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Flavor violating processes in the lepton sector have highly suppressed branching ratios in the standard
model, mainly due to the tiny neutrino mass. This means that observing a lepton flavor violation (LFV) in
the next round of experiments would constitute a clear indication of physics beyond the standard model
(BSM). We revisit a discussion of one possible way to search for LFV, muonium-antimuonium oscillations.
This process violates the muon lepton number by two units and could be sensitive to the types of BSM
physics that are not probed by other types of LFV processes. Using techniques of effective field theory, we
calculate the mass and width differences of the mass eigenstates of muonium. We argue that its invisible
decays give the parametrically leading contribution to the lifetime difference and put constraints on the
scales of new physics probed by effective operators in muonium oscillations.
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I. INTRODUCTION

Flavor-changing neutral current (FCNC) interactions
serve as a powerful probe of physics beyond the standard
model (BSM). Since no local operators generate FCNCs in
the standard model (SM) at tree level, new physics (NP)
degrees of freedom can effectively compete with the SM
particles running in the loop graphs, making their discovery
possible. This is, of course, only true provided the BSM
models include flavor-violating interactions.
An especially clean system to study BSM effects in the

lepton sector is muonium Mμ, a QED bound state of a
positively charged muon and a negatively charged electron,
jMμi≡ jμþe−i. The main decay channel for both states is
driven by the weak decay of the muon. The average lifetime
of a muonium state τMμ

is expected to be the same as that of

the muon, τμ¼ð2.1969811�0.0000022Þ×10−6 s [1], apart
from the tiny effect due to time dilation, ðτMμ

− τμÞ=τμ ¼
α2m2

e=ð2m2
μÞ ¼ 6 × 10−10 [2]. Just like a positronium or a

hydrogen atom, muonium could be produced in two spin
configurations, a spin-one triplet state called orthomuo-
nium, and a spin-zero singlet state called paramuonium. We
shall denote the paramuonium state as jMP

μ i and the
orthomuonium state as jMV

μ i. If the spin of the state does
not matter, we shall employ the notation jMμi.

So far, we have not yet observed FCNC in the charged
lepton sector. This is because in the standard model with
massive neutrinos, the charged lepton flavor violating
(CLFV) transitions are suppressed by the powers of
m2

ν=m2
W , which renders the predictions for their transition

rates vanishingly small, e.g., Bðμ → eγÞνSM ∼ 10−54 [3,4].
Yet, experimental analyses constantly push the bounds on
the CLFV transitions. It might be that in some models of
NP, such as a model with the doubly charged Higgs
particles [5–8], the effective ΔL ¼ 2 transitions could
occur at a rate that is not far below the sensitivity of
currently operating experiments. Alternatively, it might be
that no term that changes the lepton flavor by two units is
present in a BSM Lagrangian. But even in this case, a
subsequent application of two ΔL ¼ 1 interactions would
also generate an effective ΔL ¼ 2 interaction.
Such a ΔL ¼ 2 interaction would then change the

muonium state into the antimuonium one, leading to the
possibility of muonium-anti-muonium oscillations. As a
variety of well-established new physics models contain
ΔL ¼ 2 interaction terms [3], the observation of a muo-
nium converting into an antimuonium could then provide
especially clean probes of new physics in the leptonic
sector [4,9]. Theoretical analyses of conversion probability
for such transitions have been actively studied, mainly
using the framework of particular models [10–15]. It would
be useful to perform a model-independent computation of
the oscillation parameters using techniques of effective
theory that includes all possible BSM models encoded in a
few Wilson coefficients of effective operators. We do so in
this paper, computing all relevant QED matrix elements.
Finally, employing similar effective field theory (EFT)
techniques for the computation of the contributions that are
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nonlocal at the muon mass scale, we present them in terms
of the series of local operators expanded in inverse powers
of mμ [16,17].
In this paper, we discuss the most general analysis of

Mμ − M̄μ oscillations in the framework of effective field
theory. We review phenomenology of muonium oscilla-
tions in Sec. II, taking into account both mass and lifetime
differences in the muonium system. We compute the mass
and width differences in Sec. III. In Sec. IV, we constrain
the BSM scale Λ using experimental muonium-anti-
muonium oscillation parameters. We conclude in Sec. V.
Appendix contains some details of calculations.

