PHYSICAL REVIEW D 102, 095009 (2020)

Electric dipole moment of the neutron in two-Higgs-doublet models
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I consider contributions to the neutron electric dipole moment within two-Higgs-doublet models which
allow for small flavor changing neutral Higgs couplings. In a previous paper, I considered flavor changing
interactions for the Standard Model Higgs boson to first order in the flavor changing coupling. In that paper
I found that the obtained value of the neutron electric dipole moment was below the present experimental
limit, given previous restrictions on such couplings. Because this was an effective theory, the result
depended on an ultraviolet cut off A, parametrized as In(A?). In the present paper I demonstrate that, when
going to two-Higgs-doublet models, the result stays the same as in the previous paper, up to M3y,/M%
corrections, where Mgy is the mass of the top quark or the W boson. M is the mass of the heavy neutral
scalar Higgs boson H which is much heavier than the light neutral Higgs boson 4 with mass M,. In the limit
M2 > M2, the In(A?) behavior in the previous paper is replaced by In(Mp>), where My, is of order M.
I also explain how some divergences due to exchange of the pseudoscalar Higgs A are canceled by similar
contributions from the scalar heavy Higgs H, and that these contributions, and finite contributions from A

exchange, are suppressed.
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I. INTRODUCTION

Studies of CP-violating phenomena are important in
order to understand the asymmetry between matter and
antimatter in the Universe. Electric dipole moments (EDMs)
of elementary particles violate time reversal symmetry.
Assuming CPT symmetry to be valid, EDMs are therefore
also CP violating. EDMs of elementary particles have not
been seen yet. But experimental searches for EDMs and
theoretical studies of EDMs are important because any
measured result bigger than the tiny values obtained within
the Standard Model (SM) will signal new physics. Reviews
on EDMs within the SM and beyond are given in [1-4]. For
the EDM of the neutron (hREDM = d,)) discussed in this
paper, the present experimental bound is [5]

dy’/e <2.9x 10726 cm. (1)

The corresponding values calculated within the SM are
ranging from 1073* ¢ to 107! ecm, depending on the
considered mechanism [6—15]. Many models beyond the
SM (BSM) give bigger values compared to those obtained
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within the SM [1-4,16-26]. In the presence of new physics,
flavor physics may also give useful CP-violating observ-
ables. These may occur for instance in CP-violating
mesonic decays [17,18,27]. Within new physics models
describing such processes there might be mechanisms that
also generate new contributions to the electric dipole
moments of quarks (see e.g., [28]).

The electric dipole moment of a single fermion has the
form

i,
L repm = Edfl//fa;wFﬂDYSV/f» (2)

where d; is the electric dipole moment of the fermion, y ¢ is
the fermion (quark) field, F*¥ is the electromagnetic field
tensor, and o,, = i[y,.7,]/2 is the dipole operator in
Dirac space.

We still do not know in detail the properties and couplings
of the Higgs boson. For instance, the SM Higgs might mix
with a higher mass scalar(s) in the BSM. It has been
suggested [29-34] that the SM Higgs boson might have
small flavor changing couplings to fermions. Such cou-
plings may also be CP violating. Studying flavor changing
processes like K — K, D — D, and B — B mixings, and also
leptonic flavor changing decays like 4 — ey and 7 — py,
bounds on quadratic expressions of such flavor changing
couplings were obtained. For the leptonic cases two-loop
diagrams of Barr-Zee type [35] for EDMs were also
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considered [29-31,36,37]. Extra couplings of the SM Higgs
to quarks has also been considered in [38].

In a previous paper [39], I extended the analysis of EDMs
of light quarks with flavor changing SM Higgs couplings
(FCH) to two-loop diagrams. Going from one- to two-loop
diagrams there is a priori a loop suppression. However, in
general, it is known that some two-loop diagrams might give
bigger amplitudes than one-loop diagrams because of
helicity flip(s) in the latter [30,31,36,40]. And further, what
is most important in the present case, I calculated two-loop
diagrams containing a small FCH to first order only, in
contrast to one-loop contributions with a small FCH
coupling to second order, as in [30,31]. Therefore, if the
FCH couplings exist, my two-loop amplitudes might
numerically compete or even dominate over the one-loop
amplitudes calculated previously.

Some of the two-loop diagrams were divergent and
parametrized by a ultraviolet cutoff A [39]. In the present
paper 1 address the same diagrams within two-Higgs-
doublet models (2HDMs). In such renormalizable models
one knows that the final result does not depend on divergent
contributions. In Sec. VI demonstrate how divergent terms
disappear due to cancellations of different terms in the
general 2HDMs. And I find how the phenomenological
FCH coupling of Refs. [30,31] is expressed within 2HDMs.

