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In this article, we investigate the μ− → e−X process in a muonic atom, where X is a light neutral boson.
By calculating the spectrum of the emitted electron for several cases, we discuss the model-discriminating
power of the process. We report the strong model dependence of the spectrum near a high-energy end point.
Our findings show that future experiments using muonic atoms are helpful to identify the properties of
exotic bosons.
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I. INTRODUCTION

Though the standard model (SM) of particle physics is
consistent with almost all experimental data, it still leaves
many unanswered questions: the existence of dark matter,
the origin of the neutrino masses, and so on. To build
physics beyond the SM, physicists have searched for direct
or indirect clues for many years. Since we have many
candidates for the SM extension, we need to try various
complementary methods to probe the effects of new
physics. Interestingly, several candidates predict light
particles that interact feebly with the SM particles. For
the feebly interacting light particles, it is preferable to take a
different approach from heavy particle searches.
If there is such a neutral boson X with a mass smaller

than a muon mass mμ ¼ 105.658 MeV, the boson X
induces an exotic muon decay μ → eX. In fact, some
promising phenomenological models include a new particle
whose mass is of MeVor less and which induces the lepton
flavor violation: e.g., light scalars such as majorons,
familons, and axionlike particles [1–8], or light extra gauge
bosons [9–12]. To investigate them generally, the authors of
Ref. [13] carried out a comprehensive study of l → l0X
processes where the emitted X decays into lighter SM
particles like an electron-positron pair or a photon pair.
Let us consider cases where the X has a sufficiently long

lifetime or decays into invisible particles. The general

searches for the two-body muon decay μþ → eþX have
been performed in some experiments. Even if we do not
care about the decay property of the X, we can search for its
trace by careful measurement of a positron energy spectrum
in the muon decay. Let mX be the mass of X, and you
find the spectrum enhanced at Ee ≃ ðm2

μ −m2
XÞ=ð2mμÞ. An

inevitable background on this kind of search is positrons
emitted from the ordinary muon decay μþ → eþνeν̄μ,
which is especially serious for a small mX. To suppress
this background, the authors of Ref. [14] accumulated
1.8 × 107 polarized positive muons and counted emitted
positrons in the opposite direction to the polarization of
muons. As a result, they concluded that the constraint
for the branching ratio was Brðμþ → eþXÞ < 2.6 × 10−6,
assuming that the momentum distribution of signal posi-
trons is spherically symmetric and the X is massless. Under
this assumption, this constraint is still more stringent than
those of any other experiments. In 2015, the TWIST
experiment [15] reported the latest search for μþ → eþX.
They analyzed 5.8 × 108 muons and obtained the branch-
ing ratio limits of Oð10−5Þ for various decay asymmetries
and masses of 13 MeV < mX < 80 MeV. In the near
future, Mu3e Collaboration is going to investigate
μþ → eþX with sensitivity of Br ∼Oð10−8Þ. According
to [16–18], the explorable mass region of the search is
25 MeV < mX < 95 MeV. This lower restriction comes
from the difficulty of calibration due to the steep edge of the
background spectrum, and the significant update of the
constraints for mX ≲ 25 MeV would be challenging.
A different method to investigate the μ → eX process is

to use muonic atoms instead of free muons, which was
proposed in Ref. [19]. According to the literature [19],
coming experiments using muonic atoms, such as
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COMET [20] and Mu2e [21], could explore the μ → eX
process at the same level as the past experiments using
free muons.
One expected advantage of muonic atoms is to evade the

background problem we mentioned above. The signal
energy is monochromatic in the decay of a free muon,
while the electron energy spectrum in the decay of a muon
in orbit has a finite width because of the nuclear recoil. This
fact allows us to search for the signal in a preferable energy
region where the signal-to-background ratio is large. In the
special case of a small mX, the maximum energy of the
signal is close to the signal energy of the μ− → e−

conversion, which is the main topic of the COMET and
Mu2e experiments. This means that the electron detector
for the μ− → e− conversion is also optimized for the μ− →
e−X search. Thus, the searches for μ− → e−X using muonic
atoms will be complementary to searches using free muon
decays.
Another merit of muonic atoms is that the shape and the

