaded region in the left top
is disallowed from the direct detection of the BDM with
nuclei (electrons) in the detector. The future prospects are
also shown with dashed (10 times) dotted lines (500 times).
The constraints from other experiments are shown with thin
colors: direct detection with nuclei (orange) [35], direct
detection with electrons (green) [21], and astrophysics and
cosmology (gray).

FIG. 4. The kinetic energy of BDM at depth z below the Earth’s
surface due to the attenuation normalized by the initial kinetic
energy. We show them for three cases of the mixing angles
sin2 ϵ ¼ 10−2; 10−3; 10−4, with the green, red, and blue lines,
respectively. The dashed lines show the attenuation with only
nuclei ignoring electrons.
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The BDM constraints complements the other bounds of
the direct detection with the nonrelativistic DM. This new
bound closes a small open spot at around mχ ¼ 0.1 GeV
and sin2 ε ¼ 3 × 10−5 and excludes the region of mχ <
4 MeV and sin2 ε≳ 10−5, which is not probed by non-
relativistic DM direct detection. However, the white region
of the left bottom is also constrained when we include the
bound from the beam-dump experiments.
In this realistic model of DM, the shape of the constraint

is different from those where constant cross section was
assumed [7–9] or that where a simple vector mediation
model to the nucleon was used [10]. Themχ dependence of
the BDM constraint can be understood as follows.
First, the number of DM in the halo is inversely propor-

tional to mχ . For the DM-nucleus direct detection, we need
to have recoil energy of nucleus larger than keV. For
mχ ≲ 10 MeV, this is satisfied for the DM kinetic energy
larger than around 10MeV, at which theBDM flux ismainly
from CR of the proton and helium as well as comparable
contribution from the electron. The energy transferred from
CRproton toDMscales asTχ ≃ 2mχT2

i =m
2
p, and the integral

of the CR flux, which scales ∼T−2.7
i , is proportional to

ðTmin
i Þ−1.7 ∝mχ

0.85. Therefore, the event rate is proportional
toΓ ∝ mχ

−1ε4mχ
0.85 ¼ ε4mχ

−0.15, which gives ε2 ∝ mχ
0.075.

For mχ ≳ 10 MeV, the CR proton to DM scattering
cross section becomes dependent on ε2mχ

2, and also the

recoil energy of the nucleus scales TN ≃ 2mχTχ

mN
, with

Tχ ≃ 2mχT2
i =m

2
p. Therefore, Γ ∝ ε4mχ

2.7, which gives
ε2 ∝ mχ

−1.35. That explains the ups and downs of the
BDM constraint (red) in Fig. 5.
For DM-electron direct detection in Super-K, it is

necessary that the recoil energy of electron be larger than
100 MeV. For mχ ≲ 10 MeV, the dominant contribution to
BDM comes from CR electron, and for mχ ≳ 10 MeV, it
comes from the CR proton or helium. For the low mχ

region, the event rate scales as Γ ∝ mχ
−1ε4, resulting in

ε2 ∝ ffiffiffiffiffiffimχ
p . For the large mχ region, Te ≃ 2meT2

χ=mχ
2, and

Γ ∝ ε4mχ
−2.7. This gives ε2 ∝ mχ

1.35 [8].
In Fig. 6, we show the constraints on the plane of

ðmZd
; sin2 εÞ for mχ ¼ 100 MeV and αd ¼ 1, with other

direct detection bound (orange and green) as well as the
constraints from collider [36] and beam-dump experiments
[37] (gray). The present BDM constraint is already within
the bounds of the collider, and, in the future, BDM may
touch the unbounded region by them, though it is already
ruled out by the Xenon-10 experiment.

V. ASTROPHYSICAL CONSTRAINTS

The large kinetic mixing of the hidden gauge boson
with the SM may change the effective number of neu-
trinos, which represents the degrees of freedom of
relativistic decoupled species. The current Planck obser-
vation gives a lower bound on the allowed mass of hidden
gauge boson around 8.5 MeV for the mixing parameter
sin ε≳ 10−9 [22].
The large annihilation of DMs in the early Universe also

can affect the Big Bang Nucleosynthesis and Cosmic
Microwave Background [26,38]. However, this may be
avoided for a specific models of dark matter, such as
asymmetric dark matter. This requires nonthermal produc-
tion of dark matter, which is beyond of our simple model of
kinetic mixing [39].

VI. CONCLUSION

We studied the impact of the boosted dark matter
generated by scatterings of the high energy cosmic rays
mediated by the U(1) gauge kinetic mixing. The non-
observation in the underground direct detection combined
with the BDM constrains the light dark matter region,

FIG. 5. Constraints on the DM mass and kinetic mixing from
BDM through the scatterings with nuclei (red) and electrons
(blue). Here, we used αd ¼ 1 and mZd

¼ 30 MeV. The future
prospects are shown with dashed and dotted lines, The constraints
from other direct detection experiments and astrophysical ob-
servations are also shown with thin colors.