For descriptions of 2HDMs, see the review by Branco et al.
[41], and also more recent papers [42—53]. Phenomenological
consequences of 2HDMs are given in [54].

Some technical details from the two-loop calculations
are given in the Appendix.

II. FLAVOR CHANGING PHYSICAL HIGGS?

Within the framework in [29-33] the effective interaction
Lagrangian for a flavor transition between fermions of
the same charge due to SM Higgs boson exchange might
be obtained from six-dimensional nonrenormalizable
Higgs-type Yukawa-like interactions as shown explicitly
in [31,34],

LP) = —15(01)ib(dr); = = (0r)ib(d) (#) P+ Hee.,
(3)

where the generation indices i and j running from 1 to 3 are
understood to be summed over; i.e. d; = d, s, b for j =1,
2, 3. Further, ¢ is the SM Higgs SU(2); doublet field,
(Qp); are the left-handed SU(2), quark doublets, and the
(dg),’s are the right-handed SU(2), singlet d-type quarks
in a general basis. Further, Ayp is the scale where new
physics is assumed to appear. There is a similar term £()
like the one in (3) for right-handed-type u-quarks, u;,
1.e., uj=u, c,t for j =1, 2, 3. If higher states from a
renormalized theory are integrated out. interactions may
occur like in (3) below.

In such cases the Yukawa interaction for the SM neutral
Higgs boson h° to d-type quarks has the form

£ = —ho(aL)i(YSeD))ij(dR)j +He., (4)

where

R = —€R - (5)

Here MP) is the mass matrix for d-type quarks giving the
SM coupling, and eﬁf’) is the part which goes beyond the
SM, related to the six-dimensional operators in (4).

Explicitly, one finds [31,34]

2 20
oy Y,V d (P, — i
M ﬂ(”+2A]2\,P>’ and (ez"); V2A%,

(6)

As usual v is the vacuum value 246 GeV for the SM Higgs

field. The mass matrix M(”) may be rotated to diagonal
form. However, this rotation will in general not give a
diagonal eﬁf), such that the SM Higgs coupling to fermions
will in general be flavor changing. Thus, for i# j,
YEQD) = —egeD). In [29-34] bounds of FCH couplings to
second order are obtained from various flavor changing
processes. In my own case, I will need the bound on

Y\?)(d - b) from B, — B, mixing [31].

III. YUKAWA INTERACTIONS FOR 2HDM

For 2HDM:s the extended Yukawa interactions for right-
handed-type d-quarks may then, in the most general case,
be written as [46]

L1 =((Q0)"V 1) (@1)' + () (@2)'] (de)) +He.
)

where i, j are as before generation indices running from
one to three and r, s are SU(2), indices running from one
to two. The upper index O denotes the fields before
diagonalization of the mass matrices in the quark sector.
Thus the I'’s are 2 x 2-dimensional in SU(2), space and
3 x 3-dimensional in generation space. The fields @, , are
the two Higgs fields.

For the right-handed-type u-quarks one has similarly
as (7)

£y = (00)"[81®1 + 8:%5) () + Heoo (8)
where the generation and SU(2), indices are suppressed.

I'), and A, are in general complex and independent
quantities. In many papers one discusses restrictions on
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2HDMs to avoid flavor changing neutral currents com-
pletely. But in this paper the point is to study such potential
effects.

The two Higgs doublets may for n =1, 2 be written
[41,44]

+
®n = eif”( 1 ¢n . >7
75(1])1 +pn+ lﬂn)

5 (04 + pu = i)
5 it V2 \Vn n n
b=t (M) 7

where @, = io,®;, and e are phase factors. One intro-
duces the parameter # through

tanf="22. (10)
U1

After diagonalization of the mass matrix for the neutral
fields p; , obtained from the Higgs potential [41] one finds
the neutral scalar mass eigenstates

h = piSq = pacas H==pic,—prsq  (11)

and the inverted relations are

—p1 = —Hcy — s, —py = hcg — Hs,. (12)
Here s, =sina and ¢, =cosa@, where «a is the mixing
angle coming from the diagonalization of the mass matrix
of the p, , fields. Note that in the previous paper [39] the
SM Higgs was denoted H. In the present paper this symbol
is reserved for the heavy neutral Higgs boson within
2HDM:s.

