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I consider contributions to the neutron electric dipole moment within two-Higgs-doublet models which
allow for small flavor changing neutral Higgs couplings. In a previous paper, I considered flavor changing
interactions for the Standard Model Higgs boson to first order in the flavor changing coupling. In that paper
I found that the obtained value of the neutron electric dipole moment was below the present experimental
limit, given previous restrictions on such couplings. Because this was an effective theory, the result
depended on an ultraviolet cut off Λ, parametrized as lnðΛ2Þ. In the present paper I demonstrate that, when
going to two-Higgs-doublet models, the result stays the same as in the previous paper, up to M2

SM=M
2
H

corrections, where MSM is the mass of the top quark or the W boson. MH is the mass of the heavy neutral
scalar Higgs bosonH which is much heavier than the light neutral Higgs boson hwith massMh. In the limit

M2
H ≫ M2

h, the lnðΛ2Þ behavior in the previous paper is replaced by lnðgMH
2Þ, where gMH is of order MH.

I also explain how some divergences due to exchange of the pseudoscalar Higgs A are canceled by similar
contributions from the scalar heavy Higgs H, and that these contributions, and finite contributions from A
exchange, are suppressed.

DOI: 10.1103/PhysRevD.102.095009

I. INTRODUCTION

Studies of CP-violating phenomena are important in
order to understand the asymmetry between matter and
antimatter in theUniverse. Electric dipolemoments (EDMs)
of elementary particles violate time reversal symmetry.
Assuming CPT symmetry to be valid, EDMs are therefore
also CP violating. EDMs of elementary particles have not
been seen yet. But experimental searches for EDMs and
theoretical studies of EDMs are important because any
measured result bigger than the tiny values obtained within
the Standard Model (SM) will signal new physics. Reviews
on EDMs within the SM and beyond are given in [1–4]. For
the EDM of the neutron (nEDM ¼ dn) discussed in this
paper, the present experimental bound is [5]

dexpn =e ≤ 2.9 × 10−26 cm: ð1Þ

The corresponding values calculated within the SM are
ranging from 10−34 e to 10−31 e cm, depending on the
considered mechanism [6–15]. Many models beyond the
SM (BSM) give bigger values compared to those obtained

within the SM [1–4,16–26]. In the presence of new physics,
flavor physics may also give useful CP-violating observ-
ables. These may occur for instance in CP-violating
mesonic decays [17,18,27]. Within new physics models
describing such processes there might be mechanisms that
also generate new contributions to the electric dipole
moments of quarks (see e.g., [28]).
The electric dipole moment of a single fermion has the

form

LfEDM ¼ i
2
dfψ̄fσμνFμνγ5ψf; ð2Þ

where df is the electric dipole moment of the fermion, ψf is
the fermion (quark) field, Fμν is the electromagnetic field
tensor, and σμν ¼ i½γμ; γν�=2 is the dipole operator in
Dirac space.
We still do not know in detail the properties and couplings

of the Higgs boson. For instance, the SM Higgs might mix
with a higher mass scalar(s) in the BSM. It has been
suggested [29–34] that the SM Higgs boson might have
small flavor changing couplings to fermions. Such cou-
plings may also be CP violating. Studying flavor changing
processes like K − K̄, D − D̄, and B − B̄ mixings, and also
leptonic flavor changing decays like μ → eγ and τ → μγ,
bounds on quadratic expressions of such flavor changing
couplings were obtained. For the leptonic cases two-loop
diagrams of Barr-Zee type [35] for EDMs were also
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considered [29–31,36,37]. Extra couplings of the SMHiggs
to quarks has also been considered in [38].
In a previous paper [39], I extended the analysis of EDMs

of light quarks with flavor changing SM Higgs couplings
(FCH) to two-loop diagrams. Going from one- to two-loop
diagrams there is a priori a loop suppression. However, in
general, it is known that some two-loop diagramsmight give
bigger amplitudes than one-loop diagrams because of
helicity flip(s) in the latter [30,31,36,40]. And further, what
is most important in the present case, I calculated two-loop
diagrams containing a small FCH to first order only, in
contrast to one-loop contributions with a small FCH
coupling to second order, as in [30,31]. Therefore, if the
FCH couplings exist, my two-loop amplitudes might
numerically compete or even dominate over the one-loop
amplitudes calculated previously.
Some of the two-loop diagrams were divergent and

parametrized by a ultraviolet cutoff Λ [39]. In the present
paper I address the same diagrams within two-Higgs-
doublet models (2HDMs). In such renormalizable models
one knows that the final result does not depend on divergent
contributions. In Sec. VI demonstrate how divergent terms
disappear due to cancellations of different terms in the
general 2HDMs. And I find how the phenomenological
FCH coupling of Refs. [30,31] is expressed within 2HDMs.
For descriptions of 2HDMs, see the reviewbyBranco et al.

[41], and alsomore recent papers [42–53]. Phenomenological
consequences of 2HDMs are given in [54].
Some technical details from the two-loop calculations

are given in the Appendix.

II. FLAVOR CHANGING PHYSICAL HIGGS?

Within the framework in [29–33] the effective interaction
Lagrangian for a flavor transition between fermions of
the same charge due to SM Higgs boson exchange might
be obtained from six-dimensional nonrenormalizable
Higgs-type Yukawa-like interactions as shown explicitly
in [31,34],

LðDÞ ¼ −λijðQLÞiϕðdRÞj −
λ̃ij
Λ2
NP

ðQLÞiϕðdRÞjðϕÞ†ϕþH:c:;

ð3Þ

where the generation indices i and j running from 1 to 3 are
understood to be summed over; i. e. dj ¼ d, s, b for j ¼ 1,
2, 3. Further, ϕ is the SM Higgs SUð2ÞL doublet field,
ðQLÞi are the left-handed SUð2ÞL quark doublets, and the
ðdRÞj’s are the right-handed SUð2ÞL singlet d-type quarks
in a general basis. Further, ΛNP is the scale where new
physics is assumed to appear. There is a similar term LðUÞ
like the one in (3) for right-handed-type u-quarks, uj,
i.e., uj ¼ u, c, t for j ¼ 1, 2, 3. If higher states from a
renormalized theory are integrated out. interactions may
occur like in (3) below.

In such cases the Yukawa interaction for the SM neutral
Higgs boson h0 to d-type quarks has the form

LðDÞ
Y ¼ −h0ðd̄LÞiðYðDÞ

R ÞijðdRÞj þ H:c:; ð4Þ

where

YðDÞ
R ¼ MðDÞ

v
− ϵðDÞ

R : ð5Þ

Here MðDÞ is the mass matrix for d-type quarks giving the

SM coupling, and ϵðDÞ
R is the part which goes beyond the

SM, related to the six-dimensional operators in (4).
Explicitly, one finds [31,34]

ðMðDÞÞij ¼
vffiffiffi
2

p
�
λij þ

v2λ̃ij
2Λ2

NP

�
; and ðϵðDÞ

R Þij ¼
v2λ̃ijffiffiffi
2

p
Λ2
NP

:

ð6Þ

As usual v is the vacuum value 246 GeV for the SM Higgs
field. The mass matrix MðDÞ may be rotated to diagonal
form. However, this rotation will in general not give a

diagonal ϵðDÞ
R , such that the SM Higgs coupling to fermions

will in general be flavor changing. Thus, for i ≠ j,

YðDÞ
R ¼ −ϵðDÞ

R . In [29–34] bounds of FCH couplings to
second order are obtained from various flavor changing
processes. In my own case, I will need the bound on

YðDÞ
R ðd → bÞ from Bd − Bd mixing [31].

