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We present the first lattice QCD determination of the Bc → J=ψ vector and axial-vector form factors.
These will enable experimental information on the rate for Bc semileptonic decays to J=ψ to be converted
into a value for Vcb. Our calculation covers the full physical q2 range of the decay and uses
nonperturbatively renormalized lattice currents. We use the highly improved staggered quark (HISQ)
action for all valence quarks on the second generation MILC ensembles of gluon field configurations
including u, d, s and c HISQ sea quarks. Our HISQ heavy quarks have masses ranging upwards from that
of c; we are able to reach that of the b on our finest lattices. This enables us to map out the dependence on
heavy quark mass and determine results in the continuum limit at the b. We use our form factors to
construct the differential rates for B−

c → J=ψμ−ν̄μ and obtain a total rate with 7% uncertainty:

ΓðB−
c → J=ψμ−ν̄μÞ=jηEWVcbj2 ¼ 1.73ð12Þ × 1013 s−1. Including values for Vcb, ηEW and τBc

yields a
branching fraction for this decay mode of 0.0150(11)(10)(3) with uncertainties from lattice QCD, ηEWVcb

and τBc
respectively.

DOI: 10.1103/PhysRevD.102.094518

I. INTRODUCTION

Accurate calculations of hadronic parameters are needed
for the determination of Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements from the comparison of Stan-
dard Model theory and experimental results for exclusive
flavor-changing decay rates. Leptonic decay rates require
decay constants to be determined and semileptonic decay
rates require form factors. Lattice QCD is now established
as the method of choice for the calculation of these
hadronic parameters, and efforts are ongoing both to
improve the accuracy of the results and to expand the
range of processes for which calculational results are
available. Here we report on the first lattice QCD calcu-
lation of the form factors for Bc to J=ψ semileptonic decay,
a process under active study by the LHCb experiment [1].
Because the valence quarks involved in this process are all
heavy, the calculation is under very good control in lattice

QCD as we will show. This opens the prospect of a new
exclusive process that can be used for the determination of
jVcbj that has a reduced theoretical uncertainty.
Currently exclusive determinations of jVcbj are focused

on B → D� and B → D semileptonic decays. The emphasis
is on the former pseudoscalar to vector meson transition
because of more favorable kinematic factors for the differ-
ential decay rate towards the zero recoil region. Lattice
QCD calculations are generally more accurate in this region
because the daughter meson has small spatial momentum in
the lattice frame (where the parent meson is usually taken to
be at rest). The emphasis on this region led to the early
lattice QCD B → D� form factor calculations being purely
done at zero recoil, where there is a single form factor
[2–4]. Comparison was then made to results derived from
experimental differential rates in this same limit. More
recently (see, for example, [5,6]) it has become clear that
extrapolating the experimental results to the zero recoil
point comes with significant systematic uncertainties,
associated with the underlying model dependence of such
extrapolations, that were previously being underestimated.
The way forward requires a much more direct comparison
q2-bin by q2-bin of the experimental decay rate and that
from theory, determined from lattice QCD form factors.
For this we need lattice QCD form factors as a function of
q2 and preferably covering the full q2 range of the decay.
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This allows the uncertainty in the extracted value of jVcbj
to be optimized between the changing experimental and
theoretical uncertainties as a function of q2. We show
here that it is possible to calculate the form factors for
Bc → J=ψ semileptonic decay across the full q2 range in
lattice QCD.
The Bc → J=ψ form factor calculation that we describe

here acts as a prototype for upcoming calculations of form
factors for B → D� and Bs → D�

s . Bc → J=ψ is a more
attractive starting point for lattice QCD, however, because
the mesons are “gold-plated” (with tiny widths), and the
valence quarks involved are all relatively heavy. This
means that the valence quark propagators, from which
appropriate correlation functions are constructed, are in-
expensive to calculate. The correlation functions then have
small statistical errors, even when the daughter has maxi-
mum spatial momentum. The absence of valence light
quarks means that finite-volume effects are negligible, and
sensitivity to the u=d quark mass in the sea should be small.
The main obstacle for the calculation of Bc → J=ψ form

factors is that of the discretization effects associated with
the heavy quarks. The c quark is handled very accurately in
lattice QCD as long as improved discretizations of the
Dirac equation are used. A particularly accurate approach is
that of HPQCD’s highly improved staggered quark (HISQ)
action [7], and it is the one that we will use here for all
quarks. For c quarks a recent calculation using HISQ [8]
obtained a 0.4% uncertainty in the J=ψ decay constant and
showed good control of lattice discretization effects all the
way to very coarse lattices with a spacing of 0.15 fm.
Discretization effects are larger for the b quark. Indeed,
since we expect discretization effects to grow as a power of
the heavy quark mass in lattice units, amh, we need to work
on fine lattices to approach the b quark mass, and this is
what we will do here. The dominant discretization effects in
the HISQ action behave as a4, since tree-level a2 errors are
removed, and those that include powers of αs are heavily
suppressed. This means that discretization effects can be
controlled for quarks with masses mh between that of the c
and the b on lattices with lattice spacing below 0.1 fm. By
working with a range of quark masses reaching up to that of
the b on a range of lattice spacings, we can map out both the
dependence on mh and the dependence on amh, both of
which are smooth functions, and obtain a physical value in
the continuum limit for the b quark. This “heavy-HISQ”
approach was developed by HPQCD for B meson decay
constants [9,10] and is now being extended to form factors
[11]. Its efficacy has been demonstrated for Bs → Ds form
factors for the full q2 range in [12], and here we apply it to
Bc → J=ψ . A big advantage of this approach is that the
lattice current operators that couple to the W boson can be
normalized fully nonperturbatively, e.g., [12–15], avoiding
the systematic errors associated with the perturbative
normalization needed if a nonrelativistic approach is used
for the b quark in lattice QCD [3,4].

A further motivation for studying Bc → J=ψ semilep-
tonic decay in detail is to calculate the ratio, RðJ=ψÞ, of the
partial widths for the outgoing lepton to be a τ compared to
that for it to be an e or μ. The analogous results for B
decays, RðDÞ and RðD�Þ, e.g., [16–19], have been a source
of tension between experiment and the Standard Model
[20], implying lepton-universality violation. Recent results
from Belle, on the contrary, show good agreement with the
Standard Model [21]. This makes it very important to test
lepton-universality violation in other processes, and we can
obtain RðJ=ψÞ from our form factors for comparison with
ongoing LHCb analyses. We will present those results and
analyses of other lepton-universality violation tests sepa-
rately [22]; here we focus on the form factors and differ-
ential rates for W decay to μ or e.
The subsequent sections are organized as follows:
(i) In Sec. II we begin by outlining the relevant

experimental observables and relate them to the
invariant form factors coming from QCD matrix
elements.