II. PHENOMENOLOGY OF
MUONIUM OSCILLATIONS

The phenomenology of Mμ − M̄μ oscillations is very
similar to phenomenology of meson-antimeson oscillations
[18,19]. There are, however, several important differences
that we will emphasize below. One major difference is
related to the fact that both ortho and paramuonium can, in
principle, oscillate. While most studies only considered
muonium oscillations due to the BSM heavy states, below
we also discuss the possibility of oscillations via the light
states. Since such states can go on a mass shell, these
contributions would lead to the possibility of a lifetime
difference in the Mμ − M̄μ system.
If the new physics Lagrangian includes lepton-flavor

violating interactions, the time development of a muonium
and antimuonium states would be coupled, so it would be
appropriate to consider their combined evolution,

jψðtÞi ¼
�
aðtÞ
bðtÞ

�
¼ aðtÞjMμi þ bðtÞjM̄μi: ð1Þ

The time evolution of jψðtÞi evolution is governed by a
Schrödinger equation,

i
d
dt

� jMμðtÞi
jM̄μðtÞi

�
¼

�
m − i

Γ
2

�� jMμðtÞi
jM̄μðtÞi

�
: ð2Þ

CPT invariance dictates that the masses and widths of
muonium and antimuonium are the same, m11 ¼ m22,
Γ11 ¼ Γ22, whileCP invariance of theΔLμ ¼ 2 interaction,
which we assume for simplicity, dictates that

m12 ¼ m�
21; Γ12 ¼ Γ�

21: ð3Þ

The presence of off diagonal pieces in the mass matrix
signals that it needs to be diagonalized. The mass eigen-
states jMμ1;2i can be defined as

jMμ1;2i ¼
1ffiffiffi
2

p ½jMμi ∓ jM̄μi�; ð4Þ

where we neglected CP violation and employed a con-
vention where CPjMμ�i ¼ ∓jMμ�i. The mass and the
width differences of the mass eigenstates are

Δm≡M1 −M2; ΔΓ≡ Γ2 − Γ1; ð5Þ

where Mi (Γi) are the masses (widths) of the mass
eigenstates jMμ1;2i. We defined Δm and ΔΓ to be either
positive or negative, which is to be determined by experi-
ment. It is often convenient to introduce dimensionless
quantities,

x ¼ Δm
Γ

; y ¼ ΔΓ
2Γ

; ð6Þ

where the average lifetime Γ ¼ ðΓ1 þ Γ2Þ=2. It is important
to note that while Γ is defined by the standard model decay
rate of the muon, x and y are driven by the lepton-flavor
violating interactions. It is then expected that both x, y ≪ 1.
The time evolution of flavor eigenstates follows from

Eq. (2) [18,19],

jMðtÞi ¼ gþðtÞjMμi þ g−ðtÞjM̄μi;
jM̄ðtÞi ¼ g−ðtÞjMμi þ gþðtÞjM̄μi; ð7Þ

where the coefficients g�ðtÞ are defined as

g�ðtÞ ¼
1

2
e−Γ1t=2e−iM1t½1� eΔΓt=2eiΔmt�: ð8Þ

As x, y ≪ 1, we can expand Eq. (8) to get

gþðtÞ ¼ e−Γ1t=2e−iM1t

�
1þ 1

8
ðy − ixÞ2ðΓtÞ2

�
;

g−ðtÞ ¼
1

2
e−Γ1t=2e−iM1tðy − ixÞðΓtÞ: ð9Þ

Denoting an amplitude for the muonium decay into a final
state f as Af ¼ hfjHjMμi and an amplitude for its decay
into a CP-conjugated final state f̄ as Af̄ ¼ hf̄jHjMμi, we
can write the time-dependent decay rate of Mμ into the f̄,

ΓðMμ → f̄ÞðtÞ ¼ 1

2
NfjAfj2e−ΓtðΓtÞ2RMðx; yÞ; ð10Þ

where Nf is a phase-space factor and RMðx; yÞ is the
oscillation rate,

RMðx; yÞ ¼
1

2
ðx2 þ y2Þ: ð11Þ

Integrating over time and normalizing to ΓðMμ → fÞ, we
get the probability of Mμ decaying as M̄μ at some time
t > 0,
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PðMμ → M̄μÞ ¼
ΓðMμ → f̄Þ
ΓðMμ → fÞ ¼ RMðx; yÞ: ð12Þ

This equation generalizes oscillation probability computed
in the classic papers [11,13] by accounting for the lifetime
difference in the muonium system, making it dependent on
both the normalized mass x and the lifetime y differences.
We will compute those in the next section.
We shall use the data from the most recent experiment

[9] in order to place constraints on the oscillation param-
eters. To do so, we have to account for the fact that the setup
described in [9] had muonia propagating in a magnetic field
B0. This magnetic field suppresses oscillations by remov-
ing degeneracy between Mμ and M̄μ. It also has a different
effect on different spin configurations of the muonium
state and the Lorentz structure of the operators that
generate mixing [20,21]. Experimentally, these effects were
accounted for by introducing a factor SBðB0Þ. The oscil-
lation probability is then [9]

PðMμ → M̄μÞ ≤ 8.3 × 10−11=SBðB0Þ: ð13Þ

We shall use different values of SBðB0Þ, presented in
Table II of [9], when placing constraints on the Wilson
coefficients of effective operators in the next section.