III. YUKAWA INTERACTIONS FOR 2HDM

For 2HDMs the extended Yukawa interactions for right-
handed-type d-quarks may then, in the most general case,
be written as [46]

−LðDÞ
Γ ¼ððQLÞi0Þr½ðΓ1Þrsij ðΦ1ÞsþðΓ2Þrsij ðΦ2Þs�ðdRÞ0jþH:c:;

ð7Þ

where i, j are as before generation indices running from
one to three and r, s are SUð2ÞL indices running from one
to two. The upper index 0 denotes the fields before
diagonalization of the mass matrices in the quark sector.
Thus the Γ’s are 2 × 2-dimensional in SUð2ÞL space and
3 × 3-dimensional in generation space. The fields Φ1;2 are
the two Higgs fields.
For the right-handed-type u-quarks one has similarly

as (7)

−LðUÞ
Δ ¼ ðQLÞ0½Δ1Φ̃1 þ Δ2Φ̃2�ðuRÞ0 þ H:c:; ð8Þ

where the generation and SUð2ÞL indices are suppressed.
Γ1;2 and Δ1;2 are in general complex and independent
quantities. In many papers one discusses restrictions on
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2HDMs to avoid flavor changing neutral currents com-
pletely. But in this paper the point is to study such potential
effects.
The two Higgs doublets may for n ¼ 1, 2 be written

[41,44]

Φn ¼ eiξn
� ϕþ

n
1ffiffi
2

p ðvn þ ρn þ iηnÞ
�
;

Φ̃n ¼ e−iξn
� 1ffiffi

2
p ðvn þ ρn − iηnÞ

−ðϕþ
n Þ†

�
; ð9Þ

where Φ̃n ≡ iσ2Φ�
n, and eiξn are phase factors. One intro-

duces the parameter β through

tan β≡ v2
v1

: ð10Þ

After diagonalization of the mass matrix for the neutral
fields ρ1;2 obtained from the Higgs potential [41] one finds
the neutral scalar mass eigenstates

h ¼ ρ1sα − ρ2cα; H ¼ −ρ1cα − ρ2sα; ð11Þ

and the inverted relations are

−ρ1 ¼ −Hcα − sαh; −ρ2 ¼ hcα −Hsα: ð12Þ

Here sα ≡ sin α and cα ≡ cos α, where α is the mixing
angle coming from the diagonalization of the mass matrix
of the ρ1;2 fields. Note that in the previous paper [39] the
SM Higgs was denoted H. In the present paper this symbol
is reserved for the heavy neutral Higgs boson within
2HDMs.
In 2HDMs one often uses the Higgs basis, where the

doublet fields H1;2 are defined by

e−iξ1Φ1¼ cβH1þ sβH2; e−iξ2Φ2 ¼ sβH1−cβH2; ð13Þ

where cβ ≡ cos β and sβ ≡ sin β. With this definition H1

has a vacuum value v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þv22

p
and H2 has zero vacuum

value. Thus, in this basis

H1 ¼
� Gþ

1ffiffi
2

p ðvþ h0 þ iG0Þ
�
; H2 ¼

� Hþ

1ffiffi
2

p ðR0 þ iAÞ
�
;

ð14Þ

where v is the vacuum value 246 GeV for the SM Higgs
field, and Gþ and G0 are Goldstone fields. Hþ is the
charged Higgs field and A the neutral pseudoscalar field
within 2HDMs. Now the neutral scalar fields h0 and R0 can
be written in terms of the physical (within 2HDMs) neutral
scalars h and H as

h0 ¼ −cθH þ sθh; R0 ¼ sθH þ cθh; ð15Þ

where

cθ ≡ cos θ; and sθ ≡ sin θ; where θ≡ α − β; ð16Þ

will be the mixing angle in the neutral Higgs sector.
Assuming the SM field h0 to be close to h means that
sin θ is close to 1.
In the Higgs basis the extended Yukawa interactions may

(in matrix notation) then be written

−
vffiffiffi
2

p LY ¼ QL
0ðM0

dH1 þ N0
dH2Þd0R

þQL
0ðM0

uH̃1 þ N0
uH̃2Þu0R þ H:c:; ð17Þ

where

M0
d ¼ ðcβΓ1 þ eiξsβΓ2Þ

veiξ1ffiffiffi
2

p ;

N0
d ¼ ðsβΓ1 − eiξcβΓ2Þ

veiξ1ffiffiffi
2

p ; ð18Þ

where ξ ¼ ξ2 − ξ1 and for the u-quark case

M0
u ¼ ðcβΔ1 þ e−iξsβΔ2Þ

ve−iξ1ffiffiffi
2

p ;

N0
u ¼ ðsβΔ1 − e−iξcβΔ2Þ

ve−iξ1ffiffiffi
2

p : ð19Þ

Now one transforms the mass matrices M0
d;u to diagonal

form with matrices Ud;u
R;L,

Md ¼ ðUd
LÞ†M0

dU
d
R ¼ diagðmd;ms;mbÞ;

Nd ¼ ðUd
LÞ†N0

dU
d
R; dR;L ¼ ðUd

R;LÞ†d0R;L; ð20Þ

and similarly

Mu ¼ ðUu
LÞ†M0

uUu
R ¼ diagðmu;mc;mtÞ;

Nu ¼ ðUu
LÞ†N0

uUu
R; uR;L ¼ ðUu

R;LÞ†u0R;L; ð21Þ

for the u-quark case.
The total neutral Yukawa interactions for d-type quarks

may now be written in terms of physical quantities as [46]

−vLðd;nÞ
Y ¼ dLðvþ iG0 − cθH þ sθhÞMddR

þ dLðsθH þ cθhþ iAÞNddR þ H:c: ð22Þ

and for the u-quark case the corresponding interactions
similarly
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−vLðu;nÞ
Y ¼ uLðv − iG0 − cθH þ sθhÞMuuR

þ uLðsθH þ cθh − iAÞNuuR þ H:c: ð23Þ

For the charged interactions one obtains

−
vffiffiffi
2

p LðchargedÞ
Y ¼ uLVCKMðGþMd þHþNdÞdR

− dLV
†
CKMðG−Mu þH−NuÞuR

þ H:c: ð24Þ

While the mass matrices Md and Mu are now flavor
diagonal, the matrices Nd and Nu are in general flavor
nondiagonal and CP violating. These may give contribu-
tions to the YR’s in Eq. (4). In Eqs. (22) and (23) one
observes that there will be flavor changes for the lightest
Higgs h proportional to the nondiagonal matrices Nd
and Nu.
In many papers on 2HDMs, one assumes for instance an

extra discrete symmetry (symmetries) to simplify the
theory. In [46] possible restrictions on (7) and (8) are
discussed. Here I stick to the general case.
Further, I consider how the six-dimensional interaction

in Eq. (3) is obtained in 2HDMs. One way might be to
consider the part of the Higgs potential containing a product
of four Φ1 or Φ2 Higgs fields (see for example [44]),

