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A Uð1Þ gauge theory coupled to a Wilson fermion on a 2þ 1 dimensional cubic lattice is known to
exhibit Chern insulatorlike topological transitions as a function of the ratio M=R where M is the fermion
mass and R is the Wilson parameter. I show that, with M and R held fixed, a rectangular lattice with
anisotropic lattice spacing can exhibit distinct topological phases as a function of the lattice anisotropy.
As a consequence, a 2þ 1 dimensional lattice theory without any domain wall in the fermion mass can still
exhibit chiral edge modes on a 1þ 1 dimensional defect across which lattice spacing changes abruptly.
Likewise, a domain wall in the fermion mass on a uniform rectangular lattice can exhibit discrete changes
in the number and chirality of zero modes as a function of lattice anisotropy. The construction presented in
this paper can be generalized to higher dimensional space-time lattices.
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I. INTRODUCTION

The domain wall construction of chiral fermions in
relativistic quantum field theories (QFT) [1,2] has close
parallels with the physics of quantum Hall effect (QHE)
[3–7]. Although quantum Hall states are realized in 2þ 1
dimensions, the underlying principle of anomaly inflow
and the associated edge modes generalize to higher
dimensions in their relativistic QFT analog. For example,
chiral domain wall fermions which are close cousins of the
edge states in QHE can be realized on domain walls of
space-time dimension 2n for any n ≥ 1 with n ∈ Z
embedded in one higher spatial dimension. The continuum
construction of chiral fermionic zero modes and the
corresponding anomaly inflow mechanism was first
sketched out in a paper by Callan and Harvey [1]. The
2þ 1 dimensional version of this construction involves a
fermion with a spatially varying mass of the form mϵðx2Þ
with ϵðx2 > 0Þ ¼ 1 and ϵðx2 < 0Þ ¼ −1 coupled to a Uð1Þ
gauge field. In the infrared this theory exhibits a chiral zero
mode localized on the domain wall at x2 ¼ 0. The bulk on
the other hand exhibits a low energy Chern-Simons theory
of level 1 on one side of the wall and level 0 on the other.
This mimics the physics of QHE, anomalous quantum Hall
effect to be precise [8], where the QHE sample is described

by a nontrivial Chern-Simons theory and the edges of the
sample exhibit chiral zero modes.1

The continuum construction was subsequently adopted
in lattice gauge theory [2] to circumvent the challenges of
formulating chiral fermions on lattice [17,18]. This in turn
revealed that lattice regularization can alter the infrared (IR)
physics in ways that are inaccessible in the continuum. For
example, the low energy effective field theory (EFT) of a
massive fermion coupled to a Uð1Þ gauge field in 2þ 1
dimensions is a level one Chern-Simons theory in the
continuum. Lattice regularization modifies this EFT by
introducing doublers which sets the Chern-Simons level to
zero. In order to obtain a nontrivial Chern-Simons theory
one needs to introduce aWilson term for the fermions. With
Wilson fermions of mass M and Wilson parameter R,
appropriately normalized in lattice units, the Chern-Simons
level can be made to jump between 0, 1, −2, 1 and 0 as a
function of M=R [19]. These jumps are accompanied by
commensurate changes in the number and chirality of zero
modes on the domain wall [20] so as to satisfy the anomaly
inflow condition. The changes in the Chern-Simons level
indicate that the bulk undergoes topological phase tran-
sitions as a function of M=R. These topological phases
found in lattice gauge theory are in fact relativistic
generalizations of the TKNN calculation [4] performed
in the context of QHE in a periodic potential and also have
analogs in Dirac-Chern insulators [21].
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1Other examples of topological phases and edge excitations in
condensed matter systems that have analogs in relativistic QFTs
include the quantum spin Hall effect [9–11], fractional quantum
Hall effect [12], fractional quantum spin Hall effect [12,13],
Majorana edge states [14–16].
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The aforementioned calculation of topological phases in
lattice gauge theory and the corresponding zero mode
analysis were carried out on a cubic lattice [2,11,19] with
the Wilson fermion mass and inverse Wilson parameter
normalized in lattice units; i.e., the topological phase
transitions take place at values M

R ¼ 0, 2, 4 and 6 with
M ¼ mal and R ¼ r

al
where m is the fermion mass, r is the

Wilson parameter and al is the lattice spacing. This
definition of the Wilson parameter is slightly different
from the standard convention where the dimensionless
parameter R is called the Wilson parameter. The continuum
limit of this analysis is arrived at by taking al → 0 while

holding M
R ¼ ma2l

r fixed. Note that the ratio of parameters
ma2l
r

dictating the topological behavior of the lattice theory
involves lattice spacing al. This naturally raises the ques-
tion: What is the phase diagram of a Uð1Þ gauge theory
coupled to a Wilson fermion on a rectangular lattice (i.e.,
anisotropic lattice spacing)?
The goal of this paper is to address this question in

the context of 2þ 1 dimensional lattices.2 However, it is
important to note that most of the analysis presented in this
paper can be generalized to higher space-time dimensions.
Also, the gauge sector of the theory can be modified to
include SUðNÞ gauge theories.
The anisotropic lattices considered in this paper consist

of equal lattice spacing in the time (x0 direction) and one
of the two spatial dimensions (x1 direction) whereas the
lattice spacing in the remaining one spatial dimension x2 is
different. I call these two lattice spacings a and as,
respectively, and define a lattice anisotropy parameter
ã≡ a

as
. The low energy Chern-Simons (C.S.) theory in

the bulk after integrating out the Wilson fermions is found
to depend on the ratio of the two lattice spacings. This
result leads me to analyze two different types of defects:
(1) A domain wall in the fermion mass in x2 direction on

a uniform rectangular lattice, i.e., a ≠ as.
(2) An abrupt jump in the lattice spacing in the x2

direction, i.e., asðx2 > 0Þ ≠ asðx2 < 0Þ, while the
Wilson fermion mass is spatially uniform.

These defects which are 1þ 1 dimensional walls transverse
to the x2 direction are sometimes called the physical lattice
[35] and the choice of lattice spacings considered in this

paper keeps these physical lattices cubic. For a domain wall
in the fermion mass, the bulk away from the wall on a
rectangular lattice explores a larger set of topological
phases than what is accessible on a cubic lattice and the
fermion spectrum on the domain wall reflects the same. For
the lattice defect, despite the absence of a domain wall in
the fermion mass, there can be chiral modes along the wall
across which the transverse lattice spacing as changes
abruptly again reflecting the bulk C.S. levels on the two
sides of the discontinuity. Interestingly, for some values of
the anisotropy, the number of zero mode solutions to the
equations of motion does not reflect the number of
topologically protected zero modes. More specifically,
for a certain range of the anisotropy, there exist zero mode
solutions to the equation of motion of more than one
chirality. All of these modes cannot be topologically
protected as the number of topologically protected chiral
modes is set by the bulk Chern-Simons levels which only
reflect the net chirality on the wall. As an example, if there
are nþ number of positive chirality and n− number of
negative chirality zero mode solutions on the wall with
nþ > n−, the negative chirality zero modes pair up with n−
number of positive chirality zero modes leaving nþ − n−
number of topologically protected positive chirality modes
on the wall. This is in contrast with the isotropic lattice,
where the equations of motion never have solutions of
different chiralities realized on the same wall and all zero
mode solutions to the equations of motion thus remain
topologically protected.
There is another interesting feature associated with the

lattice spacing defect considered in this paper which
distinguishes it from a domain wall defect in the fermion
mass. To understand this feature note that for a domain wall
in the fermion mass on a uniform lattice, the C.S. current on
one side of the wall is always zero. When there are massless
modes on the domain wall (in fermion mass), only one of the
two sides of the wall has nontrivial C.S. level thus supplying
the entire C.S. current required to satisfy anomaly inflow
constraints. In contrast with this, the lattice defect can harbor
nontrivial C.S. theories on both sides of the defect, each
contributing to current conservation and anomaly inflow in
the presence of edge modes on the defect.
The organization of this paper is as follows. I first

consider the dependence of bulk C.S. level on the lattice
anisotropy. This is followed by an analysis of the edge
modes on a domain wall for the fermion mass and a defect
in lattice spacing where the lattice spacing transverse to the
defect changes abruptly. I then make connections to some
recent literature on Chern insulators and follow it up with a
discussion, conclusion and future work.