nuclear dependence of the electron spectrum are available
to obtain detailed information on new physics. The model
identification by measuring such characteristic observables
has been discussed in another lepton-flavor-violating proc-
ess μ−e− → e−e− in a muonic atom [22–24]. Despite its
importance, no one has studied the model dependence of
observables in the μ− → e−X process.
Our goal of this article is to understand the model-

discriminating power of the μ− → e−X process in a muonic
atom. For a simple discussion of the model dependence,
we introduce three effective models in Sec. II. Then, we
formulate the rate of μ− → e−X in a nuclear Coulomb
potential. In Sec. III, we show numerical results and discuss
the model dependence of observables. Finally, we sum-
marize this article in Sec. IV.

II. FORMULATION

In this section, we formulate the spectrum of an emitted
electron from the μ− → e−X process in a muonic atom.
Here, we assume a boson X lighter than muons. To
investigate the model dependence, we consider three simple
effective models called S0, S1, and V1, which are defined as
follows.
First, we assume that X is a scalar field and the

effective interaction Lagrangian to charged leptons is
given as

LS0 ¼ Xē
�
gS0L PL þ gS0R PR

�
μþ ½H:c:�; ð1Þ

where PL=R ¼ ð1 ∓ γ5Þ=2 is a projection operator, and

gS0L=R are dimensionless coupling constants. In this
article, we do not consider how to make the model UV
complete, and we write down only the relevant part of the
Lagrangian. This type of Lagrangian was also analyzed in
Refs. [13,19]. In this model, keeping an electron mass

me ¼ 0.510999 MeV, we find the rate of the exotic free
muon decay μ → eX to be

Γ0 ¼
mμ

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; r2e; r2XÞ

q n����gS0L ���2 þ ���gS0R ���2�ð1 − r2X þ r2eÞ

þ 4reRe
h
gS0L gS0�R

io
; ð2Þ

where rX ¼ mX=mμ, re ¼ me=mμ, and λðx; y; zÞ ¼
x2 þ y2 þ z2 − 2xy − 2yz − 2zx. Multiplying it with the
lifetime of muon τμ ¼ 192π3=ðG2

Fm
5
μÞ, where GF ¼

1.166 × 10−5 GeV−2 is the Fermi coupling constant, we
obtain the branching ratio for the free muon, Brðμ → eXÞ ¼
τμΓ0. For reference, suppose that gS0L ¼ gS0R (¼ gS0) and
mX ¼ 0. Then, using Br < 2.6 × 10−6 [14], we obtain
the constraint for the coupling constant,

jgS0 j2 < 3.7 × 10−22: ð3Þ

Second, we assume the following derivative coupling for
the scalar X,

LS1 ¼ ð−iÞ ∂
αX
ΛS1

ēγα
�
gS1L PL þ gS1R PR

�
μþ ½H:c:�; ð4Þ

where ΛS1 is an arbitrary energy scale to keep coupling

constants gS1L=R dimensionless. The rate of the free muon
decay is given as

Γ0 ¼
mμ

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; r2e; r2XÞ

q �
mμ

ΛS1

�
2n����gS1L ���2 þ ���gS1R ���2�

×
n
ð1 − r2eÞ2 − r2Xð1þ r2eÞ

o
þ 4rer2XRe

h
gS1L gS1�R

io
:

ð5Þ

Now we mention that, when both leptons are free and on
mass shell, Eq. (4) is effectively equivalent to Eq. (1) due to
the Dirac equation, ði=∂ −mÞψ ¼ 0. Here, we have the
relation of coupling constants given as

gS0L=R ¼ 1

ΛS1

�
mμg

S1
R=L −meg

S1
L=R

�
: ð6Þ

Applying the relation, we easily prove the equality of
Eqs. (2) and (5). However, Eq. (6) no longer holds in a
Coulomb potential. For the process in a muonic atom, it is
worth investigating the quantitative differences of the
observables between the two models.
Third, in addition to the scalar cases, we consider another

case where X is a vector field, and the effective interaction
is given as

LV1
¼ Xαβ

2ΛV1

ēσαβ
�
gV1

L PL þ gV1

R PR

�
μþ ½H:c:�; ð7Þ
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where Xαβ ¼ ∂αXβ − ∂βXα is the field strength of the X.
The couplings gV1