V4Φ
2HDM ¼ 1

2
λ1ðΦ†

1Φ1Þ2þ
1

2
λ2ðΦ†

2Φ2Þ2þλ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þλ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þþ
1

2
½λ5ðΦ†

1Φ2Þ2þH:c:�
þð½λ6ðΦ†

1Φ1Þþλ7ðΦ†
2Φ2Þ�ðΦ†

1Φ2ÞþH:c:Þ: ð25Þ

Such potentials may contribute to YR’s in (4). In (3) ϕ is the
SM Higgs which one within 2HDMs identify with H1 in
(14). Inserting (13) in (25), the Higgs potential (25) will
contain several terms of the type ðH†

1H1ÞðH†
2H1Þ. The

coefficient for the sum of such terms is

Cλ ¼ λ1sβc3β þ λ2cβs3β þ ðλ3 þ λ4Þsβcβðs2β − c2βÞ
þ λ5e−2iξs3βcβ − λ�5e

2iξc3βsβ þ 2λ6c2βs
2
βe

−iξ

þ λ�6ðs2βc2β − c4βÞeiξ þ λ7ðs4β − s2βc
2
βÞe−iξ

− 2λ�7c
2
βs

2
βe

iξ: ð26Þ

Now the fieldH†
2 at space-time z2 in such expressions might

be contracted with the fieldH2 at space-time z1 in (17). This
makes the field contraction (C)

CðH2ðz1ÞðH2ðz2ÞÞ†Þ ¼ DH2
ðz1 − z2Þ: ð27Þ

Then one obtains an effective six-dimensional interaction

−
vffiffiffi
2

p LðDÞ
6 ¼ððQLðz1ÞÞ0Þ½MdH1ðz1Þ

þCλNdDH2
ðz1− z2ÞH1ðz2ÞððHðz2Þ1Þ†H1ðz2ÞÞ�

× ðdRÞ0jðz1ÞþH:c: ð28Þ

So far, this is not a local operator. The propagator
DH2

ðz1 − z2Þ contains a propagator Dh for the light neutral
Higgs and a part DH for the heavy neutral Higgs H.
However, if the SM Higgs is close to the light Higgs h, then
sθ is close to 1, and thereby the scalar R0 is close to the
heavy Higgs H. The part containing the heavy Higgs H
interaction is then for M2

H ≫ M2
h,

DHðz1 − z2Þ ≃ −
δð4Þðz1 − z2Þ

M2
H

ðsin θÞ2; ð29Þ

making the H-part of the interaction local in this limit and
giving the following nondiagonal contribution to YR in (4)
and (6) for i ≠ j:

ððYðDÞ
R ÞijÞH ¼ −ððϵðDÞ

R ÞijÞH ¼ v2ðλ̃ijÞHffiffiffi
2

p
Λ2
NP

≃ −CλðNdÞij
vffiffiffi
2

p
M2

H

ðsin θÞ2: ð30Þ

The nonlocal h-part Dh would be a term corresponding
to a higher order diagram. This term is shortly discussed at
the end of Sec. V.

IV. nEDM GENERATED FROM A FLAVOR
CHANGING HIGGS COUPLING

In this section I give a short summary of the results from
the previous paper [39]. The reason being that the diagrams
calculated in that paper are also relevant in 2HDMs.
In [39], two classes of diagrams for EDMs of light

quarks, shown in Figs. 1 and 2, were considered. These
diagrams are obtained from the flavor nondiagonal inter-
action in (4), completed by SM interactions. But these
diagrams also give contributions within 2HDMs with flavor
change, as explained in the next section.
As explained in [39], the u-quark dipole moment du due

to diagrams in Fig. 1 are suppressed and therefore
neglected. Thus, the d-quark dipole moment contributions
dominate, and other contributions are neglected. Summing
all contributions from diagrams in Figs. 1 and 2, I obtained
the dominating contribution in the bare case (before QCD
corrections) [39]�

dd
e

�
Tot

¼ F2CEðμΛÞIm½YRðd → bÞV�
tdVtb�; ð31Þ

where the constant F2 sets the overall scale of the EDMs
obtained from the two-loop diagrams
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F2 ¼
g3W

MW

ffiffiffi
2

p
�

1

16π2

�
2

¼ 2M2
W

v3

�
1

16π2

�
2

≃ 6.94 × 10−22 cm; ð32Þ

where v ¼ 246 GeV is the electroweak symmetry breaking
scale and where I have used the conversion relation
1=ð200 MeVÞ ¼ 10−13 cm.
Further,

CEðμΛÞ ¼
��

2ut
3

p1ðutÞ þ
25

12
p2ðutÞ

�
CΛ þ fFin

�
: ð33Þ

Here p1 and p2 are one-loop functions for finite
subloops [39]

p1ðuÞ≡ u
ðu − 1Þ

�
1 −

lnðuÞ
u − 1

�
; and

p2ðuÞ≡ u
ðu − 1Þ

�
u · lnðuÞ
u − 1

− 1

�
: ð34Þ

Using standard values for the masses of W and t, one finds
numerically

ut≡
�
mt

MW

�
2

≃4.65; p1ðutÞ¼ 0;737; p2ðutÞ¼ 1.219:

ð35Þ

The UV divergence is parametrized through the quantity

CΛ ≡ ln

�
Λ2

M2
W

�
þ 1

2
; ð36Þ

where Λ is the UV cutoff. Numerically, CΛ is ∼5.5–9.4 for
Λ ∼ 1–7 TeV. The quantity fFin ≃ −7.7 is the sum of the
diagrams not containing divergent parts and also the finite
parts of diagrams containing a divergence. The divergence
appears in the d → tW subloop in some of the diagrams.
The V’s are Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements in the standard notation. We note that
because V�

tdVtb is complex, there will be an EDM even if
YRðd → bÞ is real.
Using the absolute value of V�

tdVtb from [55], one may
write my result for the nEDM in the following way, as
shown in [39]

dn=e≃NðΛÞ

×
� jYRðb→ dÞj
jYRðb→ dÞjBound

· Im
�
YRðd→ bÞ
jYRðb→ dÞj ·

V�
tdVtb

jV�
tdVtbj

��
× 10−26 cm; ð37Þ

where I have scaled the result with the bound in [30,31]
obtained from Bd − Bd mixing,

jYRðd → bÞj ≤ 1.5 × 10−4 ≡ jYRðd → bÞjBound: ð38Þ

The function NðΛÞ is defined by the relation

FIG. 2. A class of diagrams containing the FCH coupling and the bigHWW coupling proportional toMW . Additional graphs with the
W replaced by an unphysical (Goldstone) Higgs within Feynman gauge has to be added. In this figure H may denote the SM Higgs h0,
or within the 2HDMs the lightest neutral Higgs h, the heavier neutral Higgs H, or the neutral pseudoscalar Higgs A.

