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We consider simple scalar theories with quadratic terms that are nonlocal and Lorentz violating. Unlike
similar Lorentz-invariant nonlocal theories that we have considered previously, the theories studied here are
both ghost-free and unitary as formulated in Minkowski space. We explore the possibility that the scale of
nonlocality could be low in a dark sector, where the stringent constraints on the violation of Lorentz
invariance may be accommodated via the weak coupling to the standard model. We point out that long-
range forces may originate from such a sector and be distinguishable from more conventional beyond-the-
standard-model possibilities. We present a model in which a nonlocal, Lorentz-violating dark sector
communicates with the standard model via a sector of heavy vectorlike fermions, a concrete framework in
which phenomenological constraints and signals can be investigated.
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I. INTRODUCTION

Quantum field theories involving nonlocal interactions
are interesting for a variety of reasons [1,2]. For example, in
Ref. [2], we studied a nonlocal, Lorentz-invariant theory of
N real scalar fields of mass m with OðNÞ symmetry

L ¼ −
1

2
ϕaF̂ð□Þ−1ð□þm2Þϕa −

1

8
λ0ðϕaϕaÞ2: ð1:1Þ

Here a ¼ 1…N, λ0 is the dimensionless quartic coupling
and

F̂ð□Þ ¼ expð−η□nÞ; ð1:2Þ

where our metric signature is ðþ;−;−;−Þ. The parameter η
determines the amount of nonlocality, with the local theory
corresponding to η ¼ 0 and F̂ ¼ 1. One reason that this
theory is of interest is that the propagator

D̃FðpÞ ¼
iF̂ð−p2Þ

p2 −m2 þ iϵ
ð1:3Þ

leads to more convergent amplitudes than in the local
theory with F̂ ¼ 1; for n even, this is true whether the
theory is formulated initially in Minkowski or Euclidean

space. While better convergence properties can also be
obtained in local theories with higher-derivative quadratic
terms, like the Lee-Wick standard model [3], such theories
unavoidably come with ghosts; special prescriptions must
then be invoked in computing S-matrix elements to main-
tain the unitarity of the theory [4]. These extra theoretical
ingredients are arguably unappealing but can be avoided in
the nonlocal theory above if F̂ is chosen to be an entire
function, as in Eq. (1.2), so that no new poles appear in the
propagator, Eq. (1.3). If such an approach could be
generalized convincingly to gauge theories, one hope is
that a nonlocal generalization of the standard model could
be used to address the hierarchy problem without implying
new, TeV-scale particles that have yet to be seen at the
Large Hadron Collider.
Complications related to unitarity, however, also arise in

the ghost-free theory defined by Eqs. (1.1) and (1.2). In
Ref. [2], two-into-two scattering was considered to all
orders in the quartic coupling in the large-N limit, and it
was shown that the theory with n ¼ 2was not unitary if it is
defined in Minkowski space. The problem originates from
the form of F̂ð−p2Þ, which blows up within certain Stokes
wedges in the complex p0 plane; this leads to new
contributions to the imaginary part of the forward scattering
amplitude (coming from the contour at infinity) that would
not be present after a Wick rotation in the F̂ ¼ 1 version of
the theory. This problem seems to be generic for other
choices of F̂ that are entire functions. On the other hand,
one can define the nonlocal theory initially in Euclidean
space and analytically continue scattering amplitudes to
Minkowski space at the very end. In this case, the resulting
theory was shown to satisfy the optical theorem [2].
However, this formulation may seem as unappealing to
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some as the special prescriptions employed to render Lee-
Wick theories consistent.
In this work, we avoid these complications by consid-

ering similar nonlocal theories that are not Lorentz invari-
ant.1 We explore a simple modification of our previous
choice for F̂, in which the d’Alembertian operator is
replaced by the Laplacian:

F̂ð∇Þ ¼ expðη∇2Þ: ð1:4Þ

The theory defined with this operator is Lorentz violating;
there is a preferred frame in which the Lagrangian is
invariant under spatial rotations. One possible choice is to
assume that this is the frame in which the cosmic micro-
wave background is isotropic [6], though others are
imaginable2; motion relative to the preferred frame, which
introduces a preferred direction, can be separately bounded.
In any case, the absence of time derivatives in Eq. (1.4)
eliminates the problem with unitarity encountered in the
Minkowski-space formulation of the Lorentz-invariant
theory defined by Eqs. (1.1) and (1.2); it also ensures that
there are no ghosts, as the inverse propagator involves no
higher powers of p0.
If the nonlocality represented by Eq. (1.4) is relevant in

nature, one would expect that modification of gauge-
invariant quantities in the standard model (for example,
− 1