In 2HDMs one often uses the Higgs basis, where the
doublet fields H;, are defined by

e_lflq)IZCﬁH]‘i‘SﬂHz; e_iézq)2:SﬂH1—CﬂH2, (13)

where ¢z = cosf and s, = sin . With this definition H,

— S22
has a vacuum value v=/v{+v3 and H, has zero vacuum
value. Thus, in this basis

G* H*
H = . Hy= o)
! <%(v+ho+iG°)> : <%(R0+1A))

(14)

where v is the vacuum value 246 GeV for the SM Higgs
field, and Gt and G° are Goldstone fields. Ht is the
charged Higgs field and A the neutral pseudoscalar field
within 2HDMs. Now the neutral scalar fields 2% and R° can
be written in terms of the physical (within 2HDMs) neutral
scalars 4 and H as

hO = —CHH + Sgl’l; RO = SgH + Cgl’l, (15)

where

cg=cosf, and sy=sinf, whered=a—-p, (16)
will be the mixing angle in the neutral Higgs sector.
Assuming the SM field h° to be close to 4 means that
sin® is close to 1.

In the Higgs basis the extended Yukawa interactions may

(in matrix notation) then be written

v N
_7§£Y = 0, (MYH, + NH,)d,
+ Q. °(M%H, + NOH,)u® +H.c., (17)
where
0 ‘ pe'
Md = (Cﬁrl + €Z£Sﬁrz) \/§ s
0 - ve's
Nd = (Sﬂrl —é' Cﬂrz) \/§ R (18)
where £ = &, — & and for the u-quark case
‘ ve %
M = (cpl; + e Es5A,) Nl
0 = (55t — eicpg) 2 (19
N, = (s —e ¢ .
pAL pR2 NG

Now one transforms the mass matrices MS’u to diagonal
form with matrices Ug",

Md = (Ui)TMgU% = diag(md5 mg, mb),

No= (U$INSUS,  dy = (UB, )y (20)

and similarly

M, = (UZ)TMgUIMQ = diag(mw me, mt)’
N, = (Uj)'NyU%, UrL = (U%,L)TM(I)Q.L’ (21)
for the u-quark case.

The total neutral Yukawa interactions for d-type quarks
may now be written in terms of physical quantities as [46]

—Uﬁgzd’n> = d_L(U + lGO - CQH + Sgh)MddR
+d; (sgH + cgh + iA)N dg +H.c.  (22)

and for the u-quark case the corresponding interactions
similarly
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—vﬁg,”’") = Uz (v —iG® — coH + sgh)M ,ug
+ Uz (sgH + cyh — iA)N, ug + He.  (23)
For the charged interactions one obtains

- iﬁgfcharged) =urVexm(GT"My+ HN)dg

N

- CTLVEKM(G_Mu + H™N,)ug
+ H.c. (24)

While the mass matrices M, and M, are now flavor
diagonal, the matrices N, and N, are in general flavor
nondiagonal and CP violating. These may give contribu-
tions to the Yp’s in Eq. (4). In Egs. (22) and (23) one
observes that there will be flavor changes for the lightest
Higgs h proportional to the nondiagonal matrices N,
and N,,.

In many papers on 2HDMs, one assumes for instance an
extra discrete symmetry (symmetries) to simplify the
theory. In [46] possible restrictions on (7) and (8) are
discussed. Here I stick to the general case.

Further, I consider how the six-dimensional interaction
in Eq. (3) is obtained in 2HDMs. One way might be to
consider the part of the Higgs potential containing a product
of four ®; or ®, Higgs fields (see for example [44]),

1 1 . ;
Vitiom = 5/11 (D)% + Eﬁz(q’zq’z)z +23(D] ) (DL D,)
1
+24 (D] Dy) (O] D)) 3 [A5(®]®,)? +H.c)

+ ([A6(@] @) + 47 (D, (@] D,) + Hec.). (25)

Such potentials may contribute to Yz’s in (4). In (3) ¢ is the
SM Higgs which one within 2HDMsS identify with H; in
(14). Inserting (13) in (25), the Higgs potential (25) will
contain several terms of the type (H|H,)(H,H;). The
coefficient for the sum of such terms is

C,= Alsﬁcz + lzcﬁs;j + (A3 4 A4)spcp(sy — c5)
+ Ase™Kspep — s cysy 4 26cpspe
+ A (555 — cp)e + Aq (s — sjeg)e™

— 245¢ps5€". (26)

Now the field H ; at space-time z, in such expressions might
be contracted with the field H, at space-time z; in (17). This
makes the field contraction (C)

C(H»(z1)(H2(22))") = Dp, (21 — 22). (27)

Then one obtains an effective six-dimensional interaction

v

ﬂcg’” =((01(20)") M H, (z1)

+C,N Dy, (21— 22)H (22) ((H(22),) " H1 (22))]
x (dg)}(z1) +H.c. (28)

So far, this is not a local operator. The propagator
Dy, (21 — 2») contains a propagator D), for the light neutral
Higgs and a part Dy for the heavy neutral Higgs H.
However, if the SM Higgs is close to the light Higgs £, then
sy 1s close to 1, and thereby the scalar R is close to the
heavy Higgs H. The part containing the heavy Higgs H
interaction is then for M?% > M3,

5(4>(21 - Zz)

75 (sin)?, (29)

Dy(zy —22) ==

making the H-part of the interaction local in this limit and
giving the following nondiagonal contribution to Y in (4)
and (6) for i # j:

(D) _ €(D) B Uz(zij)H
(Ye)ij)y = —er )ij)y = VAL,
:—q(zvd)i,,ﬁ#%(sme)z. (30)

The nonlocal h-part D;, would be a term corresponding
to a higher order diagram. This term is shortly discussed at
the end of Sec. V.