(ii) Section III gives an overview of methods generic to
the extraction of matrix elements from HISQ three-
point and two-point correlation functions in lattice
QCD, and discusses our choices of operators, polar-
izations and momenta appropriate to extract the form
factors specified in II.

(iii) Section IV details the specifics of our lattice calcu-
lation including our nonperturbative current renorm-
alization.

(iv) In Sec. V we present the direct results of the lattice
calculation and discuss the extraction of the physical
continuum form factors as a function of q2.

(v) Finally in Secs. VI and VII we use our form factors
to compute the physical differential rates for B−

c →
J=ψμ−ν̄μ and discuss the significance of these
results and implications for future work.

II. THEORETICAL BACKGROUND

Herewe give the partial rates forB−
c →J=ψð→μþμ−Þl−ν̄l

where l is the final state lepton as differentials with respect
to q2 and angular variables defined in the standard way in
Fig. 1. In this work we consider only the cases l ¼ μ and
l ¼ e. The partial rates are obtained from the full differ-
ential decay rate assuming the J=ψ decay is purely
electromagnetic and summing over μþμ− helicities (assum-
ing that the μþμ− are massless and hence pure helicity
eigenstates) [23]. This gives

dΓ
dq2

¼ G2
F

ð2πÞ3 jηEWVcbj2
ðq2 −m2

lÞ2jp⃗0j
12M2

Bc
q2

× ½ðH−
2 þH0

2 þHþ2Þ

þ m2
l

2q2
ðH−

2 þH0
2 þHþ2 þ 3Ht

2Þ�; ð1Þ
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dΓ
dq2d cosðθWÞ

¼ G2
F

ð2πÞ3 jηEWVcbj2
ðq2 −m2

lÞ2jp⃗0j
16M2

Bc
q2

BðJ=ψ → μþμ−Þ

×

�
H2

−
1

2
ð1þ cosðθWÞÞ2 þH2þ

1

2
ð1 − cosðθWÞÞ2

þH2
0sin

2ðθWÞ þ
ml

2

2q2
ððH2

− þH2þÞsin2ðθWÞ

þ 2ðHt −H0 cosðθWÞÞ2Þ
�
; ð2Þ

dΓ
dq2d cosðθJ=ψÞ

¼ G2
F

ð2πÞ3 jηEWVcbj2
ðq2 −m2

lÞ2jp⃗0j
16M2

Bc
q2

BðJ=ψ → μþμ−Þ

×

�
ðH2

− þH2þÞ
1

2
ð1þ cos2ðθJ=ψÞÞ þH2

0ð1− cos2ðθJ=ψÞÞ

þ m2
l

2q2

�
ðH2

− þH2þÞ
1

2
ð1þ cos2ðθJ=ψÞÞ

þ ðH2
0 þ 3H2

t Þð1− cos2ðθJ=ψÞÞ
��

; ð3Þ

and

dΓ
dq2dχ

¼ G2
F

ð2πÞ3 jηEWVcbj2
ðq2 −m2

lÞ2jp⃗0j
16M2

Bc
q2

BðJ=ψ → μþμ−Þ

×
2

3π

�
H2

− þH2
0 þH2þ þ 1

2
H−Hþ cosð2χÞ

þ m2
l

2q2
ðH2

− þH2
0 þH2þ þ 3H2

t −H−Hþ cosð2χÞÞ
�
:

ð4Þ
Here p0 is the momentum of the J=ψ , p is the momentum of

the B−
c , q ¼ p − p0, jp⃗0j is the magnitude of the J=ψ spatial

momentum in the B−
c rest frame and ml is the mass of the

final state lepton l. G is the Fermi constant defined from
muon lifetime, Vcb is the appropriate Cabibbo-Kobayashi-
Maskawamatrix element and ηEW is a structure-independent
electroweak correction. For the electrically neutral J=ψ final
state this factor is close to 1 [24], 1þ α logðMZ=μÞ=π.
Taking μ ¼ MBc

, themass of theB−
c meson, but allowing for

variation by a factor of 2 [3], gives ηEW ¼ 1.0062ð16Þ. Note
that we include in the expressions for the differential rate
terms with factors ofm2

l=q
2, which are negligible for l ¼ e

but have a very small visible effect near q2 ¼ 0 for l ¼ μ.
The helicity amplitudes are defined as

H�ðq2Þ ¼ ðMBc
þMJ=ψÞA1ðq2Þ ∓ 2MBc

jp⃗0j
MBc

þMJ=ψ
Vðq2Þ;

H0ðq2Þ ¼
1

2MJ=ψ

ffiffiffiffiffi
q2

p
�
−4

M2
Bc
p⃗02

MBc
þMJ=ψ

A2ðq2Þ

þ ðMBc
þMJ=ψ ÞðM2

Bc
−M2

J=ψ − q2ÞA1ðq2Þ
�
;

Htðq2Þ ¼
2MBc

jp⃗0jffiffiffiffiffi
q2

p A0ðq2Þ ð5Þ

and correspond to the nonzero values of ϵ̄�μðq; λ0Þ ×
hJ=ψðp0; λÞjc̄γμð1 − γ5ÞbjB−

c ðpÞi for the different combi-
nations of the J=ψ and W− polarizations λ and λ0 respec-
tively. The form factors in Eq. (5) are the standard Lorentz
invariant ones, their relations to the matrix elements are
given by [25]

hJ=ψðp0; λÞjc̄γμbjB−
c ðpÞi

¼ 2iVðq2Þ
MBc

þMJ=ψ
εμνρσϵ�νðp0; λÞp0

ρpσ

× hJ=ψðp0; λÞjc̄γμγ5bjB−
c ðpÞi

¼ 2MJ=ψA0ðq2Þ
ϵ�ðp0; λÞ · q

q2
qμ

þ ðMBc
þMJ=ψ ÞA1ðq2Þ

�
ϵ�μðp0; λÞ − ϵ�ðp0; λÞ · q

q2
qμ
�

− A2ðq2Þ
ϵ�ðp0; λÞ · q
MBc

þMJ=ψ

�
pμ þ p0μ −

M2
Bc

−M2
J=ψ

q2
qμ
�
:

ð6Þ

We also have

h0jc̄γνcjJ=ψðp0; λÞi ¼ NJ=ψϵ
νðp0; λÞ; ð7Þ

hB−
c ðpÞjb̄γ5cj0Þi ¼ NBc

; ð8Þ

and

FIG. 1. Definitions of the angular variables χ, θW and θJ=ψ
defined in the rest frame of the decaying B−

c , W− and J=ψ
respectively.
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X
λ

ϵνðp0; λÞϵ�μðp0; λÞ ¼ −gνμ þ
p0
νp0

μ

M2
; ð9Þ

where NJ=ψ and NBc
are amplitudes proportional to the

decay constant of the corresponding meson and ϵ is the J=ψ
polarization vector. We will make use of these when we
come to extract the form factors in Eq. (6) from our lattice
correlation functions.