FIG. 6. Constraints from BDM on the parameter region
(mZd

; sin2 ε2) with DM mass mχ ¼ 100 MeV for αd ¼ 1. Here,
we used the constraint from Xenon-1T (solid), future prospect
(dashed), and neutrino floor (dotted) [33]. The other constraints
shown with thin colors include those from the collider and beam
dump. The constraints from direct detection are also shown with
orange and green colors.
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independently of the previous bounds of the direct detec-
tion, as well as the collider and beam-dump experiments.
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APPENDIX: KINEMATICS AND THE
CROSS SECTION

1. Kinematics

The differential cross section for elastic scattering of
particle 1 and 2 is given by

dσ
dt

¼ jMj2
16πλðs;m2

1; m
2
2Þ
; ðA1Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ca ¼
½a − ð ffiffiffi

b
p þ ffiffiffi

c
p Þ2�½a − ð ffiffiffi

b
p

−
ffiffiffi
c

p Þ2�. If particle 2 is at
rest initially, the Mandelstam variables are given by

s¼m2
1þm2

2þ2E1m2;

¼ðm1þm2Þ2þ2T1m2 ¼M2þ2m1m2þ2T1m2;

t¼ 2m2
2−2m2E2¼−2m2T2;

u¼ 2ðm2
1þm2

2Þ− s− t¼M2−2m1m2−2m2ðT1−T2Þ;
ðA2Þ

where M2 ¼ m2
1 þm2

2, and

λðs;m2
1; m

2
2Þ ¼ ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ

¼ ð2E1m2 − 2m1m2Þð2E1m2 þ 2m1m2Þ
¼ 4m2

2ðT2
1 þ 2m1T1Þ

¼ 2s ·m2 · Tmax
2 : ðA3Þ

Here, T1 is the kinetic energy of a particle 1 before
collision, and T2 is the kinetic energy of a particle 2 after
collision, with the maximum of T2 given by

Tmax
2 ¼ T2

1 þ 2m1T1

T1 þ ðm1 þm2Þ2=ð2m2Þ
: ðA4Þ

Therefore, we can write Eq. (A1) into

dσ
dT2

¼ −2m2

dσ
dt

¼ −
jMj2

16πsTmax
2

: ðA5Þ

If jMj2 is constant, the total cross section becomes

σtot ¼
Z

0

−2m2Tmax
2

�
dσ
dt

�
dt ¼ jMj2

16πs
: ðA6Þ

2. Scattering cross section of DM in the
model of dark gauge boson

The Lagrangian we are using is written by

L¼LSM−
1

4
ẐdμνẐ

μν
d þ sinε

2
B̂μνẐ

μν
d þ1

2
ðm0

Zd
Þ2Ẑμ

dẐdμþLint;

ðA7Þ

where B̂μν and Ẑdμν are the field strengths of Uð1ÞY in the
SM and Uð1ÞD in the dark sector, respectively, with a small
mixing term parametrized by sin ε, and mZd

is the mass of
dark photon. The fermion dark matter χ has a gauge
interaction with the gauge boson with gauge coupling gd as

Lint ¼ gdχ̄γμχẐdμ: ðA8Þ

The mixing term between B̂ and Ẑd can be removed by
the field redefinition,

� B0
μ

Z0
dμ

�
¼

�
1 − sin ε

0 cos ε

��
B̂μ

Ẑdμ

�
: ðA9Þ

The electroweak symmetry breaking generates mass to Ẑ
boson with massless Â, which are defined by

Âμ ¼ cWB̂μ þ sWŴ
3
μ; Ẑμ ¼ −sWB̂μ þ cWŴ

3
μ; ðA10Þ

in terms of the Weinberg mixing angle θW , with cW ≡
cos θW and sW ¼ sin θW . The mass term can be written in
terms of Z0 and Z0

d by

1

2
ðm0

ZÞ2ẐμẐ
μ¼1

2
ðm0

ZÞ2ð−sWB̂μþcWŴ
3
μÞð−sWB̂μþcWŴ

3;μÞ;