III. EFFECTIVE THEORY OF OSCILLATIONS

Muonium-anti-muonium oscillations could be effective
probes of flavor-violating new physics in leptons. One of
the issues is that, at this point, we do not know which
particular model of new physics will provide the correct
ultraviolet (UV) extension for the standard model.
However, since the muonium mass is most likely much
smaller than the new particle masses, it is not necessary to
know it. Any new physics scenario which involves lepton
flavor violating interactions can be matched to an effective

Lagrangian, Leff , whose Wilson coefficients would be
determined by the UV physics that becomes active at some
scale Λ [22,23],

Leff ¼ −
1

Λ2

X
i

ciðμÞQi; ð14Þ

where the ci’s are the short distance Wilson coefficients.
They encode all model-specific information. Qi’s are the
effective operators that reflect degrees of freedom relevant
at the scale at which a given process takes place. If we
assume that no new light particles (such as “dark photons”
or axions) exist in the low energy spectrum, those operators
would be written entirely in terms of the SM degrees of
freedom. In the case at hand, all SM particles with masses
larger than that of the muon should also be integrated out,
leaving only muon, electron, photon, and neutrino degrees
of freedom.
It would be convenient for us to classify effective

operators in Eq. (14) by their lepton quantum numbers.
In particular, we can write the effective Lagrangian as

Leff ¼ L
ΔLμ¼0

eff þ L
ΔLμ¼1

eff þ L
ΔLμ¼2

eff : ð15Þ

The first term in this expansion contains both the standard
model and the new physics contributions. It then follows
that the leading term in L

ΔLμ¼0

eff is suppressed by powers of
MW , not the new physics scale Λ. We should emphasize
that only the operators that are local at the scale of the
muonium mass are retained in Eq. (15).
The second term contains ΔLμ ¼ 1 operators. As we

integrated out all heavy degrees of freedom, the operators of
the lowest possible dimension that governs muonium oscil-
lations must be of dimension six. The most general dimen-

sion six effective Lagrangian, L
ΔLμ¼1

eff , has the form [24,25],

L
ΔLμ¼1

eff ¼ −
1

Λ2

X
f

½ðCf
VRμ̄Rγ

αeR þ Cf
VLμ̄Lγ

αeLÞf̄γαf þ ðCf
ARμ̄Rγ

αeR þ Cq
ALμ̄Lγ

αeLÞf̄γαγ5f

þmemfGFðCf
SRμ̄ReL þ Cf

SLμ̄LeRÞf̄f þmemfGFðCf
PRμ̄ReL þ Cf

PLμ̄LeRÞf̄γ5f
þmemfGFðCf

TRμ̄Rσ
αβeL þ Cf

TLμ̄Lσ
αβeRÞf̄σαβf þ H:c:�; ð16Þ

where GF ∼M−2
W is the Fermi constant, μ and e are the

fermion fields, ðμ; eÞL;R ¼ PL;Rðμ; eÞ. PR;L ¼ 1
2
ð1� γ5Þ

are the projection operators, and f represents other fer-
mions that are not integrated out at the muonium scale.
The subscripts on the Wilson coefficients are for the type of
Lorentz structure: vector, axial vector, scalar, pseudoscalar,
and tensor. The Wilson coefficients would in general be
different for different fermions f. Note that the Lagrangian
Eq. (16) also contains terms that do not follow from the

dimension six in the standard model effective field theory
(SMEFT) but could be generated by higher order operators.
This is taken into account by introducing mass and GF
factors emulating such suppression [24,25].
The last term in Eq. (15), L

ΔLμ¼2

eff , represents the effective
operators changing the lepton quantum number by two
units. The leading contribution to muonium oscillations is
given by the dimension six operators. The most general
effective Lagrangian,
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L
ΔLμ¼2

eff ¼ −
1

Λ2

X
i

CΔL¼2
i ðμÞQiðμÞ; ð17Þ

can be written with the operators written entirely in terms of
the muon and electron degrees of freedom,

Q1 ¼ ðμ̄LγαeLÞðμ̄LγαeLÞ; Q2 ¼ ðμ̄RγαeRÞðμ̄RγαeRÞ;
Q3 ¼ ðμ̄LγαeLÞðμ̄RγαeRÞ; Q4 ¼ ðμ̄LeRÞðμ̄LeRÞ;
Q5 ¼ ðμ̄ReLÞðμ̄ReLÞ: ð18Þ