III. COMPUTATIONAL STRATEGY

We follow the strategy of previous heavy-HISQ calcu-
lations of form-factors [11,12,15]. We work with multiple
heavy quarks with massesmh between the physical c and b
masses on lattices with a range of fine lattice spacings.
Most of our mh masses are below the b mass, but we are
able to reach a mass very close to the physical b quark mass
on our finest lattices. An important point is that, at every
lattice spacing, we are able to cover the full q2 range of the
decay for the heavy quark masses that we can reach at that
lattice spacing; i.e., the q2 range expands on finer lattices in
step with the heavy quark mass range [12]. We compute
form factors by extracting combinations of the relevant
matrix elements defined in Eq. (6) from correlation
functions computed on the lattice. We then fit the form
factors as a function of lattice spacing and heavy quark
mass to determine their functional form in the continuum
limit at the physical b mass.
The correlation functions that we calculate, for general

choices ν and Γ of J=ψ polarization and current operator
respectively, are

CJ=ψ
2pt ðt; 0Þ ¼ h0jc̄γνcðtÞðc̄γνcð0ÞÞ†j0i;
CHc
2ptðt; 0Þ ¼ h0jðh̄γ5cðtÞÞ†h̄γ5cð0Þj0i;

C3ptðT; t; 0Þ ¼ h0jc̄γνcðTÞc̄ΓhðtÞh̄γ5cð0Þj0i: ð10Þ

Note that in this section, for notational simplicity, we
consider the matrix elements in terms of continuum current
operators. The nonperturbative renormalization of our
lattice current operators is discussed in Sec. IVA.
By considering the insertion of complete sets of states we

may express these correlation functions in terms of general
fit forms (folding the two-point functions about the mid-
point of the lattice so that t extends from 0 to Nt=2),

CJ=ψ
2pt ðt; 0Þ ¼

X
n

ððAnÞ2e−tEn þ ð−1ÞtðAn
oÞ2e−tEo

nÞ

CHc
2ptðt; 0Þ ¼

X
n

ððBnÞ2e−tMn þ ð−1ÞtðBn
oÞ2e−tMo

nÞ

and

C3ptðT; t; 0Þ ¼
X
n;m

ðAnBmJnme−ðT−tÞEn−tMm

þ ð−1ÞTþtAn
oBmJnmoe e−ðT−tÞE

o
n−tMm

þ ð−1ÞtAnBm
o Jnmeo e−ðT−tÞEn−tMo

m

þ ð−1ÞTAn
oBm

o Jnmoo e−ðT−tÞE
o
n−tMo

mÞ: ð11Þ

Here n, m correspond to on shell particle states with
quantum numbers resulting in nonzero amplitudes and
the o labels indicate energies and amplitudes corresponding
to the time-doubled states typical of staggered quarks. The
lowest energy, nonoscillating states are those correspond-
ing to the J=ψ and H−

c . We work with the H−
c at rest,

choosing to access the full q2 range by giving momentum
only to the J=ψ , and extract the matrix elements of these
states from our lattice correlators. This gives

A0 ¼ NJ=ψffiffiffiffiffiffiffiffiffiffiffiffi
2EJ=ψ

p
�
1þ p⃗02

ν

M2
J=ψ

�1=2

; ð12Þ

B0 ¼ NHcffiffiffiffiffiffiffiffiffiffiffiffi
2MHc

p ð13Þ

and

J00ðν;ΓÞ ¼
X
λ

ϵνðp0; λÞhJ=ψðp0; λÞjc̄ΓbjH−
c iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EJ=ψ2MHc
ð1þ p⃗02

ν=M2
J=ψ Þ

q ; ð14Þ

where p⃗0
ν is the ν component of the J=ψ spatial momen-

tum, with ν corresponding to the choice of polarization in
Eq. (10), with current c̄Γh. In the subsequent subsections
we discuss the combinations of ν and Γ for which we must
compute correlation functions in order to extract the full set
of correlation functions defined in Eq. (6).

A. Extracting Vðq2Þ
The choice of operators used to extract Vðq2Þ is the most

straightforward since the matrix element of the vector
current c̄γμb involves only V. With p ¼ ðMHc

; 0; 0; 0Þ
we have

X
λ

ϵνðp0; λÞhJ=ψðp0; λÞjc̄γμhjH−
c i

¼
X
λ

2iVðq2Þ
MHc

þMJ=ψ
εμκρσϵνðp0; λÞϵ�κðp0; λÞp0

ρpσ

¼ −2iϵμνρ0p0
ρMHc

MHc
þMJ=ψ

Vðq2Þ: ð15Þ

In this calculation we give the J=ψ spatial momentum

p⃗0 ¼ ðk; k; 0Þ. In order to isolate all the form factors we

need one component of p⃗0 to be zero. Keeping both of the
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others non-zero minmizes the discretization errors for a
given magnitude of p0. Here we choose μ ¼ 3 and ν ¼ 1
and find

Vðq2Þ ¼ ΦðkÞMHc
þMJ=ψ

2ikMHc

J00ð1;γ3Þ; ð16Þ

where we have defined the relativistic normalization,

ΦðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EJ=ψ2MHc

ð1þ k2=M2
J=ψÞ

q
ð17Þ

with k the ν component of p0.

B. Extracting A0ðq2Þ
In order to isolate A0ðq2Þ, following [26], we make use

of the partially conserved axial-vector current (PCAC)
relation h∂Ai ¼ ðmc þmhÞhPi where A ¼ c̄γ5γνh and
P ¼ c̄γ5h. From Eq. (6) we have

X
λ

ϵνðp0; λÞqμhJ=ψðp0; λÞjc̄γμγ5hjH−
c i

¼
X
λ

ϵνðp0; λÞ2MJ=ψA0ðq2Þϵ�ðp0; λÞ · q

¼ 2kEJ=ψMHc

MJ=ψ
A0ðq2Þ: ð18Þ

Taking Γμ ¼ γ5 and ν ¼ 1 in Eq. (14) and multiplying by
mc þmb we then have

A0ðq2Þ ¼ ΦðkÞ ðmc þmbÞMJ=ψ

2kEJ=ψMHc

J00ð1;γ5Þ: ð19Þ

C. Extracting A1ðq2Þ
In order to isolate A1 we use the axial-vector current

Γ ¼ c̄γμγ5h and J=ψ operator c̄γνc and choose μ ¼ ν ¼ 3
along the spatial direction with zero J=ψ momentum.
Using Eq. (6) this gives

X
λ

ϵ3ðp0; λÞhJ=ψðp0; λÞjc̄γ3γ5hjH−
c i

¼ ðMJ=ψ þMHc
ÞA1ðq2Þ; ð20Þ

which gives, in terms of J00

A1ðq2Þ ¼ Φð0Þ
J00ð3;γ3γ5Þ

MJ=ψ þMHc

: ð21Þ

D. Extracting A2ðq2Þ
The extraction of A2 is more complicated than the

extraction of the other form factors since no trivial choice

of directions in axial-vector and J=ψ operators isolates the
contribution of A2 relative to A1 or A0. We use axial-vector
current operator Γ ¼ c̄γ1γ5h and J=ψ operator c̄γ1c. This
yields contributions from each form factor,

