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We study double-winding Wilson loops in SUðNÞ lattice Yang-Mills gauge theory by using both strong
coupling expansions and numerical simulations. First, we examine how the area law falloff of a “coplanar”
double-windingWilson loop average depends on the numberof colorN. Indeed,we find that a coplanar double-
windingWilson loop average obeys a novel “max-of-areas law” forN ¼ 3 and the sum-of-areas law forN ≥ 4,
althoughwe reconfirm the difference-of-areas law forN ¼ 2. Second, we examine a “shifted” double-winding
Wilson loop, where the two constituent loops are displaced from one another in a transverse direction. We
evaluate its average by changing the distance of a transverse direction and we find that the long distance
behavior does not depend on the number of colorN, while the short distance behavior depends strongly onN.
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I. INTRODUCTION

What is the true mechanism for quark confinement is not
yet confirmed and still under the debate, although more than
50 years have passed since quark model was proposed by
Gell-Mann [1] in the beginning of the 1960s. In the 1970s,
however, the dual superconductor picture was already
proposed by Nambu, ’t Hooft and Mandelstam [2] as a
mechanism for quark confinement. In fact, validity of the dual
superconductor picture was confirmed for Uð1Þ pure gauge
theory [3], Georgi-Glashow model [4] and N ¼ 2 super-
symmetric Yang-Mills theory [5], although it is not yet
confirmed for the ordinary nonsupersymmetric Yang-Mills
theory [6] and quantum chromodynamics (QCD). Therefore,
the dual superconductor picture is now regarded as one of the
most promising scenarios for quark confinement, although
this does not deny the existence of the other mechanics for
quark confinement. See, e.g., [7–9] for reviews.
In order to establish the dual superconductor scenario,

the most difficult issue to be resolved first of all is to
guarantee the existence of magnetic monopoles in the pure
non-Abelian Yang-Mills gauge theory, which is different
from the ’t Hooft–Polyakov magnetic monopole [10] in the
gauge-scalar model. This issue was circumvented by using

the method called the Abelian projection proposed by ’t
Hooft [11]. The Abelian projection is a gauge fixing which
explicitly breaks the original gauge group into its maximal
torus subgroup where color symmetry is also broken. By
the Abelian projection, magnetic monopoles of the Abelian
type [12,13] are indeed realized, but the resulting theory is
distinct from the original gauge theory with the non-
Abelian gauge group. To avoid the gauge artifact, we must
find a procedure which enables one to define magnetic
monopoles in a gauge-invariant way. This issue was solved
recently for the Yang-Mills theory with the gauge group
SUðNÞ and any semisimple compact gauge group [14], by
using the non-Abelian Stokes theorem for the Wilson loop
operator and the new reformulation of the Yang-Mills
theory based on the new field variables obtained by change
of variables through the gauge covariant field decom-
position of the Cho-Duan-Ge-Faddeev-Niemi-Shabanov
[15–22]. See [9] for a recent review.
However, these achievements do not necessarily means

that the dual superconductivity is the unique scenario for
understanding quark confinement. Recently, Greensite and
Höllwieser [23] introduced a “double-winding” Wilson
loop operator in lattice gauge theory [24] to examine
possible mechanisms for quark confinement. The double-
winding Wilson loop operator WðC ¼ C1 × C2Þ is a path-
ordered product of (gauge) link variables Ul ∈ SUðNÞ
along a closed contour C which is composed of two loops
C1 and C2,

WðCÞ≡ tr½
Y
l∈C

Ul�; C ¼ C1 × C2: ð1Þ
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See Fig. 1. A more general “shifted” double-winding loop
is introduced in such a way that the two loops C1 and C2 lie
in planes parallel to the x–t plane, but are displaced from
one another in the transverse direction, e.g., z by distance
R, and are connected by lines running parallel to the z-axis.
In the nonshifted case R ¼ 0, the two loopsC1 and C2 lie in
the same plane, which we call coplanar. We denote by S1
and S2 the minimal areas bounded by loops C1 and C2,
respectively. Note that the double-winding Wilson loop
operator is defined in a gauge invariant manner, irrespective
of shifted R ≠ 0 or coplanar R ¼ 0.
In [23], they investigated the area (S1 and S2) depend-

ence of the expectation value hWðC ¼ C1 × C2Þi of a
double-winding Wilson loop operator WðC ¼ C1 × C2Þ
for the SUð2Þ gauge group. Consequently, it has been
shown in a numerical way that both the original SUð2Þ
lattice gauge theory and center vortex model obey the
difference-of-areas ðS1 − S2Þ law, while the Abelian-
projected model obeys the sum-of-areas ðS1 þ S2Þ law.
In the coplanar case R ¼ 0, a double-winding loop has been
set up as given in Fig. 2. In order to discriminate difference-
of-areas and sum-of-areas laws, it is efficient to measure the
L1-dependence of a coplanar double-winding Wilson loop
average hWðC ¼ C1 × C2Þi, with the other lengths L, L2,
and δL being fixed. For simplicity, we set δL ¼ 0. Then
S1ð¼ L × L2Þ and S2ð¼ L1 × L2Þ are the minimal areas of

rectangular loops C1 and C2, respectively. We assume
S1 ≥ S2 for definiteness hereafter. If hWðC1 × C2Þi obeys
the difference-of-areas law:

hWðC1 × C2Þi ≃ exp½−σjS1 − S2j�
¼ exp½−σL2ðL − L1Þ�; ð2Þ

then lnhWðC1 × C2Þi must linearly increase in L1 as L1

increases. On the other hand, if hWðC1 × C2Þi obeys the
sum-of-areas law:

FIG. 1. The double-winding Wilson loops. (left) A “shifted”
double-winding Wilson loop WðC ¼ C1 × C2Þ composed of the
two loops C1 and C2 which lie in planes parallel to the x–t
plane, but are displaced from one another in the z-direction by
distance R. (right) a “coplanar” double-winding Wilson loop
WðC ¼ C1 × C2Þ as the limit R ¼ 0 of the “shifted” double-
winding Wilson loop.

FIG. 2. The setting up of a coplanar double-winding Wilson
loop.

1×10–5

1×10–6

1×10–5

1×10–6

FIG. 3. L1 dependence of a coplanar double-winding Wilson
loop average hWðC ¼ C1 × C2Þi (top panel) for the original
SUð2Þ field, [reproduced from Fig. 7(a) in [23] ], (middle panel)
for center vortex [reproduced from Fig. 7(c) in [23] ], (bottom
panel) for Abelian degree of freedom, [reproduced from Fig. 8(c)
in [23] ].
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hWðC1 × C2Þi ≃ exp½−σ0ðS1 þ S2Þ�
¼ exp½−σ0L2ðLþ L1Þ�; ð3Þ

then lnhWðC1 × C2Þi must linearly decrease in L1 as L1

increases.
The numerical evidences were obtained as given in Fig. 3

which summarizes their results for L1 dependence of
lnhWðC1 × C2Þi with the other lengths being fixed, e.g.,
L ¼ 10, L2 ¼ 1, δL ¼ 0, based on numerical simulations
performed on a lattice of size 204 at β ¼ 2.4. These results
certainly showboth the originalSUð2Þ gauge field and center
vortex lead to the difference-of-areas law, while Abelian-
projected configurations lead to the sum-of-areas law.
From a physical point of view, a double-winding Wilson

loop can be interpreted as a probe for studying interactions
between two pairs of a particle and an antiparticle. Then
differences among three cases are understood as follows. In
the Abelian model, a particle and an antiparticle in a pair
are respectively connected by the electric flux with the
length of L and L1, as indicated in the top panel of Fig. 4.
The total energy of flux tubes shifted by R > 0 becomes
σ0ðLþ L1Þ, where σ0 is a string tension, if the flux-flux
interactions are neglected. This argument will give a reason
why the Abelian model gives the sum-of-areas law.
Moreover, they argue that even in the limit R → 0 the
sum-of-areas law remains unchanged in the Abelian model,
because electric flux tubes tend to repel each other and they
cannot coincide in the type II dual superconductor.
For the SUð2Þ gauge theory, they argue that the “W

bosons” play the crucial role, since they are off-diagonal
components of the SUð2Þ gauge fieldwhich are not included
in the Abelian model. W bosons have charged components
W−− andWþþ with respect to theAbelianUð1Þ group. They
explain that charged off-diagonal components W−− and
Wþþ of the SUð2Þ gauge field neutralize respectively
positive and negative static charges. Consequently, flux
tubes exist only for connecting two positive charges and two
negative static charges, which leads to difference-of-areas
law. See the bottom panel of Fig. 4.