We did not include operators that could be related to
the presented ones via Fierz relations. It is important to
note that some of the operators in Eq. (18) are not in-
variant under the SM gauge group SUð2ÞL ×Uð1Þ. This
means that they receive additional suppression, as they may
be generated from the higher-dimensional operators in
SMEFT [23].
Other ΔLμ ¼ 2 local operators that will be important

later in this paper can be written as

Q6 ¼ ðμ̄LγαeLÞðνμLγανeLÞ;
Q7 ¼ ðμ̄RγαeRÞðνμLγανeLÞ; ð19Þ

where we only included SMEFToperators that contain left-
handed neutrinos [23,26]. In order to see how these
operators (and thus new physics) contribute to the mixing
parameters, it is instructive to consider off diagonal terms in
the mass matrix [18],

�
m−

i
2
Γ
�

12

¼ 1

2MM
hM̄μjHeff jMμi

þ 1

2MM

X
n

hM̄μjHeff jnihnjHeff jMμi
MM−Enþ iϵ

; ð20Þ

where the first term does not contain imaginary part, so it
contributes to m12, i.e., the mass difference. The second
term contains bilocal contributions connected by physical
intermediate states. This term has both real and imaginary
parts and thus contributes to both m12 and Γ12.

A. Mass difference: ΔLμ = 2 operators

We can rewrite Eq. (20) to extract the physical mixing
parameters x and y of Eq. (6). For the mass difference,

x ¼ 1

2MMΓ
Re½2hM̄μjHeff jMμi

þ hM̄μji
Z

d4xT½HeffðxÞHeffð0Þ�jMμi�: ð21Þ

Assuming the LFV NP is present, the dominant local
contribution to x comes from the last term in Eq. (15),

hM̄μjHeff jMμi ¼ hM̄μjHΔLμ¼2

eff jMμi; ð22Þ

provided that only Q1 −Q5 operators are taken into
account. It is easy to see that the relevant contributions
are only suppressed by Λ2. Other contributions, including

the nonlocal double insertions of L
ΔLμ¼1

eff , represented by
the second term in Eq. (21), do contribute to the mass
difference, but are naively suppressed byΛ4. Thus, we shall
not consider them in this paper.
In order to evaluate the mass difference contribution, we

need to take the matrix elements. As explained in the
Introduction, we expect that both spin-0 singlet and spin-1
triplet muonium states would undergo oscillations. The
oscillation parameters would in general be different, as the
matrix elements would differ for those two cases.
Using factorization approach familiar from the meson

flavor oscillation, the matrix elements can be easily written
in terms of the muonium decay constant fM [27,28],

h0jμ̄γαγ5ejMP
μ i ¼ ifPpα; h0jμ̄γαejMV

μ i ¼ fVMMϵ
αðpÞ;

h0jμ̄σαβejMV
μ i ¼ ifTðϵαpβ − ϵβpαÞ; ð23Þ

where pα is paramuonium’s four momentum, and ϵαðpÞ is
the orthomuonium’s polarization vector. Note that fP ¼
fV ¼ fT ¼ fM in the nonrelativistic limit. The decay
constant can be written in terms of the bound-state wave
function,

f2M ¼ 4
jφð0Þj2
MM

; ð24Þ

which is the QED’s version of Van Royen-Weisskopf
formula. For a Coulombic bound state, the wave function
of the ground state is

φðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
πa3Mμ

q e
− r
aMμ ; ð25Þ

where aMμ
¼ ðαmredÞ−1 is the muonium Bohr radius, α is

the fine structure constant, andmred ¼ memμ=ðme þmμÞ is
the reduced mass. Then,

jφð0Þj2 ¼ ðmredαÞ3
π

¼ 1

π
ðmredαÞ3: ð26Þ

In the nonrelativistic limit, factorization gives the exact
result for the QED matrix elements of the six-fermion
operators. Nevertheless, we explicitly verified that this is
indeed the case (see Appendix).

1. Paramuonium

The matrix elements of the spin-singlet states can be
obtained from Eq. (18) using the definitions of Eq. (23),
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hM̄P
μ jQ1jMP

μ i¼ f2MM
2
M; hM̄P

μ jQ2jMP
μ i¼ f2MM

2
M;

hM̄P
μ jQ3jMP

μ i¼−
3

2
f2MM

2
M; hM̄P

μ jQ4jMP
μ i¼−

1

4
f2MM

2
M;

hM̄P
μ jQ5jMP

μ i¼−
1

4
f2MM

2
M: ð27Þ

Combining the contributions from the different operators
and using the definitions from Eqs. (24) and (26), we obtain
an expression for xP for the paramuonium state,

xP ¼ 4ðmredαÞ3
πΛ2Γ

�
CΔL¼2
1 þ CΔL¼2

2 −
3

2
CΔL¼2
3

−
1

4
ðCΔL¼2

4 þ CΔL¼2
5 Þ

�
: ð28Þ

This result is universal and holds true for any new physics
model that can be matched into a set of local ΔL ¼ 2
interactions.