4
BμνF̂ð∇Þ−1Bμν, where Bμν is the hypercharge field

strength tensor) would lead to significant lower bounds
on the nonlocality scale η−1=2 due to the stringent exper-
imental constraints on the violation of Lorentz invariance
[9,10]. As a consequence, solving the hierarchy problem
would not be a motivation for studying such theories.
However, there are other motivations for considering why
nonlocality may be relevant in nature (for example, in
smoothing out gravitational singularities [11]) and the scale
of the nonlocality need not be the same for every particle.
One interesting possibility is the application of Lorentz-
violating nonlocality to gravitation, a nonlocal generaliza-
tion of the Horava-Lifshitz idea [12], motivated by the
desire to obtain a renormalizable quantum theory of gravity.
Another interesting possibility is that the nonlocality scale
associated with a dark sector may be much lower than the
Planck scale, with the bounds on Lorentz violation accom-
modated by a very weak coupling of the dark sector to the
standard model.3 As a first step in model building, we study

a nonlocal, Lorentz-violating dark sector later in this paper
and defer the consideration of gravity to future work. With
the extremely small couplings required, an interesting
phenomenological possibility is that dark-sector particles
may mediate long-range forces. In this case, effects might
be discerned relative to the effects of gravity and lead to
corrections to the gravitational potential that differ quali-
tatively from other possibilities that have been considered
previously [13].
Our paper is organized as follows. In Sec. II, we revisit

the analysis of unitarity that was discussed in Ref. [2] and
show how it is modified, in a favorable way, for the choice
of higher-derivative terms given by Eq. (1.4). In Sec. III, we
consider the nonrelativistic potential for a single scalar field
with the same nonlocal Lagrangian and show how it differs
qualitatively from that of the corresponding local theory.
While this calculation is based on the assumption that the
scalar has generic Yukawa couplings to generic fermions,
in Sec. IV we present a scenario that provides an origin for
the weak couplings to standard model fermion fields by
connecting the dark and visible sectors via a renormalizable
and gauge-invariant “portal” sector of heavy, vectorlike
fermions. With an explicit scenario defined, we consider
the implications of searches for long-range forces and for
the violation of Lorentz invariance on the mass scale and
couplings associated with the vectorlike sector, assuming
that the scale of nonlocality is comparable to the mass scale
of the particle mediating the long-range force. In Sec. V, we
summarize our conclusions.

II. UNITARITY IN A TOY MODEL

In Ref. [2], unitarity in a two-into-two scattering process
was considered in the model defined by Eqs. (1.1) and
(1.2). The calculation was done in the large-N limit, where
the result at leading order in 1=N could be conveniently
resummed to all orders in perturbation theory. In this
section, we revisit that calculation and show how it is
modified with the form of F̂ given in Eq. (1.4).
We consider the two-into-two scattering amplitude

Mðab → cdÞ for the diagrammatically simplest case in
which a ¼ b ≠ c ¼ d, where field labels a through d range
from 1…N. The scattering amplitude is given by

M ¼ −
λ

N
e−

1
2
ηðjk⃗1j2þjk⃗2j2þjk⃗01j2þjk⃗02j2Þ

1þ λΣðsÞ δabδcd; ð2:1Þ

where λ0 ≡ λ=N to make the large-N scaling of the
amplitude explicit. We indicate the momenta of the
incoming scalar bosons by k and the outgoing ones by
k0. This amplitude resums all orders in λ at leading order in
1=N. Equation (2.1) should be compared to Eq. (2.8) in
Ref. [2]; the same sign convention for self-energy function
Σ is used. The differing numerator corresponds to the

1For a very different approach to nonlocal Lorentz violation,
see Ref. [5].

2Other assumptions for a preferred frame that have appeared in
the literature include ones at rest with respect to our Galaxy and
that locally comove with the rotation of the Galaxy [7], or comove
with the Barycentric Celestial Reference System [8].

3We are not imagining that the nonlocality would be unique to
the dark sector, only that its effects may be more accessible there
since this is the sector of the theory where the constraints are
weakest.
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differing wave function renormalization factors on each of
the four external lines. The function Σ in the present case is
given by

Σ¼−
i
2

Z
d4k
ð2πÞ4

expf−ηðk⃗þp⃗=2Þ2gexpf−ηðk⃗−p⃗=2Þ2g
½ðk−p=2Þ2−m2þiϵ�½ðkþp=2Þ2−m2þiϵ�;

ð2:2Þ

where p≡ kþ k0.
For a single scalar field, the optical theorem relates the

total scattering cross section to the imaginary part of the
forward scattering amplitude, where k0i ¼ ki. In the present
case where there are N fields with a ¼ b ≠ c ¼ d, the
optical theorem requires

2ImMðk1;a;k2;a→k1;c;k2;cÞ

¼1

2

X
f

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

1

2E1

1

2E2

ð2πÞ4δð4Þðq1þq2−k1−k2Þ

×Mðk1;a;k2;a→q1;f;q2;fÞ
×M�ðk1;c;k2;c→q1;f;q2;fÞ: ð2:3Þ

We now prove the equality of the left- and right-hand sides
of Eq. (2.3). The imaginary part of the forward scattering
amplitude is proportional to the imaginary part of Σ:

2ImMðk1;k2 → k1;k2Þ ¼
2λ2

N
ImΣ

expf−ηðjk⃗1j2 þ jk⃗2j2Þg
j1þ λΣj2 :

ð2:4Þ

We evaluate the k0 integral in Eq. (2.2) by closing a contour
in the lower half of the complex k0 plane; from the iϵ
prescription, this encloses poles at k0 ¼ Ek⃗−p⃗=2 þ p0=2 and

Ek⃗þp⃗=2 − p0=2, where E2
q⃗ ≡ q⃗2 þm2. In textbook treat-

ments of the optical theorem, one generally works in a
frame where p⃗ ¼ 0. In the present case, such a boost away
from the preferred frame would also change the form of the
Lagrangian (which is not Lorentz invariant), reintroducing
k0 dependence into the numerator of Eq. (2.2); this would
not be desirable for the reasons related to Wick rotation
described earlier. Hence, we work with Eq. (2.2) in the
preferred frame and will comment later on how one could
have approached the problem starting in a different frame.
Using the residue theorem, one obtains