¼1

2
ðm0

ZÞ2Z0
μZ0;μ−ðm0

ZÞ2sWtεZ0
μZ

0;μ
d

þ1

2
ðm0

ZÞ2s2Wt2εZd
0
μZ

0;μ
d ; ðA11Þ

where

Z0
μ ¼ −sWB0

μ þ cWŴ
3
μ; A0

μ ¼ Âμ: ðA12Þ

Then, the mass matrix in the basis of (A0, Z0, Z0
d) is

written as

M2 ¼

2
664
1 0 0

0 ðm0
ZÞ2 −ðm0

ZÞ2sWtε
0 −ðm0

ZÞ2sWtε
ðm0

Zd
Þ2

cos2ε þ ðm0
ZÞ2s2Wt2ε

3
775; ðA13Þ

which can be diagonalized to find the mass eigenstates
(ASM, ZSM, Zd)
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2
64
ASMμ

ZSMμ

Zdμ

3
75 ¼

2
64
1 0 0

0 cos θX − sin θX
0 sin θX cos θX

3
75
2
64

A0
μ

Z0
μ

Z0
dμ

3
75; ðA14Þ

with the mixing angle θX given by

tan 2θX ¼ 2ðm0
ZÞ2sWtε

ðm0
ZÞ2ð1 − s2Wt

2
εÞ − ðm0

Zd
Þ2=c2ε

: ðA15Þ

The mass eigenvalues for ZSM and Zd are [24]

m2
ZSM

¼ ðm0
ZÞ2ð1þ sWtεtXÞ;

m2
Zd

¼ ðm0
Zd
Þ2

c2ε
ð1þ sWtεtXÞ−1: ðA16Þ

In this paper, with small ε, we can approximate mZSM
≃m0

Z

and mZd
≃m0

Zd
. By rearranging the above terms, we can

find the relations between the mass eigenstates of the gauge
bosons ðASM; ZSM; ZdÞ and the interaction eigenstates
ðÂ; Ẑ; ẐdÞ as

Â ¼ ASM − cWtεsXZSM þ cWtεcXZd;

Ẑ ¼ ðcX þ sWtεsXÞZSM þ ðsX − sWtεcXÞZd;

Ẑd ¼ −
sX
cε

ZSM þ cX
cε

Zd: ðA17Þ

For the Standard Model, the gauge interaction for a fermion
ψ with SU(2) charge T3 and EM charge Q is

Lint ¼ ψ̄γμψ

�
eQÂμ þ

e
sWcW

ðT3 −Qs2WÞẐμ

�
; ðA18Þ

where ψ ¼ νL; eL; eR, etc. and e ¼ jej. By using Eq. (A17),
we can find easily the interaction of SM particles to the
mass eigenstates of the gauge bosons.

3. DM-electron scattering

The interaction Lagrangian of electron is given by

Lint ¼ ēγμe½−eASMμ þ gCZSMμ þ gCdZdμ�
þ ēγμγ5e½gAZSMμ þ gAdZdμ�; ðA19Þ

where

gC ¼ e
4

�
cXð3 tan θW − cot θWÞ þ

3sXtε
cW

�
;

gCd ¼
e
4

�
sXð3 tan θW − cot θWÞ −

3cXtε
cW

�
;

gA ¼ e
4cW

�
cX
sW

þ sXtε

�
;

gAd ¼
e

4cW

�
sX
sW

− cXtε

�
: ðA20Þ

Note that tX ≃ sWtεð1 −mZd
2=m2

ZÞ−1 for very small ε and
θX, and thus gCd and gAd become

gCd ∼
e
4

mZd
2

m2
Z −mZd

2

c2W − 3s2W
cW

ε;

gAd ∼
e
4

mZd
2

m2
Z −mZd

2

1

cW
ε: ðA21Þ

The invariant matrix element M is

iM ¼ ūspχ

�
igd

sXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
us

0
kχ

�−iðημν − qμqν
m2

Z
Þ

q2 −m2
Z

�
× ūrpe

ðiγνðgC þ gAγ5ÞÞur0ke

þ ūspχ

�
−igd

cXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
us

0
kχ

�−iðημν − qμqν
m2

Zd

Þ
q2 −m2

Zd

�

× ūrpe
ðiγvðgCd þ gAdγ5ÞÞur0ke ; ðA22Þ

and the spin-averaged amplitude squared is

jMj2 ¼ 2g2d
1 − ε2

��
sXgC
t −m2

Z
−

cXgCd
t −m2

Zd

�
2

Aðmχ ; meÞ

þ
�

sXgA
t −m2

Z
−

cXgAd
t −m2

Zd

�
2

Bðmχ ; meÞ
�
; ðA23Þ

where

Aðmχ ;miÞ¼2tM2þðs−M2Þ2þðu−M2Þ2;
Bðmχ ;miÞ¼ðs−M2Þ2þðu−M2Þ2þ2tðm2

χ−m2
i Þ−8m2

χm2
i ;

with M2¼m2
χþm2

i : ðA24Þ

For the nonrelativistic limit, s → ðm1 þm2Þ2; t → 0, and
u→ðm1−m2Þ2, then Aðmχ ;miÞ¼8m2