L=R are dimensionless again due to the
arbitrary scale ΛV1

. As with the previous models, the decay
rate for the free muon is given as

Γ0 ¼
mμ

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; r2e; r2XÞ

q �
mμ

ΛV1

�
2n����gV1

L

���2 þ ���gV1

R

���2�

×
n
2 − r2X − r4X − r2eð4þ r2XÞ þ 2r4e

o
− 12rer2XRe

h
gV1

L gV1�
R

io
: ð8Þ

Next, we formulate the rate of the μ− → e−X process in a
muonic atom.We assume the independent particle model of
a muonic atom and an initial muon in a 1s orbit. We define
the transition amplitude M as

2πδðEXþEe−m�
μÞM¼

�
e−pe

;XpX

����
Z

d4xLM

����μ−1s
	
; ð9Þ

where we take only the leading order of effective inter-
action. For simplicity, we omit the spin indices. Here, EX
and Ee are the energies of the emitted X and electron in the
final state, respectively. m�

μ ¼ mμ − B1s
μN indicates the

energy of the bound muon, where B1s
μN is the binding

energy between the nucleus and muon in a 1s state. TheM
connects to the decay rate by

dΓ¼ d3pe

ð2πÞ32Ee

d3pX

ð2πÞ32EX
ð2πÞδðEX þEe−m�

μÞ
1

2

X
spins

jMj2:

ð10Þ

The factor of 1=2 comes from the spin average of the initial
bound muon.
The transition amplitude M includes the overlap inte-

grals of lepton wave functions that are solutions of the
Dirac equation with the nuclear Coulomb potential [25].
In the central force system, one can represent the wave
function of the bound muon as

ψ
sμ
μ ðrÞ ¼

�
GðrÞχsμ−1ðr̂Þ
iFðrÞχsμþ1ðr̂Þ

�
; ð11Þ

with a normalization condition

Z
d3rψ̄

s0μ
μ ðrÞψ sμ

μ ðrÞ ¼ δsμ;s0μ : ð12Þ

The angular parts χ are two-component spinors, which are
determined analytically. Furthermore, we obtain the radial
part and the binding energy by solving an eigenvalue
problem for the radial Dirac equations,

d
dr

�
GðrÞ
FðrÞ

�
¼

�
0 Eμ þmμN þ eVCðrÞ

−Eμ þmμN − eVCðrÞ −2=r

��
GðrÞ
FðrÞ

�
: ð13Þ

The nuclear Coulomb potential VC in the equations is given as

VCðrÞ ¼
Z

∞

0

dr0r02


θðr − r0Þ 1

r
þ θðr0 − rÞ 1

r0

�
ρðr0Þ; ð14Þ

with a nuclear charge density ρðrÞ. Here, we use the reduced massmμN ¼ mμmN=ðmN þmμÞwith a nuclear massmN . After
obtaining the solution where Eμ is minimized, we determine the binding energy of the 1s state by B1s

μN ¼ mμN − Eμ [26].
For the electron in the final state, it is convenient to use the multipole expansion of the state with momentum pe. The

electron scattering state with the incoming boundary condition is expressed as follows:

ψ se
e;peðrÞ ¼

X
κ;ν;m

4πilκðlκ; m; 1=2; sejjκ; νÞYm�
lκ
ðp̂eÞe−iδκ

� gκEe
ðrÞχνκðr̂Þ

ifκEe
ðrÞχν−κðr̂Þ

�
; ð15Þ

with the Clebsch-Gordan coefficients ðlκ; m; 1=2; sejjκ; νÞ and spherical harmonics Ym
lκ
ðp̂eÞ. Here, κ is a nonzero integer to

label partial waves. For the index κ, the total angular momentum jκ and the orbital angular momentum lκ are determined by

jκ ¼ jκj − 1

2
; ð16Þ

lκ ¼ jκ þ
1

2

κ

jκj : ð17Þ
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δκ is the phase shift of a partial wave labeled by κ. To obtain the radial wave functions for a given Ee and κ, we solve