Σ ¼ −
1

2

Z
d3k
ð2πÞ3

expf−ηðk⃗þ p⃗=2Þ2g expf−ηðk⃗ − p⃗=2Þ2g
Ek⃗−p⃗=2 − Ek⃗þp⃗=2 þ p0

×

�
1

2Ek⃗−p⃗=2ðEk⃗−p⃗=2 þ Ek⃗þp⃗=2 þ p0Þ −
1

2Ek⃗þp⃗=2ðEk⃗−p⃗=2 þ Ek⃗þp⃗=2 − p0Þ
�
: ð2:5Þ

The imaginary part of Σ is related to the branch cut singularity originating from the second term in brackets.4 The
discontinuity from crossing this singularity in the complex p0 plane is related to the imaginary part by DiscΣ ¼ 2iImΣ.
Moreover, we may use the identity

Disc
1

p0 − ðEk⃗−p⃗=2 þ Ek⃗þp⃗=2Þ
¼ −2iπδðp0 − Ek⃗−p⃗=2 − Ek⃗þp⃗=2Þ: ð2:6Þ

This allows us to write

ImΣ ¼ −
π

2

Z
d3k
ð2πÞ3

expf−ηðk⃗þ p⃗=2Þ2g expf−ηðk⃗ − p⃗=2Þ2g
ð2Ek⃗þp⃗=2ÞðEk⃗þp⃗=2 − Ek⃗−p⃗=2 − p0Þ δðp0 − Ek⃗−p⃗=2 − Ek⃗þp⃗=2Þ; ð2:7Þ

or in the more suggestive form

ImΣ ¼ 1

4

Z
d3k
ð2πÞ3

expf−ηðk⃗þ p⃗=2Þ2g expf−ηðk⃗ − p⃗=2Þ2g
ð2Ek⃗þp⃗=2Þð2Ek⃗−p⃗=2Þ

ð2πÞδðp0 − Ek⃗−p⃗=2 − Ek⃗þp⃗=2Þ: ð2:8Þ

It follows from Eq. (2.4) that the left-hand-side (lhs) of the optical theorem can be written

4Note that the first term in brackets and the integrand prefactor have no singularities. In the latter case, this can be seen by noting
that as a function of jk⃗j, the quantity Ek⃗þp⃗=2 − Ek⃗−p⃗=2 is no larger than jp⃗j, which is always less that p0 when expressed in terms of the
on-shell external momenta, p ¼ k1 þ k2.
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lhs ¼ 2ImMðk1; k2 → k1; k2Þ

¼ λ2

2N
1

j1þ λΣj2 e
−ηðjk⃗1j2þjk⃗2j2Þ

Z
d3k
ð2πÞ3

1

2Ek⃗þp⃗=2

1

2Ek⃗−p⃗=2
ð2πÞδðp0 − Ek⃗−p⃗=2 − Ek⃗þp⃗=2Þe−ηðk⃗þp⃗=2Þ2e−ηðk⃗−p⃗=2Þ2 : ð2:9Þ

To evaluate the right-hand-side (rhs) of the optical theorem, Eq. (2.3), we write p≡ k1 þ k2 and note that Σ is a function of
p and can be pulled outside the integrals. Hence,

rhs ¼ λ2

2N
1

j1þ λΣj2 e
−ηðjk⃗1j2þjk⃗2j2Þ

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

1

2E1

1

2E2

ð2πÞ4δð4Þðq1 þ q2 − pÞe−ηðjq⃗1j2þjq⃗2j2Þ: ð2:10Þ

Notice that the prefactors multiplying the integrals in Eqs. (2.9) and (2.10) coincide. Hence, we focus on the integral in
Eq. (2.10). First, we may do the d3q2 integral using the three-dimensional delta function. Since the qi0 are on shell, this
makes the remaining delta function a function of q01 ≡ E1 ¼ Eq⃗1 and q02 ≡ E2 ¼ Ep⃗−q⃗1 . Next, we shift the remaining
integration variables, q⃗1 → q⃗1 þ p⃗=2, so that the rhs integral becomes

Z
d3q1
ð2πÞ3

1

2Eq⃗1þp⃗=2

1

2Eq⃗1−p⃗=2
ð2πÞδðEq⃗1þp⃗=2 þ Eq⃗1−p⃗=2 − p0Þe−ηjq⃗1þp⃗=2j2e−ηjq⃗1−p⃗=2j2 : ð2:11Þ

With the relabeling q1 → k, both the prefactors and
integrals on the lhs and rhs agree, showing that the optical
theorem is satisfied.
It is worth noting that agreement between the lhs and rhs

of the optical theorem would not have been spoiled had we
worked in a frame where the ∇2 of Eq. (1.4) were replaced
by the more general form Nμν∂μ∂ν, with Nμν ¼ δijΛi

μΛj
ν,

where Λ is an appropriate Lorentz transformation matrix
that connects the preferred frame to a given one. While the
form of the Lagrangian in the nonpreferred frame will
change the exponential factors that appear at the starting
points of the previous lhs and rhs derivations, one would, in
the very next step, use the Lorentz invariance of the
remaining factors in the integrands (and integration mea-
sures) to change variables so that the exponential factors
again depend only on k⃗. If one were to express the external
momenta in terms of their values in the preferred frame,
then the calculation would be identical to the one just
presented.