FIG. 1. The first class of diagrams contain the FCH coupling and the big Higgs-top coupling proportional to the top mass mt. For the
first three diagrams, there are also corresponding diagrams where theW boson is replaced by an Goldstone Higgs boson within Feynman
gauge. In this figure H may denote the SM Higgs h0. Further, within the 2HDMs H may denote the lightest neutral Higgs boson h, the
heavier neutral Higgs boson H, or the neutral pseudoscalar Higgs A.
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ρdF2jYRðd→ bÞjBoundjV�
tdVtbjCEðμΛÞ¼NðΛÞ×10−26 cm;

ð39Þ
where ρd ≃ 0.74 is the contribution from the d-quark
EDM dd to the neutron EDM dn within lattice calculations

]56–58 ].
NðΛÞ is plotted as a function of Λ in Fig. 3 for the

bare case (at the renormalization scale μ ¼ μΛ, blue
curve) and with QCD corrections (at the hadronic scale
μ ¼ μh ≃ 1 GeV, red curve, as explained in [39]).
Now, the maximal value of the parenthesis f…g in (37)

is ¼ 1. Thus, if the bound for YRðd → bÞ in (38) is

saturated, the plot for the function NΛ in Fig. 3 shows
that when the cutoff Λ is stretched up to 20 TeV, the bound
for nEDM in (1) is reached in the bare case, while the
perturbative QCD suppression tells [39] that the value of
the nEDM can at maximum be at most 0.4 × 10−26 e cm
for Λ up to 20 TeV. If the bound for jYRðd → bÞj is
reduced, and also Λ is reduced, my value for nEDMwill be
accordingly smaller.

V. THE nEDM IN THE 2HDMs

All diagrams in Figs. 1 and 2 will also contribute within
2HDMs without restrictions as given in (22) and (23), and
one obtains diagrams both with light h and heavy H and A
exchanges. Exchange of the pseudoscalar A [as defined in
Eq. (14)] does not contribute to the order I work, because it
does not couple to the mass matrices Mu and Md in (22)
and (23). As also is seen from these equations, A couples
only to the matrices Nu;d. Exchanges of A will be treated
explicitly later in this section and are shown to be sup-
pressed. For contributions with exchange of h and H, the
amplitudes are equal, but have opposite signs according to
the Eqs. (22) and (23). Explicitly, for X ¼ h and X ¼ H
exchanges I find the effective contribution

½YRðd → bÞ�effN ¼ 1

v
ðNdÞbd cos θ sin θ; ð40Þ

where θ is defined in (16) and ðNdÞbd in (18). Within
2HDMs, given by (22) and (23), Eq. (40)may the be inserted
in (37). Combining (40) and (38) gives then a restriction on
flavor changing 2HDMs from Bd − Bd mixing [31].
As shown in [39] some diagrams with exchange of only

one neutral Higgs boson have divergent parts. In the
following I will for illustrative purposes consider in some
detail the case where a soft photon is emitted from a W
boson, as shown in the right panel of Fig. 1. Then the result
for this diagram is proportional to the two-loop integral
tensor (neglecting mb compared to mt)

TW
μνðXÞ ¼

ZZ
đpđrKμpν

ðr2 −M2
WÞ2ðr2 −m2

t Þððrþ pÞ2 −m2
t Þðp2 −m2

bÞðp2 −M2
XÞ

; ð41Þ

where MX is the mass of either the light or heavy Higgs,
i.e., X ¼ h,H, later also A. Moreover,Kμ ¼ KR

μ ¼ rμ when
a Higgs is coupling to the top quark with a right-handed
coupling, and Kμ ¼ KL

μ ¼ ðrþ pÞμ when this coupling is
left-handed. In the latter case, the integral over đp diverges.
When X ¼ h and X ¼ H couples to the diagonal mass
matrix part ðMuÞtt ¼ mt one has Kμ → ðKR

μ þ KL
μ Þ ¼

ð2rþ pÞμ.
In the limit where sin θ is close to 1, the h-part can be

written as in [39]

TW
μνðhÞ¼

gμν
4m2

t

�
1

16π2

�
2

ðCΛ ·p2ðutÞþ tLWFinþ tNWFinÞ; ð42Þ

where CΛ is given by (36) and where p2ðuÞ is defined in
(34) and ut is the mass ratio in (35). Furthermore,

tLWFin ≃ −2.8; and tNWFin ≃ −1.1: ð43Þ

Here tLWFin is the finite term following the logarithmic
divergence, and tNWFin is a completely finite term, as

FIG. 3. The quantity N ¼ NðΛÞ, in units 10−26 cm, as a
function of cutoff Λ (in TeV). The blue (upper) curve is for
the bare case and the red (lower) curve is for the case when the
suppressing QCD corrections are included.
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explained in the Appendix. For other diagrams there are
similar expressions as (43), but with other numbers.
Completely finite diagrams have only a term similar to
tNWFin, for instance the two first (from left) diagrams in Fig. 1.
One should remember that the loop amplitude in (42) is

multiplied by a factor gWmt=MW from the SM Higgs
coupling to the top quark. There will also be an extra factor
mt from the mass part of one of the top quark propagators.
Thus the factor 1=m2

t at the right-hand side of (42) will
cancel and the quantity CE in (33) is dimensionless. The
factor 1=MW from the Higgs to top quark coupling goes
into F2 in (32).
The individual loop integrals for X ¼ h or X ¼ H alone

have divergent parts. But within 2HDMs, one observes

from Eqs. (15), (22), and (23) that the terms with exchange
of h andH will have opposite signs due to the Cabibbo-like
mixing of h and H, and one obtains a cancellation of
divergences due to exchanges of these two bosons. Thus I
use

1

ðp2 −M2
hÞ

−
1

ðp2 −MHÞ
¼ ðM2

h −M2
HÞ

ðp2 −M2
hÞðp2 −M2

HÞ
ð44Þ

and obtain the total tensor for exchanges of both h and H,

ΔTW
μν ¼ TW

μνðhÞ − TW
μνðHÞ ¼ ðM2

h −M2
HÞSWμν; ð45Þ

where

SWμν ¼
ZZ đpđrð2rþ pÞμpν

ðr2 −M2
WÞ2ðr2 −m2

t Þððrþ pÞ2 −m2
t Þðp2 −m2

bÞðp2 −M2
hÞðp2 −M2

HÞ
; ð46Þ

is finite.
As shown in the Appendix, this loop integral contains

logarithmic and dilogarithmic functions of masses of the
top quark, theW boson, and the neutral Higgs bosons h,H.
In the limit M2

H ≫ M2
h, I find that

SWμν ∼
lnðM2

HÞ
M2

SMM
2
H
; ð47Þ

where MSM is either mt, Mh, and/or MW. I have found the
leading result replacing Eq. (31) can be written

ΔTW
μν ¼

gμν
4m2

t

�
1

16π2

�
2

ð gðCHÞW · p2ðutÞ þ tLWFin þ tNWFinÞ

þOðM2
SM=M

2
HÞ; ð48Þ

where corrections are of order ðMSM=MHÞ2. Here one
might expect that the divergent term CΛ from (42) is
replaced by a finite term where the cutoff Λ is replaced by
just the heavy neutral Higgs mass MH. This is true to
leading order, but it turns out that the ðfCHÞW is a bit more
complicated, as shown in the Appendix,