IV. hREDM GENERATED FROM A FLAVOR
CHANGING HIGGS COUPLING

In this section I give a short summary of the results from
the previous paper [39]. The reason being that the diagrams
calculated in that paper are also relevant in 2HDMs.

In [39], two classes of diagrams for EDMs of light
quarks, shown in Figs. 1 and 2, were considered. These
diagrams are obtained from the flavor nondiagonal inter-
action in (4), completed by SM interactions. But these
diagrams also give contributions within 2HDMs with flavor
change, as explained in the next section.

As explained in [39], the u-quark dipole moment d,, due
to diagrams in Fig. 1 are suppressed and therefore
neglected. Thus, the d-quark dipole moment contributions
dominate, and other contributions are neglected. Summing
all contributions from diagrams in Figs. 1 and 2, I obtained
the dominating contribution in the bare case (before QCD
corrections) [39]

(%) = Clummlyald » 0)Vigvul. 1)

where the constant F, sets the overall scale of the EDMs
obtained from the two-loop diagrams

095009-4



ELECTRIC DIPOLE MOMENT OF THE NEUTRON IN ... PHYS. REV. D 102, 095009 (2020)

v

W
, W
L b
t
NG S > > >
d g d H Z/L d
Y

FIG. 1. The first class of diagrams contain the FCH coupling and the big Higgs-top coupling proportional to the top mass m,. For the
first three diagrams, there are also corresponding diagrams where the W boson is replaced by an Goldstone Higgs boson within Feynman
gauge. In this figure H may denote the SM Higgs 4°. Further, within the 2HDMs H may denote the lightest neutral Higgs boson #, the
heavier neutral Higgs boson H, or the neutral pseudoscalar Higgs A.

1 gl

FIG. 2. A class of diagrams containing the FCH coupling and the big HWW coupling proportional to My,. Additional graphs with the
W replaced by an unphysical (Goldstone) Higgs within Feynman gauge has to be added. In this figure H may denote the SM Higgs h°,

or within the 2HDMs the lightest neutral Higgs #, the heavier neutral Higgs H, or the neutral pseudoscalar Higgs A.

Fo Gy 1 ZZZM%V 1 \2
2 My/2 \1672 v \167°

~6.94 x 10722 cm, (32)

where v = 246 GeV is the electroweak symmetry breaking
scale and where I have used the conversion relation
1/(200 MeV) = 107" cm.

Further,

Ce(ua) = ({%pl(“t) + %Pz(”r)] Ca + fm)- (33)

Here p, and p, are one-loop functions for finite
subloops [39]

P = (1 - L“E”D and
pa(u) = (uf 3 (”l;lf(l'") - 1). (34)

Using standard values for the masses of W and ¢, one finds
numerically

2
MtE (mt) 24657 pl(ul):O77377 p2<ut):1219

My
(35)

The UV divergence is parametrized through the quantity

A2
where A is the UV cutoff. Numerically, C, is ~5.5-9.4 for
A ~ 1-7 TeV. The quantity fg, ~ —7.7 is the sum of the
diagrams not containing divergent parts and also the finite
parts of diagrams containing a divergence. The divergence
appears in the d — tW subloop in some of the diagrams.

The V’s are Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements in the standard notation. We note that
because V;},V,, is complex, there will be an EDM even if
Yr(d - b) is real.

Using the absolute value of V7,V,, from [55], one may
write my result for the nEDM in the following way, as
shown in [39]

dy/e=N(A)

X{ ¥(b = d)| YR<dﬁb>_v::,v,bH
Yalb = Dlpoma Va6 = )] [VigVu

x 107260 cm, (37)

-Im

where I have scaled the result with the bound in [30,31]
obtained from B, — B, mixing,

|Yr(d = b)| £ 1.5x 107 = |Yg(d = b)|gouna-  (38)

The function N(A) is defined by the relation
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FIG. 3. The quantity N = N(A), in units 10726 cm, as a
function of cutoff A (in TeV). The blue (upper) curve is for
the bare case and the red (lower) curve is for the case when the
suppressing QCD corrections are included.

de2|YR (d - b)|B0und|V?thb|CE(ﬂA) = N(A) x 10726 cm,
(39)

where p,;~0.74 is the contribution from the d-quark
EDM d, to the neutron EDM d,, within lattice calculations
58-56]].