III. NONRELATIVISTIC POTENTIAL
FOR LONG-RANGE FORCES

The nonlocality defined by Eq. (1.4) violates Lorentz
invariance, a possibility that is tightly bounded by experi-
ment [9]. As we indicated earlier, such a nonlocal modi-
fication of the standard model would lead to a high
nonlocality scale; however, the nonlocality in a dark sector
that is adequately sequestered from the standard model
could come at a lower scale due to the small coupling
between the two sectors. We explain in Sec. IV how we can
induce such small couplings between a Lorentz-violating,
nonlocal dark sector and standard model fermions. In this

section, we will assume that such an effective coupling g
exists, in the form of a Yukawa interaction between a single
dark-sector scalar field ϕ and a generic fermion ψ :

Lint ¼ −gψ̄ψϕ: ð3:1Þ

We will show in Sec. IV that the bounds on Lorentz
violation force g to be extremely small, far too small to look
for effects in any existing collider experiments. However,
such small couplings, like that of gravity, can have
observable effects when macroscopic quantities of matter
are involved, and the effect of the scalar is suitably
long ranged. Hence, in this section, we consider such a
nonlocal long-range force. While the exponential factor in
the ϕ Lagrangian regulates potential for the long-range
force in the ultraviolet, that ultraviolet scale does not
necessarily have to be very high if the coupling to standard
model particles is weak. This can lead to changes in the
shape of the potential at length scales where differences
might be discernible in comparison to more conventional
possibilities.
The nonrelativistic potential can be computed in a

quantum field theory via an expression proportional to
the Fourier transform of the propagator of the force-
carrying particle in the nonrelativistic limit. For example,
in ordinary Yukawa theory

Vðx⃗Þ ¼
Z

d3q
ð2πÞ3

−g2

jq⃗j2 þm2
eiq⃗·x⃗

¼ −
g2

4π2ir

Z
∞

−∞
djq⃗jjq⃗j 1

jq⃗j2 þm2
eijq⃗jr: ð3:2Þ
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The standard approach is to evaluate the jq⃗j integral via the
residue theorem using a closed contour in the complex
plane that encloses a pole at jq⃗j ¼ im, taking into account
that the circular contour at infinity in the upper half plane
vanishes. However, in the present scenario, this latter
integral is modified,

Vðx⃗Þ ¼ −
g2

4π2ir

Z
∞

−∞
djq⃗jjq⃗j e−ηjq⃗j2

jq⃗j2 þm2
eijq⃗jr; ð3:3Þ

and the contour at infinity does not vanish everywhere due
to the exponential factor. Hence, we must use a different
approach. We first exponentiate the denominator using a
Schwinger parameter u,

Vðx⃗Þ ¼ −
g2

4π2ir

Z
∞

0

due−um
2

×
Z

∞

−∞
djq⃗jjq⃗j expf−ðηþ uÞjq⃗j2 þ ijq⃗jrg: ð3:4Þ

The integral in jq⃗j is of a recognizable form and can be done
analytically:

VðrÞ¼−
g2

8π3=2

Z
∞

0

du
1

ðηþuÞ3=2 exp
�
−um2−

r2

4ðηþuÞ
�
:

ð3:5Þ

The integral in Eq. (3.5) is probably not in a recognizable
form for most, but nonetheless it can also be done
analytically. The result is

VðrÞ ¼ −
g2

4π

1

r
eηm

2

�
− sinhmr

þ 1

2

�
emrErf

�
rþ 2mη

2
ffiffiffi
η

p
�
þ e−mrErf

�
r − 2mη

2
ffiffiffi
η

p
���

:

ð3:6Þ

Note that for any finite r, the error functions become unity
as η → 0 so that the quantity in curly brackets becomes
coshðmrÞ − sinhðmrÞ ¼ expð−mrÞ, which yields

lim
η→0

VðrÞ≡ V0ðrÞ ¼ −
g2

4π

1

r
e−mr; ð3:7Þ

the usual result for a Yukawa potential. The shape of the
potential for various choices of η is shown in Fig. 1. This
figure illustrates two qualitative features: (1) The presence
of the exponential eliminates the singularity at the origin;
the potential is regular at that point, approaching a constant
up to corrections of Oðr2Þ. (2) The “smoothing out” of the
potential due to the nonlocality increases its depth for
r≳m compared to the η ¼ 0 case. Note that the quantity in
curly brackets in Eq. (3.6) approaches expð−mrÞ in the

limit η−1=2r → ∞ for finite η. In this case, the potential has
the Yukawa form, with an extra multiplicative factor of
expðηm2Þ. Of course, if measurement of the coupling g
happens only via this potential, then this factor could be
absorbed in a redefinition of the coupling; however, if g is
measured in another process, then this difference in
normalization might also be discernible.
Finally, we comment on the effects of motion relative to

the preferred frame, defined by a velocity vector v⃗, which
introduces a preferred direction. The effect on our previous
calculation is to take the exponentiated factor ηδijqiqj and
replace it with