II. BULK CHERN-SIMONS THEORY ON A
RECTANGULAR LATTICE

In this section I will review the topological phases
exhibited by Uð1Þ lattice gauge theory coupled to a

2Anisotropic lattices have been explored in lattice gauge theory
in the context of heavy quark [22,23], hadron and glueball
spectrum, scattering processes, etc., [24–31]. Two nucleon systems
were investigated on an anisotropic lattice in [32]. Some of the
earlier work on formulating SUðNÞ gauge theories on anisotropic
lattices can be found in [33,34]. Domain wall fermions were
explored on anisotropic lattice in [35] where the physical four
dimensional lattice was rectangular. Anisotropic Wilson gauge
action was explored in [23] and effective field theory of anisotropic
Wilson lattice action was analyzed in [36]. However these studies
do not explore the phase diagram of the lattice theory which is of
interest to this paper.
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Wilson fermion on a cubic lattice and then go on to
discuss how the analysis changes on a rectangular lattice
(i.e., a lattice with anisotropic lattice spacings). The
calculation for the anisotropic lattice closely follows that
of the cubic lattice in [19,37,38]. Along the way, I will also
clarify the kind of lattice anisotropy I consider in this paper.
In order to proceed consider a heavy Wilson fermion of
mass m and Wilson parameter r coupled to a Uð1Þ lattice
gauge theory in 2þ 1 dimensions. I denote the lattice
spacing in the direction μ as aμ. The Wilson-Dirac operator
is then given by

DW ¼
X2
μ¼0

γμ∂μ þmþ r
2

X2
μ¼0

Δμ; ð2:1Þ

where ∂μ is the lattice derivative ∂μ ¼ δz;zþaμ−δz;z−aμ
2aμ

and Δμ is

the lattice Laplacian Δμ ¼ δz;zþaμþδz;z−aμ−2δz;z
a2μ

. Note that at this

stage the lattice spacings in different directions are not
specified to be equal to each other. In fact, this Wilson-
Dirac operator of Eq. (2.1) encodes the definition of lattice
anisotropy used in this paper; i.e., although the lattice
spacings in the 0,1 and 2 directions are free to be different
from each other, the lattice Laplacian maps to the Euclidean
invariant continuum Laplacian in the limit of aμ → 0.
Similarly the lattice derivative maps to the continuum
gradient in the limit aμ → 0. As stated earlier, for isotropic
lattices, i.e., a0 ¼ a1 ¼ a2 ¼ al, varying the dimensionless
fermion mass parametermal with respect to the dimension-
less Wilson parameter r=al can give rise to different
topological phases. A relatively simple way to see this at
weak coupling is to integrate out the Wilson fermion to
arrive at the low energy effective theory for the Uð1Þ gauge
field. Just as in the continuum analysis with a heavy Dirac
fermion and a Pauli-Villars (PV) regulator, integrating out a
heavy Wilson fermion with lattice regularization in 2þ 1
dimensions may result in a Chern-Simons theory at low
energies. However there are some crucial difference
between the lattice and PV regulator. In the continuum
with PV regulator, the Chern-Simons level obtained
after integrating out a heavy Dirac fermion is given by
1
8π

m
jmj þ 1

8π
Λ
jΛj where Λ is the mass of the PV field. In

contrast, the Chern-Simons level obtained on a lattice
after integrating out the heavy Wilson fermion is zero

for
ma2l
r > 6 and

ma2l
r < 0. That the C.S. level goes to zero for

certain values of the parametersm and r can be attributed to
the presence of doublers which result from lattice regu-

larization of the theory. For 6 >
ma2l
r > 0, the bulk theory

exhibits three topological phases separated by two topo-
logical transitions as reviewed next.
In order to understand how the topological transitions

arise consider first the Wilson fermion propagator which is
given by

S−1ðpÞ ¼
Xd−1
μ¼0

iγμ
sinðpμaμÞ

aμ
þmþ r

Xd−1
μ¼0

ðcosðpμaμÞ − 1Þ
ðaμÞ2

;

ð2:2Þ

where d ¼ 3 is the number of space-time dimensions. In the
limit of weak gauge coupling, the Wilson fermion can be
integrated out which yields a Chern-Simons action for the
gauge field given by Seff ¼ −i c

4π ΓC:S: with

ΓC:S: ¼ ϵα1β1α2

Z
d3xAα1∂β1Aα2 : ð2:3Þ

The constant “c” is known as the Chern-Simons level
which can be computed from the Feynman diagram Fig. 1
and written as

c ¼ −
4πϵα1β1α2
2ð3!Þ ∂ðq1Þβ1

Z
BZ

d3p
ð2πÞ3 TrðSðpÞΛα1ðp; p − q1Þ

× Sðp − q1ÞΛα2ðpþ q2; pÞÞjqi¼0: ð2:4Þ

Here Λ is the fermion-Gauge field vertex satisfying

Λμðp; pÞ ¼ −i∂pμ
S−1ðpÞ: ð2:5Þ

The coefficient “c” can be reexpressed in terms of the
fermion propagator as

c ¼ ϵμ1μ2μ3
2ð3!Þ

Z
d3p
2π2

Trð½SðpÞ∂pμ1
S−1ðpÞ�

× ½SðpÞ∂pμ2
S−1ðpÞ�½SðpÞ∂pμ3

S−1ðpÞ�Þ: ð2:6Þ

One can then substitute the Wilson fermion propagator in
Eq. (2.6) to evaluate “c” by computing the momentum
space integral near the Brillouin zone (BZ) corners, the
coordinates of which are denoted as ξα. Here α ¼ 1;…; ðdkÞ
where k stands for the number of components of the
momenta equal to π while the rest of the components are
zero. The C.S. level can then be written as

FIG. 1. The one-loop Feynman diagram producing the Chern-
Simons level.
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c ¼
X
k;α