ΦðkÞJ00ð1;γ1γ5Þ
¼

X
λ

ϵ1ðp0; λÞhJ=ψðp0; λÞjc̄γ1γ5bjH−
c i

¼ −
2k2EJ=ψMHc

q2MJ=ψ
A0ðq2Þ

þ ðMHc
þMJ=ψ Þ

�
1þ k2

M2
J=ψ

þ EJ=ψMHc
k2

M2
J=ψq

2

�
A1ðq2Þ

− A2ðq2Þ
k2EJ=ψMHc

M2
J=ψðMHc

þMJ=ψÞ
�
1þM2

Hc
−M2

J=ψ

q2

�
:

ð22Þ

We must then subtract the A0 and A1 contributions to
obtain A2.

IV. LATTICE CALCULATION

In this section we give details of the gauge field
configurations used in this calculation, as well as the
values of masses, momenta and staggered spin-taste oper-
ators used in the calculation. We use the second generation
MILC gluon ensembles including light, strange and charm
sea quarks [27,28] and compute HISQ charm and heavy
quark propagators. The details of these gauge configura-
tions are given in Table I. As stated earlier, we work with
theHc at rest on the lattice. The arrangement of operators in
the three point correlation functions is shown in Fig. 2. We
refer to c1 as the “spectator” charm quark, c2 as the “active”
quark and h as the “extended” heavy quark. We use a single
random wall source at time T for both the spectator and
active quark, with a phase patterning the source for the
active quark to achieve an appropriate staggered spin-taste
for the meson. We use the spectator propagator at time 0 as
the source for the extended heavy quark propagator with a
spin-taste operator corresponding to the Hc quantum
numbers and then tie the heavy quark propagator together

TABLE I. Details of the gauge field configurations used in
our calculation [27,28]. Set 1 is referred to as “fine,” set 2 as
“superfine,” set 3 as “ultrafine” and set 4 as “physical fine.” The
physical value of ω0 was determined in [29] to be 0.1715(9) fm
and the values of ω0=a were taken from [12,30,31].

Set ω0=a Nx × Nt aml0 ams0 amc0 nconfigs

1 1.9006(20) 32 × 96 0.0074 0.037 0.440 980
2 2.896(6) 48 × 144 0.0048 0.024 0.286 500
3 3.892(12) 64 × 192 0.00316 0.0158 0.188 374
4 1.9518(7) 64 × 96 0.0012 0.0363 0.432 300
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with the active charm quark propagator at the current at
time t.
Following the notation of [7] for staggered spin-taste

operators, we choose lattice meson and current operators
which have the same quantum numbers as those detailed in
Sec. III. We always take the currents to be the local ones,
γi ⊗ γi and γiγ5 ⊗ γiγ5. This means that the current
insertions only need to be renormalized once. In order to
make the desired matrix element an overall taste singlet,
this requires that we use different tastes of J=ψ andHc. The
specific combinations we use are given in Table II. This
means that we have three different tastes of J=ψ and two
different tastes of Hc. Different tastes of a meson differ in
mass by discretization effects that are small for HISQ
quarks [7,27] and particularly small for heavy mesons.
When fitting two- and three-point correlators the energies
corresponding to different spin-taste operators use separate
priors (i.e., we assume that they are different) except for
γ3 ⊗ γ3 and γ1 ⊗ γ1 whose energies we fix to be equal. We
will show later how close the different taste meson
masses are.
We also calculate pseudoscalar heavyonium two-point

correlation functions with spin-taste γ5 ⊗ γ5. This allows
us to determine the mass of the ground-state heavyonium
meson that we denote ηh. The mass of the ηh is a useful
physical proxy for the heavy quark mass when we map out
the dependence on heavy quark mass of our results.
We choose values of amh for the heavy quark masses

at each value of the lattice spacing following [11].
They range from above the c mass up to a value of 0.8.

This corresponds to a growing range in mh as the lattice
spacing becomes finer. The valence masses used to com-
pute propagators are given in Table III. We also choose
the values of T for our 3-point correlation functions
following [11].
Since we must compute heavy quark propagators at

multiple masses, from multiple T, the choice to insert
momentum via the active charm quark minimises the
number of inversions. We put momentum on the c quark
propagator via a momentum twist [32,33]. The twists were
chosen to span evenly the physical q2 range for the largest
value of amh, approximated from aMHc

values given in
[11] and the physical J=ψ mass. The values of twists and T
are given in Table IV. Note that because we choose twists to
evenly span the physical q2 range for the maximum value
of amval

h on a given lattice, the greatest values of twist, θ,
will correspond to negative values of q2 for the smaller
values of amval

h used. We include these negative q2 points
in our analysis, since the form factors are analytic for
−∞ < q2 < Mmin

pole where Mmin
pole is the lowest mass sub-

threshold resonance.

A. Nonperturbative current renormalization

The renormalization factors relating our lattice current
operators to the partially conserved lattice currents were
computed in [11] for the axial-vector and in [12] for the
vector current using the PCAC and PCVC relations
respectively. These factors were not computed for amh ¼
0.6 on set 1 and amh ¼ 0.65 on set 4, and for these we
interpolate between the other values given in [11,12],
noting that the differences between results on set 1 and
set 4 are very small. In order to account for correlations

FIG. 2. Arrangement of propagators in the three point function,
we refer to c1 and c2 as the “spectator” and “active” charm quarks
respectively and h as the “extended” heavy quark. J represents
the insertion of a vector or axial-vector current.

TABLE II. Spin-taste operators used to isolate form factors.
The first column is the operator used for the Hc, the second for
the J=ψ and the third column is the operator used at the current.

OHc
OJ=ψ OJ

V γ0γ5 ⊗ γ0γ5 γ1 ⊗ γ1γ2 γ3 ⊗ γ3
A0 γ5 ⊗ γ5 γ1 ⊗ 1 γ5 ⊗ γ5
A1 γ5 ⊗ γ5 γ3 ⊗ γ3 γ3γ5 ⊗ γ3γ5
A2 γ5 ⊗ γ5 γ1 ⊗ γ1 γ1γ5 ⊗ γ1γ5

TABLE III. Details of the charm and heavy valence masses.

Set amval
h amval

c

1 0.6, 0.65, 0.8 0.449
2 0.427, 0.525, 0.65, 0.8 0.274
3 0.5, 0.65, 0.8 0.194
4 0.5, 0.65, 0.8 0.433

TABLE IV. Details of the twists and three-point ranges, T, used
in our calculation. The twists are given in units of π=L and are
applied along both the x and y direction. The momentum
component of the J=ψ in each of these directions in lattice units
is then πθ=Nx.