N(A) is plotted as a function of A in Fig. 3 for the
bare case (at the renormalization scale u = p,, blue
curve) and with QCD corrections (at the hadronic scale
u=pu,~1GeV, red curve, as explained in [39]).

Now, the maximal value of the parenthesis {...} in (37)
is = 1. Thus, if the bound for Ygz(d — b) in (38) is
|

dpdrK,p,

saturated, the plot for the function N, in Fig. 3 shows
that when the cutoff A is stretched up to 20 TeV, the bound
for nEDM in (1) is reached in the bare case, while the
perturbative QCD suppression tells [39] that the value of
the nEDM can at maximum be at most 0.4 x 1072° ecm
for A up to 20 TeV. If the bound for |Yg(d — b)| is
reduced, and also A is reduced, my value for "EDM will be
accordingly smaller.

V. THE nEDM IN THE 2HDMs

All diagrams in Figs. 1 and 2 will also contribute within
2HDMs without restrictions as given in (22) and (23), and
one obtains diagrams both with light z and heavy H and A
exchanges. Exchange of the pseudoscalar A [as defined in
Eq. (14)] does not contribute to the order I work, because it
does not couple to the mass matrices M,, and M, in (22)
and (23). As also is seen from these equations, A couples
only to the matrices N, ;. Exchanges of A will be treated
explicitly later in this section and are shown to be sup-
pressed. For contributions with exchange of 4 and H, the
amplitudes are equal, but have opposite signs according to
the Egs. (22) and (23). Explicitly, for X =h and X = H
exchanges I find the effective contribution

1
[Yr(d = b)SF = —(Ny),,cos0 sin0, (40)
v

where 6 is defined in (16) and (N,),, in (18). Within
2HDMs, given by (22) and (23), Eq. (40) may the be inserted
in (37). Combining (40) and (38) gives then a restriction on
flavor changing 2HDMs from B, — B, mixing [31].

As shown in [39] some diagrams with exchange of only
one neutral Higgs boson have divergent parts. In the
following I will for illustrative purposes consider in some
detail the case where a soft photon is emitted from a W
boson, as shown in the right panel of Fig. 1. Then the result
for this diagram is proportional to the two-loop integral
tensor (neglecting m; compared to m;,)

0 = | =i

where My is the mass of either the light or heavy Higgs,
i.e., X = h, H, later also A. Moreover, K, = K,’f = r, when
a Higgs is coupling to the top quark with a right-handed
coupling, and K, = Ky = (r + p), when this coupling is
left-handed. In the latter case, the integral over d p diverges.
When X =h and X = H couples to the diagonal mass
matrix part (M,), =m, one has K, — (K +K}) =
(2r+p),-

In the limit where sin @ is close to 1, the h-part can be
written as in [39]

(r+p)*—mi)(p* = m})(p* — M%)’

(41)

Y 1
T (1) = 2 (

 4m? \ 1672

2
) (Ca- P2 (uy) + g + tygin)»  (42)

where C, is given by (36) and where p,(u) is defined in
(34) and u, is the mass ratio in (35). Furthermore,

lL

bpn~—2.8, and . ~—1.1. (43)

Here thp. is the finite term following the logarithmic
divergence, and . is a completely finite term, as
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explained in the Appendix. For other diagrams there are
similar expressions as (43), but with other numbers.
Completely finite diagrams have only a term similar to
)i for instance the two first (from left) diagrams in Fig. 1.

One should remember that the loop amplitude in (42) is
multiplied by a factor gym,/My from the SM Higgs
coupling to the top quark. There will also be an extra factor
m, from the mass part of one of the top quark propagators.
Thus the factor 1/m? at the right-hand side of (42) will
cancel and the quantity Cg in (33) is dimensionless. The
factor 1/My, from the Higgs to top quark coupling goes
into F, in (32).

The individual loop integrals for X = h or X = H alone
have divergent parts. But within 2HDMs, one observes
|

dpdr(2r + p),p,

from Egs. (15), (22), and (23) that the terms with exchange
of h and H will have opposite signs due to the Cabibbo-like
mixing of & and H, and one obtains a cancellation of
divergences due to exchanges of these two bosons. Thus I
use

1 1 (M7 — M%)

o) Pty Py Y

and obtain the total tensor for exchanges of both % and H,

ATy, =T}, (h) =Ty (H) = (M3 —M%,)S,%,

(45)

where

= || o o

is finite.