d
dr

� gκEe
ðrÞ

fκEe
ðrÞ

�
¼

� −ð1þ κÞ=r Ee þmeN þ eVCðrÞ
−Ee þmeN − eVCðrÞ −ð1 − κÞ=r

�� gκEe
ðrÞ

fκEe
ðrÞ

�
: ð18Þ

The normalization is taken to be

Z
d3rψ̄ s0e

e;p0e
ðrÞψ se

e;peðrÞ ¼ 2Eeð2πÞ3δð3Þðp0e − peÞδs;s0 : ð19Þ

Using the expressions of the effective interactions, we
find that the electron spectra for the three models
(M ¼ S0; S1; V1) are universally represented as

dΓ
dEe

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X −m2

X

p
16π2

×
X
κ

ð2jκ þ 1ÞfðjgML j2 þ jgMR j2ÞðPM
κ þ P̄M

κ Þ

þ 2Re½gM�
L gMR �ðPM

κ − P̄M
κ Þg; ð20Þ

where EX is a function of Ee determined by the energy
conservation. To take into account nuclear recoil through
EX, we apply the well-known prescription as follows
[19,27,28]:

EX ¼ m�
μ − Ee → m�

μ − Ee −
E2
e

2mN
: ð21Þ

This additional term represents the kinetic energy of the
recoiled nucleus, and the term is sizable only at high Ee
but negligible at low Ee. Thus, even though we do not
completely consider the nuclear motion, we believe that
this treatment yields a good approximation for any Ee.
After straightforward calculation, we obtain the explicit

formulas for PM
κ and P̄M

κ . For M ¼ S0, it is found that

PS0
κ ¼

���Iκ;ðlκÞgG − Iκ;ðlκÞfF

���2; ð22Þ

P̄S0
κ ¼

���Iκ;ðl−κÞfG þ Iκ;ðl−κÞgF

���2: ð23Þ

Here, we define the overlap integral Iκ;ðLÞhH (h ¼ g, f and
H ¼ G, F) as

Iκ;ðLÞhH ¼
Z

∞

0

drr2jLð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X −m2

X

q
rÞhκEe

ðrÞHðrÞ; ð24Þ

where jl is the lth-order spherical Bessel function. h
indicates the radial wave function of the scattering electron,
and H indicates that of the bound muon. This formula for
S0 is consistent with that in Ref. [19]. More complicated

expressions for PS1
κ , P̄

S1
κ , PV1

κ , and P̄V1
κ are given in the

Appendix.
If we neglect the electron mass, we find that the

components of the transition probability satisfy

P̄M
−κ ¼ PM

κ ; ð25Þ

which is valid regardless of M. Because of this symmetry,
the cross term between gML and gMR disappears after
summing over κ. This observation is understandable
because the interference between left- and right-handed
components should vanish for the final electron if me ¼ 0.
The end point energy EmX

end of the electron spectrum is
kinematically determined as

EmX
end ¼

ðmN þm�
μ −mXÞ2 −m2

N þm2
e

2ðmN þm�
μ −mXÞ

; ð26Þ

which is obtained by solving the relativistic relation of the
energy-momentum conservation. Approximately, Eq. (26)
is represented by

EmX
end ≃m�

μ −mX −
ðm�

μ −mXÞ2
2mN

; ð27Þ

where the third term is interpreted as the kinetic energy of
the recoiled nucleus.

III. NUMERICAL RESULTS

To obtain the radial wave functions of charged leptons
and the binding energy of a muonic atom, we solve the
differential equations Eq. (13) for the initial muon and
Eq. (18) for the final electron. In solving the differential
equations, we use the fourth-order Runge-Kutta method.
The correctness of our calculation code is numerically
checked by comparing it with the analytic result for a point-
charge density.
For reference, we focus on two kinds of nuclei as a

target material. One is aluminum 27Al, which will be used
in the coming COMETand Mu2e experiments. The other is
gold 197Au, which was used in the SINDRUM II experi-
ment [29]. For both nuclei, we assume the two-parameter
Fermi distribution as the nuclear charge density given as