In the vortex picture, if a vortex pierces the minimal area
of a loop, it will multiply the holonomy around the loop by a
factor −1. Therefore, if a vortex pierces two loops C1 and C2

simultaneously, it gives a trivial effect. The nontrivial result
is obtained only if a vortex pieces the non-overlapping
region S1 − S2. This leads to difference-of-areas law.
Quite recently, Matsudo and Kondo [25] have inves-

tigated a double-winding, a triple-winding, and general
multiple-winding Wilson loops in the continuum SUðNÞ
Yang-Mills theory. They have found that a coplanar double-
winding SUð3Þ Wilson loop average follows a novel area
law which is neither difference-of-areas law nor sum-of-
areas law, and that sum-of-areas law is allowed for SUðNÞ
(N ≥ 4), if the string tension is assumed to obey the
Casimir scaling for quarks in the higher representations.
In this way, the study of double-winding Wilson loops

itself is interesting because it can be used to test the
confinement mechanism in QCD. Moreover, it is worth
considering the interactions between two color flux tubes.
In this paper, we investigate both “coplanar” and “shifted”
double-winding Wilson loops in SUðNÞ lattice Yang-Mills
gauge theory by using both strong coupling expansion and
numerical simulations.
In this paper,we show that the “coplanar” double-winding

Wilson loop average has the N dependent area law falloff:
“max-of-areas law” for N ¼ 3 and sum-of-areas law for
N ≥ 4, which add a new result to the known difference-of-
areas law for an N ¼ 2 “coplanar” double-winding Wilson
loop average. Moreover, we investigate the behavior of a
“shifted” double-windingWilson loop average as a function
of the distance in a transverse direction and find that the long
distance behavior does not depend on the number of colorN,
while the short distance behavior depends on N.
This article is organized as follows. In Sec. II, we examine

how the area law falloff of a “coplanar” double-winding
Wilson loop average depends on the number of color N. In
Sec. III, we examine a “shifted” double-winding Wilson
loop,where the two constituent loops are displaced fromone
another in a transverse direction, and especially evaluate its
average by changing the distance of a transverse direction.
The final Sec. IV is devoted to conclusion and discussion.
We also discuss the validity of the Abelian operator studied
in [23]. Recently, there are numerical evidences that the dual
superconductor for SUð2Þ and SUð3Þ lattice Yang-Mills
theory is type I [26], although they explain sum-of-areas law
on the basis of type II superconductor. We should study the
interaction between two flux tubes in the limitR → 0, in case
of type I superconductor.

II. A “COPLANAR” DOUBLE-WINDING
WILSON LOOP

First of all, we consider the coplanar case R ¼ 0 of a
double-winding Wilson loop in the SUðNÞ lattice Yang-
Mills gauge theory, as indicated in Fig. 2. For simplicity, we
set δL ¼ 0. Let S1ð¼ L × L2Þ and S2ð¼ L1 × L2Þ be the

FIG. 4. Top panel: interactions between flux tubes generated by
two pairs of a quark and an antiquark, leading to the sum-of-areas
law [reproduced from Fig. 3 in [23] ]. Bottom panel: W boson
neutralizes the widely separated positive and negative charges,
leading to the difference-of-areas law in SUð2Þ, [reproduced from
Fig. 11 in [23] ].
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minimal areas of rectangular loops C1 and C2, respectively.
We assume S1 ≥ S2 for definiteness hereafter.

A. Strong coupling expansion

Let Sg be a plaquette action for the SUðNÞ lattice Yang-
Mills theory:

Sg ≔
X
n;μ≠ν

1

g2
trðUn;μUnþμ̂;νU

†
nþν̂;μU

†
n;μÞ

¼
X
n;μ<ν

1

g2
trðUn;μν þU†

n;μνÞ; ð4Þ

where the link field Un;μ satisfies Unþμ̂;−μ ¼ U†
n;μ. This

action reproduces the ordinary Yang-Mills action
−
R
dDx

P
μ<ν trðF2

μνÞ up to constant in the naive con-
tinuum limit (lattice spacing ϵ → 0). The diagrammatic
expressions of a plaquette variable Un;μν and the plaquette
action are given in Fig. 5.
Note that the standard Wilson action SW is defined by

SW ¼
X
n;μ<ν

β

�
1

2trð1Þ tr½Un;μν þ U†
n;μν� − 1

�
; ð5Þ

see, e.g., [27]. The difference of the constant term in the
action is physically insignificant and we drop it in the
strong coupling analysis. By comparing Sg and SW , we can
find

β ¼ 2N=g2: ð6Þ
We define a partition function Z by

Z ≔
Z Y

n;μ

dUn;μeSg; ð7Þ

where dUn;μ is the invariant integration measure of SUðNÞ.
Then the expectation value hWðCÞi of an operatorWðCÞ is
defined by

hWðCÞi ≔
R Q

n;μdUn;μeSgWðCÞ
Z

: ð8Þ

In order to evaluate the expectation value in Eq. (8), we
perform the strong coupling expansion: For the large bare
coupling constant g, we can expand the weight eSg into the
power-series of 1=g2,

eSg ¼
Y
n;μ<ν

�X∞
k¼0

1

k!

�
1

g2

�
k
½trðUn;μνÞ þ trðU†

n;μνÞ�k
�
; ð9Þ

and perform the group integration over each link variable
Un;μ according to the measure dUn;μ. In Appendix A, we
summarize the formulas needed for the strong coupling
expansion and for the SUðNÞ group integration.

1. SUð2Þ
First, we study the case of SUð2Þ gauge group. For a

coplanar double-winding Wilson loop, there is a single link
variable Ul for a link l ∈ C1 − C2 and there is a double
link variable UlUl for a link l ∈ C2, as shown in the top
diagram of Fig. 6.
We list some of explicit SUð2Þ group integration

formula as

Z
dU1 ¼ 1; ð10aÞ

FIG. 5. Top panel: a plaquette variable Un;μν, Bottom panel: a
plaquette action.

FIG. 6. A set of plaquettes tiling the areas S1 and S2 which
gives the nontrivial contribution to a coplanar double-winding
Wilson loop average hWðC1 × C2Þi for SUð2Þ. Top panel: the
leading contribution, bottom panel: a higher order contribution.
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Z
dUUab ¼ 0;

Z
dUU†

ab ¼ 0; ð10bÞ
Z

dUUabU
†
kl ¼

1

2
δalδbk; ð10cÞ

Z
dUUa1b1Ua2b2 ¼

1

2!
ϵa1a2ϵb1b2 ¼

Z
dUU†

a1b1
U†

a2b2
;

ð10dÞ
Z

dUUa1b1Ua2b2 � ��UaMbM ¼0; M≠0 ðmod 2Þ; ð10eÞ
Z

dUUabUcdU
†
ijU

†
kl

¼ 1

ð22 − 1Þ
�
δajδbiδclδdk þ δalδbkδcjδdi

−
1

2
ðδajδbkδclδdi þ δalδbiδcjδdkÞ

�

þ
�
1

2!