ðfCHÞW ¼ ln

��ðgMHÞW
MW

�2�
þ 1

2
; ð49Þ

(up to corrections of order ðMSM=MHÞ2 as mentioned
above) where

ðgMHÞW¼MHeαW ; αW≡ ðlnutÞ2
4ð1−1=ut−ðlnutÞÞ

; eαW ≃0.45;

ð50Þ

and where ut is given in (35). The term tLWFin in (48) is, up to
ðMSM=MHÞ2, the same tLWFin as in (42).
It is easy to see that the tLWFin’s are the same if one uses

the mathematical trick given in (A21) in the Appendix. The
term tNWFin is trivially the same [up to corrections of order
ðMSM=MHÞ2]. For other diagrams, where the soft photon is
emitted by a quark q ¼ b, t, say, the factor eαW will be
replaced by a similar factor eαq of the same order of
magnitude. Now the result given by (40) and (48)–(50) can
be completed with similar expressions for the rest of
diagrams in Figs. 1 and 2. Then the final result will be
as in [39], i.e., as in Eq. (37) and Fig. 3, with the cutoff Λ
replaced by a mass gMH of order MH [depending on the
various α’s similar to αW in (50)].
Up to now I have considered contributions where X ¼ h

and X ¼ H are coupled to the diagonal mass matrix
Mu → mt. Now I will consider the contributions where
the neutral Higgses h, H, A couple to the diagonal tt
element of Nu. Due to the mixing of the scalars h andH the
exchanges of these are given, as seen from (22) and (23), by
the propagator terms

ðsin θÞ2
ðp2 −M2

HÞ
−

ðcos θÞ2
ðp2 −MhÞ

¼ 1

ðp2 −M2
HÞ

−
ðcos θÞ2ðM2

H −M2
hÞ

ðp2 −M2
hÞðp2 −M2

HÞ
: ð51Þ

The last term on the right-hand side will give finite and very
small terms because cos θ is small. Such terms are then
neglected. The first term on the right-hand side will a priori
give a divergent term if H has a left-handed coupling to
ðNuÞtt, [i.e., Kμ ¼ KL

μ ¼ ðrþ pÞμ and X ¼ H in (41)].
However, because of the imaginary coupling of A, the
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similar exchange of Awill also be divergent and cancels the
divergent term fromH. The cancellation is exact in the limit
MA → MH, and in general there is a finite leftover. It is
important to note that such (partial) cancellations occur also
before eventual explicit restrictions (symmetry require-
ments) are assumed for the 2HDMs. When H and A
couples right-handed with ðNuÞtt, they have the same sign
and are finite, and they are equal in the limitMA → MH. In
this case one finds a tensor with the leading behavior

TWR
μν ≃ −

�
1

16π2

�
2 gμν
32M2

ln

�
M2

M2
SM

�
; ð52Þ

where M ¼ MH or M ¼ MA, and MSM is of order MW or
mt. Thus, the contributions from ðNuÞtt are suppressed by
ðMSM=MÞ2 compared to the terms with coupling to the
mass matrix Mu as stated in the beginning of this section.
Then, my result has, before QCD corrections, the general
structure

�
dn
e

�
∼
�

1

16π2

�
2 g3W
MSM

�
ln

�
M2

H

M2
SM

�
þ NL

�
· Im½YRðd → bÞV�

tdVtb�; ð53Þ

where NL is a dimensionless nonlogarithmic, nonleading
term, depending on mt, MW , and the light Higgs mass Mh.
NL also contains the ðMSM=MÞ2 corrections.
Concerning the six-dimensional interaction in (3), it will

for the local part also be proportional to Nd as shown in
(30) and also suppressed by ðv=MHÞ2. The nonlocal part
given by exchange of the light h boson will be of one order
higher. The corresponding loop diagram is proportional to

TW6
μν ¼ SWμνðMH ¼MhÞ¼ gμν

1

ð16π2Þ2
1

4M4
W
×0.015; ð54Þ

where standard numerical values for masses for SM particles
have been used. The contribution from this diagram should
also be multiplied by ðcos θÞ2v2, and Cλ in (26), and will be
small (because cos θ is small when h is close to h0).

VI. DISCUSSIONS AND CONCLUSIONS

In previous papers [30,31] based on the effective theory
for FCH couplings, one-loop diagrams for the neutron
EDM were considered. There is a one-loop diagram for an
EDM of the u-quark with Higgs and the t-quark in the loop
which is proportional to the t-quark mass and the product of
the FCH couplings YRðu → tÞ and YRðt → uÞ. The abso-
lute values of these FCH couplings are not very restricted,
according to [31]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jYRðu → tÞj2 þ jYRðt → uÞj2
q

≤ 0.3: ð55Þ

However, from the nEDM based on this one-loop diagram
one obtains the bound

Im½YRðu → tÞ × YRðt → uÞ� ≤ 4.3 × 10−7: ð56Þ

There is a one-loop diagram for an EDM of the d-quark
with Higgs and the b-quark in the loop proportional to
the b-quark mass and the product of FCH couplings
YRðd → bÞ and YRðb → dÞ. Bound on the coupling
YRðd → bÞ is given in (38), and one has also [31]

Im½YRðd → bÞ × YRðb → dÞ� ≤ 6.4 × 10−8: ð57Þ

Then the d-quark EDM with a b-quark one-loop diagram
could at most give a contribution to the nEDM of about
1.3 × 10−26 e cm before QCD corrections are taken into
account. But QCD corrections will suppress this result
further by a factor of order 10−1 (see [39] and references
therein).
In my previous paper [39] I presented calculations of

two-loop diagrams which depended on a flavor changing
coupling. Such two-loop contributions are suppressed with
the flavor changing coupling to first order only, instead of
the second order suppression for one-loop diagrams.
A price for going to two loops is in this case a suppression
factor g2W=ð16π2Þ ≃ 1.2 × 10−3 which is numerically bigger
than YRðd → bÞ, as seen in Eq. (38). Therefore the two-
loop diagrams of Ref. [39] are expected to (more than)
compete numerically with the corresponding one-loop
diagrams. Also it is important to note that, in the two-loop
case considered here, there will be a EDM different from
zero even if YRðd → bÞ is real, because it is combined with
a CKM factor.
Going from the effective theory of [30,31,39] to thegeneral

2HDMs in this paper, I have shown that the result from [39]
stays the same, up to corrections of order ðMSM=MH;AÞ2,
when the flavor changing coupling [30,31,39] is replaced

FIG. 4. Diagram generated in the 2HDMs. The gray circle
denotes the interaction in (25). The dashed lines are Higgses and
the crosses in the end of two of these denotes the Higgs vacuum
expectation value.
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by the corresponding expression in 2HDM, as shown
in Eq. (40). This equation then gives a bound for the
expression ðNdÞbd · cos θ · sin θ=v within 2HDMs with
flavor change. Further, I have shown that the divergences
appearing for some EDM diagrams with flavor changing
Higgs in my previous paper [39] are, as expected, removed
when extending the analysis to two-Higgs-doublet models
allowing for flavor changes by neutral scalars. Namely,
the divergences ∼ lnðΛÞ in [39] are replaced by lnðgMHÞ,
where gMH is equal to MH times a function of the ratio
mt=MW . [see Eq. (50)]. Finally, I have demonstrated
that exchanges of the pseudoscalar Higgs A does not
contribute to the order I work because they are suppressed
by ðMSM=MAÞ2. I have also demonstrated that some
potential divergences involving exchanges of A are can-
celed by similar divergences from exchanges of the heavy
scalar H.
It is also found that the six-dimensional interaction in (3)

used in [39] will also be proportional to the nondiagonalNd
matrix in (17), (20), and (22). The quantity Cλ from the
Higgs potential contains many unknowns. But this term is
suppressed by ðv=MHÞ2, as seen from Eq. (30).
There are also other calculations of the nEDM [4,54]. In