Set θ T

1 0, 0.361, 0.723, 1.084, 1.446, 1.807 14, 17, 20
2 0, 0.826, 1.651, 2.477, 3.302, 4.128 22, 25, 28
3 0, 1.241, 2.483, 3.724, 4.966, 6.207 31, 36, 41
4 0, 0.677, 1.354, 2.030, 2.707, 3.384 14, 17, 20
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between Z factors, which are neglected in our interpolation,
we take the conservative approach of setting the uncertainty
on our interpolated values equal to the largest uncertainty of
the computed values on the corresponding set. We tabulate
the renormalization factors in Table V, where we also
include the ma-dependent discretization correction terms,
Zdisc, for the HISQ-quark tree level wave function renorm-
alization computed in [34]. Zdisc starts at ðamhÞ4 because of
the high level of improvement in the HISQ action, so is
very close to 1. The total renormalization factor is given by
ZV;AZdisc. Note that the pseudoscalar current used to
determine A0 is absolutely normalized and needs no Z
factor.
The statistical uncertainty of each lattice matrix element

is typically at least an order of magnitude greater than that
of the corresponding current renormalization factor. We
therefore ignore correlations between different Z factors
and between Z factors and our correlator data.

V. RESULTS

The correlator fits discussed in Sec. III were done
simultaneously for all correlators on each set using the
corrfitter PYTHON package [35]. This allows us to deter-
mine the ground-state fit parameters that we need along
with a complete covariance matrix for them that can be fed
into our continuum extrapolation fits. The priors for our
correlator fits are listed in Table VI and take the same form
on all sets. Our correlator fits include an SVD cut on the
correlation matrix following the tools included in [35] (see
the Appendix D of [36] for a discussion of this). We also
truncate the time-length of the three point and two point
correlators that we fit to remove excited-state dominated

data points at early times and increase fit stability. The
specifics of these fit choices are given in Table VII, along
with variations used to test the stability of our analysis in
Sec. V C.
As discussed in Sec. III we isolate form factors from the

matrix elements extracted from correlation functions and
combine these with current renormalization factors to
obtain A0, A1, A2 and V across a range of q2 for several
different heavy quark masses. The form factor results are
given in Tables VIII–XI and plotted in Fig. 3. We see that
the least well-determined form factor is A2, especially close
to zero recoil. This can be traced back to the division by k2

TABLE V. Z factors from [11,12] for the axial-vector and
vector operators used in this work, together with the discretiza-
tion corrections, Zdisc. ZA and ZV values for amh ¼ 0.6 on set 1
and amh ¼ 0.65 on set 4 were obtained by interpolation from the
other values for those sets, with uncertainties set equal to the
largest uncertainty of the other values.

Set amh ZA ZV Zdisc

1 0.6 1.03526(58) 1.0217(35) 0.99711
0.65 1.03740(58) 1.0254(35) 0.99635
0.8 1.04367(56) 1.0372(32) 0.99306

2 0.427 1.0141(12) 1.0025(31) 0.99931
0.525 1.0172(12) 1.0059(33) 0.99859
0.65 1.0214(12) 1.0116(37) 0.99697
0.8 1.0275(12) 1.0204(46) 0.99367

3 0.5 1.00896(44) 1.0029(38) 0.99889
0.65 1.01363(49) 1.0081(43) 0.99704
0.8 1.01968(55) 1.0150(49) 0.99375

4 0.5 1.03184(47) 1.0134(24) 0.99829
0.65 1.03717(47) 1.0229(29) 0.99645
0.8 1.04390(39) 1.0348(29) 0.99315

TABLE VI. Correlator fit priors. ΔEi ¼ Eiþ1 − Ei, ΩJ=ψ ¼
ð3.02 þ p02Þ12 and ΩHc

¼ Mmax
Hc

ðamh
0.8 Þ

1
2 where Mmax

Hc
is the value

ofMHc
corresponding to the largest amh, taken from [11]. While

ΩJ=ψ was chosen to follow the relativistic dispersion relation,ΩHc

was chosen heuristically to give prior values approximately
following the observed Hc masses on each set while remaining
suitably loose so as not to constrain the fit results.

Prior ηb ηc J=ψðp0Þ Hc

E0=GeV mh2.5ð0.5Þ 3.0(0.6) ΩJ=ψ1.0ð0.2Þ ΩHc
1.0ð0.2Þ

ΔEi=GeV mh1.25ð1.9Þ 1.5(2.25) ΩJ=ψ0.5ð0.75Þ ΩHc
0.5ð0.75Þ

Eo
0=GeV � � � � � � ΩJ=ψ1.2ð0.5Þ ΩHc

1.2ð0.5Þ
ΔEo

i =GeV � � � � � � ΩJ=ψ0.5ð0.75Þ ΩHc
0.5ð0.75Þ

AðBÞnðoÞ 0.1(5.0) 0.1(5.0) 0.1(5.0) 1.1(5.5)

TABLE VII. Details of fit parameters, together with variations
used in Sec. V C to check stability. ΔT indicates the number of
data points at the extremities of correlation functions not included
in the fit. Bold values are those used to produce our final results.
χ2=d:o:f: is estimated by introducing svd and prior noise as in
[35]. We do not compute χ2 values including prior and svd noise
for those fits with nexp ¼ 4.

Set nexp ΔT3pt ΔTJ=ψ
2pt ΔTHc

2pt
SVD cut χ2=dof δ

1 3 2 5 5 0.025 1.0 0
3 2 5 5 0.05 0.99 1
3 3 7 7 0.025 0.96 2
4 2 5 5 0.025 � � � 3

2 3 3 6 6 0.05 1.0 0
3 3 6 6 0.1 0.98 1
3 4 9 9 0.05 1.0 2
4 3 6 6 0.05 � � � 3

3 3 2 5 5 0.025 0.93 0
3 2 5 5 0.1 0.94 1
3 3 7 7 0.025 0.97 2
4 3 6 6 0.025 � � � 3

4 3 2 5 5 0.075 0.97 0
3 2 5 5 0.1 0.97 1
3 3 7 7 0.075 0.97 2
4 2 5 5 0.075 � � � 3
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needed to determine it after the subtraction of the
Oð1ÞA1 contribution in Eq. (22). In Fig. 4 we plot

A2ðq2Þjp⃗0j2=M2
J=ψ , which is the combination of A2 and

jp⃗0j2 entering the helicity amplitudes in Eq. (5). We
see that this has much clearer behaviour as a function
of q2.