η½δij þ γ2vivj�qiqj; ð3:8Þ

where γ is the usual relativistic factor ð1 − v2Þ−1=2. Here we
first have performed a Lorentz boost in the v⃗ direction and
have applied the usual nonrelativistic approximation (in the
new frame) in which the t-channel momentum transfer has
q0 ¼ 0 up to negligible corrections. Since we have no
knowledge a priori of the vector v⃗, phenomenological
constraints on new terms in the potential generated by this
boost can be interpreted as providing upper bounds on its
magnitude jv⃗j. However, as we alluded to earlier, if we were
to assume that the preferred frame corresponds to one in
which the cosmic microwave background is isotropic,
then observations would tell us that jv⃗j ≈ 0.0012 in
units where c ¼ 1, corresponding to the measured value
369.82� 0.11 km=s [14]. For small velocities like this, it is
reasonable to calculate the effect on VðrÞ given in Eq. (3.6)
by expanding to quadratic order in v. From our new starting
point,

FIG. 1. The form of the nonrelativistic potential for various η,
with m set equal to 1.
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Vðx⃗; v⃗Þ ¼ −g2
Z

d3q
ð2πÞ3

e−ηjq⃗j2−ηγ2ðv·qÞ2

jq⃗j2 þm2
eiq⃗·x⃗; ð3:9Þ

we may write

Vðx⃗; v⃗Þ ¼ exp ½ηγ2vivj∂i∂j�Vðx⃗; 0⃗Þ; ð3:10Þ

which is useful only in that we are expanding the differ-
ential operator to second order in v⃗:

Vðx⃗; v⃗Þ ¼ ½1þ ηvivj∂i∂j�Vðx⃗; 0⃗Þ þOðv4Þ: ð3:11Þ

This allows us to find the desired v⃗ dependence using what
we have already found in Eq. (3.6). Since Vðx⃗; 0⃗Þ≡ VðrÞ
depends only on r, we may rewrite Eq. (3.11) in terms of
derivatives with respect to the radial coordinate:

Vðr; v⃗Þ¼VðrÞþηjv⃗j2 1
r
dVðrÞ
dr

−η
ðv⃗ · x⃗Þ2
r2

�
1

r
dVðrÞ
dr

−
d2VðrÞ
dr2

�
þOðv4Þ: ð3:12Þ

The first correction term, reading from left to right above, is
spherically symmetric and nonsingular at the origin; it
simply represents a small correction to the radial potential
that we have already discussed, suppressed by at least a
factor of jv⃗j2 ∼ 10−6 if the cosmic microwave background
defines the preferred frame. The second correction term is
qualitatively different since it is sensitive to the preferred
direction. Possible corrections to the gravitational potential
proportional to ðv⃗ · x⃗Þ2=r3 (which has a different radial
dependence) must be suppressed below gravitational
strength by a factor α2 ¼ 2 × 10−9, where α2 is defined
in the parametrized post-Newtonian formalism [15].
However, this bound, which is determined from the
precession of pulsar rotation axes, does not apply here
since it assumes a force with infinite range. We will assume
henceforth that the range of our new force is substantially
less than 104 m (m ≫ 10−11 eV), the size of a typical
neutron star, so that an analogous bound is evaded.
Whether interesting astrophysical bounds on Lorentz-
violating forces with finite range can be determined is
worthy of investigation but will not be considered in
this work.

IV. NONLOCAL LORENTZ VIOLATION
IN A DARK SECTOR

In this section, we consider how a single real scalar field,
like the one discussed in the previous section, might couple
to matter fields of the standard model in a realistic scenario.
We do not identify the scalar field as dark matter but
assume that it could decay into other dark-sector particles
that are stable or suitably long lived. The portal to the
standard model will consist of a sector of heavy vectorlike

fields. Let us first discuss the portal in the case of a local
theory and then explain how we introduce the nonlocality
into the theory in a way that will keep the Lorentz violation
suitably sequestered.
Consider a heavy, vectorlike field D with the same

quantum numbers as a right-handed down quark dR:

DR ∼DL ∼ dR: ð4:1Þ

The mass terms and Yukawa couplings that involve these
fields are the following:

L ¼ −MD̄LDR − Q̄LHdR − Q̄LHDR − ϕDLDR

− ϕDLdR þ H:c: ð4:2Þ

Here we have suppressed for simplicity the dimensionless
couplings and considered standard model quarks QL and
dR of a single generation. Note also that a mixing term of
the form ΔmDLdR has been eliminated by a definition of
the DR − dR field basis. When the heavy D fields are
integrated out of the theory, higher-dimension operators
will be generated in the low-energy effective theory. In the
lingo of Froggatt-Nielsen model building [16], one operator
of interest is generated via the “spaghetti” diagram shown
in Fig. 2. The amplitude for this diagram in momentum
space is

iM¼ ūQ

�
ðiPRÞ

iðpþMÞ
p2−M2

ðiPRÞ
�
ud → i

1

M
ūQPRud; ð4:3Þ

where p is the momentum on the internal line, PR ¼
ð1þ γ5Þ=2. On the far right of Eq. (4.3) we show the limit
in which p2 ≪ M2. In the low-energy effective theory,
this amplitude is reproduced by the higher-dimension
operator