Z
dΩ
ð−1Þk d

3p
2π2

ðm − 2 r
a2l
kÞ

ðp2 þ ðm − 2 r
a2l
kÞ2Þ2 : ð2:7Þ

Here I have assumed a0 ¼ a1 ¼ a2 ¼ al. Performing this
integral results in the following formula for the CS
coefficient:

c ¼
Xd
k¼0

ð−1Þk
�
d

k

� ðm − 2 r
a2l
kÞ

jm − 2 r
a2l
kj

¼
Xd
k¼0

ð−1Þk
�
d

k

� ðM − 2RkÞ
jM − 2Rkj ; ð2:8Þ

where I have used M ¼ mal and R ¼ r=al as before. It is
now straightforward to check that for 0 < M=R < 2,
c ¼ −1, for 2 < M=R < 4, c ¼ 2 and for 4 < M=R < 6,
c ¼ −1. Similarly, for M=R > 6 and for M=R < 0, c ¼ 0.
Each of the different C.S. levels obtained here corresponds
to a distinct topological phase. This calculation for the C.S.
levels for an isotropic lattice first appeared in [19]. I will
now consider a rectangular lattice, in particular with
a0 ¼ a1 ¼ a and a2 ¼ as such that a ≠ as. In this case
the Chern-Simons coefficient can be obtained by substitut-
ing fermion propagators from Eq. (2.2) in Eq. (2.6) and
repeating the procedures outlined above. The C.S. level is
then given by

c ¼ 1

2

�
ð−1Þ0 m

jmj þ ð−1Þ1
�

m − 2r
a2

jm − 2r
a2 j

2þ
m − 2r

a2s

jm − 2r
a2s
j
�

þ ð−1Þ2
�

m − 4r
a2

jm − 4r
a2 j

þ 2
m − 2r

a2 − 2 r
a2s

jm − 2r
a2 − 2 r

a2s
j
�

þ ð−1Þ3
� m − 4 r

a2 − 2 r
a2s

jm − 4 r
a2 − 2 r

a2s
j
��

: ð2:9Þ

It is now clear that the C.S. level depends on the lattice
spacings as and a and will take various different values
in integers as the two lattice spacings are varied. Each of
these different C.S. levels will correspond to a distinct

topological phase. In other words, a rectangular lattice is
able to access a larger set of topological phases than a cubic
lattice. In the next section I analyze the Chern-Simons level
as a function of the lattice anisotropy and some of the other
parameters in the theory. This analysis will pave the way for
understanding the edge modes on the two kinds of defects
that I will consider subsequently: a domain wall in fermion
mass and an abrupt change in lattice spacing.

A. Variation in Chern-Simons level for various values
of lattice anisotropy as a function of fermion mass

I will first consider the behavior of the C.S. level with
respect to variations in the fermion mass m for a fixed
lattice anisotropy as=a. To do this I define the dimension-
less parameters mas ¼ m̃, r

as
¼ r̃ and use the lattice

anisotropy parameter ã ¼ a
as
to rewrite the C.S. level as

c ¼ 1

2

�
ð−1Þ0 m̃

jm̃j þ ð−1Þ1
�
2
ðm̃ − 2 r̃

ã2Þ
jm̃ − 2 r̃

ã2 j
þ ðm̃ − 2r̃Þ

jm̃ − 2r̃j
�

þ ð−1Þ2
�ðm̃ − 4 r̃

ã2Þ
jm̃ − 4 r̃

ã2 j
þ 2

ðm̃ − 2 r̃
ã2 − 2r̃Þ

jm̃ − 2 r̃
ã2 − 2r̃j

�

þ ð−1Þ3 ðm̃ − 4 r̃
ã2 − 2r̃Þ

jm̃ − 4 r̃
ã2 − 2r̃j

�
: ð2:10Þ

I now set r̃ ¼ 1 and plot the C.S. level “c” as a function of
m̃ for a few different values of ã in Figs. 2 and 3. Note that
c ¼ 0 for m̃ < 0 for all values of the lattice anisotropy and
is not plotted hence. As shown in Fig. 2 for ã ¼ 1, I recover
the results for an isotropic lattice, i.e., “c” goes between 1,
−2, 1, 0 for 0 < m̃ < 2, 2 < m̃ < 4, 4 < m̃ < 6 and 6 < m̃,
respectively. For ã < 1, the regions of parameter space in m̃
where the C.S. level changes between 1;−2, 1 get separated
from each other by regions where “c” is just zero. In other
words the C.S. level takes values 0 for m̃ < 0, 1 in the
region 2 > m̃ > 0, 0 in 2

ã2 > m̃ > 2, −2 in 2þ 2
ã2 > m̃ > 2

ã2,
0 in 4

ã2 > m̃ > 2þ 2
ã2, 1 in 2þ 4

ã2 > m̃ > 4
ã2 and 0 in

m̃ > 2þ 4
ã2. To illustrate these behaviors I plot “c” as a

function of m̃ in Fig. 2 for ã ¼ 1 and ã ¼ 0.8.

FIG. 2. Chern-Simons level as a function of m̃ with r̃ ¼ 1 for various values of lattice anisotropy.
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For ã > 1, the behavior of “c” as a function of m̃ for
r̃ ¼ 1 exhibits two different patterns for

ffiffiffi
2

p
> ã > 1 and

ã >
ffiffiffi
2

p
as shown in Fig. 3. For

ffiffiffi
2

p
> ã > 1, “c” toggles

between 0, 1, −1, −2, −1, 1, 0 for m̃ < 0, 0 < m̃ < 2
ã2,

2
ã2 < m̃ < 2, 2 < m̃ < 4

ã2,
4
ã2 < m̃ < 2þ 2

ã2 and 2þ 2
ã2 <

m̃ < 2þ 4
ã2, respectively. For ã >

ffiffiffi
2

p
, on the other hand,

“c” jumps between 0, 1, −1, 0, −1, 1 for m̃ < 0,
0 < m̃ < 2

ã2,
2
ã2 < m̃ < 4

ã2,
4
ã2 < m̃ < 2, 2 < m̃ < 2þ 2

ã2,
2þ 2

ã2 < m̃ < 2þ 4
ã2 and m̃ > 2þ 4

ã2. The C.S. levels
computed in this subsection will be useful in the next
section when I investigate the edge modes localized on a
domain wall in the fermion mass for a uniform rectangular
lattice.

B. Variation in Chern-Simons level as a function of
lattice anisotropy for various values of fermion mass

Next, I consider the behavior of the C.S. level with
variation in lattice anisotropy for various values of m
(appropriately normalized) while keeping r fixed

(appropriately normalized). For this analysis I will define
the following dimensionless variables m0 ¼ ma, r0 ¼ r

a
and as

a ¼ a0. In terms of these variables the C.S. level “c”
can be written as

c ¼ 1

2

�
ð−1Þ0 m0

jm0j
þ ð−1Þ

� m0 − 2 r0
a2
0

jm0 − 2 r0
a2
0

j þ 2
m0 − 2r0
jm0 − 2r0j

�

þ ð−1Þ2
�
2
m0 − r0ð2þ 2

a2
0

Þ
jm0 − r0ð2þ 2

a2
0

Þj þ
m0 − 4r0
jm0 − 4r0j

�

þ ð−1Þ3
� m0 − r0ð 2a2

0

þ 4Þ
jm0 − r0ð 2a2

0

þ 4Þj
��

: ð2:11Þ

I fix r0 ¼ 1 and plot “c” as a function of 1
a2
0

for three

different values of m0 ¼ 1, 3, 5 in Fig. 4.
As shown in Fig. 4 for a0 ¼ 1, I recover the C.S. levels

for an isotropic lattice. More generally, for m0 ¼ 1 the C.S.
level is 0 for 1

a2
0

< m0

2
and is −1 for 1

a2
0

> m0

2
. For m0 ¼ 3, the

FIG. 3. Chern-Simons level as a function of m̃ with r̃ ¼ 1 for various values of lattice anisotropy.