�
2

ϵacϵbdϵikϵjl: ð10fÞ

For a single link variable Ul (resp. U
†
l) for l ∈ C1 − C2,

we need at least one additional link variable with an
opposite direction U†

l (resp. Ul) to obtain nonvanishing
result after integration in Eq. (8) according to the integra-
tion formulas (10c) for the SUð2Þ group integrations. Such
link variables are supplied from the expansion Eq. (9)
of eSg . Since the number of plaquettes which are
brought down from eSg must be equal to the power of
1=g2 in the expansion Eq. (9), the leading contribution to
hWðC1 × C2Þi comes from a set of plaquettes tiling the
minimal area S1 − S2 with the least number of plaquettes.
See the top diagram of Fig. 6. For double link variables
UlUl for l ∈ C2, on the other hand, we do not need
additional link variables coming from the expansion of eSg
to obtain the nonvanishing result due to the integration
(10d), giving the g-independent contribution.
For the SUð2Þ gauge group, therefore, the leading

contribution to hWðC1 × C2Þi in the strong coupling
expansion comes from the term in which a set of plaquettes
tiles the surface with the area S1 − S2, as shown in the top
diagram of Fig. 6. Therefore, group integrations give the
result

hWðC1 × C2Þileading ¼ −2
�

1

2g2

�
S1−S2 ¼ −2e−σðS1−S2Þ;

ð11Þ

where σ ¼ logð2g2Þ. This result was first obtained by
Greensite and Höllwieser in [23]. We reconfirmed the
difference-of-areas law of coplanar double-winding Wilson

loops for SUð2Þ. The bottom diagram of Fig. 6 shows one
of higher-order contributions in the strong coupling expan-
sion for SUð2Þ. This diagram gives nonvanishing contri-
bution due to the integration formula (10f).

2. SUðNÞ, (N ≥ 3)

Next, we study the case of SUðNÞ (N ≥ 3) gauge groups.
We list some of explicit SUðNÞ (N ≥ 3) group integration
formula as Z

dU1 ¼ 1; ð12aÞ
Z

dUUab ¼ 0; ð12bÞ
Z

dUUabU
†
kl ¼

1

N
δalδbk; ð12cÞ

Z
dUUa1b1Ua2b2 � � �UaMbM ¼ 0; M ≠ 0 ðmod NÞ;

ð12dÞ
Z

dUUa1b1Ua2b2 � � �UaNbN ¼ 1

N!
ϵa1a2���aNϵb1b2���bN ; ð12eÞ

Z
dUUabUcdU

†
ijU

†
kl

¼ 1

ðN2 − 1Þ
�
δajδbiδclδdk þ δalδbkδcjδdi

−
1

N
ðδajδbkδclδdi þ δalδbiδcjδdkÞ

�
: ð12fÞ

Notice that the SUðNÞ case is different from the SUð2Þ
case. For a double link variableUlUl for a link l ∈ C2, we
need additionalN − 2 link variables ðUlÞN−2 with the same
direction to be brought down from the expansion of eSg in
Eq. (8) to obtain the nonvanishing result after the integra-
tion according to the integration formulas (12e) for the
SUðNÞ group integrations. See the top diagram of Fig. 7.
For a single link variable Ul (resp. U†

l) for a link
l ∈ C1 − C2, on the other hand, we need at least one
additional link variable with the opposite direction U†

l
(resp.Ul) to obtain non-vanishing result after integration in
Eq. (8) according to the integration formula (12c) for the
SUðNÞ group integrations. Therefore, the contribution from
the top diagram of Fig. 7 is given by

pN

�
1

g2N

�ðN−2ÞS2þðS1−S2Þ
; ð13Þ

where the coefficient pN is calculated by collecting the
numerical factors coming from link integrations and the
power-series expansions of eSg .
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We have another contribution from the bottom diagram
of Fig. 7. For a double link variable UlUl with the same
direction for a link l ∈ C2, we have additional 2 link
variables ðU†

lÞðU†
lÞ with the opposite directions to be

brought down from the expansion of eSg in Eq. (8) to
obtain the nonvanishing result after the integration accord-
ing to the integration formulas (12f) for the SUðNÞ group
integrations. For a single link variable Ul (resp. U†

l) for a
link l ∈ C1 − C2, on the other hand, we need at least one
additional link variable with an opposite directionU†

l (resp.
Ul) to obtain non-vanishing result after integration in
Eq. (8) according to the integration formulas (12c) for
the SUðNÞ group integrations. Therefore, the contribution
from the bottom diagram of Fig. 7 is given by

qN

�
1

g2N

�
2S2þðS1−S2Þ ¼ qN

�
1

g2N

�
S1þS2

; ð14Þ

where the coefficient qN is calculated in the similar way
to pN .
For the SUðNÞ (N ≥ 3), the leading contribution in the

strong coupling expansion may come from one of the two
diagrams shown in Fig. 7. Since the number of plaquettes
brought down from eSg is equal to the power of 1=g2, these
two contributions can be written as

hWðC1 × C2Þi ¼ pN

�
1

g2N

�ðN−2ÞS2þS1−S2

þ qN

�
1

g2N

�
S1þS2 þ � � � ; ð15Þ

where coefficients pN , qN are determined by expansion
coefficients of the power series expansion of eSg and
SUðNÞ group integrations for link variables. Which con-
tribution becomes dominant is naively determined by
comparing the power index of 1

g2N, which depends on

the number of color N.
For N ≥ 4, we find that the second term in Eq. (15)

gives the dominant contribution in the strong coupling
expansion for hWðC1 × C2Þi, since the inequality holds,
S1 þ S2 ≤ ðN − 2ÞS2 þ S1 − S2 for N ≥ 4. Thus we con-
clude that the sum-of-areas law of a coplanar double-
winding Wilson loop is allowed for N ≥ 4. This result is
consistent with the result obtained by Matsudo and Kondo
in [25].
From the top panel of Fig. 7, we can easily find that the

coefficient pN should be calculated for each number of
color N, because type of diagrams are different with the
number of color N. On the other hands, we can obtain
general formula for the coefficient qN , since the diagram of
the bottom panel of Fig. 7 is common to all numbers of
color N. The result is

qN ¼−
N2S2

2

��
1

NðN−1Þ
�
S2−1

−
�

1

NðNþ1Þ
�
S2−1
�
; ð16Þ

for S2 ≥ 1 in lattice units. See Appendix B for the
detail.
In the following, we show the results for SUð2Þ, SUð3Þ

and SUð4Þ in more detail.
SUð2Þ: For the number of color N ¼ 2, Eq. (15) reduces

to

hWðC1 × C2Þi ¼ 2p2

�
1

2g2

�
S1−S2 þ 2q2

�
1

2g2

�
S1þS2 þ � � � ;

ð17Þ

where

p2 ¼ −2; ð18Þ

FIG. 7. A set of plaquettes tiling the areas S1 and S2 which
gives the leading contribution to a coplanar double-winding
Wilson loop average hWðC1 × C2Þi for SUðNÞ (N ≥ 3). Here
S1ð¼ L × L2Þ and S2ð¼ L1 × L2Þ are respectively the minimal
areas bounded by rectangular loops C1 and C2 with S1 ≥ S2. For
N ¼ 3, the diagram of the top panel gives the leading contribution
and that of the bottom panel gives the next-to-leading contribu-
tion. For N ¼ 4, the two diagrams give identical contributions.
For N > 4, the diagram of the bottom panel gives the leading
contribution and that of the top panel gives the next-to-leading
contribution.
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q2 ¼ −
4S2