TABLE VIII. Lattice form factor results for set 1. ak here is the
value of the x and y components of the lattice momentum for the
J=ψ . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.6 0.0 � � � 0.9001(67) � � � � � �
0.0354858 0.86(12) 0.8983(69) 1.9(3.6) 1.82(31)
0.0709715 0.858(63) 0.8937(71) 1.8(1.7) 1.82(17)
0.106457 0.848(43) 0.8864(71) 1.8(1.2) 1.80(12)
0.141943 0.833(34) 0.8764(71) 1.9(1.0) 1.772(92)
0.177429 0.815(28) 0.8639(71) 1.97(97) 1.734(76)

0.65 0.0 � � � 0.9028(69) � � � � � �
0.0354858 0.87(13) 0.9010(71) 1.5(3.6) 1.81(31)
0.0709715 0.865(67) 0.8965(73) 1.5(1.3) 1.81(17)
0.106457 0.855(46) 0.8893(73) 1.50(83) 1.79(12)
0.141943 0.840(35) 0.8793(73) 1.52(67) 1.760(91)
0.177429 0.822(29) 0.8669(73) 1.54(61) 1.723(76)

0.8 0.0 � � � 0.9109(76) � � � � � �
0.0354858 0.89(16) 0.9091(79) 1.2(6.1) 1.79(31)
0.0709715 0.891(81) 0.9045(81) 1.2(1.6) 1.79(16)
0.106457 0.881(56) 0.8974(81) 1.17(74) 1.77(12)
0.141943 0.867(43) 0.8875(81) 1.16(46) 1.743(91)
0.177429 0.849(35) 0.8752(82) 1.15(34) 1.708(75)

TABLE IX. Lattice form factor results for set 2. ak here is the
value of the x and y components of the lattice momentum for the
J=ψ . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.427 0.0 � � � 0.8720(99) � � � � � �
0.0540337 0.861(94) 0.864(10) 1.0(1.4) 1.73(22)
0.108067 0.825(49) 0.8412(99) 1.00(70) 1.66(12)
0.162101 0.771(35) 0.8056(99) 1.01(60) 1.562(88)
0.216135 0.705(28) 0.760(11) 1.02(66) 1.436(72)
0.270169 0.633(25) 0.709(12) 1.10(93) 1.297(66)

0.525 0.0 � � � 0.8725(98) � � � � � �
0.0540337 0.88(10) 0.8647(98) 0.9(1.7) 1.69(22)
0.108067 0.848(52) 0.8424(98) 0.91(47) 1.63(12)
0.162101 0.795(37) 0.8076(98) 0.88(29) 1.534(87)
0.216135 0.729(30) 0.763(10) 0.85(27) 1.414(71)
0.270169 0.657(27) 0.713(12) 0.81(31) 1.281(66)

0.65 0.0 � � � 0.8724(98) � � � � � �
0.0540337 0.92(11) 0.8648(99) 0.8(2.3) 1.67(22)
0.108067 0.882(57) 0.8430(98) 0.87(55) 1.61(12)
0.162101 0.829(40) 0.8090(99) 0.84(25) 1.519(87)
0.216135 0.763(32) 0.766(11) 0.80(17) 1.404(72)
0.270169 0.690(29) 0.716(12) 0.75(17) 1.275(67)

0.8 0.0 � � � 0.874(10) � � � � � �
0.0540337 0.96(12) 0.866(10) 0.8(3.0) 1.67(22)
0.108067 0.928(65) 0.845(10) 0.86(72) 1.61(12)
0.162101 0.874(45) 0.811(10) 0.83(31) 1.522(89)
0.216135 0.807(36) 0.769(11) 0.79(18) 1.410(74)
0.270169 0.733(33) 0.720(13) 0.73(14) 1.284(69)

TABLE X. Lattice form factor results for set 3. ak here is the
value of the x and y components of the lattice momentum for the
J=ψ . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.5 0.0 � � � 0.8573(79) � � � � � �
0.0609372 0.915(25) 0.8391(79) 0.69(77) 1.638(48)
0.121874 0.841(16) 0.7913(81) 0.75(17) 1.499(31)
0.182812 0.735(16) 0.7244(95) 0.700(89) 1.318(27)
0.243749 0.626(16) 0.650(13) 0.61(10) 1.123(31)
0.304686 0.521(20) 0.567(30) 0.49(21) 0.931(55)

0.65 0.0 � � � 0.8515(82) � � � � � �
0.0609372 0.976(29) 0.8338(82) 0.7(1.1) 1.630(50)
0.121874 0.899(19) 0.7874(84) 0.75(25) 1.495(32)
0.182812 0.789(19) 0.7222(98) 0.71(11) 1.320(28)
0.243749 0.676(19) 0.650(14) 0.623(80) 1.129(33)
0.304686 0.565(23) 0.567(30) 0.51(13) 0.941(58)

0.8 0.0 � � � 0.8475(82) � � � � � �
0.0609372 1.040(33) 0.8303(82) 0.6(1.3) 1.644(53)
0.121874 0.960(21) 0.7848(84) 0.76(31) 1.511(34)
0.182812 0.846(21) 0.7209(99) 0.73(14) 1.338(30)
0.243749 0.728(21) 0.649(14) 0.638(89) 1.149(35)
0.304686 0.610(25) 0.568(31) 0.52(12) 0.960(62)

TABLE XI. Lattice form factor results for set 4. ak here is the
value of the x and y components of the lattice momentum for the
J=ψ . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.5 0.0 � � � 0.8928(86) � � � � � �
0.0332236 0.86(18) 0.8911(90) 5(24) 1.88(46)
0.0664472 0.850(92) 0.8865(94) 6(14) 1.86(24)
0.0996708 0.839(63) 0.8796(95) 7(12) 1.84(17)
0.132894 0.825(48) 0.8701(96) 11(16) 1.80(13)
0.166118 0.807(39) 0.8582(98) 52(66) 1.77(11)

0.65 0.0 � � � 0.8995(91) � � � � � �
0.0332236 0.87(21) 0.8977(95) 1.2(5.6) 1.82(44)
0.0664472 0.87(11) 0.893(10) 1.3(1.9) 1.81(23)
0.0996708 0.858(72) 0.887(10) 1.4(1.1) 1.78(16)
0.132894 0.844(55) 0.877(10) 1.37(88) 1.76(12)
0.166118 0.827(45) 0.866(10) 1.38(77) 1.72(10)

0.8 0.0 � � � 0.907(10) � � � � � �
0.0332236 0.90(26) 0.905(11) 0.9(9.4) 1.80(44)
0.0664472 0.90(13) 0.901(11) 1.1(2.5) 1.79(23)
0.0996708 0.886(87) 0.894(11) 1.1(1.2) 1.77(16)
0.132894 0.872(67) 0.885(11) 1.10(70) 1.74(12)
0.166118 0.855(54) 0.874(12) 1.10(51) 1.71(10)
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We also give values for the meson masses in Tables XII
for the J=ψ and Table XIII for the Hc

1 and ηh. From
Table II we have three different J=ψ tastes, using one
local and two different 1-link point-split operators.