FIG. 4. Chern-Simons level as a function of lattice anisotropy for various values of m0.
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C.S. level is 0,2 and 1 in the regions 1
a2
0

< m0

2
− 1, m0

2
− 1 <

1
a2
0

< m0

2
and 1

a2
0

> m0

2
, respectively. Similarly, for m0 ¼ 5, the

C.S. level alternates between 0, −1, 1, 0 for 1
a2
0

< m0

2
− 2,

m0

2
− 2 < 1

a2
0

< m0

2
− 1, m0

2
− 1 < 1

a2
0

< m0

2
and 1

a2
0

> m0

2
, respec-

tively. Again, the variation of the C.S. level as a function of
the lattice anisotropy 1

a2
0

establishes that the anisotropy

parameter a0, when dialed can drive the lattice theory to
different topological phases. The C.S. levels computed here
as a function of 1

a2
0

will help in understanding the existence

of topologically protected edge modes from the perspective
of anomaly inflow when I consider an abrupt change in the
lattice spacing in Sec. IV.
With this I now proceed to analyze the edge modes on a

domain wall in fermion mass. This will be followed by the
analysis of edge modes on a defect across which lattice
spacing changes abruptly while all other parameters of the
theory are kept fixed.

III. DOMAIN WALL IN FERMION MASS ON A
RECTANGULAR LATTICE

In this section I investigate the existence of chiral edge
modes in the presence of a domain wall in the fermion mass
parameter on an anisotropic, but uniform lattice as shown in
Fig. 5. To do so I consider the Dirac equation with a
spatially dependent mass of the form mðx2Þ ¼ μϵðx2Þ with
μ > 0 such that there is a domain wall at x2 ¼ 0. With
lattice spacings a in the x0 and x1 directions and as in the x2
direction the Dirac equation takes the form

� ϕ�ðx2 þ asÞ − ϕ�ðx2 − asÞ
2as

þmðx2Þϕ�ðxÞ

þ r
2

X
i¼0;1

�
ϕ�ðxi þ aÞ þ ϕ�ðxi − aÞ − 2ϕ�ðxiÞ

a2

�

þ r
2

�
ϕ�ðx2 þ asÞ þ ϕ�ðx2 − asÞ − 2ϕ�ðx2Þ

a2s

�
¼ 0

ð3:1Þ

for the two chiralities “�”, where on the wall I impose

γi
X
i¼0;1

∂iϕ ¼ 0 with ϕ ¼
�
ϕþ
ϕ−

�
: ð3:2Þ

Defining ϕ�ðx2; pÞ ¼
R
ϕ�ðx2; xiÞeipixid2x the Dirac

equation can be written as

� ϕ�ðx2 þ as; pÞ − ϕ�ðx2 − as; pÞ
2as

þmϵðsÞϕ�ðx2; pÞ

þ r
2

X
i¼0;1

ðcosðpiaÞ − 1Þ
a2

ϕ�ðx2; pÞ

þ r
2

�
ϕ�ðx2 þ as; pÞ þ ϕ�ðx2 − as; pÞ − 2ϕ�ðx2; pÞ

a2s

�

¼ 0: ð3:3Þ

I now take r ¼ as. In terms of the dimensionless variable
mas ¼ m̃ the equation of motion simplifies to

ϕ�ðx2 � asÞ ¼ −m̃effϕ�ðx2Þ; ð3:4Þ

such that m̃eff ¼ m̃ðsÞ − 1 − FðpÞ a2sa2 with FðpÞ≡P
i¼0;1ð1 − cosðpiaÞÞ. There are no normalizable solutions

for the “−” chirality mode. However, “þ” chirality mode
can have normalizable solutions given by

ϕþðx2Þ ¼ ð−m̃effÞx2=as : ð3:5Þ

For x2 < 0, this solution is normalizable for all values of μ̃.
For x2 > 0 the solution is normalizable only when

2 >

�
μ̃ −

�
1

ã

�
2

FðpÞ
�

> 0; ð3:6Þ

where I have used ã ¼ a
as
. Zero mode solutions centered

around fp0a ¼ 0; p1a ¼ 0g and fp0a ¼ π; p1a ¼ πg are
of positive chirality and those centered around fp0a ¼ 0;
p1a ¼ πg and fp0a ¼ π; p1a ¼ 0g are of negative chiral-
ity. The positive chirality mode centered at fp0a ¼ 0;
p1a ¼ 0g is normalizable for

0 < μ̃ < 2: ð3:7Þ

The negative chirality modes at fp0a ¼ π; p1a ¼ 0g and
fp0a ¼ 0; p1a ¼ πg are normalizable for

2

ã2
< μ̃ < 2þ 2

ã2
: ð3:8Þ

Finally, the positive chirality mode centered at fp0a ¼ π;
p1a ¼ πg is normalizable forFIG. 5. Anisotropic lattice with domain wall in fermion mass.
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4

ã2
< μ̃ < 2þ 4

ã2
: ð3:9Þ

With the conditions of normalizability at hand, I can now
discuss the pattern of variation of the number and
chirality of the zero modes as a function of μ̃ for fixed
ã. For ã ¼ 1, I recover the results for a cubic lattice where
one finds one positive chirality mode for 0 < μ̃ < 2, two
negative chirality modes for 2 < μ̃ < 4 and one positive
chirality mode 4 < μ̃ < 6. For ã ≠ 1, three different
patterns emerge for ã < 1,

ffiffiffi
2

p
> ã > 1 and ã >

ffiffiffi
2

p
,

respectively. I discuss these patterns in the rest of this
section and summarize them in Tables I, II and III.
It is instructive to note that the patterns are consistent
with the C.S. levels obtained in Sec. II A as described in
Figs. 2 and 3.

A. Varying fermion mass when the anisotropy
parameter is less than one

For ã < 1, the edge mode chirality on the wall alternates
between the values 0, 1, 0, −2, 0,1,0 as a function of μ̃. The
range of values that the net chirality on the wall can take is
the same as in the case with ã ¼ 1, except that the three
regions in the parameter space of μ̃ where the net chirality
takes values 1, −2 and 1 are separated from each other by
regions in the parameter space with no normalizable edge
mode solutions. This of course is consistent with the
change in C.S. levels seen in Fig. 2 for ã ¼ 0.8. More
specifically, in the region 2 > μ̃ > 0, the only mode with a
normalizable solution is fp0a ¼ 0; p1a ¼ 0g. Similarly, in
the region 2þ 2

ã2 > μ̃ > 2
ã2 the modes with normalizable

solutions are fp0a¼0;p1a¼πg and fp0a ¼ π; p1a ¼ 0g.
In 2þ 4

ã2 > μ̃ > 4
ã2 it is only the mode fp0a ¼ π; p1a ¼ πg

which has a normalizable solution. In the regions 0 > μ̃,
2
ã2 > μ̃ > 2, 4

ã2 > μ̃ > 2þ 2
ã2 and μ̃ > 2þ 2

ã2 there are no
normalizable zero mode solutions at all. I summarize the
results in Table I.

B. Varying fermion mass when the anisotropy
parameter is greater than one

For ã > 1 something even more interesting takes place.
For certain values of the lattice anisotropy parameter, there
can exist normalizable solutions of different chiralities
on the domain wall. Of course in that case, all of the
normalizable solutions are not topologically protected and
some linear combinations of these modes will acquire a
nonzero mass on the lattice when interactions are taken
into account. As a result the number of topologically
protected massless modes on the wall equals the net chirality
present on the wall which does not coincide with the number
of zero mode solutions to the Dirac equation. The parameter
space in ã > 1 exhibits two different patterns for the
variation of the edge modes and their chirality for ã>

ffiffiffi
2

p
and ã <

ffiffiffi
2

p
as mentioned earlier which I now discuss.