2

��
1

2

�
S2−1

−
�
1

6

�
S2−1
�
; ðS2 ≥ 1Þ: ð19Þ

The factor 2 in front of p2 and q2 arises from the
nonoriented nature of the plaquettes for SUð2Þ, which is to
be compared with Eq. (11).
SUð3Þ: For the number of color N ¼ 3, Eq. (15) reduces

to

hWðC1 × C2Þi ¼ p3

�
1

3g2

�
S1 þ q3

�
1

3g2

�
S1þS2 þ � � � ;

ð20Þ

where

p3 ¼ −3; ð21Þ

q3 ¼ −
9S2

2

��
1

6

�
S2−1

−
�
1

12

�
S2−1
�
; ðS2 ≥ 1Þ: ð22Þ

The coefficient q3 is obtained from Eq. (16). See
Appendix C for the calculation of p3.
From this result, we find that the first term in Eq. (20)

gives the dominant contribution to hWðC1 × C2Þi for
sufficiently large areas S1 and S2, which is neither differ-
ence-of-areas law nor sum-of-areas law for the area-law
falloff of the coplanar double-winding Wilson loop aver-
age. We call this area-law falloff “max-of-areas law” (or
maxðS1; S2Þ law). This result is also consistent with the
result obtained by Matsudo and Kondo in [25].
SUð4Þ: For the number of color N ¼ 4, Eq. (15)

reduces to

hWðC1 × C2Þi ¼ p4

�
1

4g2

�
S1þS2 þ q4

�
1

4g2

�
S1þS2 þ � � � ;

ð23Þ

where

p4 ¼ −8
�
1

12

�
S2−1

; ð24Þ

q4 ¼ −
16S2

2

��
1

12

�
S2−1

−
�
1

20

�
S2−1
�
; ðS2 ≥ 1Þ: ð25Þ

In this case, both terms in Eq. (23) behave as sum-of-
areas law.

3. L1 dependence of the hWðC1 × C2Þi
From the above discussions, we can understand the L1

dependence of the coplanar double-winding Wilson loop
average hWðC1 × C2Þi in SUðNÞ lattice Yang-Mills gauge
theory for fixed L, L2, and gauge coupling g.
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FIG. 8. L1-dependence of a coplanar double-winding Wilson
loop average −hWðC1 × C2Þi from the strong coupling expan-
sion in SUð2Þ lattice gauge theory. We plot Eq. (17) times −1
versus L1 ¼ 1 ∼ 10 for L ¼ 10, L2 ¼ 1, and 1=g2N ¼ 2.5=8.
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FIG. 9. L1-dependence of a coplanar double-winding Wilson
loop average hWðC1 × C2Þi from the strong coupling expansion
in SUð3Þ lattice gauge theory. We plot Eq. (20) versus L1 ¼ 1 ∼ 8

for 1=g2N ¼ 6.0=18. Top panel: L ¼ 10, L2 ¼ 1. Bottom panel:
L ¼ 10, L2 ¼ 10.

DOUBLE-WINDING WILSON LOOPS IN SUðNÞ LATTICE … PHYS. REV. D 102, 094521 (2020)

094521-7



For SUð2Þ gauge group, we plot Eq. (17) in Fig. 8, which
shows the difference-of-areas law behavior of a coplanar
double-winding Wilson loop for N ¼ 2.
On the other hand, we plot Eq. (20) in Fig. 9. For SUð3Þ

gauge group, as the coplanar double-winding Wilson loop
average follows the max-of-areas law, it is expected that
there are no L1-dependence of hWðC1 × C2Þi for suffi-
ciently large areas S1 and S2. In fact, we can see that the
plots flatten at L1 ∼ 4 (resp. L1 ∼ 1) in top (resp. bottom)
panel in Fig. 9.

B. Numerical simulation

We examine the L1-dependence of hWðC1 × C2Þi that
we discussed above.
SUð2Þ: We generate the configurations of SUð2Þ link

variables fUn;μg, using the (pseudo-)heat-bath method for
the standard Wilson action. The numerical simulations are
performed on the 244 lattice at βð¼ 2N=g2Þ ¼ 2.5. We
thermalize 3000 sweeps, and in particular, we have used
100 configurations for calculating the expectation value of
coplanar double-winding Wilson loops hWðC1 × C2Þi.
We have performed the numerical simulations in the

scaling region and have obtained the string tension σ in
units of the lattice spacing ϵ as σSUð2Þϵ2 ¼ 0.0388ð6Þwithin
the same lattice setups as those adopted in the previous
paper [26].
Figure 10 shows the obtained plot for the −hWðC1 ×

C2Þi for various value of L1, when we choose parameters
L ¼ 10, L2 ¼ 3. The results of numerical simulations are
consistent with analytical results in Fig. 8. Thus we
reconfirm the difference-of-areas law for SUð2Þ. Note that
we can also confirm hWðC1 × C2Þi ≃ −1=2 for S1 ¼ S2
from Fig. 8.
SUð3Þ: We also generate the configurations of SUð3Þ

link variables fUn;μg, using the (pseudo-)heat-bath method

for the standard Wilson action. The numerical simulations
are performed on the 244 lattice at β ¼ 6.2. We have used
200 configurations for calculating the expectation value of
coplanar double-winding Wilson loops hWðC1 × C2Þi,
where we have used APE smearing method (N ¼ 12,
α ¼ 0.1) as a noise reduction technique. See [28] for the
detail. We have performed the numerical simulations in the
scaling region and have obtained the string tension
σSUð3Þϵ2 ¼ 0.0413 within the same lattice setups as those
in [29].
Figure 11 shows the obtained plot for the hWðC1 × C2Þi

for various value of L1, when we choose parameters
L ¼ 10, L2 ¼ 4, 6, 8. The results of numerical simulations
are consistent with analytical results in Fig. 9. For example,
we can see that the plots flatten at L1 ∼ 4 for L2 ¼ 8, which
means that there are no L1-dependence of hWðC1 × C2Þi.
Thus, we numerically confirm the max-of-areas law
for SUð3Þ.
The low-order analytic strong coupling calculations have

been carried out in the strong coupling region. In contrast,
the numerical simulations have been performed in the
scaling region where the continuum limit can be taken
smoothly. The agreement between the analytic calculations
and the numerical simulations demonstrates that the quali-
tative picture obtained from the strong coupling extends
into the physically relevant region which is closer to the
continuum limit.

III. A “SHIFTED” DOUBLE-WINDING
WILSON LOOPS

Finally, we consider the shifted case R ≠ 0 of a double-
winding Wilson loop in the SUðNÞ lattice Yang-Mills
gauge theory, as indicated in Fig. 12. Contours C1 and C2

lie in planes parallel to the x − t plane, but are displaced
from one another in the z direction by distance R. Just like
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FIG. 10. L1-dependence of a coplanar double-winding Wilson
loop average −hWðC1 × C2Þi in the SUð2Þ lattice gauge theory
obtained from numerical simulations on a lattice of size 244 at
β ¼ 2.5 for fixed L ¼ 10, and L2 ¼ 3.
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FIG. 11. L1-dependence of a coplanar double-winding Wilson
loop average hWðC1 × C2Þi in SUð3Þ lattice gauge theory
obtained from numerical simulations on a lattice of size 244 at
β ¼ 6.2 for fixed L ¼ 10, and L2 ¼ 4, 6, 8.
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the previous section, for simplicity, let C1 (resp. C2) be a
rectangular loop of length L, L2 (resp. L1, L2), and
S1ð≡L × L2Þ, S2ð≡L1 × L2Þ be the minimal areas of
contour C1, C2 respectively.