χm2
i , and Bðmχ ;miÞ¼

0. In this limit, Eq. (A2) becomes

t ¼ −2m2T2;

s −M2 ¼ 2m1m2 þ 2m2T1;

u −M2 ¼ −2m1m2 − 2m2ðT1 − T2Þ: ðA25Þ
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For the nonrelativistic limit, jMj2 becomes

jMj2 ¼ 16g2dm
2
χm2

e

1 − ε2

�
sXgC
m2

Z
−
cXgCd
m2

Zd

�
2

; ðA26Þ

and the scattering cross section is given by

σNRχe ¼ g2dμ
2
χe

πð1 − ε2Þ
�
sXgC
m2

Z
−
cXgCd
m2

Zd

�
2

: ðA27Þ

4. DM-neutrino scattering

The interaction Lagrangian of neutrino is given by

Lint ¼ ν̄eγ
μð1 − γ5Þ½gAZSMμ þ gAdZdμ�νe: ðA28Þ

Within the invariant matrix element, M is given by

iM ¼ χ̄ðp0Þ
�
igd

sXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
χðpÞ

�−iðημν − qμqν
m2

Z
Þ

q2 −m2
Z

�
ν̄eðk0Þð−igAγνð1 − γ5ÞÞνeðkÞ

þ χ̄ðp0Þ
�
−igd

cXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
χðpÞ

�−iðημν − qμqν
m2

Zd

Þ
q2 −m2

Zd

�
ν̄eðk0Þð−igAdγvð1 − γ5ÞÞνeðkÞ; ðA29Þ

and the spin-averaged amplitude squared is obtained as

jMj2 ¼ 4g2dAðmχ ; 0Þ
ð1 − ε2Þ

�
sXgA

ðt −m2
ZÞ

−
cXgAd

ðt −m2
Zd
Þ
�

2

: ðA30Þ

5. DM-nucleus scattering

The interaction Lagrangian of the proton and neutron is given by

Lint ¼ p̄γμpðeASMμ − gCZSMμ − gCdZdμÞ þ p̄γμγ5pð−gAZSMμ − gAdZdμÞ þ n̄γμð1 − γ5Þnð−gAZSMμ − gAdZdμÞ; ðA31Þ

and thus, the interaction of the nucleus with mass number A and the number of proton Z is

Lint ¼ N̄γμN½ZeASMμ − gNCZSMμ − gNCdZdμ� þ N̄γμγ5N½−gNAZSMμ − gNAdZdμ�; ðA32Þ

gNC ¼ ZgC þ ðA − ZÞgA;
gNCd ¼ ZgCd þ ðA − ZÞgAd;
gNA ¼ ð2Z − AÞgA;
gNAd ¼ ð2Z − AÞgAd: ðA33Þ

The invariant matrix element M is

iM ¼ ūspχ

�
igd

sXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
us

0
kχ

�−iðημν − qμqν
m2

Z
Þ

q2 −m2
Z

�
ūrpN

ð−iγνðgNC þ gNAγ5ÞÞur0kN

þ ūspχ

�
−igd

cXffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p γμ
�
us

0
kχ

�−iðημν − qμqν
m2

Zd

Þ
q2 −m2

Zd

�
ūrpN

ð−iγvðgNCd þ gNAdγ5ÞÞur0kN ; ðA34Þ

and the spin-averaged amplitude squared is

jMj2 ¼ 2g2d
1 − ε2

��
sXgNC
t −m2

Z
−
cXgNCd
t −m2

Zd

�
2

Aðmχ ; mNÞ þ
�
sXgNA
t −m2

Z
−
cXgNAd
t −m2

Zd

�
2

Bðmχ ; mNÞ
�
: ðA35Þ
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For the nonrelativistic limit, it becomes

jMj2 ¼ 16g2dm
2
χm2

N

1 − ε2

�
sXgNC
m2

Z
−
cXgNCd
m2

Zd

�
2

;

¼ 16g2dm
2
χm2

N

1 − ε2

�
Z

�
sXgC
m2

Z
−
cXgCd
m2

Zd

�
þ ðA − ZÞ

�
sXgA
m2

Z
−
cXgAd
m2

Zd

��
2

; ðA36Þ

and the total scattering cross section becomes

σNRχN ¼ g2dμ
2
χN

πð1 − ε2Þ
�
Z

�
sXgC
m2

Z
−
cXgCd
m2

Zd

�
þ ðA − ZÞ

�
sXgA
m2

Z
−
cXgAd
m2

Zd

��
2

: ðA37Þ
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