1. Variation with fermion mass for
ffiffiffi
2

p
> ã > 1

In this case, for 2
ã2> μ̃>0, it is only fp0a ¼ 0; p1a ¼ 0g

which is normalizable. For 2 > μ̃ > 2
ã2, the normalizable

modes are fp0a ¼ 0; p1a ¼ 0g, fp0a ¼ 0; p1a ¼ πg and
fp0a ¼ π; p1a ¼ 0g. Similarly, in the region 4

ã2 > μ̃ > 2

the only normalizable modes are fp0a ¼ 0; p1a ¼ πg and
fp0a ¼ π; p1a ¼ 0g. For 2þ 2

ã2 > μ̃ > 4
ã2 normalizable

solutions exist for fp0a¼0;p1a¼πg, fp0a¼π;p1a¼0g
and fp0a ¼ π; p1a ¼ πg. Finally, for 2þ 4

ã2> μ̃>2þ 2
ã2 it

is only fp0a ¼ π; p1a ¼ πg which has a normalizable
solution. No normalizable solutions exist for any of the
modes when μ̃ < 0 or μ̃ > 2þ 4

ã2. The normalizable zero
mode solutions and their net chirality are summarized in
Table II.

TABLE I. Summary of the zero mode solutions on the domain
wall as a function of μ̃ for ã < 1.

Range of μ̃
Positive
chirality

Negative
chirality

Net
chirality

2 > μ̃ > 0 1 0 þ1
2
ã2 > μ̃ > 2 1 1 0
2þ 2

ã2 > μ̃ > 2
ã2 0 2 −2

4
ã2 > μ̃ > 2þ 2

ã2 1 1 0
2þ 4

ã2 > μ̃ > 4
ã2 1 0 1

TABLE II. Summary of the zero mode solutions on the domain
wall as a function of μ̃ for

ffiffiffi
2

p
> ã > 1.

Range of μ̃
Positive
chirality

Negative
chirality

Net
chirality

2ð1ãÞ2 > μ̃ > 0 1 0 þ1

2 > μ̃ > 2ð1ãÞ2 1 2 −1
4ð1ãÞ2 > μ̃ > 2 0 2 −2
2þ 2ð1ãÞ2 > μ̃ > 4ð1ãÞ2 1 2 −1
2þ 4ð1ãÞ2 > μ̃ > 2þ 2ð1ãÞ2 1 0 1

TABLE III. Summary of the zero mode solutions on the domain
wall as a function of μ̃ for ã >

ffiffiffi
2

p
.

Range of μ̃
Positive
chirality

Negative
chirality

Net
chirality

2ð1ãÞ2 > μ̃ > 0 1 0 þ1

4ð1ãÞ2 > μ̃ > 2ð1ãÞ2 1 2 −1
2 > μ̃ > 4ð1ãÞ2 2 2 0
2þ 2ð1ãÞ2 > μ̃ > 2 1 2 −1
2þ 4ð1ãÞ2 > μ̃ > 2þ 2ð1ãÞ2 1 0 1
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2. Variation with fermion mass for ã >
ffiffiffi
2

p

For ã >
ffiffiffi
2

p
zero modes are realized on the domain wall

in the following pattern. For μ̃ < 0 and μ̃ > 2þ 4
ã2 there are

no normalizable zero mode solutions. For 2
ã2 > μ̃ > 0, only

fp0a ¼ 0; p1a ¼ 0g has a normalizable solution. For
4
ã2 > μ̃ > 2

ã2 normalizable solutions exist for the modes
fp0a ¼ 0; p1a ¼ 0g, fp0a ¼ 0; p1a ¼ πg and fp0a ¼ π;
p1a ¼ 0g. All four modes fp0a ¼ 0; p1a ¼ 0g, fp0a ¼ 0;
p1a ¼ πg, fp0a ¼ π; p1a ¼ 0g, fp0a ¼ π; p1a ¼ πg
have normalizable solutions in 2 > μ̃ > 4

ã2 resulting in no
net chirality on the wall. Between 2þ 2

ã2 > μ̃ > 2 the
normalizable zero modes are fp0a ¼ 0; p1a ¼ πg, fp0a ¼
π; p1a ¼ 0g and fp0a ¼ π; p1a ¼ πg. Finally, in 2þ 4

ã2 >
μ̃ > 2þ 2

ã2 a normalizable solution exists only for the mode
fp0a ¼ π; p1a ¼ πg. The normalizable zero mode solu-
tions and their net chirality are summarized in Table III.
To see that the zero mode solutions obtained here are

consistent with the anomaly inflow constraints, note that
the net chirality of zero modes listed in Tables I, II and III
coincide with the C.S. levels in Figs. 2 and 3. Also, note
that on one side of the domain wall where the fermion mass
is positive, the C.S. level is given by Figs. 2 and 3. The
other side of the wall x2 < 0 with negative fermion mass
has C.S. level of zero. Thus there is no current flowing to
the wall from x2 < 0 and the current flowing on the x2 > 0
bulk matches the net chirality on the wall exactly.

IV. ABRUPT CHANGE IN LATTICE SPACING

In this section I will analyze a Wilson fermion with no
spatial variation in its mass formulated on a lattice with a
domain wall defect in the lattice spacing as shown in Fig. 6.
The lattice is such that the spacing in x0 and x1 directions,
i.e., a, is fixed. However lattice spacing in x2 direction a2
changes discontinuously across x2 ¼ 0 as shown in Fig. 6
according to

a2ðx2Þ ¼ apθðx2Þ þ amθð−x2Þ; ð4:1Þ

where θðxÞ is the unit step function. All the other
parameters in the theory, i.e., the Wilson parameter,
fermion mass and the lattice spacing in the x0 and x1
directions, are kept constant. Quite remarkably, I find that
there exist topologically protected chiral zero mode sol-
utions for certain values of the parameters ap and am
despite there being no domain wall in the fermion mass.
Another related feature of such a defect is that there exist ap
and am for which the C.S. levels on both sides of the defect
are nonzero as opposed to a domain wall defect in the
fermion mass where the C.S. level on one side of the wall is
always zero.
In order to find zero mode solutions on the defect one has

to write down the Dirac equation for the lattice in Fig. 6.

For this purpose it is convenient to use the following
dimensionless variables defined as r=a ¼ r0,

ap=m
a ¼ ap=m0 ,

ma ¼ m0. The equations of motion can then be written as

ϕþðx2 þ ap=mÞ
�

1

2ap=m0

þ r0
2ðap=m0 Þ2

�

−ϕþðx2 − ap=mÞ
�

1

2ap=m0

−
r0

2ðap=m0 Þ2
�

þ
�
m0 −

r0
ðap=m0 Þ2

þ r0
X
μ¼0;1

ðcosðpμaÞ− 1Þ
�
ϕþðx2Þ ¼ 0;

ð4:2Þ

for x2 > 0 and x2 < 0. I deliberately avoid writing the
equation of motion for the “−” chirality mode as there are
no normalizable solutions for it. There is one more equation
which arises from the fact that the lattice spacing is
discontinuous across x2 ¼ 0 and it is given by

ϕþðap0 Þ
ðap0 þ am0 Þ

�
1þ r0

ap0

�
þ ϕþð−am0 Þ
ðap0 þ am0 Þ

�
−1þ r0

am0

�
þm0ϕþð0Þ

− r0
ϕþð0Þ
ap0a

m
0

þ r0
X
μ¼0;1

ðcosðpμaÞ− 1Þϕþð0Þ ¼ 0: ð4:3Þ

The E.O.M in Eq. (4.2) are solved by an ansatz of the form

ϕþðx2Þ ¼
8<
:

z
x2
ap
p ; for x2 > 0

z
x2
am
m ; for x2 < 0

; ð4:4Þ

where zp and zm are given by

FIG. 6. Lattice with an abrupt change in lattice spacing.
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zp=m;� ¼
−ðm0 −

r0
ðap=m

0
Þ2 þ r0

P
μ¼0;1ðcosðpμaÞ − 1ÞÞ

1

ap=m
0

ð1þ r0
ap=m
0

Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 −

r0
ðap=m

0
Þ2 þ r0

P
μ¼0;1ðcosðpμaÞ − 1ÞÞ2 þ 1

ðap=m
0

Þ2 ð1 −
r0

ap=m
0

Þð1þ r0
ap=m
0

Þ
q

1

ap=m
0

ð1þ r0
ap=m
0

Þ : ð4:5Þ

As seen from Eq. (4.5) there are two independent solutions
to Eq. (4.2). The most general solution for ϕþ is then given
by an arbitrary linear combination of the form