[54] EDM for flavor changing couplings are considered,
but only at one loop. The results, given by the matrices in
Eq. (75) of that paper, are in reasonable agreement with
[31], cf. also the Eqs. (55)–(57).
In [4] a 2HDM is considered at two-loop level in terms

of Barr-Zee diagrams, but with no flavor change from
neutral Higgses. This contribution is suppressed by the
mass ratio mf=MW , where mf is a light quark mass mu or
md. Then, if the nondiagonal elements of the matrix Nd are
of the same order as the diagonal ones, the result presented
in this paper is bigger than in Eq. (53) of [4]. On the other
hand, if the nondiagonal element ðNdÞbd is very small, the
result of [4] might be bigger. And of course, if the
nondiagonal elements of Nd are restricted to be zero to
avoid flavor changing neutral currents completely, then my
result is zero.
In general, the mechanism given by the diagrams in

Fig. 1 will also work in some other theories with exchanges
of scalars and theW boson, for example for an EDM of the
electron within leptoquark models [59].
To conclude, when going from [39] to the present study

of 2HDMs with flavor change I have shown the following:
(i) The result from [39] stays unchanged up to correc-

tions of ðMSM=MH;AÞ2. The logarithmic divergence
∼ lnðΛ=MWÞ in [39] is replaced by lnðgMH=MWÞ,
where gMH is of order MH.

(ii) The flavor changing coupling YRðd → bÞ in
[30,31,39] is found to be replaced by ðNdÞbd · cos θ ·
sin θ=v in a 2HDMs with flavor changing neutral
Higgses. I have also identified an example of the six-

dimensional term in Eq. (3) which was a starting
point in [31,34,39].

(iii) There is a cancellation between divergent terms with
A and H exchanges.

(iv) There is a suppression ðMSM=MH;AÞ2 of finite terms
due to exchange of A andH terms not coupled to the
top mass.
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APPENDIX: DETAILS FOR THE
LOOP INTEGRALS

If the soft photon is emitted from the W boson as in the
left diagram in Fig. 1, then the left subloop containing
the Higgs boson is logarithmically divergent. The result of
the divergent part of (41) can be written

TμνðhÞ ¼
gμν
4

2!

Z
1

0

dx
Z ð1−xÞ

0

dy

×
Z

dr
ðr2 −M2

WÞ2ðr2 −m2
t Þ
ðI2ðRÞ þ R · I3ðRÞÞ;

ðA1Þ
where the quantity R depends on the squared loop
momentum r2. For n ¼ 2, 3

InðRÞ ¼
Z

đp
ðp2 − RÞn : ðA2Þ

Then for cutoff regularization,

ðI2ðRÞ þ R · I3ðRÞÞ ¼
i

16π2

�
lnðΛ2=RÞ − 3

2

�
; ðA3Þ

where Λ is the cutoff, and x and y are Feynman parameters,
and

R≡ B − xð1 − xÞr2;
B≡m2

b þ xðM2
W −m2

bÞ þ yðM2
h −m2

bÞ: ðA4Þ

One may split up�
lnðΛ2=RÞ − 3

2

�
¼

�
lnðΛ2=M2

WÞ −
3

2

�
þ lnðM2

W=RÞ; ðA5Þ

where the first term corresponds to CΛ in (36), and the
lnðM2

W=RÞ term corresponds to tLWFin. There is also a finite
term tNWFin corresponding to an completely finite extra term
∼1=R not shown in (A1). We also note that the one-loop
integral
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KW ¼
Z

đr
ðr2 −M2

WÞ2ðr2 −m2
t Þ

¼ −i
16π2m2

t
p2ðutÞ; ðA6Þ

where p2ðuÞ defined in (34) is the proportionality factor for
the divergent term CΛ in (36).
Now I consider the finite loop integral in (46) with both h

and H included. Doing Feynman parametrization for the
dp integration one obtains

SWμν ¼
gμν
4

SW;

SW ¼ 2!

�
i

16π2

�Z
1

0

dx
xð1 − xÞ

Z ð1−xÞ

0

dy
Z ð1−x−yÞ

0

dzJWQ ;

ðA7Þ

plus terms suppressed by 1=M2
H. This integral is finite.

Note that the term ∼1=R mentioned just above (A6) is not
included. Here

JWQ ≡
Z

đr
ðr2 −M2

WÞ2ðr2 −m2
t Þðr2 −QÞ

¼ i
16π2

�
−1

ðm2
t −M2

WÞðQ −M2
WÞ

þ m2
t

ðm2
t −M2

WÞ2
�
lnðQ=M2

WÞ
ðQ −M2

WÞ
−
lnðQ=m2

t Þ
ðQ −m2

t Þ
��

; ðA8Þ

where

Q ¼ 1

xð1 − xÞ ðm
2
b þ xðm2

t −m2
bÞ þ yðM2

h −m2
bÞ

þ zðM2
H −m2

bÞÞ: ðA9Þ

Integrating over z gives a suppression factor of order
1=M2

H. Changing variables, one obtains an integral over
Q with dz ¼ xð1 − xÞdQ=M2

H,

Z ð1−x−yÞ

0

dz JWQ ¼ i
16π2

xð1 − xÞ
ðM2

H −m2
bÞ
ðfWðQ1Þ − fWðQ0ÞÞ;

ðA10Þ

where

fWðQÞ≡ 1

ðm2
t −M2

WÞ
�
− ln

�
Q −M2

W

M2
W

�

þ m2
t

ðm2
t −M2

WÞ
�
dilog

�
Q
m2

t

�
− dilog

�
Q
M2

W

���
:

ðA11Þ

Here, the dilogarithmic function is in our case defined as

dilogðzÞ ¼
Z

z

1

dt
lnðtÞ
ð1 − tÞ ¼ Li2ð1 − zÞ: ðA12Þ

Further,

Q1 ¼
1

xð1 − xÞ ðm
2
b þ xðm2

t −m2
bÞ þ yðM2

h −m2
bÞ

þ ð1 − x − yÞðM2
H −m2

bÞÞ;

and Q0 ¼
1

xð1 − xÞ ðm
2
b þ xðm2

t −m2
bÞ þ yðM2

h −m2
bÞÞ

¼ B
xð1 − xÞ ; ðA13Þ

where B is defined in (A4).
Now the quantity S in (A7) may be split up as

SW ¼
�

i
16π2

�
2

2!