As shown in the Appendix, this loop integral contains
logarithmic and dilogarithmic functions of masses of the
top quark, the W boson, and the neutral Higgs bosons 4, H.
In the limit M%, > M3, I find that

SW ~ hl(M%_])

i (47)
" My My,

where Mgy, is either m,, M;,, and/or My,. I have found the
leading result replacing Eq. (31) can be written

Gy 1 \2 —
ATV =25 (— ) ((Cy)™ - + i + OV
i 4mt2 (16]1’2) (( H) Pz(“t) WFin WFm)

+O(M3y/M7). (48)

where corrections are of order (Mgy/My)>. Here one
might expect that the divergent term C, from (42) is
replaced by a finite term where the cutoff A is replaced by
just the heavy neutral Higgs mass My. This is true to
leading order, but it turns out that the (Cp)" is a bit more
complicated, as shown in the Appendix,

(Cp)V = n{(@> 2} +1 (49)

My 2

(up to corrections of order (Mgy/My)? as mentioned
above) where

(Inu,)*

, e ~045,
(1—1/uz—(lnuz))

(Mpg)y =Mpe™. aw=y

(50)

(46)

|
and where u, is given in (35). The term 4| in (48) is, up to
(Msy/Mpy)?, the same th. as in (42).

It is easy to see that the r% s are the same if one uses
the mathematical trick given in (A21) in the Appendix. The
term fy. is trivially the same [up to corrections of order
(Mgp/M g)?]. For other diagrams, where the soft photon is
emitted by a quark g = b, t, say, the factor e*¥ will be
replaced by a similar factor e* of the same order of
magnitude. Now the result given by (40) and (48)—(50) can
be completed with similar expressions for the rest of
diagrams in Figs. 1 and 2. Then the final result will be
as in [39], i.e., as in Eq. (37) and Fig. 3, with the cutoff A

replaced by a mass My of order My [depending on the
various a’s similar to ay, in (50)].

Up to now I have considered contributions where X = h
and X = H are coupled to the diagonal mass matrix
M, — m,. Now I will consider the contributions where
the neutral Higgses h, H, A couple to the diagonal f¢
element of NV,,. Due to the mixing of the scalars 4 and H the
exchanges of these are given, as seen from (22) and (23), by
the propagator terms

(sin@)? (cos 6)?

(P> =Mp) (P> —M,)
B 1 _ (cos0)* (M} — Mj) (51)
(PP =My) (PP =M (PP - My)

The last term on the right-hand side will give finite and very
small terms because cos@ is small. Such terms are then
neglected. The first term on the right-hand side will a priori
give a divergent term if H has a left-handed coupling to
(N lie, K, =Ky = (r+p), and X =H in (41)].
However, because of the imaginary coupling of A, the
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similar exchange of A will also be divergent and cancels the
divergent term from H. The cancellation is exact in the limit
M, — My, and in general there is a finite leftover. It is
important to note that such (partial) cancellations occur also
before eventual explicit restrictions (symmetry require-
ments) are assumed for the 2HDMs. When H and A
couples right-handed with (N,),,, they have the same sign
and are finite, and they are equal in the limit M, — My. In
this case one finds a tensor with the leading behavior

1\2 o [ M
T}}LR:—< 2) I 21n< . ) (52)
1622) 2mM* "\ M2y

where M = My or M = M4, and Mgy, is of order My, or
m,. Thus, the contributions from (N,),, are suppressed by
(Mgy/M)? compared to the terms with coupling to the
mass matrix M, as stated in the beginning of this section.
Then, my result has, before QCD corrections, the general
structure

1 2 3 MZ
()~ (162 st [ i) ]
e 167 MSM MSM

Im[Yg(d — b)V;, V4. (53)

where NL is a dimensionless nonlogarithmic, nonleading
term, depending on m,, My, and the light Higgs mass M,,.
NL also contains the (Mgy/M)? corrections.

Concerning the six-dimensional interaction in (3), it will
for the local part also be proportional to N, as shown in
(30) and also suppressed by (v/My)?. The nonlocal part
given by exchange of the light 4 boson will be of one order
higher. The corresponding loop diagram is proportional to

L
(1622247,

WO =SV (My=M,)=g,, x0.015,  (54)

FIG. 4. Diagram generated in the 2HDMSs. The gray circle
denotes the interaction in (25). The dashed lines are Higgses and
the crosses in the end of two of these denotes the Higgs vacuum
expectation value.

where standard numerical values for masses for SM particles
have been used. The contribution from this diagram should
also be multiplied by (cos #)?v?, and C; in (26), and will be
small (because cos @ is small when # is close to 4°).