ρðrÞ ¼ Ze
4π

ρ0
1þ expðr−r0a Þ ; ð28Þ
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where Z is the proton number of the target nucleus, and e is
the magnitude of the elementary charge. The parameters of
the distribution r0 and a are given in Table I, and ρ0 is a
normalization factor. By solving Eq. (13), we obtain the
values of the binding energy B1s

μN shown in Table I.
Substituting the binding energy into Eq. (26), we find
the end point energy EmX

end for an arbitrarymX. The values of
EmX
end for mX ¼ 0, 25, 50 MeV are shown in Table II.
Figure 1(a) shows the electron spectra for the aluminum

nucleus. The spectra are normalized by the rate for a free
muon, whose expression for each model is given in Sec. II.
Here, we plot only the spectrum of S0 model because the
differences between the models are too small to recognize
in this energy scale. Each curve in Fig. 1 corresponds to
mX, where the electron energy is universally normalized by
the end point energy for massless X, E0

end. As well as the
end point energy, the position of the spectrum peak is
shifted lower as mX increases. The peak position is
approximately given as Ee ≃ ðm2

μ −m2
XÞ=ð2mμÞ, which

is the expected signal energy if the momentum of the
initial muon is assumed to be zero. We also note that the

spectrum for 197Au shown in Fig. 1(b) has a larger width
than 27Al. This is because the momentum uncertainty of
the initial muon is larger as the nucleus has a stronger
Coulomb field.
Here, we suppose that the search for the μ− → e−X

process would be performed in an experiment for the μ− →
e− conversion, which is optimized to detect high-energy
electrons. In this case, the search would be sensitive to the
high-energy shape of the spectrum. Hereafter, we set mX ¼
0 as a reference because the high-energy end point of μ− →
e−X is close to the signal energy of the μ− → e− conversion.
We plot the spectra for 27Al in the range of 0.99 ≤

Ee=E0
end ≤ 1 in Fig. 2. In this figure, one can recognize the

difference between the models of the boson X. In particular,
the high-energy tail of the V1 model indicated by the dotted
(green) curve is larger than the others. This observation
suggests that the analysis of the end point spectrum is more
sensitive to the V1 model than the others.
We should comment on the spectrum for the S0 model

shown by the solid (red) curve in Fig. 2. One may find that
the spectrum for the S0 model is unnaturally suppressed
near Ee=E0

end ≃ 0.998, which is clearly seen in Fig. 2(b).
This happens due to the following three facts: First, the
spectrum is dominated by the contribution of κ ¼ −1 in
Eq. (20). Second, PS0

−1 vanishes when Ee ¼ Eμ [27]. Third,
Eμ is slightly smaller than E0

end due to the finite nuclear
mass. Organizing them, we notice that the main contribu-
tion of the spectrum vanishes at Ee ¼ Eμ ≲ E0

end, which is
close to but smaller than E0

end. This interesting property
characterizes the S0 model. In practice, after the confirma-
tion of X, we need much more careful measurement to
identify the spectrum shape near the end point.
This characteristic feature of the S0 model was not

reported in the previous study [19], where the original
muon mass mμ seemed to be used instead of the reduced
mass mμN in the calculation of the binding energy BμN. If
one calculates BμN ignoring the nuclear mass, one finds that

(a) (b)

FIG. 1. Spectra of the emitted electron. (a) is for 27Al and (b) is for 197Au. The horizontal axis is the electron energy Ee divided by its
maximum energy E0

end.

TABLE I. Parameters for each nucleus and the calculated
energies. The forth and fifth columns are the parameters in
Eq. (28) given by Ref. [30]. The sixth and seventh columns are Eμ

and B1s
μN obtained by our calculation.

Nuclei Z A
mN

(MeV)
r0
(fm)

a
(fm)

Eμ

(MeV)
B1s
μN

(MeV)
27Al 13 27 25133 2.845 0.569 104.75 0.4629
197Au 79 197 183473 6.38 0.535 95.48 10.12

TABLE II. End point energies EmX
end for mX ¼ 0, 25, 50 MeV.

Nuclei E0
end (MeV) E25MeV

end (MeV) E50MeV
end (MeV)

27Al 104.98 80.07 55.13
197Au 95.51 70.52 45.53
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Eμ is larger than E0
end, and therefore, the disappearance of

PS0
−1 discussed above does not happen for any physical Ee.