A. Strong coupling expansion

First, we study the shifted double-winding Wilson loop
based on the strong coupling expansion.
One of the diagrams which gives a leading contribution

in the strong coupling expansion is given by a set of
plaquettes tiling the two minimal surfaces S1 and S2, as
shown in Fig. 13. The results of a group integration for the
links Ul’s on both surfaces become Nð1=g2NÞS1þS2 for
N ≥ 3, and 2Nð1=g2NÞS1þS2 for N ¼ 2, respectively. The
difference of factor 2 in front ofN forN ¼ 2 arises from the
non-oriented nature of the plaquettes to conclude theN ¼ 2
result:

4

�
1

2g2

�
S1þS2

: ð26Þ

Another type of diagram which also gives a leading
contribution in the strong coupling expansion is given by a
set of plaquettes tiling the minimal surface S1 − S2 and the
four sides with the area 2RðL1 þ L2Þ of a cuboid with a
height R, whose bottom is a rectangular of size L1 × L2, as

shown in the upper panel of Fig. 14. After group integra-
tions for the links on the side surfaces giving a factor
ð1=g2NÞ2RðL1þL2Þ, this diagram is equivalent to a coplanar
double-winding Wilson loop, as shown in the lower panel
of Fig. 14. The expectation value of this type of a coplanar
double-winding Wilson loop is already calculated in the
previous subsection, and the results are Eq. (17) for SUð2Þ,
Eq. (20) for SUð3Þ, and Eq. (23) for SUð4Þ, respectively.
Consequently, the diagram of Fig. 14 yields the contribu-
tion for N ¼ 2:

�
1

2g2

�
2RðL1þL2Þ�

2p2

�
1

2g2

�
S1−S2 þ 2q2

�
1

2g2

�
S1þS2

�
:

ð27Þ

To summarize the above discussion, the expectation
value of the shifted double-winding loop hWðC1 ×
C2ÞiR≠0 from diagrams as shown in Fig. 13 and Fig. 14
becomes for N ¼ 2,

SUð2Þ∶hWðC1 × C2ÞiR≠0
¼ 4

�
1

2g2

�
S1þS2 þ 2p2

�
1

2g2

�
S1−S2þ2RðL1þL2Þ

þ 2q2

�
1

2g2

�
S1þS2þ2RðL1þL2Þ þ � � � : ð28Þ

Note that the R → 0 limit of Eq. (28) does not agree with
the coplanar result Eq. (17), although the sum of the second
and third terms in Eq. (28) from the diagram of Fig. 14
reproduce the coplanar result Eq. (17) in the limit R → 0.
This is because the first term in Eq. (28) coming from the
diagram of Fig. 13 does not have in the limit R → 0
the counterpart of the strong coupling expansion in the
coplanar case and hence contributes only to the shifted case
with R ≠ 0.
For SUð2Þ gauge group, especially, we perform

the detailed study on the R-dependence of a shifted

FIG. 12. The setting up of a shifted double-winding Wilson
loop operator WðC1 × C2ÞR≠0.

FIG. 13. One of diagrams which also contributes to a shifted
double-winding Wilson loop average hWðC1 × C2ÞiR≠0 in the
strong coupling expansion of the SUðNÞ lattice Yang-Mills
theory.

FIG. 14. Another diagram which contributes to a shifted
double-winding Wilson loop average hWðC1 × C2ÞiR≠0 in the
strong coupling expansion of the SUðNÞ lattice Yang-Mills
theory.
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double-winding Wilson loop average hWðC1 × C2ÞiR≠0. In
what follows, we rewrite L2 into T,

T ≔ L2: ð29Þ

Let us imagine T direction be time t-axis, L and L1

direction be spatial x-axis, and R direction be also space
z-axis as seen in top side in Fig. 15. As is explained in [23],
the shifted double-winding Wilson loop at a fixed time can
be interpreted as a tetra-quark system consisting of two
static quarks and two static antiquarks. The pairs of quark-
antiquarks are connected by a pair of color flux tubes, as
seen in the bottom side in Fig. 15. We study how
interactions between the two color flux tubes change,
when the distance R is varied.
We find that the second term in Eq. (28) dominates for

R < RC ≔ L1

1þL1=T
, and the first term in Eq. (28) dominates

for R > RC, because the comparison of the two exponents
of these terms for S1 ¼ LT and S2 ¼ L1T reads

S1 − S2 þ 2RðL1 þ L2Þ < S1 þ S2 ⇒ RðL1 þ L2Þ < S2

⇒ RðL1 þ TÞ < L1T ⇒ R <
L1

1þ L1=T
≔ RC; ð30Þ

where we have neglected the third (higher order) term in
Eq. (28) for the naive estimate of RC. This means that the
left diagram of Fig. 16 dominates for R < RC, and the right
diagram of Fig. 16 dominates for R > RC. Therefore, the
dominant diagram switches from left to right at a certain
value RC of R as R increases, just like the minimal surface
spanned by a soap film.
In Fig. 17, we plot the R-dependence Eq. (28) of a shifted

double-winding Wilson loop average hWðC1 × C2Þi for
fixed L, L1, and L2 at a value of 1=g2N ¼ β=2N2 in the
SUð2Þ lattice gauge theory. The second and third terms in
Eq. (28) have R-dependence, but the first term in Eq. (28)

does not depend on R. Therefore, the plot gets flattened for
R ≥ RC ∼ 1, which is consistent with Fig. 16. This behav-
ior does not depend on the number of color N. In fact,
SUð3Þ and SUð4Þ cases are given as follows.

SUð3Þ∶hWðC1 × C2ÞiR≠0
¼ 3

�
1

3g2

�
S1þS2 þ p3

�
1

3g2

�
S1þ2RðL1þL2Þ

þ q3

�
1

3g2

�
S1þS2þ2RðL1þL2Þ þ � � � ; ð31Þ

SUð4Þ∶hWðC1 × C2ÞiR≠0
¼ 4

�
1

4g2

�
S1þS2 þ p4

�
1

4g2

�
S1þS2þ2RðL1þL2Þ

þ q4

�
1

4g2

�
S1þS2þ2RðL1þL2Þ þ � � � : ð32Þ

In Fig. 18, we also plot the R-dependence Eq. (31)
of a shifted double-winding Wilson loop average
hWðC1 × C2Þi for fixed L, L1, and L2 at a value of
1=g2N ¼ β=2N2 in the SUð3Þ lattice gauge theory.

FIG. 15. A shifted double-winding Wilson loop as a probe for
interactions between two flux tubes.

FIG. 16. Lowest order diagrams giving the dominant contri-
bution to a shifted double-winding Wilson loop average
hWðC1 × C2ÞiR≠0. The dominant diagram switches at a certain
value Rc of R from left to right.
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FIG. 17. R-dependence of a shifted double-winding Wilson
loop average hWðC1 × C2Þi in the SUð2Þ lattice gauge theory
obtained from the strong coupling expansion for 1=2g2 ¼ 2.5=8,
L ¼ 5, L2 ¼ 1, and L1 ¼ 3.
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In general, hWðC1 × C2ÞiR≠0 for N ≥ 3 becomes

hWðC1×C2ÞiR≠0
¼N

�
1

g2N

�
S1þS2 þ

�
1

g2N

�
2RðL1þL2Þ

×

�
pN

�
1

g2N

�ðN−2ÞS2þS1−S2 þqN

�
1

g2N

�
S1þS2

�
þ���:

ð33Þ

B. Numerical simulation

Next, we examine the R-dependence of hWðC1 × C2Þi
based on numerical simulations on a lattice.