Z
1

0

dx
Z ð1−xÞ

0

dy½fWðQ1Þ − fWðQ0Þ�

¼ SW1 − SW0 : ðA14Þ

Here the quantity SW1 contains a term lnðM2
HÞ correspond-

ing to the divergent term lnðΛ2Þ in [39] and (42). In order to
find SW1 explicitly I use the asymptotic property for Z → ∞

dilogðZÞ → −
1

2
ðlnðZÞÞ2: ðA15Þ

Therefore, one obtains for M2
H ≫ M2

h�
−dilog

�
Q1

M2
W

�
þ dilog

�
Q1

m2
t

��

→ ln

�
m2

t

M2
W

�
·

�
ln

�
M2

H

mtMW

�
þ lnðσÞ

�
; ðA16Þ

where

σ ¼ ð1 − x − yÞ
xð1 − xÞ : ðA17Þ

Then one obtains

SW1 ¼
�

1

16π2

�
2 1

M2
Hðm2

t −M2
WÞ

�
−
�
ln

�
M2

H

M2
W

�
þ 1

2

�

þm2
t lnðm2

t =M2
WÞ

ðm2
t −M2

WÞ
�
ln

�
M2

H

mtMW

�
þ 1

2

��
; ðA18Þ

which may be manipulated into
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SW1 ¼
�

1

16π2

�
2 ðfCHÞW · pWðutÞ

M2
HM

2
W

; ðA19Þ

where ðfCHÞW is given in (49) and (50).
The term SW0 in (A14) contains the lnðRÞ term in (A5),

and is given by

SW0 ¼
�

i
16π2

�
2

2!

Z
1

0

dx
Z ð1−xÞ

0

dyfWðQ0Þ: ðA20Þ

To see this clearly, instead of using (A5), one may use a
trick by rewriting I2ðRÞ in (A1)–(A3) as

I2ðRÞ ¼ 2

Z
Λ2

R
dρ

Z
dp

ðp2 − ρÞ3 : ðA21Þ

Also, one observes that R ¼ −xð1 − xÞðr2 −Q0Þ.

[1] M. Pospelov and A. Ritz, Ann. Phys. (Amsterdam) 318, 119
(2005).

[2] T. Fukuyama, Int. J. Mod. Phys. A 27, 1230015 (2012).
[3] W. Dekens, J. de Vries, J. Bsaisou, W. Bernreuther, C.

Hanhart, and U.-G. Meißner, A. Nogga, and A. Wirzba,
J. High Energy Phys. 07 (2014) 069.

[4] M. Jung and A. Pich, J. High Energy Phys. 04 (2014) 076.
[5] C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D.

van der Grinten, P. G. Harris, P. Iaydjiev, S. N. Ivanov et al.,
Phys. Rev. Lett. 97, 131801 (2006).

[6] E. P. Shabalin, Yad. Fiz. 31, 1665 (1980) [Sov. J. Nucl.
Phys. 31, 864 (1980)].

[7] A.Czarnecki andB.Krause, Phys. Rev. Lett. 78, 4339 (1997).
[8] D. V. Nanopoulos, A. Yildiz, and P. H. Cox, Phys. Lett. B

87, 53 (1979).
[9] B. F. Morel, Nucl. Phys. B157, 23 (1979).

[10] M. B. Gavela, A. Le Yaouanc, L. Oliver, O. Pene, J. C.
Raynal, and T. N. Pham, Phys. Lett. 109B, 215 (1982).

[11] I. B. Khriplovich and A. R. Zhitnitsky, Phys. Lett. 109B,
490 (1982).

[12] B. H. J. McKellar, S. R. Choudhury, X.-G. He, and S.
Pakvasa, Phys. Lett. B 197, 556 (1987).

[13] J. O. Eeg and I. Picek, Phys. Lett. 130B, 308 (1983).
[14] J. O. Eeg and I. Picek, Nucl. Phys. B244, 77 (1984).
[15] T. Mannel and N. Uraltsev, Phys. Rev. D 85, 096002 (2012).
[16] W. Buchmuller and D. Wyler, Phys. Lett. 121B, 321 (1983).
[17] W. Altmannshofer, A. J. Buras, and P. Paradisi, Phys. Lett. B

688, 202 (2010).
[18] A. J. Buras, G. Isidori, and P. Paradisi, Phys. Lett. B 694,

402 (2011).
[19] J. Brod, U. Haisch, and J. Zupan, J. High Energy Phys. 11

(2013) 180.
[20] A. V. Manohar and M. B. Wise, Phys. Rev. D 74, 035009

(2006).
[21] G. Degrassi and P. Slavich, Phys. Rev. D 81, 075001 (2010).
[22] X.-G. He, C.-J. Lee, S.-F. Li, and J. Tandean, J. High Energy

Phys. 08 (2014) 019.
[23] J. M. Arnold, B. Fornal, and M. B. Wise, Phys. Rev. D 87,

075004 (2013).
[24] A. Maiezza and M. Nemevšek, Phys. Rev. D 90, 095002

(2014).
[25] S. Bertolini, A. Maiezza, and F. Nesti, Phys. Rev. D 101,

035036 (2020).

[26] K. Fuyuto, J. Hisano, and E. Senaha, Phys. Lett. B 755, 491
(2016).

[27] W. Altmannshofer, R. Primulando, C.-T. Yu, and F. Yu,
J. High Energy Phys. 04 (2012) 049.

[28] S. Fajfer and J. O. Eeg, Phys. Rev. D 89, 095030 (2014).
[29] A. Goudelis, O. Lebedev, and J-h. Park, Phys. Lett. B 707,

369 (2012).
[30] G. Blankenburg, J. Ellis, and G. Isidori, Phys. Lett. B 712,

386 (2012).
[31] R. Harnik, J. Kopp, and J. Zupan, J. High Energy Phys. 03

(2013) 026.
[32] A. Greljo, J. F. Kamenik, and J. Kopp, J. High Energy Phys.

07 (2014) 046.
[33] M. Gorbahn and U. Haisch, J. High Energy Phys. 06 (2014)

033.
[34] I. Doršner, S. Fajfer, A. Greljo, J. Kamenik, N. Košnik, and

I. Nišandžic, J. High Energy Phys. 06 (2015) 108.
[35] S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990); 65,

2920(E) (1990).
[36] D.Chang, W. S. Hou, and W.-Y. Keung, Phys. Rev. D 48,

217 (1993).
[37] R. G. Leigh, S. Paban, and R. M. Xu, Nucl. Phys. B352, 45

(1991).
[38] J. Brod and D. Skodras, J. High Energy Phys. 01 (2019)

233.
[39] J. O. Eeg, Eur. Phys. J. C 78, 998 (2018).
[40] J. D. Bjorken and S. Weinberg, Phys. Rev. Lett. 38, 622

(1977).
[41] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.

Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).
[42] W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone,

and D. Tuckler, Phys. Rev. D 94, 115032 (2016).
[43] F. J. Botella, G. C. Branco, M. N. Rebelo, and J. I. Silva-

Marcos, Phys. Rev. D 94, 115031 (2016).
[44] B. Grzadkowski, O. M. Ogreid, and P. Osland, Phys. Rev. D

94, 115002 (2016).
[45] B. Grzadkowski, H. E. Haber, O. M. Ogreid, and P. Osland,

J. High Energy Phys. 12 (2018) 056.
[46] J. M. Alves, F. J. Botella, G. C. Branco, F. Cornet-Gomez,

M. Nebot, and J. P. Silva, Eur. Phys. J. C 78, 630
(2018).

[47] B. A. Ouazghour, A. Arhrib, R. Benbrik, M. Chabab, and L.
Rahili, Phys. Rev. D 100, 035031 (2019).