The difference in mass of these different taste J=ψ mesons
is tiny, barely visible above statistical uncertainties (at a
level of 1 MeV) even on our coarsest lattices. For theHc we
use two spin-taste operators, both local. As expected for
pseudoscalars the taste-differences are slightly larger than
for the vector J=ψ, and they are visible above the smaller
statistical errors in this case. The mass differences are still
only a few MeV, however, for a meson of a mass of several
GeV, and they fall on the finer lattices since they are a
discretization effect.

FIG. 3. The points show our lattice QCD results for each form factor as given in Tables VIII–XI as a function of squared 4-momentum
transfer, q2. The legend gives the mapping between symbol colour and shape and the set of gluon field configurations used, as given by
the lattice spacing, and the heavy quark in lattice units. The blue curve with error band is the result of our fit in lattice spacing and heavy
quark mass, evaluating the result in the continuum limit and for the b quark mass, to give the physical form factor for Bc → J=ψ.

1Note that there is a systematic discrepancy between our values
for aMHc

ðγ5 ⊗ γ5Þ on set 1, in Table XIII, and those in [11]. We
found that increasing the statistical uncertainties on our masses on
set 1 by a factor of 10 to cover this discrepancy did not change our
final results significantly.
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We calculate the value of q2 for each form-factor based
on the meson masses of the corresponding meson tastes,
along with the lattice momentum of the J=ψ determined
from the twists in Table IV.

A. Extrapolation to the physical point

In order to extract physical continuum form factors we
must fit our lattice results to a fit function including
discretization effects arising from the use of large values
of amh as well as the physical dependence upon MHc

and
q2. In order to fit the q2 dependence we make use of the
z-expansion (see, for example, [37–39]) which has become
standard for the description of form factors. We map the
physical q2 range to within the unit circle via the change of
variables,

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð23Þ

The physical q2 range is from 0 to t− where

t− ¼ ðMHc
−MJ=ψÞ2: ð24Þ

In Eq. (23) tþ is the pair production threshold for a bc̄
current, and the start of a cut in the complex q2 plane. This
point is mapped to z ¼ −1. We take

tþ ¼ ðMH þMD�Þ2; ð25Þ

where H is an hū pseudoscalar meson. Note there is a
sizeable gap between t1=2þ and t1=2− , and it is independent
of mh up to binding energy effects. In this calculation
we do not compute MH entering tþ. Instead we use an
estimate of it derived from the MHc

values that we have:

Mlatt
H ¼ MHc

− ðMphys
Bc

−Mphys
B Þ. This ensures that when we

evaluate our fit function at the physical heavy quark mass
then the correct physical continuum value of tþ is recov-
ered. We take the D� mass from experiment since our
valence cmasses are tuned to the physical value throughout
and the mistuning of the light quark masses in the sea is
taken care of in our fit function.
Table XIV lists the physical masses we use for the Bc, B

and D�. These are used as numerical constants with no
uncertainty to simplify the necessary covariances required
to reconstruct our fit function. Their uncertainties are
negligibly small in any case.
The choice of t0 in Eq. (23) determines the value of q2 at

which z ¼ 0. Here we choose t0 ¼ t−. This choice means
that z is simply related to the variable w which is the dot
product of the 4-velocities of the Bc and J=ψ and known to

FIG. 4. Plot showing A2ðq2Þjp⃗0j2=M2
J=ψ against q2. The com-

bination of A2 and jp⃗0j2 entering the helicity amplitudes in
Eq. (5). This combination does not exhibit as much noise as A2

alone, seen in Fig. 3.

TABLE XII. J=ψ masses for the local spin-taste operator γ1 ⊗
γ1 and 1-link operators γ1 ⊗ 1 and γ1 ⊗ γ1γ2 used in our
calculation, see Table II.

aMJ=ψ

Set γ1 ⊗ γ1 γ1 ⊗ 1 γ1 ⊗ γ1γ2

1 1.41391(20) 1.41432(27) 1.41410(26)
2 0.92990(24) 0.92997(31) 0.92990(32)
3 0.69210(16) 0.69207(24) 0.69209(24)
4 1.37833(24) 1.37867(32) 1.37844(32)

TABLE XIII. ηh masses and Hc masses for the local spin-taste
operators γ5 ⊗ γ5 and γ0γ5 ⊗ γ0γ5 that we use in our calculation,
see Table II.

Set amh aMHc
ðγ5 ⊗ γ5Þ aMHc

ðγ0γ5 ⊗ γ0γ5Þ aMηh

1 0.6 1.52160(16) 1.52326(14) 1.67559(14)
0.65 1.57224(16) 1.57396(14) 1.77510(14)
0.8 1.72015(17) 1.72208(14) 2.06407(15)

2 0.427 1.06720(16) 1.06747(17) 1.23354(15)
0.525 1.17255(15) 1.17283(17) 1.43949(13)
0.65 1.30314(15) 1.30344(17) 1.69388(12)
0.8 1.45421(15) 1.45454(17) 1.98757(11)

3 0.5 1.01184(10) 1.01197(11) 1.342912(64)
0.65 1.16995(10) 1.17008(11) 1.650408(56)
0.8 1.32185(10) 1.32199(11) 1.945914(50)

4 0.5 1.40004(20) 1.40155(18) 1.47014(18)
0.65 1.55423(19) 1.55588(17) 1.77380(17)
0.8 1.70243(21) 1.70428(16) 2.06296(17)
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be a good variable for a description of b → c form factors
in the heavy quark effective theory approach [37,38] to
B → D� decays. We expect that still to be a useful
consideration here because the Bc meson has similar
properties to that of a heavy-light meson, interpolating
between heavy-light and heavyonium [10]. Heavyonium
mesons also display similar mass-suppressed differences in
amplitudes between ground-state vector and pseudoscalar
mesons, so that we expect a Bc → J=ψ decay to behave
rather similarly to B → D�.
Physical particles with b̄c quark content, masses

between t1=2þ and t1=2− (i.e., above the physical q2 range
for the decay) and the appropriate quantum numbers to
couple to the current operator result in the appearance of a
subthreshold pole in the corresponding form factor.
Following [37,38] we include these poles in our fit using
the form (Blaschke factor),

Pðq2Þ ¼
Y
Mpole

zðq2;M2
poleÞ: ð26Þ

Pðq2Þ is zero when q2 ¼ M2
pole and has modulus 1 along the

cut in the q2 plane for real q2 > tþ where multiparticle
production can occur. For the pole masses corresponding
to Bc states we use the values listed in [4], which we
reproduce here in Table XV. We use four masses in each of
the vector and axial channels and three in the pseudoscalar
channel. These values are derived from experiment and
from lattice QCD calculations for the low-lying Bc masses
and from models for the higher-lying states. Since these
masses are again simply numbers used in setting up our fit
in z-space the values are used without uncertainties. As we
will show in Sec. V C our results are not sensitive to the
exact form of the pole expression above [Eq. (26)]. The
pole masses are shifted from those of the Bc to account
for our use of unphysical heavy-quark masses. We use
Mpole ¼ MHc