ϕþ ¼
8<
:

Aþz
x2
ap
p;þ þ Bþz

x2
ap
p;−; for x2 ≥ 0

A−z
x2
am
m;þ þ B−z

x2
am
m;−; for x2 ≤ 0

; ð4:6Þ

where Aþ and Bþ are nonzero only when jzp;þj
x2
ap , jzp;−j

x2
ap

are normalizable for x2 > 0 and A− and B− are nonzero

only when jzm;þj
x2
am , jzm;−j

x2
am are normalizable for x2 < 0.

However, Aþ, A−, Bþ and B− satisfy three more con-
straints. One of them is that jϕþj2 integrated over x2
normalizes to 1. Also, since ϕþð0Þ is single valued,

Aþ þ Bþ ¼ A− þ B−: ð4:7Þ

The third condition is that ϕþ has to satisfy Eq. (4.3). With
this I can now proceed to analyze the number and chirality

of the zero mode solutions on the wall. In order for
normalizable solutions to exist I need

jzp;�j < 1; jzm;�j > 1: ð4:8Þ
It is important to note that there are no solutions to the
Eq. (4.3) if at least two of the conditions in the inequality of
(4.8) are violated. Although, whether these conditions are
met can be checked for any mode of interest, I will
concentrate on the modes centered around the Brillouin
zone corners: fp0a ¼ 0; p1a ¼ 0g, fp0a ¼ 0; p1a ¼ πg,
fp0a ¼ π; p1a ¼ 0g and fp0a ¼ π; p1a ¼ πg. Also, I will
only focus on r0 ¼ 1 and m0 ¼ 1, 3, 5. The reason behind
restricting the analysis to these m0 values is merely
convenience as similar analysis can be performed for
any other values of m0. In order to understand whether
there exist zero mode solutions for any set of values for ap0
and am0 it is useful to recognize that the functional form of
zp;� and zm;� as a function of 1

ðap
0
Þ2 and

1
ðam

0
Þ2 are the same.

A convenient way to analyze the roots zp=m;� is then to
define z� which has the same functional form in terms of
the variable 1

ða0Þ2

z�

�
1

ða0Þ2
�

¼
−ðm0 −

r0
ða0Þ2 þ r0

P
μ¼0;1ðcosðpμaÞ − 1ÞÞ

1
a0
ð1þ r0

a0
Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 −

r0
ða0Þ2 þ r0

P
μ¼0;1ðcosðpμaÞ − 1ÞÞ2 þ 1

ða0Þ2 ð1 −
r0
a0
Þð1þ r0

a0
Þ

q
1
a0
ð1þ r0

a0
Þ : ð4:9Þ

In order to check whether there exists normalizable
solutions for a particular mode one then has to analyze
the behavior of z� as a function of 1

a0
i.e., the existence

of a zero mode depends on whether there exists a0 ¼ ap0
and a0 ¼ am0 for which one can find jzþð 1

ðap
0
Þ2Þj < 1,

jz−ð 1
ðap

0
Þ2Þj < 1, jzþð 1

ðam
0
Þ2Þj > 1, jz−ð 1

ðam
0
Þ2Þj > 1 which sat-

isfy the conditions in Eq. (4.8) listed above.
Note that, in order for the bound in inequality (4.8) to be

obeyed, the curves jzþð 1
ða0Þ2Þj or jz−ð

1
ða0Þ2Þj as a function a0

has to intersect the line jzþj ¼ 1 for a real and positive a0.
For m0 ¼ 1, none of the corners of the Brillouin zone
except the mode fp0a ¼ 0; p1a ¼ 0g exhibit a real positive

a0 at which jzþð 1
ða0Þ2Þj ¼ 1. This point at which

jzþð 1
ða0Þ2Þj ¼ 1 is at a0 ¼

ffiffiffi
2

p
. For m0 ¼ 3, for the mode

fp0a ¼ 0; p1a ¼ 0g, jzþð 1
ða0Þ2Þj ¼ 1 at a0 ¼

ffiffi
2
3

q
and for

the mode fp0a ¼ π; p1a ¼ 0g and fp0a ¼ 0; p1a ¼ πg,
jzþð 1

ða0Þ2Þj¼1 at a0¼
ffiffiffi
2

p
. However, for fp0a¼π;p1a¼πg

there is no a0 for which jz�ð 1
ða0Þ2Þj ¼ 1. Form0 ¼ 5 one can

find real and positive a0 satisfying jzþð 1
ða0Þ2Þj ¼ 1 for all the

corners of the Brillouin zone. For the mode fp0a ¼ 0;

p1a ¼ 0g this point is at a0 ¼
ffiffi
2
5

q
. For the modes

fp0a ¼ 0; p1a ¼ πg and fp0a ¼ π; p1a ¼ 0g this point
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is at a0 ¼
ffiffi
2
3

q
. And for the mode fp0a ¼ 0; p1a ¼ πg this

point is at a0 ¼
ffiffiffi
2

p
.

This implies that form0 ¼ 1, for certain values of ap and
am one can find a normalizable solution for the mode
fp0a ¼ 0; p1a ¼ 0g. Similarly, form0 ¼ 3, it is possible to
obtain normalizable solutions for the modes fp0a ¼ 0;
p1a ¼ 0g, fp0a ¼ π; p1a ¼ 0g and fp0a ¼ 0; p1a ¼ πg.
Form0 ¼ 5, all the BZ corner modes can have normalizable
solutions for appropriately chosen values for ap and am.
In what follows I discuss a few choices of ap0 and am0 for

m0 ¼ 1, 3 and 5 and demonstrate that the number and net
chirality of normalizable zero mode solutions is consistent
with the C.S. levels obtained in Sec. II B in Fig. 4 as a
function of lattice anisotropy for various values ofm0. First
consider m0 ¼ 1. As can be seen from Fig. 4, for m0 ¼ 1,
with ð1=am0 Þ2 < 1=2 and ð1=ap0 Þ2 > 1=2, there is a C.S.
current of levelþ1 flowing to the wall from the x2 > 0 bulk
and there is no current in the x2 < 0 bulk. This suggests that
there must exist net chirality of þ1 on the wall. As is clear
from Fig. 7, this indeed is the case. There are no normal-
izable solutions satisfying Eq. (4.3) with any choice of ap=m0

for fp0a¼π;p1a¼0g, fp0a¼0;p1a¼πg and fp0a ¼ π;
p1a ¼ πg. However, the mode fp0a ¼ 0; p1a ¼ 0g is
normalizable on the wall so long as ð1=am0 Þ2 < 1=2 and

ð1=ap0 Þ2 > 1=2. As a result, anomaly inflow works out
perfectly.
Form0 ¼ 3, something a bit more interesting takes place.