2. Orthomuonium

Using the same procedure, but computing the relevant
matrix elements for the vector orthomuonium state, we
obtain the matrix elements,

hM̄V
μ jQ1jMV

μ i ¼−3f2MM2
M; hM̄V

μ jQ2jMV
μ i ¼−3f2MM2

M;

hM̄V
μ jQ3jMV

μ i ¼−
3

2
f2MM

2
M; hM̄V

μ jQ4jMV
μ i ¼−

3

4
f2MM

2
M;

hM̄V
μ jQ5jMV

μ i ¼−
3

4
f2MM

2
M: ð29Þ

Again, combining the contributions from the different
operators, we obtain an expression for xV for the ortho-
muonium state,

xV ¼ −
12ðmredαÞ3

πΛ2Γ

�
CΔL¼2
1 þ CΔL¼2

2 þ 1

2
CΔL¼2
3

þ 1

4
ðCΔL¼2

4 þ CΔL¼2
5 Þ

�
: ð30Þ

Again, this result is universal and holds true for any new
physics model that can be matched into a set of local
ΔL ¼ 2 interactions.
It might be instructive to present an example of a BSM

model that can be matched into the effective Lagrangian of
Eq. (17) and can be constrained from Eqs. (27) and (29).
Let us consider a model that contains a doubly charged
Higgs boson [5,6,29]. Such states often appear in the
context of left-right models [7,8]. A coupling of the doubly
charged Higgs field Δ−− to the lepton fields can be
written as

LR ¼ glll̄RlcΔþ H:c:; ð31Þ

where lc ¼ Cl̄T is the charge-conjugated lepton state.
Integrating out the Δ−− field, this Lagrangian leads to the
following effective Hamiltonian [5,8]:

HΔ ¼ geegμμ
2M2

Δ
ðμ̄RγαeRÞðμ̄RγαeRÞ þ H:c:; ð32Þ

below the scales associated with the doubly charged Higgs
field’s mass MΔ. Examining Eq. (32), we see that this
Hamiltonian matches onto our operator Q2 [see Eq. (18)]
with the scale Λ ¼ MΔ and the corresponding Wilson
coefficient CΔL¼2

2 ¼ geegμμ=2.

B. Width difference: ΔLμ = 2 and ΔLμ = 1 operators

The lifetime difference in the muonium system can be
obtained from Eq. (20) [30]. It comes from the physical
intermediate states, which is signified by the imaginary part
in Eq. (20) and reads

y ¼ 1

Γ

X
n

ρnhM̄μjHeff jnihnjHeff jMμi; ð33Þ

where ρn is a phase space function that corresponds to the
intermediate state that is common forMμ and M̄μ. There are
only two1 possible intermediate states that can contribute to
y, eþe−, and νν̄. The eþe− intermediate state corresponds

to aΔLμ ¼ 1 decayMμ → eþe−, which implies thatHeff ¼
H

ΔLμ¼1

eff in Eq. (33). According to Eq. (16), it appears that,
quite generally, this contribution is suppressed by Λ4, i.e.,
will be much smaller than x, irrespective of the values of the
corresponding Wilson coefficients.
Another contribution comes from the νν̄ intermediate

state. This common intermediate state can be reached by
the standard model tree level decay Mμ → νμνe interfering
with the ΔLμ ¼ 2 decay M̄μ → νμνe. Such a contribution is
only suppressed by Λ2M2

W and represents the parametri-
cally leading contribution to y. We shall compute this
contribution below.
Writing y similarly to x in Eq. (21), i.e., in terms of the

correlation function, we obtain

y ¼ 1

2MMΓ
Im

�
hM̄μji

Z
d4xT½HeffðxÞHeffð0Þ�jMμi

�

¼ 1

MMΓ
Im

�
hM̄μji

Z
d4xT½HΔLμ¼2

eff ðxÞHΔLμ¼0

eff ð0Þ�jMμi
�
;

ð34Þ

where the H
ΔLμ¼0

eff ¼ −LΔLμ¼0

eff is given by the ordinary
standard model Lagrangian,

1A possible γγ intermediate state is generated by higher-
dimensional operators and therefore, is further suppressed by
either powers of Λ or the QED coupling α than the contributions
considered here.
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L
ΔLμ¼0

eff ¼ −
4GFffiffiffi

2
p ðμ̄LγαeLÞðνeLγανμLÞ; ð35Þ

and H
ΔLμ¼2

eff only contributes through the operators Q6

and Q7.
Since the decaying muon injects a large momentum into

the two-neutrino intermediate state, the integral in Eq. (34)
is dominated by small distance contributions, compared to
the scale set by 1=mμ. We can the compute the correlation
function in Eq. (34) by employing a short distance operator
product expansion, systematically expanding it in powers
of 1=mμ, (for a corresponding diagram, see Fig. 1)