ELECTRIC DIPOLE MOMENT OF THE NEUTRON IN … PHYS. REV. D 102, 095009 (2020)

095009-11

https://doi.org/10.1016/j.aop.2005.04.002
https://doi.org/10.1016/j.aop.2005.04.002
https://doi.org/10.1142/S0217751X12300153
https://doi.org/10.1007/JHEP07(2014)069
https://doi.org/10.1007/JHEP04(2014)076
https://doi.org/10.1103/PhysRevLett.97.131801
https://doi.org/10.1103/PhysRevLett.78.4339
https://doi.org/10.1016/0370-2693(79)90016-9
https://doi.org/10.1016/0370-2693(79)90016-9
https://doi.org/10.1016/0550-3213(79)90051-8
https://doi.org/10.1016/0370-2693(82)90756-0
https://doi.org/10.1016/0370-2693(82)91121-2
https://doi.org/10.1016/0370-2693(82)91121-2
https://doi.org/10.1016/0370-2693(87)91055-0
https://doi.org/10.1016/0370-2693(83)91147-4
https://doi.org/10.1016/0550-3213(84)90182-2
https://doi.org/10.1103/PhysRevD.85.096002
https://doi.org/10.1016/0370-2693(83)91378-3
https://doi.org/10.1016/j.physletb.2010.04.012
https://doi.org/10.1016/j.physletb.2010.04.012
https://doi.org/10.1016/j.physletb.2010.10.032
https://doi.org/10.1016/j.physletb.2010.10.032
https://doi.org/10.1007/JHEP11(2013)180
https://doi.org/10.1007/JHEP11(2013)180
https://doi.org/10.1103/PhysRevD.74.035009
https://doi.org/10.1103/PhysRevD.74.035009
https://doi.org/10.1103/PhysRevD.81.075001
https://doi.org/10.1007/JHEP08(2014)019
https://doi.org/10.1007/JHEP08(2014)019
https://doi.org/10.1103/PhysRevD.87.075004
https://doi.org/10.1103/PhysRevD.87.075004
https://doi.org/10.1103/PhysRevD.90.095002
https://doi.org/10.1103/PhysRevD.90.095002
https://doi.org/10.1103/PhysRevD.101.035036
https://doi.org/10.1103/PhysRevD.101.035036
https://doi.org/10.1016/j.physletb.2016.02.053
https://doi.org/10.1016/j.physletb.2016.02.053
https://doi.org/10.1007/JHEP04(2012)049
https://doi.org/10.1103/PhysRevD.89.095030
https://doi.org/10.1016/j.physletb.2011.12.059
https://doi.org/10.1016/j.physletb.2011.12.059
https://doi.org/10.1016/j.physletb.2012.05.007
https://doi.org/10.1016/j.physletb.2012.05.007
https://doi.org/10.1007/JHEP03(2013)026
https://doi.org/10.1007/JHEP03(2013)026
https://doi.org/10.1007/JHEP07(2014)046
https://doi.org/10.1007/JHEP07(2014)046
https://doi.org/10.1007/JHEP06(2014)033
https://doi.org/10.1007/JHEP06(2014)033
https://doi.org/10.1007/JHEP06(2015)108
https://doi.org/10.1103/PhysRevLett.65.21
https://doi.org/10.1103/PhysRevLett.65.2920
https://doi.org/10.1103/PhysRevLett.65.2920
https://doi.org/10.1103/PhysRevD.48.217
https://doi.org/10.1103/PhysRevD.48.217
https://doi.org/10.1016/0550-3213(91)90128-K
https://doi.org/10.1016/0550-3213(91)90128-K
https://doi.org/10.1007/JHEP01(2019)233
https://doi.org/10.1007/JHEP01(2019)233
https://doi.org/10.1140/epjc/s10052-018-6477-6
https://doi.org/10.1103/PhysRevLett.38.622
https://doi.org/10.1103/PhysRevLett.38.622
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1103/PhysRevD.94.115032
https://doi.org/10.1103/PhysRevD.94.115031
https://doi.org/10.1103/PhysRevD.94.115002
https://doi.org/10.1103/PhysRevD.94.115002
https://doi.org/10.1007/JHEP12(2018)056
https://doi.org/10.1140/epjc/s10052-018-6116-2
https://doi.org/10.1140/epjc/s10052-018-6116-2
https://doi.org/10.1103/PhysRevD.100.035031


[48] W.-S. Hou, R. Jain, C. Kao, M. Kohda, B. McCoy, and A.
Soni, Phys. Lett. B 795, 371 (2019).

[49] J. Herrero-Garcia, J. M. Nebot, F. Rajec, M. White, and A.
G. Williams, J. High Energy Phys. 02 (2020) 147.

[50] I. de Medeiros Varzielas and J. Talbert, Phys. Lett. B 800,
135091 (2020).

[51] S. S. Correia, R. G. Felipe, and F. R. Joaquim, Phys. Rev. D
100, 115008 (2019).

[52] K. Fuyuto, W.-S. Hou, and E. Senaha, Phys. Rev. D 101,
011901 (2020).

[53] C.-R.Chen, Y.-X. Lin, C. S. Nugroho, R. Ramos, Y.-L. S.
Tsai, and T.-C. Yuan, Phys. Rev. D 101, 035037 (2020).

[54] A. Crivellin, A. Kokulu, and C. Greub, Phys. Rev. D 87,
094031 (2013).

[55] M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).
[56] T. Bhattacharya, V. Cirigliano, R. Gupta, H-W. Lin, and B.

Yoon, Phys. Rev. Lett. 115, 212002 (2015).
[57] T. Bhattacharya, V. Cirigliano, S. D. Cohen, R. Gupta, A.

Joseph, H-W. Lin, and B. Yoon, Phys. Rev. D 92, 094511
(2015).

[58] N. Yamanaka, S. Hashimoto, T. Kaneko, and H. Ohki
(JLQCD Collaboration), Phys. Rev. D 98, 054516 (2018).

[59] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N.
Košnik, Phys. Rep. 641, 1 (2016).

JAN O. EEG PHYS. REV. D 102, 095009 (2020)

095009-12

https://doi.org/10.1016/j.physletb.2019.06.044
https://doi.org/10.1007/JHEP02(2020)147
https://doi.org/10.1016/j.physletb.2019.135091
https://doi.org/10.1016/j.physletb.2019.135091
https://doi.org/10.1103/PhysRevD.100.115008
https://doi.org/10.1103/PhysRevD.100.115008
https://doi.org/10.1103/PhysRevD.101.011901
https://doi.org/10.1103/PhysRevD.101.011901
https://doi.org/10.1103/PhysRevD.101.035037
https://doi.org/10.1103/PhysRevD.87.094031
https://doi.org/10.1103/PhysRevD.87.094031
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.115.212002
https://doi.org/10.1103/PhysRevD.92.094511
https://doi.org/10.1103/PhysRevD.92.094511
https://doi.org/10.1103/PhysRevD.98.054516
https://doi.org/10.1016/j.physrep.2016.06.001