For example, for ð1=am0 Þ2 < 1=2 and 3=2 > ð1=ap0 Þ2 >
1=2 there is a C.S. current of level 2 flowing away from the
wall for x2 > 0 whereas there is no C.S. current for x2 < 0.
This suggests that the wall must harbor net chirality of −2
so as to maintain current conservation. From Fig. 8, it is
clear that for ð1=am0 Þ2 < 1=2 and 3=2 > ð1=ap0 Þ2 > 1=2,
neither fp0a ¼ 0; p1a ¼ 0g or fp0a ¼ π; p1a ¼ πg are
normalizable. However, fp0a ¼ 0; p1a ¼ πg and fp0a ¼
π; p1a ¼ 0g are, which is consistent with current conser-
vation or anomaly inflow. When ð1=ap0 Þ2 > 3=2 and
1=2 < ð1=am0 Þ2 < 3=2, there is a C.S. current of C.S. level
2 flowing to the wall in x2 < 0 whereas there is a C.S.
current of level 1 flowing away from the wall in x2 > 0. For
anomaly inflow to work, the net chirality of zero modes on
the wall must be þ1. As can be seen from Fig 3. for the
choice of ð1=ap0 Þ2 > 3=2 and 1=2 < ð1=am0 Þ2 < 3=2,
fp0a ¼ 0; p1a ¼ πg, fp0a ¼ π; p1a ¼ 0g and fp0a ¼
π; p1a ¼ πg are not normalizable whereas fp0a ¼ 0;
p1a ¼ 0g is. As a result the net chirality on the wall
indeed is þ1.
If on the other hand, ð1=amÞ2<1=2 and ð1=apÞ2 > 3=2,

there is a net C.S. current of level 1 is flowing away from

FIG. 7. jz�j as a function of lattice spacing for m0 ¼ 1.
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the wall from x2 > 0 and there is no current for x2 < 0.
This requires the wall to harbor zero modes such that the
net chirality on the wall is −1. It is easy to see from Fig. 8
that for this choice of ap0 and am0 , fp0a ¼ 0; p1a ¼ πg,
fp0a ¼ π; p1a ¼ 0g and fp0a ¼ 0; p1a ¼ 0g are normal-
izable, but fp0a ¼ π; p1a ¼ πg is not. Indeed the net
chirality of the modes on the wall add up to −1. Note that
the number of zero modes and the net chirality do not
coincide. Hence, the number of topologically protected
zero mode is 1 and it is a linear combination of the modes
fp0a ¼ 0; p1a ¼ πg and fp0a ¼ π; p1a ¼ 0g.
In the case of m0 ¼ 5, there are again quite a few

interesting possibilities as can be seen from Fig. 4 and some
of these possibilities I discuss below. When 1

ðam
0
Þ2 <

1
2
and

1
2
< 1

ðap
0
Þ2 <

3
2
there is no current in x2 < 0 whereas there is a

C.S. current of level 1 flowing to the wall in x2 > 0 bulk,
thus requiring the net chirality on the wall to be 1. From
Fig. 9, for these values of ap0 and a

m
0 , fp0a ¼ 0; p1a ¼ 0g,

fp0a ¼ 0; p1a ¼ πg, fp0a ¼ π; p1a ¼ 0g are not normal-
izable whereas fp0a ¼ π; p1a ¼ πg is. This is in agree-
ment with anomaly inflow. For 1

2
< 1

ðam
0
Þ2 <

3
2

and
3
2
< 1

ðap
0
Þ2 <

5
2
, there is a C.S. current of C.S. level 1

flowing away from the wall from both sides of the wall.

This implies that the wall should have a net chirality of
−2. From Fig. 9, one can see this indeed is the case since
for these values of ap0 and am0 only fp0a ¼ 0; p1a ¼ πg
and fp0a ¼ π; p1a ¼ 0g are normalizable whereas
fp0a ¼ 0; p1a ¼ 0g and fp0a ¼ π; p1a ¼ πg are not.
If 3

2
< 1

ðam
0
Þ2<

5
2
and 5

2
< 1

ðap
0
Þ2, there is a net C.S. current

of level þ1 flowing to the wall for x2 < 0 and none in
x2 > 0, thus requiring a net chirality of þ1 on the wall.
From Fig. 9, it can be seen that for 3

2
< 1

ðam
0
Þ2 <

5
2
and

5
2
< 1

ðap
0
Þ2, fp0a ¼ 0; p1a ¼ 0g is normalizable whereas

fp0a ¼ π; p1a ¼ πg, fp0a ¼ 0; p1a ¼ πg, fp0a ¼ π;
p1a ¼ 0g are not. This is again consistent with anomaly
inflow requirements. All other possibilities of various ap0
and am0 which I do not discuss here satisfy anomaly
constraints as well.

V. CHERN INSULATOR

The similarity between the physics of topological phases
in Chern insulators and the domain wall fermion (DWF)
construction of lattice gauge theory for cubic lattices
becomes clear if one writes down the Hamiltonian for
the two-band Chern insulator [39]

FIG. 8. jz�j as a function of lattice spacing for m0 ¼ 3.
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HðkÞ ¼ sinðkxÞσx þ sinðkyÞσy þ ðMþ 2þ ðcosðkxÞ − 1Þ
þ ðcosðkyÞ − 1ÞÞσz: ð5:1Þ

Note that this Hamiltonian involves momenta that have
been scaled by the lattice spacings for a square lattice. In
order to recognize the parallels between the lattice con-
struction of DWFs and Chern insulators as described
by Eq. (5.1), one can set aμ ¼ 1 and r ¼ 1 in the inverse
fermion propagator in Eq. (2.2) and it is then clear that the
Hamiltonians of the two systems coincide with the iden-
tification ofm ¼ Mþ 2. Although the Chern insulator and
lattice DWF construction are analogous, one distinguishing
feature between the two is that the time direction is
discretized in the latter and is not so in the former. The
Chern number of the Hamiltonian in Eq. (5.1) is found to
toggle between the following values as a function of the
parameter M

C ¼
8<
:

1; 0 < M < 2

−1; −2 < M < 0

0; otherwise:

ð5:2Þ

The discrete changes in the Chern number correspond to
topological transitions as a function of the parameter M.

These transitions are analogous to the topological transi-
tions observed in the lattice construction of DWFs using
a Wilson fermion of mass m where the Wilson parameter
is set to be equal to the lattice spacing. Note that the
Chern-Simons levels that the DWF theory alternates
between, i.e., 1, −2 and 1 are different from Chern numbers
observed in Eq. (5.2). This difference can be attributed to
the time direction being discretized in the DWF context.
In fact, if one takes the lattice spacing in the time direction
to zero for DWFs, the Brillouin zone corners at p0 ¼ π

a
can be ignored. This eliminates the zero modes at
fp0a ¼ π; p1a ¼ 0g and fp0a ¼ π; p1a ¼ πg for DWFs
and one ends up with the sequence of topological tran-
sitions seen in Eq. (5.2).
It is now clear that the analysis of the rectangular lattices

and the corresponding edge modes as elaborated in the
previous sections can be replicated for the Chern insulators
too. Again, the only difference between the two analysis
is going to stem from the time direction being discrete
in the lattice gauge theory and it being continuous in
Chern insulators.
Note that there has been some previous work on lattice

models with anisotropic hopping parameter in the context
of second order topological insulators as discussed in [40].
Interestingly, these models and the lattice constructions in