T¼ i
Z

d4xT½HΔLμ¼2

eff ðxÞHΔLμ¼0

eff ð0Þ�

¼ i
Z
d4xT½ðμ̄ΓαeÞðν̄μLγανeLÞðxÞðμ̄γβPLeÞðν̄eLγβνμLÞð0Þ�:

ð36Þ

The leading term is obtained by contracting the neutrino
fields in Eq. (36) into propagators,

ν̄μðxÞνμ
⊓

ð0Þ ¼ iSFð−xÞ;
νeðxÞνe⊔ð0Þ ¼ iSFðxÞ; ð37Þ

where SFðxÞ represents the propagator in coordinate
representation. In what follows, we will consider neutrinos
to be Dirac fields for simplicity.
Using Cutkoski rules to compute the discontinuity

(imaginary part) of T and calculating the phase space
integrals, we get

DiscT¼ GFffiffiffi
2

p
Λ2

M2
M

3π

�
CΔL¼2
6 ðQ1þQ5Þþ

1

2
CΔL¼2
7 Q3

�
: ð38Þ

We can now compute the lifetime difference y by using
Eq. (34) and take the relevant matrix elements for the spin
singlet and the spin triplet states of the muonium.

1. Paramuonium

The matrix elements of the spin-singlet state have been
computed above and presented in Eq. (27). Computing the
matrix elements in Eq. (34) using their definitions from
Eqs. (24) and (26), we obtain an expression for the lifetime
difference yP for the paramuonium state,

yP ¼ GFffiffiffi
2

p
Λ2

M2
M

π2Γ
ðmredαÞ3ðCΔL¼2

6 − CΔL¼2
7 Þ: ð39Þ

It is interesting to note that if CΔL¼2
6 ¼ CΔL¼2

7 current
conservation assures that no lifetime difference is generated
at this order in 1=Λ for the paramuonium.

2. Orthomuonium

Similarly, using the matrix elements for the spin-triplet
state computed in Eq. (29), the expression fo Eq. (38) leads
to the lifetime difference,

yV ¼ −
GFffiffiffi
2

p
Λ2

M2
M

π2Γ
ðmredαÞ3ð5CΔL¼2

6 þ CΔL¼2
7 Þ: ð40Þ

We emphasize that Eqs. (39) and (40) represent parametri-
cally leading contributions to muonium lifetime difference,
as they are only suppressed by two powers of Λ.

IV. EXPERIMENTAL CONSTRAINTS

We can now use the derived expressions for x and y to
place constraints on the BSM scale Λ (or the Wilson
coefficients Ci) from the experimental constraints on
muonium-anti-muoium oscillation parameters. Since both
spin-0 and spin-1 muonium states were produced in the
experiment [9], we should average the oscillation proba-
bility over the number of polarization degrees of freedom,

PðMμ → M̄μÞexp ¼
X
i¼P;V

1

2Si þ 1
PðMμ

i → M̄μ
iÞ; ð41Þ

where PðMμ → M̄μÞexp is the experimental oscillation
probability from Eq. (13). We shall use the values of
SBðB0Þ for B0 ¼ 2.8 μT from the Table II of [9], as it will
provide us the best experimental constraints on the BSM
scale Λ. We report those constraints in Table I. As one can
see from Eqs. (28), (30), (39), and (40), each observable
depends on the combination of the operators. We shall
assume that only one operator at a time gives a dominant
contribution. This ansatz is usually referred to as the single
operator dominance hypothesis. It is not necessarily real-
ized in many particular UV completions of the LFV EFTs,
as cancellations among contributions of different operators

FIG. 1. A contribution to y described in Eq. (34). A white
square represents a vertex given by Eq. (19), while a black dot is
given by the SM contribution of Eq. (35). A dotted line represents
the imaginary part.
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are possible. It is however a useful tool in constraining
parameters of Leff .
Since it is the combination Ci=Λ2 that enters the

theoretical predictions for x and y, one cannot separately
measure Ci and Λ. We choose to constrain the scale Λ that
is probed by the corresponding operator and set the
corresponding value of the Wilson coefficient Ci to one.
Such anapproach, as any calculation based on effective
field-theoretic techniques, has its advantages and disadvan-
tages. The advantage of such approach is in the fact that it
allows us to constrain all possible models of new physics
that can generate Mμ − M̄μ mixing. The models are
encoded in the analytic expressions for the Wilson coef-
ficients of a few effective operators in Eq. (18). The
disadvantage is reflected in the fact that possible comple-
mentary studies of new physics contributions to ΔL ¼ 1
and ΔL ¼ 2 processes are not straightforward. Those can
be done by considering particular BSM scenarios, which is
beyond the scope of this paper.2 The EFT techniques are
then used to simplify calculations of radiative corrections.
The results are reported in Table I. As can be seen, the