Leff ¼
κ0
M

ϕQLHdR; ð4:4Þ

where κ0 subsumes the product of all the undetermined
Yukawa couplings relevant to the diagram of Fig. 2. This
leads to a Yukawa interaction of the same form that we
assumed in Sec. III with coupling κ0v=ð

ffiffiffi
2

p
MÞ, where v ¼

246 GeV is the Higgs vacuum expectation value (VEV).

FIG. 2. Diagram involving the exchange of the vectorlike
quark D.
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We now introduce the desired nonlocality by modifying
only the two terms in Eq. (4.2) that depend on ϕ:

−DLDReη∇
2=2ϕ −DLdReη∇

2=2ϕþ H:c: ð4:5Þ

Notice that a field redefinition ϕ ¼ e−η∇2=2φ would move
this nonlocal factor back to the quadratic terms of φ, as in
the toy models we considered earlier, as well as to other
possible interaction terms. The value of introducing the
nonlocality initially in Eq. (4.5) is that it makes clear that
the Lorentz violation involves the superheavy field D; after
integrating out the heavy sector, Lorentz-violating effects in
the low-energy effective theory will always be suppressed
by a ratio of widely separated mass scales. In other words,
our assumption of adequate sequestering dictates where we
introduce the factors of F̂ in the Lagrangian. Had we
instead introduced F̂−1 initially in the quadratic terms and
left Eq. (4.2) unchanged, then one might have Higgs sector
Lorentz violation suppressed only by loops involving
the possible renormalizable couplings between ϕ and H.
One might formulate the theory in that way if there is a
reason to expect those Higgs portal couplings to be
absent, for example, if ϕ and H are separated in an
extra dimension, while D is a bulk field. Such an extra-
dimensional formulation may be desirable since it would
also eliminate Planck-suppressed higher-dimension
operators that couple the ϕ field directly to standard
model fields, for example, ϕFμνFμν=MP, which leads to
additional constraints [17]. For the purpose of our dis-
cussion, we assume that such operators, if present, are
adequately suppressed.
The construction just described can be extended by

introducing another heavy, vectorlike field U with the same
quantum numbers as a right-handed up quark. We would
then generate the higher-dimension operators

Leff ¼
κd0
M

eη∇2=2ϕQLHdR þ κu0
M

eη∇2=2ϕQL H̃ uR; ð4:6Þ

and, after setting H to its VEV, the induced Yukawa
couplings

Lyuk ¼
X
f¼u;d

κfmf

M
f̄feη∇2=2ϕ: ð4:7Þ

Here κf ≡ κf0=λf, where λf is the standard model Yukawa

coupling
ffiffiffi
2

p
mf=v. Thus, we have defined κf to be unity if

it is of the same size as the dimensionless coupling we
would associate with either Q̄LHdR or Q̄LH̃uR, operators
with a similar flavor structure. This provides a convenient
point of reference.
The location of the exponential factor in Eq. (4.7), which

appears when ϕ has canonical kinetic terms, yields the
same nonrelativistic potential as the one considered in

Sec. III. With Eq. (4.7) at hand, another useful effective
interaction to consider is the coupling of ϕ to nucleons,

Leff ¼ fpp̄peη∇
2=2ϕþ fnn̄neη∇

2=2ϕ: ð4:8Þ

The mapping from Eq. (4.7) to Eq. (4.8) is the same as that
found in studies of scalar dark matter. From Ref. [18],

fN
mN

¼
X
u;d;s

fðNÞ
Tq

αq
mq

þ 2

27
fðNÞ
TG

X
c;b;t

αq
mq

; ð4:9Þ

where the scalar-quark couplings in this case are given by

αq ¼
� κqmq

M for q ¼ u; d;

0 otherwise:
ð4:10Þ

Note that Eq. (4.10) reflects the fact that the simple model
we have presented provides only for couplings to the
lightest two quark flavors; however, it is straightforward
to extend the vectorlike sector so that couplings of ϕ to
heavier flavors are induced as well. Numerical values of

fðNÞ
Tq

and fðNÞ
TG , for N ¼ p or n, can be found in Ref. [18].

For the purpose of an estimate, we will further assume that
κu ¼ κd ≡ κ. We find that

Leff ¼Apκ
mp

M
½p̄peη∇2=2ϕ�þAnκ

mn

M
½n̄neη∇2=2ϕ�; ð4:11Þ

where Ap ¼ 0.046 and An ¼ 0.050. We then infer that
the potential due to ϕ exchange between two atoms with
atomic number Z and atomic mass A is given by Eq. (3.6)
with the replacement

g2

4π
→

κ2

4πM2
½ZðApmp −AnmnÞ þAnmnA�2: ð4:12Þ

Note that the factor Apmp −Anmn would vanish in the
absence of isospin breaking effects and is suppressed
relative to the second term in brackets. For example, for
iron, where Z ¼ 26 and A ¼ 56, the first term represents a
3.8% effect. For the purposes of an estimate, we ignore
isospin differences so that the potential between two atoms is
given by Sec. III as follows:

VðrÞ¼−
κ2A2

N

4πM2

M2
a

r
eηm

2

�
−sinhmrþ1

2

�
emrErf

�
rþ2mη

2
ffiffiffi
η

p
�

þe−mrErf
�
r−2mη

2
ffiffiffi
η

p
���

; ð4:13Þ

where Ma is the mass of each atom and AN ≈ 0.05. As we
discussed earlier, this potential becomes Yukawa-like
asymptotically, so we can obtain an estimate of the typical
bounds on κ using the results in Ref. [19], which apply to a
Yukawa-like force. The scale suppression 1=Λ in this
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reference can be matched to ANκ=M in Eq. (4.11). If we
take, for example,M ¼ 0.1MP, we find that κ < 0.02 for a
force with a range below 104 m (or m > 10−11 eV). (This
would become κ < 0.01 if one corrects κ2 by the nonlocal
factor eηm