VI. DISCUSSIONS AND CONCLUSIONS

In previous papers [30,31] based on the effective theory
for FCH couplings, one-loop diagrams for the neutron
EDM were considered. There is a one-loop diagram for an
EDM of the u-quark with Higgs and the #-quark in the loop
which is proportional to the -quark mass and the product of
the FCH couplings Y(u« — t) and Yg(¢t — u). The abso-
lute values of these FCH couplings are not very restricted,
according to [31]

VIVe(u = 0P + el = wP <03, (59)

However, from the nEDM based on this one-loop diagram
one obtains the bound

Im[Y (1 = 1) X Yg(t = u)] <43 x 107, (56)

There is a one-loop diagram for an EDM of the d-quark
with Higgs and the b-quark in the loop proportional to
the b-quark mass and the product of FCH couplings
Yr(d - b) and Yg(b — d). Bound on the coupling
Yr(d - b) is given in (38), and one has also [31]

Im[Yg(d = b) x Yg(b - d)] <64 x 1078, (57)

Then the d-quark EDM with a b-quark one-loop diagram
could at most give a contribution to the nEDM of about
1.3 x 1072% e cm before QCD corrections are taken into
account. But QCD corrections will suppress this result
further by a factor of order 10~! (see [39] and references
therein).

In my previous paper [39] I presented calculations of
two-loop diagrams which depended on a flavor changing
coupling. Such two-loop contributions are suppressed with
the flavor changing coupling to first order only, instead of
the second order suppression for one-loop diagrams.
A price for going to two loops is in this case a suppression
factor g3,/ (162%) ~ 1.2 x 1073 which is numerically bigger
than Yx(d — b), as seen in Eq. (38). Therefore the two-
loop diagrams of Ref. [39] are expected to (more than)
compete numerically with the corresponding one-loop
diagrams. Also it is important to note that, in the two-loop
case considered here, there will be a EDM different from
zero even if Y5 (d — b) is real, because it is combined with
a CKM factor.

Going from the effective theory of [30,31,39] to the general
2HDMs in this paper, I have shown that the result from [39]
stays the same, up to corrections of order (Mgy/M H’A)z’
when the flavor changing coupling [30,31,39] is replaced
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by the corresponding expression in 2HDM, as shown
in Eq. (40). This equation then gives a bound for the
expression (Ng;),,-cos@-sind/v within 2HDMs with
flavor change. Further, I have shown that the divergences
appearing for some EDM diagrams with flavor changing
Higgs in my previous paper [39] are, as expected, removed
when extending the analysis to two-Higgs-doublet models
allowing for flavor changes by neutral scalars. Namely,
the divergences ~In(A) in [39] are replaced by In(Mp),
where M, is equal to My times a function of the ratio
m,/My,. [see Eq. (50)]. Finally, I have demonstrated
that exchanges of the pseudoscalar Higgs A does not
contribute to the order I work because they are suppressed
by (Mgu/M4)% 1 have also demonstrated that some
potential divergences involving exchanges of A are can-
celed by similar divergences from exchanges of the heavy
scalar H.

It is also found that the six-dimensional interaction in (3)
used in [39] will also be proportional to the nondiagonal N,
matrix in (17), (20), and (22). The quantity C; from the
Higgs potential contains many unknowns. But this term is
suppressed by (v/My)?, as seen from Eq. (30).

There are also other calculations of the nEDM [4,54]. In
[54] EDM for flavor changing couplings are considered,
but only at one loop. The results, given by the matrices in
Eq. (75) of that paper, are in reasonable agreement with
[31], cf. also the Egs. (55)-(57).

In [4] a 2HDM is considered at two-loop level in terms
of Barr-Zee diagrams, but with no flavor change from
neutral Higgses. This contribution is suppressed by the
mass ratio m,/My,, where m; is a light quark mass m, or
my. Then, if the nondiagonal elements of the matrix N, are
of the same order as the diagonal ones, the result presented
in this paper is bigger than in Eq. (53) of [4]. On the other
hand, if the nondiagonal element (N),, is very small, the
result of [4] might be bigger. And of course, if the
nondiagonal elements of N, are restricted to be zero to
avoid flavor changing neutral currents completely, then my
result is zero.

In general, the mechanism given by the diagrams in
Fig. 1 will also work in some other theories with exchanges
of scalars and the W boson, for example for an EDM of the
electron within leptoquark models [59].

To conclude, when going from [39] to the present study
of 2HDMs with flavor change I have shown the following:

(1) The result from [39] stays unchanged up to correc-
tions of (Mgy/Mpy 4)?. The logarithmic divergence
~In(A/My) in [39] is replaced by In(My/My),
where M\; is of order M.