SUð2Þ: In order to calculate the shifted double-winding
Wilson loop average, we use the same gauge field con-
figurations as those used in calculating the coplanar double-
winding Wilson loop. However, we have used APE
smearing method (N ¼ 5, α ¼ 0.1) as a noise reduction
technique. Figure 19 gives the plots obtained for the
hWðC1 × C2Þi for various values of R where we have
fixed L ¼ 5, Tð¼ L2Þ ¼ 2, and L1 ¼ 3. We see that the
behavior of data in Fig. 19 is consistent with the analytical
result given in Fig. 17.
We have performed the numerical simulations with the

choice of a relatively small value of T ¼ L2 in order to
reduce the noise. However, a qualitative behavior of the
R-dependence of hWðC1 × C2Þi does not change for the
choice of larger values of T ¼ L2. In the case of SUð3Þ,
indeed, we performed the numerical simulations with the
choice of a sufficiently large value for T ¼ L2 as demon-
strated below.
SUð3Þ: Similarly, Fig. 20 shows the obtained plot for the

hWðC1 × C2Þi for various value of R for SUð3Þ case, when
we choose parameters L ¼ 8, Tð¼ L2Þ ¼ 8, and
L1 ¼ 1 ∼ 6. We see that the data in Fig. 20 are also
consistent with the analytical result given in Fig. 18 for
sufficiently large areas S1 and S2.

IV. CONCLUSION AND DISCUSSION

In this paper, we have studied the double-windingWilson
loops in SUðNÞ lattice Yang-Mills gauge theory by using
both strong coupling expansions and numerical simulations.
First of all, we have examined how the area law falloff

of a “coplanar” double-winding Wilson loop average
depends on the number of color N, by changing the size
of minimal area S2 of loop C2. We have reconfirmed the
difference-of-areas law for N ¼ 2, and have found new
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FIG. 20. R-dependence of a shifted double-winding Wilson
loop average hWðC1 × C2Þi in the SUð3Þ lattice gauge theory
obtained from numerical simulations on a lattice of size 244 at
β ¼ 6.2 L ¼ 8, Tð¼ L2Þ ¼ 8, and L1 ¼ 1 ∼ 6 from top to
bottom.
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FIG. 19. R-dependence of a shifted double-winding Wilson
loop average hWðC1 × C2Þi in the SUð2Þ lattice gauge theory
obtained from numerical simulations on a lattice of size 244 at
β ¼ 2.5 for fixed L ¼ 5, Tð¼ L2Þ ¼ 2, and L1 ¼ 3.
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FIG. 18. R-dependence of a shifted double-winding Wilson
loop average hWðC1 × C2Þi in the SUð3Þ lattice gauge theory
obtained from the strong coupling expansion for 1=3g2 ¼ 6.0=18,
L ¼ 5, L2 ¼ 1, and L1 ¼ 3.

DOUBLE-WINDING WILSON LOOPS IN SUðNÞ LATTICE … PHYS. REV. D 102, 094521 (2020)

094521-11



results that “max-of-areas law” for N ¼ 3 and sum-of-areas
law for N ≥ 4.
Moreover, we have considered a “shifted” double-

winding Wilson loop, where two contours are displaced
from one another in a transverse direction. We have
evaluated its average by changing the distance of a trans-
verse direction, and have found that their long distance
behavior does not depend on the number of color N, but the
short distance behavior depends strongly on N.
It should be remarked that this “shifted” double-winding

Wilson loop may contain an information about interactions
between two color flux tubes. For this purpose, we need to
accumulate more data on the fine lattices with more
larger size.
Originally, one of reasons why Greensite and Höllwieser

considered the double-winding Wilson loops seems to be
that they want to evaluate monopole confinement mecha-
nism in lattice SUð2Þ gauge theory. They have considered
an operator which simply replaces SUð2Þ link variableUn;μ

with the Abelian variable un;μ as an “Abelian” double-
winding Wilson loop, and have shown that the expectation
value of such a naive operator obeys the sum-of-areas law.
But, it is known that such naive operator should work only
for a single-winding Wilson loop in the fundamental
representation. Recently, Matsudo and his collaborators
[30] have given the explicit expression for the Abelian
operator which reproduces the full Wilson loop average in
higher representations, which is suggested by the gauge-
covariant field decomposition and the non-Abelian Stokes
theorem (NAST) for the Wilson loop operator. Similarly,
we hope that a correct form of the Abelian operator for a
double-winding Wilson loop can be found in the similar
way. When we change the line integral to the surface
integral, our considerations of the diagrams which give the
leading contribution to the strong coupling expansion
seems to be useful to construct the NAST for a double-
winding Wilson loop. These results will be discussed in a
forthcoming paper.
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APPENDIX A: SUðNÞ GROUP INTEGRALS
AND USEFUL FORMULAS

In order to perform the strong coupling expansion in the
lattice gauge theory, we must calculate the following
integrations for the polynomials of group matrix elements
over each links:

I ¼
Z

dUUi1j1 � � �UinjnðU−1Þk1l1 � � � ðU−1Þkmlm ; ðA1Þ

where Uij (i; j ¼ 1; 2;…; N) denotes a matrix element of a
matrix U ∈ SUðNÞ belonging to the SUðNÞ group with the
property U−1 ¼ U†, and dU is an invariant measure (Haar
measure) on the compact group which is left-invariantZ

dUfðUÞ ¼
Z

dUfðVUÞ ð∀V ∈ SUðNÞÞ; ðA2Þ

and right-invariant

Z
dUfðUÞ ¼

Z
dUfðUVÞ ð∀V ∈ SUðNÞÞ: ðA3Þ

We can normalize the measure such thatZ
dU ¼ 1: ðA4Þ

By using properties of the invariant measure, Creutz has
shown that Eq. (A1) can be evaluated by the following
formula [27,31]:

I ¼ ð∂j1i1 � � � ∂jnin · cofð∂Þl1k1 � � � cofð∂ÞlmkmÞ
X∞
i¼0

2!3! � � � ðN − 1Þ!
i!ðiþ 1Þ! � � � ðiþ N − 1Þ! jJj

ijJ¼0; ðA5Þ

where J is a source variable and is an arbitrary N × N matrix, jJj ¼ detðJÞ, ∂ji ≡ ∂=∂Jji, and cofð∂Þ is a cofactor of ∂,
respectively.
We list some of explicit results from the above formula asZ

dU1 ¼ 1; ðA6Þ
Z

dUUab ¼ 0; ðA7Þ
Z

dUUabU
†
kl ¼

1

N
δalδbk; ðA8Þ
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Z
dUUa1b1Ua2b2 � � �UaNbN ¼ 1

N!
ϵa1a2���aNϵb1b2���bN ; ðA9Þ

Z
dUUa1b1Ua2b2 � � �UaMbM ¼ 0; M ≠ 0 ðmod NÞ; ðA10Þ

Z
dUUabUcdU

†
ijU

†
kl ¼

1

ðN2 − 1Þ
�
δajδbiδclδdk þ δalδbkδcjδdi −

1

N
ðδajδbkδclδdi þ δalδbiδcjδdkÞ

�
: ðA11Þ

The last Eq. (A11) holds for N > 2. For N ¼ 2,

Z
dUUabUcdU

†
ijU

†
kl ¼

1

ðN2 − 1Þ
�
δajδbiδclδdk þ δalδbkδcjδdi −

1

N
ðδajδbkδclδdi þ δalδbiδcjδdkÞ

�
þ
�

1

N!