2

for ηm2 ¼ 1.) If we define a parameter ξ that
compares the coefficient of Eq. (4.13) to gravitational
strength, ı.e., κ2A2

Ne
ηm2

=ð4πM2Þ ¼ ξ=M2
P, where MP ¼

1.2 × 1019 GeV is the Planck mass, then for this choice
of parameters, with κ < 0.01, one finds that ξ < 5 × 10−6.
This is consistent with the statement in Ref. [15] that bounds
range from 10−3 to 10−6, the strength of gravity for ranges
between 1 and 104 m. In any case, we will assume that the
upper bounds on κ are satisfied so that our theory remains
consistent with fifth force searches. We note that astro-
physical bounds on very light scalars are superseded by fifth
force bounds for scalar masses below 0.2 eV [20] and will
not provide additional constraints.
Separate bounds come from the fact that the theory is

Lorentz violating. For example, the interaction in Eq. (4.7)
provides a Lorentz-violating contribution to the self-energy
function for the fermion f ¼ u or d, which leads to a
Lorentz-violating dispersion relation. We can use this to
compute the difference between the speed of a massless
fermion and the speed of light, a quantity often used to
constrain theories with Lorentz violation that is isotropic
[21]. From Eq. (4.7), the self-energy (following the con-
ventions of Peskin and Schroeder [22]) is given by

−iΣ ¼ g2f

Z
1

0

dx
Z

d4q
ð2πÞ4

e−ηðq⃗−xp⃗Þ2 ½=qþ ð1 − xÞpþmf�
½q2 − Δ�2 ;

ð4:14Þ

where gf ¼ κfmf=M and

Δ ¼ −xð1 − xÞp2 þ ð1 − xÞm2 þ xm2
f: ð4:15Þ

We show that we can obtain a useful bound by studying the
limit in which the dimensionless quantity η1=2p⃗ is small,
and by looking at the corrections to the fermion dispersion
relation that are obtained at first order in this quantity. In the
Appendix, we consider the more general case and confirm
that the final result of this section can be obtained without
using an expansion. Expanding the integral in Eq. (4.14),
the self-energy function takes the form

Σ ¼ −Apþ Bmf þ Cp⃗ · γ⃗ þ � � � ; ð4:16Þ

where the ellipsis refers to terms suppressed by an addi-
tional power of η1=2p⃗, and where A, B, and C are the
following dimensionless, Euclidean integrals:

A ¼ g2f

Z
1

0

dxð1 − xÞ
Z

d4qE
ð2πÞ4

e−ηjq⃗j2

ðq2E þ ΔÞ2 ; ð4:17Þ

B ¼ −g2f

Z
1

0

dx
Z

d4qE
ð2πÞ4

e−ηjq⃗j2

ðq2E þ ΔÞ2 ; ð4:18Þ

C ¼ 2

3
g2f

Z
1

0

dxx
Z

d4qE
ð2πÞ4

ηjq⃗j2e−ηjq⃗j2
ðq2E þ ΔÞ2 ; ð4:19Þ

with q2E ¼ ðq0Þ2 þ jq⃗j2. The condition for an on-shell
fermion

p −mf − ΣðpÞ ¼ 0 ð4:20Þ

can thus be written as

ð1þAÞp − ð1þ BÞmf − Cp⃗ · γ⃗ ¼ 0: ð4:21Þ

Multiplying both sides of this expression by the quantity
that is the same as the left-hand side with the sign of the
second term flipped allows us to eliminate the gamma
matrix structure,

ð1þ 2AÞp2 − ð1þ 2BÞm2
f − 2Cjp⃗j2 ¼ 0; ð4:22Þ

where we have dropped negligible terms that are of order
g4f. We may solve for p0 perturbatively in g2f to obtain the
dispersion relation

ðp0Þ2 ¼ ð1þ 2C̃Þjp⃗j2 þ ð1 − 2Ãþ 2B̃Þm2
f; ð4:23Þ

where the tilde indicates our previous expressions with the
function Δðp2Þ evaluated at p2 ¼ m2

f. In the limit in which
the fermion is massless, its speed c0 can be read off the first
term

c0 ¼ 1þ C̃; ð4:24Þ

again working to order g2f, and where we have set the speed
of photons c ¼ 1. The quantity jc − c0j is experimentally
bounded [23] such that