(i) The flavor changing coupling Yz(d — b) in
[30,31,39] is found to be replaced by (N;),, - cos @ -
sinf/v in a 2HDMs with flavor changing neutral
Higgses. I have also identified an example of the six-

dimensional term in Eq. (3) which was a starting
point in [31,34,39].

(iii) There is a cancellation between divergent terms with
A and H exchanges.

(iv) There is a suppression (Mgy /My 4)? of finite terms
due to exchange of A and H terms not coupled to the
top mass.
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APPENDIX: DETAILS FOR THE
LOOP INTEGRALS

If the soft photon is emitted from the W boson as in the
left diagram in Fig. 1, then the left subloop containing
the Higgs boson is logarithmically divergent. The result of
the divergent part of (41) can be written

y 1 (1—x)
Tﬂ,,(h):gLZ!/ dx/ dy
4 0 0
.

A
) / (72 = M3 2 (% — m?)

(I2(R) + R - I3(R)),
(A1)

where the quantity R depends on the squared loop
momentum 2. For n =2, 3

dp
W) = | G

Then for cutoff regularization,

(A2)

i

(I(R) + R+ 15(R)) = 1

(m(z@ /R) — 3) (A3)

where A is the cutoff, and x and y are Feynman parameters,
and

R=B—x(1-x)r%

B=m} +x(My — 1) +y(MZ —m3).  (A4)
One may split up
<ln(A2/R) - ;) = <ln(A2/M%V) - Z)
+ In(M3%,/R), (A5)

where the first term corresponds to C, in (36), and the
In(M%,/R) term corresponds to tk. . There is also a finite
term tlv\",Fin corresponding to an completely finite extra term
~1/R not shown in (Al). We also note that the one-loop
integral
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dr —i
Ky = = , A6
v / (r* = M3)*(r* =m?)  16z°m? pa(ur),  (A6)

where p,(u) defined in (34) is the proportionality factor for
the divergent term C, in (36).

Now I consider the finite loop integral in (46) with both &
and H included. Doing Feynman parametrization for the
dp integration one obtains

9w
Sy = TSW’

i 1 dx (1-x) (1=x-y)
sV =2 d dzJV,
(16n2> / x(1 —x% y/o ¢

(A7)

plus terms suppressed by 1/M2. This integral is finite.
Note that the term ~1/R mentioned just above (A6) is not
included. Here

W dr
0= | o)
i —1
-~ 16s [<m% - M3)(0 — M)

m: (In(Q/M3) Tn(Q/m)
INCCTese ((Q “m) (0 m%>)]’ (A8)
where
0 = o (i +-x(m? =) + (M1 = )

+ z2(M% — m3)). (A9)

Integrating over z gives a suppression factor of order
1/M?,. Changing variables, one obtains an integral over
Q with dz = x(1 — x)dQ/M?%,

- 16in2(1\);<21{1:7)161>l2,)(fW(Q1) - Qo))

(A10)

Here, the dilogarithmic function is in our case defined as

dilog(z) = [ dt(lln@t) =Liy(1-z). (Al2)
Further,
01 = o 1 +-x(m? = ) + (01 = )
+ (1 =x = y)(Mp —my)),
nd @y = s (n -+ x(m = )+ y(MF = )
:x(lB— x)’ (A13)

where B is defined in (A4).
Now the quantity S in (A7) may be split up as

H 2 1 (1-x)
- <16lﬂ2> 2!A dxA dy[f"(01) = ¥ (Qo)]
=SV sy (A14)

Here the quantity S!" contains a term In(M%) correspond-
ing to the divergent term In(A?) in [39] and (42). In order to
find S} explicitly I use the asymptotic property for Z — oo

dilog(Z) — —%(111(2))2. (A15)

Therefore, one obtains for M3, > M3

(—dilog <5_W> 1 dilog (5_))
on(2E)- ({2 ) ). caie
(I-x-y)

= ie (A17)

where

Then one obtains

1 \2 1 M2 1
SW — —(1 H —
L <167z2> M2, (m2 — M3) [ <n<M%V> +2>
(mt - MW) m My 2

which may be manipulated into

(A18)
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1 \2(C.)W.
Sil)v _ > ( H) > p;V(ut)’ (Alg)
167 My My,

where (&,)W is given in (49) and (50).
The term S} in (A14) contains the In(R) term in (A5),

and is given by
2 1 (1-x)
)21/ dx/ dyfY(0o).  (A20)
0 0

sgvz(

i
1672

To see this clearly, instead of using (AS), one may use a
trick by rewriting /5(R) in (A1)-(A3) as

IZ(R):ZAAde/(pzdfpmy

Also, one observes that R = —x(1 — x)(r> = Q).

(A21)
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