�
2

ϵacϵbdϵikϵjl:

ðA12Þ

Following relation can be shown by using property of invariant measure,Z
dUfðU−1Þ ¼

Z
dUfðUÞ: ðA13Þ

From this relation, we also obtain, Z
dUU†

ab ¼ 0; ðA14Þ
Z

dUU†
a1b1

U†
a2b2

� � �U†
aNbN

¼ 1

N!
ϵa1a2���aNϵb1b2���bN : ðA15Þ

The following more practical formulas are useful to calculate the expectation value of double-winding Wilson loop by
using strong coupling expansion. Let X, Y, A, B be elements of SUðNÞ group. From Eq. (A9), we findZ

dUtrðXUYUÞ ¼ XabYcd

Z
dUUbcUda ¼ δN;2

1

N
ϵcaXabYcdϵbd; ðA16Þ

Z
dUtrðXUÞtrðYUÞ ¼ XabYcd

Z
dUUbaUdc ¼ δN;2

1

N
ϵacϵbdXabYcd: ðA17Þ

From Eq. (A8), we findZ
dUtrðXUÞtrðYU†Þ ¼ XabYlk

Z
dUUbaU

†
kl ¼ XabYlk

1

N
δblδak ¼

1

N
trðXYÞ: ðA18Þ

From Eq. (A11), we find for N > 2,

Z
dUtrðAUÞtrðBUÞtrðXU†ÞtrðYU†Þ

¼ AabBcdXijYkl

Z
dUUbaUdcU

†
jiU

†
lk

¼ AabBcdXijYkl
1

N2 − 1

�
δbiδajδdkδcl þ δbkδalδdiδcj −

1

N
ðδbiδalδdkδcj þ δbkδajδdiδclÞ

�

¼ 1

N2 − 1

�
trðAXÞtrðBYÞ þ trðAYÞtrðBXÞ − 1

N
ðtrðAXBYÞ þ trðAYBXÞÞ

�
; ðA19Þ
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Z
dUtrðAUBUÞtrðXU†ÞtrðYU†Þ

¼ AabBcdXijYkl

Z
dUUbcUdaU

†
jiU

†
lk

¼ AabBcdXijYkl
1

N2 − 1

�
δbiδcjδdkδal þ δbkδclδdiδaj −

1

N
ðδbiδclδdkδaj þ δbkδcjδdiδalÞ

�

¼ 1

N2 − 1

�
trðAXBYÞ þ trðAYBXÞ − 1

N
ðtrðAXÞtrðBYÞ þ trðAYÞtrðBXÞÞ

�
; ðA20Þ

Z
dUtrðAUBUÞtrðXU†YU†Þ

¼ AabBcdXijYkl

Z
dUUbcUdaU

†
jkU

†
li

¼ AabBcdXijYkl
1

N2 − 1

�
δbkδcjδdiδal þ δbiδclδdkδaj −

1

N
ðδbkδclδdiδaj þ δbiδcjδdkδalÞ

�

¼ 1

N2 − 1

�
trðAYÞtrðBXÞ þ trðAXÞtrðBYÞ − 1

N
ðtrðAYBXÞ þ trðAYBXÞÞ

�
: ðA21Þ

APPENDIX B: EXPLICIT CALCULATION OF THE COEFFICIENT qN

In this section, we show explicitly how Eq. (16) is obtained. From Eq. (8) and Eq. (9), a contribution to a coplanar double-
winding Wilson loop average hWðC1 × C2Þi from the bottom panel of Fig. 7 is expressed as

hWðC1 × C2ÞiqN ¼
Z Y

l∈S1

dUlWðC1 × C2Þ ·
Y

pj∈ðS1−S2Þ

�
1

g2
trðU†

pjÞ
�
·
Y
pk∈S2

�
1

2!

�
1

g2
trðU†

pkÞ
�
2
�
; ðB1Þ

where U†
pj and U†

pk denote respectively plaquette variables
on ðS1 − S2Þ and S2 areas. Here note that U†

p represents the
plaquette variable for the plaquette p with the clockwise
orientation.
First, integration with respect to the link variables fUlg

on the ðS1 − S2Þ area can be performed with the same
technique of the strong coupling expansion as that for the
fundamental Wilson loop to obtain

hWðC1 × C2ÞiqN ¼
�

1

g2N

�
S1−S2hWðC2 × C2ÞiqN ; ðB2Þ

where we have defined

hWðC2 × C2ÞiqN
≔
Z Y

l∈S2

dUlWðC2 × C2Þ ·
Y
pk∈S2

�
1

2!

�
1

g2
trðU†

pkÞ
�
2
�
:

ðB3Þ

Next, we perform the integration in Eq. (B3) over the
link variables fUlg inside of the S2 area, which excludes
the links on the loop C2 ¼ ∂S2 (the boundary of S2).

As shown in Fig. 21, performing the integration with
respect to the link variablesU on the link which is common
to two double-plaquettes with the same clockwise orienta-
tion using Eq. (A19), we obtain

FIG. 21. Diagrammatic representation of the integration rule
W̃2 Eq. (B4) for the product of two double-plaquettes with the
same clockwise orientation: Integration is performed over the link
variables U on the link which is common to two double-
plaquettes with the same clockwise orientation. By decomposing
the path-ordered product of the link variables along the loop, the
plaquette variables for the single plaquette p1 and p2 to the left
and right of U are respectively represented by trðU†

p1
Þ ≔ trðU†XÞ

and trðU†
p2
Þ ≔ trðYUÞ. Here X and Y represent the products of

the link variables along staple-shaped paths with the same
orientations.
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W̃2 ≔
Z

dUftrðU†XÞg2 · ftrðYUÞg2

¼ α2ftrðYXÞg2 þ β2trðYXYXÞ
≔ α2WðD2Þ2 þ β2WðD2 ×D2Þ; ðB4Þ

where

α2 ¼
2

N2 − 1
; β2 ¼ −

2

NðN2 − 1Þ : ðB5Þ

Here D2 represents the loop as the boundary of a 2 × 1
rectangle obtained by combining two fundamental (square)
plaquettes which are adjacent to the link U. Then WðD2Þ
and WðD2 ×D2Þ respectively stand for the single-winding
Wilson loop and double-winding Wilson loop along the
loop D2 where the Wilson loop means the trace of the
product of link variables on the relevant loop.
Moreover, we proceed to perform the integration over the

link variable for the product of a double-winding loop in
W̃2 and an adjacent double-plaquette ftrðV†

pÞg2. As shown
in Fig. 22, performing the integration of the link variable V
on the link which is common to the double-winding loop
WðD2 ×D2Þ [the second term of Eq. (B4)] and the double-
plaquette ftrðV†

pÞg2 adjacent to the common link V by
using Eq. (A20) and Eq. (A13), we obtain

Z
dVWðD2 ×D2Þ · ftrðV†

pÞg2

¼
Z

dVtrðAV†AV†Þ · ftrðBVÞg2

¼ −
2

NðN2 − 1Þ ftrðABÞg
2 þ 2

N2 − 1
trðABABÞ ðB6Þ

≔ −
2

NðN2 − 1ÞWðD3Þ2 þ
2

N2 − 1
WðD3 ×D3Þ; ðB7Þ

where D3 represents the loop as the boundary of a 3 × 1
rectangle obtained by combining a 2 × 1 rectangle and a
plaquette adjacent to the common link V. ThenWðD3Þ and
WðD3 ×D3Þ respectively stand for the single-winding
Wilson loop and double-winding Wilson loop along the
loop D3. On the other hand, since the V integral for
the product of the first term of Eq. (B4), i.e., WðD2Þ2 and
the double-plaquette variable adjacent to V, namely,R
dVWðD2Þ2 · ftrðV†

pÞg2 is the same type as Eq. (B4),
we see that the result is again a linear combination of
WðD3Þ2 and WðD3 ×D3Þ. Therefore, defining W̃3 by the
result of integration over the common link variable V for
the product of W̃2 and the double-plaquette adjacent to
the link V, namely, W̃3 ≔

R
dVW̃2 · ftrðV†

pÞg2, we find W̃3

is written as a linear combination of WðD3Þ2 and
WðD3 ×D3Þ.
From the above consideration, defining W̃n by the result

of connecting n adjacent double-plaquettes one after
another by integrating over the link variables inside the
S2 area, we can conclude that W̃n is written as

W̃n ¼ αnWðDnÞ2 þ βnWðDn ×DnÞ: ðB8Þ

This statement is proved by the mathematical induction.
Indeed, by applying the same procedures as those given
in Eq. (B4) and Eq. (B7) to Eq. (B8), we find the
relationship