C̃ < 3 × 10−22; ð4:25Þ

where we have used the fact that C̃ > 0. More explicitly,
this can be written

g2f
12π2

�Z
1

0

dxx
Z

∞

0

dy
y4e−y

2

½y2 þ ð1 − xÞρ�3=2
�

¼ g2f
12π2

�
1

2ρ2

�
8þ 2ρ − 3

ffiffiffi
π

p
U
�
−
1

2
;−2; ρ

���

< 3 × 10−22; ð4:26Þ

where ρ≡ ηm2 and Uða; b; zÞ is the confluent hypergeo-
metric function [24]. The integral on the first line of
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Eq. (4.26) can be obtained from Eq. (4.19) by performing
the q0 and q⃗ angular integrations so that the Feynman
parameter integral and a radial jq⃗j integral remain. The
quantity in square brackets never exceeds 1=4 for any
non-negative ρ; from this, we obtain the bound gf ¼
κmf=M < 3.8 × 10−10. Had we done this calculation using
the effective interaction for the proton that we derived
earlier, κmf would be replaced by κANmp. In either case,
the ratio of mass scales (for example, 1 GeV=½0.1MP�∼
10−18) by itself assures that the bound is satisfied and is
superseded by the bounds that we discussed earlier on long-
range forces.
We note in the Appendix that, away from the limit

considered in this section, C̃ is a function of the 3-momentum
that drops off quickly with increasing jp⃗j2, so its effects
become suppressed. As the case of small η1=2p⃗ provides
Lorentz-violating effects that are maximal but does not give
additional constraints on our theory, we will not study the
unusual formof the dispersion relation for arbitrarymomenta
here. That issue, as well as a more general study of Lorentz-
violating effects in similar nonlocal theories, will be con-
sidered in a separate publication.

V. CONCLUSIONS

In this paper, we have considered scalar theories in
which quadratic terms are present that are nonlocal and
Lorentz violating. Part of our initial motivation was to
avoid the complications related to unitarity discussed in the
related Lorentz-invariant theories of Ref. [2]; we verified
this by repeating the same calculation presented in that
earlier work. However, the theories discussed here are
potentially of interest for a broader set of reasons. For
example, they suggest a nonlocal generalization of the
Horava-Lifshitz idea [12] and might be useful in formulat-
ing a renormalizable quantum theory of gravity. Moreover,
as indicated qualitatively by the smoothing of singularities
at the origin of the nonrelativistic potential studied in
Sec. III, the nonlocality we have discussed might capture
some features of an underlying ultraviolet completion.
Since the violation of Lorentz invariance must

confront stringent experimental bounds [9], the scale of
nonlocality can only be low in sectors that communicate
very weakly with standard model particles. We have
focused on that possibility here, assuming by necessity
that any nonlocal modification of the standard model
Lagrangian itself occurs at much shorter distance scales.
While gravity provides one possible avenue for exploration,
in this work we have considered the possibility of a “dark”
scalar sector that couples to the standard model through a
portal sector of heavy, vectorlike fermions. When the heavy
fermions are integrated out of the theory, the couplings
induced to standard model fermions are extremely weak.
Nevertheless, ultralight particles from a nonlocal, Lorentz-
violating sector may be detectable via the long-range forces

that they mediate, which could lead to detectable correc-
tions to the gravitational potential of macroscopic bodies.
The sequestering of this sector allows the scale of non-
locality to be comparable to the mass scale of the particle
mediating the long-range force, a possibility that has not
been considered previously in the literature.
In summary, this paper has proposed a new possibility,

that of nonlocal Lorentz-violating extensions of the stan-
dard model. Although we have constructed one explicit
model and considered some aspects of its phenomenology,
the more important, overarching point is that the general
idea presented here may lead to other interesting applica-
tions. Directions for future study could include a more
general study of the Lorentz-violating effects in similar
theories, and the development of a nonlocal Lorentz-
violating modification of gravity. A systematic study of
the renormalization of Lorentz-violating nonlocal theories
would also be worthwhile. We hope to return to these topics
in future work.
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APPENDIX: FERMION SELF-ENERGY

In this appendix, we briefly outline the evaluation of
Eq. (4.14) without expanding in η1=2p⃗. First, we note that
we may evaluate Σ at the point p2 ¼ m2

f since corrections
to the dispersion relation affect Σ at higher order in g2f.
In this case, the factor of q2E þ Δ that appears in the
Euclideanized denominator of Eq. (4.14) is always positive,
as Δ ¼ x2m2

f þ ð1 − xÞm2 > 0. We are therefore justified
in exponentiating the denominator using a Schwinger
parameter u. We can then shift integration variables so
that the quantity that is exponentiated in the integrand is
spherically symmetric, which allows us to discard odd
terms in q. The momentum integrals are then all Gaussian
and can be easily evaluated. When the dust settles, we are
left with

Σ ¼ −
g2f

16π2

Z
1

0

dx
Z

∞

0

du
u1=2

ðηþ uÞ3=2 e
−ηux2

uþη jp⃗j2−uΔ

×

�
−

ηx
ηþ u

p⃗ · γ⃗ þ ð1 − xÞpþmf

�
: ðA1Þ

Note that setting p⃗ to zero only in the exponential factor in
Eq. (A1) provides an upper bound for the value of the
integrals, since the exponential is always less than 1 over
the integration region. Doing so and setting mf to zero, we
would identify

ASPECTS AND APPLICATIONS OF NONLOCAL LORENTZ … PHYS. REV. D 102, 095006 (2020)

095006-9



C̃ ¼ g2f
12π2

�
3

4

Z
1

0

dxx
Z

∞

0

dũ
ũ1=2

ð1þ ũÞ5=2 e
−ð1−xÞũρ

�
; ðA2Þ

where ũ ¼ η−1u and ρ is defined as in Sec. IV. We have confirmed numerically that Eqs. (A2) and (4.26) are identical. It is
also clear from Eq. (A1) (and we have checked numerically) that the coefficient of the p⃗ · γ⃗ terms is a rapidly decreasing
function of jp⃗j2, as noted in Sec. IV.
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