Here, we emphasize that the characteristic feature can be
only seen with the nuclear mass taken to be finite.
Also, Fig. 3 shows the spectrum for 197Au in the range of

0.99 ≤ Ee=E0
end ≤ 1. We find that the high-energy tail is

much larger than 27Al. As with 27Al, the tail of the V1 model
is the largest of the three models. We cannot recognize the
suppression of the spectrum near the end point for the S0
model in the 27Al case, because the nuclear mass mN is so
heavy that Eμ is sufficiently close to E0

end.
Finally, we discuss which nucleus is preferable for the

μ− → e−X search. Suppose that the new physics search
using muonic atoms is performed by measuring the number
of electrons with an energy close to the signal energy of
μ− → e− conversion, which is equal to E0

end. We define a
net branching ratio as

BrxðZÞ ¼ τ̃μ

Z
1

x
d

�
Ee

E0
end

�
E0
end

dΓ
dEe

; ð29Þ

(a) (b)

FIG. 3. Spectra of the emitted electron for 197Au. The region that 0.99 ≤ Ee=E0
end ≤ 1 is shown. On the y axis, we use a linear scale in

(a) and a logarithmic scale in (b).

FIG. 4. The Z dependence of R0.9ðZÞ defined in Eq. (30).
Sampled points are shown by crosses. For the simplicity of the
calculation, we use the uniform distribution with the nuclear
radius of 1.2A1=3 fm as the nuclear charge density. We take the
mass number A of the most abundant isotope for each Z [32].

(a) (b)

FIG. 2. Spectra of the emitted electron for 27Al. The region that 0.99 ≤ Ee=E0
end ≤ 1 is shown. On the y axis, we use a linear scale in (a)

and a logarithmic scale in (b).
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where τ̃ is the lifetime of a muonic atom listed in Ref. [31].
This value corresponds to the number of electrons with
Ee ≥ xE0

end (x < 1) coming from μ− → e−X normalized by
the created number of muonic atoms. For further conven-
ience, we define

RxðZÞ ¼
τ̃μ
τμ

Z
1

x
d

�
Ee

E0
end

�
E0
end

Γ0

dΓ
dEe

; ð30Þ

so that

BrxðZÞ ¼ RxðZÞBrðμþ → eþXÞ: ð31Þ
Setting x ¼ 0.9, we find that the Z dependence of R0.9ðZÞ is
shown in Fig. 4. One can see that the typical value of
R0.9ðZÞ is Oð10−9 − 10−8Þ. As larger nuclei, the lifetime of
muonic atoms is shorter, but the high-energy tail of the
electron spectrum gets larger. Because of the cancellation
of the two effects [19], the Z dependence of R is not
so strong above Z ≈ 30. Considering the current exper-
imental constraint of Brðμþ → eþXÞ, we find that the
current upper limit of the net branching ratio is
Br0.9ðZÞ < Oð10−15 − 10−14Þ. Since the goal of the created
number of muons in the planned μ− → e− conversion
searches [20,21] is Oð1018Þ, it would be possible to reach
the constraint by the near-future muon sources.

IV. SUMMARY

We have investigated the μ− → e−X process in muonic
atoms as an interesting candidate to constrain the property
of light neutral bosons. Assuming three simple effective
models of the unknown boson, we have discussed the
model dependence of the electron spectrum. As a result, we
have found that the spectrum near the end point strongly
depends on the property of the boson X. We have also
shown that the nuclear dependence of the net branching
ratio is moderate.
A remaining theoretical problem is to include radiative

corrections in the calculation for the spectrum near the
high-energy end point, which is shown to be important for
ordinary decay of a muon in orbit [33]. Although we need
further studies of the realistic sensitivity of experiments, we
believe that careful measurements for the electron spectrum
in a muon decay are useful to find unknown invisible
bosons and to identify their property.
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APPENDIX: FULL EXPRESSIONS OF THE TRANSITION PROVABILITY

We show the expressions for PM
κ and P̄M

κ (M ¼ S1; V1). For the S1 model,
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For the V1 model,
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