experimental data provide constraints on the scales com-
parable to those probed by the LHC program, except
for Q6 and Q7. The results indicate that existing bounds
on Mμ − M̄μ oscillation parameters probe NP scales of the
order of several TeV. The constraints on the lepton-flavor
violating neutrino operators Q6 and Q7 are understandably
weaker, as the lifetime difference is suppressed by a factor
GF=Λ2, while the mass difference is only suppressed by a
factor of 1=Λ2. We would like to emphasize that constraints
on the oscillation parameters come from the data that are
over 20 years old [9]. We find it amazing that the data

obtained over two decades ago probe the same energy
scales as current LHC experiments.
We urge our experimental colleagues to further study

muonium-antimuonium oscillations. It would be interesting
to see how far the proposed MACE experiment [31] or
similar facility at FNAL could push the constraints on the
muonium oscillation parameters.

V. CONCLUSIONS

Lepton flavor violating transitions provide a powerful
engine for new physics searches. In this work, we revisited
phenomenology of muonium-antimuonium oscillations.
We argued that in generic models of new physics both
mass and lifetime differences in the muonium system
would contribute to the oscillation probability. We com-
puted the normalized mass difference x in the muonium
system with the most general set of effective operators for
both spin-singlet and the spin-triplet muonium states. We
set up a formalism for computing the lifetime difference
and computed the parametrically leading contribution to y.
Using the derived expressions for x and y, we then put
constraints on the BSM scale Λ. From this, we found that
for operators Q1 −Q5 the experimental data provided
constraints on scales relevant to the LHC program.
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APPENDIX

In this Appendix, we show that the vacuum insertion
approximation leads to the same answer as a direct
computation of a four-fermion matrix element relevant
for the muonium-anti-muonium oscillations. We shall show
that by computing a matrix element of theQ1 operator as an
example. The matrix elements is defined as

hQ1i ¼ hM̄μjðμ̄γαPLeÞðμ̄γαPLeÞjMμi ðA1Þ

for both pseudoscalar and vector muonium states. In order
to compute the matrix element in Eq. (A1), we need to build
the muonium states. We can employ the standard Bethe-
Salpeter formalism. Since the muonium state is essentially
a a nonrelativistic Coulomb bound state of a μþ and an e−,
we can conventionally define it [32],

jMμi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MM

2mμ2me

s Z
d3p
ð2πÞ3 φ̃ðpÞjp;p

0i: ðA2Þ

TABLE I. Constraints on the energy scales probed by different
ΔL ¼ 2 operators of Eqs. (18) and (19). We set the corresponding
Wilson coefficient Ci ¼ 1.

Operator Interaction type
SBðB0Þ

(from [9])
Constraints on the

scale Λ, TeV

Q1 ðV − AÞ × ðV − AÞ 0.75 5.4
Q2 ðV þ AÞ × ðV þ AÞ 0.75 5.4
Q3 ðV − AÞ × ðV þ AÞ 0.95 5.4
Q4 ðSþ PÞ × ðSþ PÞ 0.75 2.7
Q5 ðS − PÞ × ðS − PÞ 0.75 2.7
Q6 ðV − AÞ × ðV − AÞ 0.75 0.58 × 10−3

Q7 ðV þ AÞ × ðV − AÞ 0.95 0.38 × 10−3

2An example of such analysis concentrating on models
containing doubly charged Higgs states is [29], where it was
concluded that 1999 data on Mμ − M̄μ oscillations [9] give
constraints that are weaker than (but complimentary to) those
obtained from a combination of constraints on μ → 3e and other
experiments. Other examples include models where the mixing is
generated by loops with neutral particles, such as heavy neutrinos.
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This state is normalized as hMμðPÞjMμðP0Þi ¼
2Epð2πÞ3δ3ðP − P0Þ. The muonium state in Eq. (A2) is
projected from a two-particle state of a muon and an

electron jp; p0i ¼ ffiffiffiffiffiffiffiffi
2Ep

p ffiffiffiffiffiffiffiffiffi
2Ep0

p
aðeÞ†p bðμÞ†p0 j0i with the help

of the Fourier transform of the spatial wave equation
describing the bound state φ̃ðpÞ,

φ̃ðpÞ ¼
Z

d3rφðrÞeipr: ðA3Þ

We expand each electron and muon field in the operator of
Eq. (A1) as

ψðxÞ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

ðaspusðpÞe−ipxþbs†p vsðpÞeipxÞ:

ðA4Þ

We will work in nonrelativistic approximation and neglect
the momentum dependence of the spinors, which are
defined as

u ¼ ffiffiffiffiffiffi
me

p �
ξ

ξ

�
; v ¼ ffiffiffiffiffiffi

me
p �

η

−η

�
;