W̃nþ1 ≔
Z

dVW̃n · ftrðV†
pÞg2

¼
�

2αn
N2 − 1

−
2βn

NðN2 − 1Þ
�
WðDnþ1Þ2

þ
�
−

2αn
NðN2 − 1Þ þ

2βn
N2 − 1

�
WðDnþ1 ×Dnþ1Þ

≔ αnþ1WðDnþ1Þ2 þ βnþ1WðDnþ1 ×Dnþ1Þ: ðB9Þ

Therefore, we have obtained the recurrence relation which
holds for the coefficients αn and βn for n ≥ 1:

�
αnþ1

−βnþ1

�
¼ 2

N2 − 1

�
1 1=N

1=N 1

��
αn

−βn

�
: ðB10Þ

Solving this recurrence relation with the initial condition
Eq. (B5), we obtain the explicit form for the coefficients αn
and βn:

�
αn

−βn

�
¼ 2n−2

 ½ 1
NðN−1Þ�n−1 þ ½ 1

NðNþ1Þ�n−1

½ 1
NðN−1Þ�n−1 − ½ 1

NðNþ1Þ�n−1

!
: ðB11Þ

FIG. 22. Diagrammatic representation of the integration rule
Eq. (B7) for the product of a double-winding loop and a double-
plaquette with the same clockwise orientation: Integration is
performed over the link variable V on the link which is common
to the double-winding loop WðD2 ×D2Þ along the loop D2 (the
second term of Eq. (B4)) and the double-plaquette ftrðV†

pÞg2
adjacent to the common link V. Here we have used the
decomposition WðD2 ×D2Þ ≔ trðAV†AV†Þ and trðV†

pÞ ≔
trðBVÞ.
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Because the expansion coefficient 1
2!
ð 1g2Þ2 is applied to each

double-plaquette in Eq. (B3), a factor of 1
2!n

ð 1g2Þ2n is applied
to n double-plaquettes.
Finally, we perform the integration over the remaining

link variables on the loop C2 as the boundary of the S2 area.
As shown in Fig. 23, we express WðC2 × C2Þ as
WðC2 × C2Þ ≔ trðAXAXÞ. To summarize the above argu-
ments, from Eq. (B2), Eq. (B3), Eq. (B8), and Eq. (B11)
etc., hWðC1 × C2ÞiqN is written by

hWðC1 × C2ÞiqN
¼
�

1

g2N

�
S1−S2

·
1

4

�
1

g2

�
2S2

×
Z

dAdXtrðAXAXÞfx½trðA†X†Þ�2

− ytrðA†X†A†X†Þg; ðB12Þ

where

x ≔
�

1

NðN − 1Þ
�
n−1

þ
�

1

NðN þ 1Þ
�
n−1

;

y ≔
�

1

NðN − 1Þ
�
n−1

−
�

1

NðN þ 1Þ
�
n−1

: ðB13Þ

Using Eq. (A20) and Eq. (A21) to perform X integration,
we finally obtain

hWðC1 × C2ÞiqN ¼ qN

�
1

g2N

�
S1þS2

;

qN ¼ −
N2S2

2

��
1

NðN − 1Þ
�
S2−1

−
�

1

NðN þ 1Þ
�
S2−1
�
;

ðS2 ≥ 1Þ; ðB14Þ

where S2 ≥ 1 comes from the condition n ≥ 1 in Eq. (B10).
It is easily checked that hWðC1 × C2ÞiqN ¼ 0 when S2 ¼ 1

by using explicit group integration.

APPENDIX C: EXPLICIT CALCULATION OF
THE COEFFICIENT p3

In this section,we showexplicitly howEq. (22) is obtained.
From Eq. (8) and Eq. (9), a contribution to a coplanar

double-winding Wilson loop average hWðC1×C2Þi from
the top panel of Fig. 7 is expressed as

hWðC1 × C2Þiq3
¼
Z Y

l∈S1

dUlWðC1 × C2Þ ·
Y

pj∈ðS1−S2Þ

�
1

g2
trðU†

pjÞ
�

·
Y
pk∈S2

�
1

g2
trðUpk

Þ
�
; ðC1Þ

whereU†
pj andUpk

stand respectively for plaquette variables

on the ðS1 − S2Þ and S2 areas. Here note that U†
p and Up

respectively represent the plaquette variables for the plaquette
p with clockwise and counterclockwise orientations. In this
section, we focus on the N ¼ 3 case.
First, the integration with respect to the link variables

fUlg on the ðS1 − S2Þ area can be performed with the same
technique of the strong coupling expansion as that for the
fundamental Wilson loop to obtain

hWðC1 × C2Þip3
¼
�

1

g2N

�
S1−S2hWðC2 × C2Þip3

; ðC2Þ

where we have defined

hWðC2 × C2Þip3

≔
Z Y

l∈S2

dUlWðC2 × C2Þ ·
Y
pk∈S2

�
1

g2
trðUpk

Þ
�
: ðC3Þ

Next, we perform the integration in Eq. (C3) over link
variables fUlg inside of the S2 area, which excludes the
links on the loop C2 as the boundary of the S2 area. As
shown in Fig. 24, performing the integration over the link
variable U using Eq. (A18) for two plaquettes that have a
common link U, we obtain

Z
dUtrðXUÞ · trðU†YÞ ¼ 1

N
trðXYÞ: ðC4Þ

FIG. 23. The path-ordered product of the link variables
along the loop C2 is decomposed into A and X to express
WðC2 × C2Þ ≔ trðAXAXÞ.

FIG. 24. Diagrammatic representation of the integration rule
Eq. (C4) for the product of two plaquettes with the same
counterclockwise orientation: Integration is performed over the
link variableU on the linkwhich is common to two plaquettes with
the same counterclockwise orientation. The plaquette variables for
the plaquette p1 and p2 to the left and right of U is respectively
represented by trðUp1

Þ ≔ trðXUÞ and trðUp2
Þ ≔ trðU†YÞ. Here X

and Y represent the products of the link variables along staple-
shaped paths with the same orientations.
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From this observation, we conclude that one factor of 1=N appears if two plaquettes are connected after common links
are integrated. When S2 plaquettes are connected one after another by using Eq. (C4), a factor of ð1=NÞS2−1 is applied, and
after that only the path ordered product of the link variables on the loop C2 as the boundary of S2 is left unintegrated.
Therefore, Eq. (C2) becomes

hWðC1 × C2Þip3
¼
�

1

g2N

�
S1−S2

· N

�
1

g2N

�
S2
Z
½U�∈C2

d½U�WðC2 × C2Þ ·WðC2Þ; ðC5Þ

where the integral is only for the link variable on the loop C2.
As shown in Fig. 23, by using the decomposition WðC2Þ ≔ trðAXÞ and WðC2 × C2Þ ≔ trðAXAXÞ, and by repeatedly

using Eq. (A9), we obtain Z
½U�∈C2

d½U�WðC2 × C2Þ ·WðC2Þ

¼
Z

dAdXtrðAXAXÞtrðAXÞ

¼
Z

dAdXtrðXAXAÞtrðXAÞ

¼
Z

dAdXðXÞabðAÞbcðXÞcdðAÞda · ðXÞpqðAÞqp

¼ 1

N!
ϵacpϵbdq

Z
dAðAÞbcðAÞdaðAÞqp

¼ 1

N!
ϵacpϵbdq ·

1

N!
ϵbdqϵcap ¼ −1; ðC6Þ

where we have used the cyclicity of the trace in the second equality. Note that this result is meaningful only when N ¼ 3,
because we have used Eq. (A9) in the above calculation. Equation (A10) holds for M ≠ 0 (mod3). For N ¼ 3, thus, we
obtain

hWðC1 × C2Þip3
¼ −3

�
1

3g2

�
S1
; ðC7Þ

which indeed yields p3 ¼ −3.
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