FIG. 9. jz�j as a function of lattice spacing for m0 ¼ 5.
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this paper share some common features. One of these
common features is that in the presence of an anisotropy
for the hopping parameter, a “nontopological” phase of
Chern number zero emerges between the two topological
phases with Chern numbers þ1 and −1. This is similar to
what is seen in Fig. 2 for ã ¼ 0.8 and r̃ ¼ 1. Similarly,
another common feature is the existence of zero mode
solutions to the equations of motion that are not topologi-
cally protected. However, one of the main differences
between the construction presented in this paper and in
[40] is that [40] employs square lattices as opposed to
rectangular lattices considered in this paper. Another differ-
ence lies in the continuum limit of the relevant models in
[40] where the hopping parameter breaks rotational invari-
ance in the continuum.
Let us now discuss the implications of the results

obtained in this paper for Chern insulators. As mentioned
before, the edge modes of Chern insulators are analogous to
lattice DWFs except that the time dimension is continuous
in Chern insulators and not so in DWFs. Owing to this
similarity, one can extend the construction of discrete time
anisotropic lattices outlined in this paper to anisotropic
spatial lattices with continuous time. The latter will
correspond to Chern insulators with anisotropic lattice
spacing. One can now imagine gluing two anisotropic
spatial lattices as shown in Fig. 6 where both lattices
describe two band Chern insulators whose continuum
limits are rotationally invariant and are identical to each
other. Such line defects will exhibit chiral zero modes: the
number and chirality of these modes will jump as one varies
the anisotropy of the two lattices while keeping the
continuum limit unchanged. Similarly, for a particular
two-band Chern insulator model with a domain wall in
fermion mass where the hopping parameter and the
magnitude of the mass term on the two sides of the wall
are kept fixed, one can observe a jump in the number of
chiral zero modes as a function of lattice anisotropy. These
zero modes and their dependence on lattice anisotropy
should be realizable in table-top experiments.

VI. DISCUSSION

So far the analysis in this paper has relied on the free
theory and has not explicitly considered the effect of
interactions. This is justified in the weak coupling limit
where the physics of the bulk and associated zero modes
are topologically protected against small perturbations.
However, the location of the phase boundaries as a function
of the lattice anisotropy will get perturbative corrections
when interactions are included.3 Understanding these per-
turbative corrections will involve performing one-loop
analysis along the lines of [41]. Here I will not go into

the quantitative details of such a perturbative calculation
which I reserve for future work and instead focus on a
qualitative understanding of the effect of the interactions.
As mentioned earlier, in the presence of lattice anisotropy,
the number of zero mode solutions to the Dirac equation
does not necessarily equal the number of topologically
protected zero modes. In the presence of gauge interactions,
some of these zeromode solutions to the Dirac equation will
acquire a finite mass on the lattice. It is only the topologi-
cally protected zero modes which will remain massless. In
order to find out which of the chiral modes acquire a
nonzero mass as well as to estimate the size of the mass
itself, one has to compute the self energy of the edge modes
while also taking into account the overlap of their wave
functions.4

In this paper I have concentrated on analyzing the
corners of the Brillouin zone to establish that the zero
modes and the bulk C.S. theory satisfy the anomaly inflow
constraints. However, there is actually a finite size region in
momentum space centered around the Brillouin zone
corners for which the zero mode solutions are normal-
izable [20]. The boundaries of these regions in momentum
space will be anisotropic in the presence of a lattice
anisotropy and will get renormalized when interactions
are taken into account. Finally, the phase boundaries of
various topological phases in the bulk which are functions
of the lattice anisotropy as demonstrated in this paper will
also be dependent on the interactions. This is likely to
modify the anisotropy dependence of the boundaries
perturbatively at weak coupling.

3Note that when interactions are strong the phase boundaries
are expected to significantly deviate from what is found in this
analysis.

4Computing this mass shift for a generic 2k dimensional wall
that is embedded in a higher 2kþ 1 dimensional space-time
where the gauge fluctuations depend on all 2kþ 1 dimensions
involves detailed calculation. However, in the standard DWF
construction the gauge fields are taken to be dynamical only with
respect to the 2k coordinates of the wall, i.e., the gauge
fluctuations do not depend on the extra dimension. These are
referred to as 2k dimensional gauge fields. Although the analysis
and the results of this paper were derived in the context of 2kþ 1
dimensional dynamical gauge fields with extra dimension de-
pendent gauge fluctuations, they hold even for 2k dimensional
gauge fields. Therefore, in case of 2k dimensional gauge fields
one can read off the mass shift from previous calculations of
DWF mass shifts with a compact extra dimension as described
in [42]. For example, the mass shifts of edge modes on a 4
dimensional domain wall embedded in a 5 dimensional aniso-
tropic lattice, will be of the order of αjmj where α is the 4
dimensional gauge coupling and m is the fermion mass in the 5
dimensional bulk. Note that, in the standard DWF construction
with a compact extra dimension there exist a wall and an antiwall
which host opposite chirality zero modes. The mass shifts of the
DWFs in a compact extra dimension arise from the overlap of the
opposite chirality zero modes on the two different walls and go as
αjmj jmjs0

coshðjmjs0Þ where s0 is the extent of the extra dimension. Since
the opposite chirality zero modes of interest in this paper lie on
the same wall, there is no exponential suppression in the size
of the extra dimension and one can expect their mass shifts to be
of order αjmj.
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VII. CONCLUSION AND FUTURE WORK

The analysis of Wilson fermions on a rectangular lattice
in this paper reveals new topological phases that are not
accessible on a cubic lattice. One of the most interesting
features of the analysis is associated with the edge modes
where I find that the number of topologically protected
edge modes does not always equal the number of zero
mode solutions to the Dirac equation, i.e., the equations of
motion can admit zero mode solutions of opposite chirality
on a 1þ 1 dimensional discontinuity. Such a discontinuity
can be a domain wall in the fermion mass or it can be a
lattice defect with an abrupt change in lattice spacing in the
direction perpendicular to the wall. Another remarkable
feature of the construction on rectangular lattice is that
lattice defects across which lattice spacing changes
abruptly can exhibit chiral zero mode solutions in the
absence of any domain wall in the fermion mass. The
distinct features of rectangular lattices noted in this paper
maybe interesting to explore in lattice simulations which
have so far dealt with cubic lattices while exploring
topological phases of Wilson fermions. Simulating the
domain wall in fermion mass and the lattice spacing defect
considered in this paper will require the transverse dimen-
sion to be finite [43] in which case it may be interesting to
consider if and how the finite extent of the transverse
direction interplays with the lattice anisotropy in dictating
the phase diagram.
The fate of the various phases obtained in this paper

away from the weak coupling limit can be explored in
lattice simulations and could be interesting avenue for

future work. Another important consideration here is the
gauge sector of the theory. Although this paper focuses on
analyzing Wilson fermion coupled to a Uð1Þ gauge theory,
the analysis can very well apply to SUðNÞ gauge theories. It
will therefore be interesting to explore how the phase
diagram behaves as a function of the gauge coupling and
lattice anisotropy for QCD (Quantum Chromodynamics)
and QCD-like theories in 2þ 1 and 4þ 1 dimensions.
It will also be instructive to explicitly compute the

profile of the edge mode wave functions for the lattice
defect across which the lattice spacing transverse to the
defect changes abruptly. The rates of the exponential fall off
of the wave function away from this defect are in general
unequal on the two sides of the defect. It is conceivable that
the Chern-Simons levels on the two sides of the lattice
defect are in some way correlated with the exponential fall
off of the wave functions.
Another possible direction for a follow up project

involves working out the Chern insulating transitions
on a rectangular spatial lattice without discretizing the
time dimension. This exercise will demonstrate how a
rectangular spatial lattice responds to a changing lattice
anisotropy. Similarly, the two types defects considered in
this paper are worth exploring in the presence of a spatially
rectangular lattice with a continuous time dimension.
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