ū ¼ ffiffiffiffiffiffi
mμ

p ð ξ†; ξ† Þγ0; v̄ ¼ ffiffiffiffiffiffi
mμ

p ð η†;−η† Þγ0: ðA5Þ

Here, ξ and η are the two-component spinors [32]. There
are four ways to Wick contract the fields in the operator
with those generating the state. Using the anticommutation
relation fap; a†p0 g ¼ ð2πÞ3δ3ðp − p0Þ results in

hQ1i ¼ ½ðūγαPLvÞðv̄γαPLuÞ þ ðv̄γαPLuÞðūγαPLvÞ
− ðv̄γαPLvÞðūγαPLuÞ − ðūγαPLuÞðv̄γαPLvÞ�Mμ

×

����
Z

d3p
ð2πÞ3 φ̃ðpÞ

����2; ðA6Þ

where we indicated that the spinors still need to be
projected onto the spin-triplet or the spin-singlet states.
This projection can be illustrated explicitly by considering
the first term in Eq. (A6), ðūγαPLvÞðv̄γαPLuÞ, the rest can
be computed in a complete analogy to that. Employing the
Weyl basis for the gamma matrices,

γ0¼
�
0 1

1 0

�
; γα¼

�
0 σα

σ̄α 0

�
; γ5¼

�−1 0

0 1

�
; ðA7Þ

where σα and σ̄α are defined as

σα ¼ ð1; σ⃗Þ; σ̄α ¼ ð1;−σ⃗Þ: ðA8Þ

Note that σ⃗ is a vector comprised of the Pauli matrices, and
1 is the 2 × 2 identity matrix. Now, expanding the matrix
elements,

ðūγαPLvÞðv̄γαPLuÞMμ
¼1

4
mμmeðξ†; ξ† Þγ0γαð1−γ5Þ

�
η

−η

�

×ðη†; −η† Þγ0γαð1−γ5Þ
�
ξ

ξ

�
;

ðA9Þ
or writing out the gamma matrices and spinors from
Eqs. (A7) and (A8) and making rearrangements, we find

ðūγαPLvÞðv̄γαPLuÞMμ

¼ mμmeð ξ†; ξ† Þ
�
0 1

1 0

��
0 σα

σ̄α 0

��
1 0

0 0

��
η

−η

�

× ð η†; −η† Þ
�
0 1

1 0

��
0 σα

σ̄α 0

��
1 0

0 0

��
ξ

ξ

�

¼ mμmeðξ†σ̄αηÞðη†σ̄αξÞMμ

¼ mμmeTr½ηξ†σ̄α�Tr½ξη†σ̄α�Mμ
: ðA10Þ

Projection onto the singlet (spin-0) or the triplet (spin-1)
states can be achieved through the substitutions [32],

ξη† ¼ 1ffiffiffi
2

p 12×2 ðA11Þ

for the spin-0 state and

ξη† ¼ 1ffiffiffi
2

p ϵ⃗� · σ⃗ ðA12Þ

for the spin-1 state with three possible polarization states,
ϵ⃗1 ¼ ð0; 0; 1Þ, ϵ⃗2 ¼ 1ffiffi

2
p ð1; i; 0Þ, and ϵ⃗3 ¼ 1ffiffi

2
p ð1;−i; 0Þ. It is

convenient to introduce polarization four vectors [28],
ϵ�ν ¼ ð0; ϵ⃗�Þ, σν ¼ ð1; σ⃗Þ, and σ̄ν ¼ ð1;−σ⃗Þ.
Computing the traces for the singlet spin state, Eq. (A10)

becomes

mμmeTr½ηξ†σ̄α�MP
μ
Tr½ξη†σ̄α�MP

μ
¼ 1

2
Tr½σ̄α�Tr½σ̄α�

¼ 2mμme: ðA13Þ
Notice that this expression is zero unless α ¼ 0. Similarly,
for the spin-1 state, Eq. (A10) becomes

mμmeTr½ηξ†σ̄α�MV
μ
Tr½ξη†σ̄α�MV

μ

¼ 1

2
mμmeϵμϵ

�
νTr½σ̄ασμ�Tr½σ̄ασν�

¼ 2mμmeϵμϵ
μ� ¼ −6mμme; ðA14Þ

as the sum over polarizations is ϵμϵμ� ¼ −3. Following the
same procedure for the rest of the terms in Eq. (A6) and
using ����

Z
d3p
ð2πÞ3 φ̃ðpÞ

����2 ¼ jφð0Þj2; ðA15Þ
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we get hQ1i for spin-0 and spin-1,

hM̄P
μ jQ1jMP

μ i ¼ 4MMjφð0Þj2;
hM̄V

μ jQ1jMV
μ i ¼ −12MMjφð0Þj2; ðA16Þ

which is identical to the definitions in Eqs. (27) and (29),
provided that the Van Royen-Weisskopf formula of
Eq. (24) is used. The proof for the rest of the operators
follows the same steps.
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