þMphys
pole −Mphys

Bc
again ensuring that when

we extrapolate to the physical heavy quark mass the
physical continuum values of Table XV are recovered.
We fit each form factor, Fðq2Þ, to the fit function,

Fðq2Þ ¼ 1

Pðq2Þ
X3
n¼0

anznN n; ð27Þ

where Pðq2Þ is the appropriate pole form for that form factor
[constructed using 1− states for Vðq2Þ, 1þ states for A1ðq2Þ
and A2ðq2Þ or 0− states for A0ðq2Þ] as in Eq. (26). The
remainder of the fit function is a polynomial in zwith separate
coefficients, an, for each form factor that take the form,

an ¼
X3
j;k;l¼0

bjkln ΔðjÞ
h

�
amval

c

π

�
2k
�
amval

h

π

�
2l

: ð28Þ

The ΔðjÞ
h allow for the dependence on the heavy quark mass

using the ηh mass as a physical proxy for this. We have

Δð0Þ
h ¼ 1, and

Δðj≠0Þ
h ¼

�
2Λ
Mηh

�
j
−
�

2Λ
Mphys

ηb

�
j
: ð29Þ

We take Λ ¼ 0.5 GeV.
The polynomials in amc=π and amh=π in Eq. (28) allow

for discretization effects that are either constant with the
heavy quark mass (for example coming from the c-quark
action) or that come from the heavy-quark action and so
depend on amh. Because of the form of the HISQ action
only even powers of a can appear here.
The remainder of Eq. (27), N n, takes into account the

effect of mistuning the valence and sea quark masses for
each form factor,

N n ¼ 1þ Anδ
val
mc

þ Bnδ
sea
mc

þ Cnδ
sea
ms

þDnδ
sea
ml
; ð30Þ

with

δvalmc
¼ ðamval

c − amtuned
c Þ=amtuned

c ;

δseamc
¼ ðamsea

c − amtuned
c Þ=amtuned

c ;

δseamsðlÞ ¼ ðamsea
sðlÞ − amtuned

sðlÞ Þ=ð10amtuned
s Þ: ð31Þ

TABLE XIV. Values used in our fits for the physical masses of
relevant mesons, in GeV. These are from the Particle Data Group
[40] except for the unphysical ηs which we take from lattice
calculations of the mass of the pion and kaon [41]. The ηs mass is
used to set mass mistuning terms in our fit and so include an
uncertainty. The other masses are used as kinematic parameters in
setting up our fit in z-space and used without uncertainties. The
J=ψ mass is also used to tune the c quark mass, and there we do
include its (negligible) uncertainty.

Meson Mphys½ GeV�
ηb 9.3889
Bc 6.2749
B 5.27964
J=ψ 3.0969
D� 2.010
ηs 0.6885(22)

TABLE XV. Expected Bc pseudoscalar, vector and axial vector
masses below BD� threshold that we use in our pole factor,
Eq. (26). Pseudoscalar values for the ground-state and first radial
excitation are taken from experiment [40,42–44]; the other values
are taken from [4] and are derived from lattice QCD calculations
[45] and model estimates [46–48].

0−=GeV 1−=GeV 1þ=GeV

6.275 6.335 6.745
6.872 6.926 6.75
7.25 7.02 7.15

7.28 7.15
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We use the J=ψ meson mass to tune the c quark mass for
the reasons discussed in [8]. We take

amtuned
c ¼ amval

c

�
Mphys

J=ψ

MJ=ψ

�
: ð32Þ

We use the ηs mass [41] to determine the mistuning of the s
quark mass in the sea, taking

amtuned
s ¼ amval

s

�
Mphys

ηs

Mηs

�2

: ð33Þ

We use the ηs masses in lattice units from [11], together
with the corresponding values of amval

s , to do this. The
values of the physical J=ψ and ηs masses that we use are
given, with their uncertainties, in Table XIV. To determine
the mistuning of the u=d ¼ l quark mass in the sea we take

FIG. 5. The points show our lattice QCD results for each form factor as given in Tables VIII, IX, X and XI multiplied by the pole
function of Eq. (26) and plotted in z-space. The legend gives the mapping between symbol color and shape and the set of gluon field
configurations used, as given by the lattice spacing, and the heavy quark in lattice units. The blue curve with error band is the result of
our polynomial fit in zwith lattice spacing and heavy quark mass dependence [Eq. (27)], evaluating the result in the continuum limit and
for the b quark mass, to give the physical form factor for Bc → J=ψ.
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amtuned
l ¼ amtuned

s =Δ½ms=ml�; ð34Þ

with Δ½ms=ml� ¼ 27.18ð10Þ from [49].
We take priors of 0(1) for each bn for each form factor,

multiplying terms of order Oða2Þ by 0.5 because a2 errors
are removed in the HISQ action at tree-level [7]. We use
priors of 0.0(0.1) for Bn for each form-factor, following the
results of the analysis of msea

c effects on w0 in [31], and
priors of 0.0(0.5) for Cn and Dn for each form-factor since
sensitivity to u=d and s sea quark masses enter only at
1-loop. All remaining priors are taken as 0(1). We have
checked that the prior width is conservative using the
empirical Bayes criterion [50].
In doing our fit to Eq. (27) we impose the kinematical

constraint,

2MJ=ψA0ð0Þ ¼ ðMJ=ψ þMHc
ÞA1ð0Þ− ðMJ=ψ −MHc

ÞA2ð0Þ:
ð35Þ

This condition holds in the continuum limit with physical
sea quark masses for each heavy quark mass. We impose it
using our lattice meson masses at each value of amh and
allowing for discretization and quark mass mistuning
effects effects in this implementation. We do this by
imposing

A0ð0Þ − ðaMJ=ψ þ aMHc
Þ=ð2aMJ=ψÞA1ð0Þ

þ ðaMJ=ψ − aMHc
Þ=ð2aMJ=ψ ÞA2ð0Þ ¼ Δkin: ð36Þ

Δkin here is a nuisance term made up of leading order
discretization and mistuning effects to account for the use
of lattice masses rather than values in the physical con-
tinuum limit. We take

Δkin ¼
X3
i¼1

αc;iðamval
c =πÞ2i þ αh;iðamh=πÞ2i

þ βcδ
val
mc

þ β0cδseamc
þ βlδ

sea
ml

þ βsδ
sea
ms
; ð37Þ

where α and β are priors taken as 0(1). We find that the fit
returns values for α and β well within their prior widths.
The fit was done simultaneously across all form factors

in order to preserve correlations important for constructing
helicity amplitudes. We use the nonlinear least squares
fitting routine from the PYTHON package lsqfit [51]. It
returns a χ2=d:o:f: of 0.18. The fit curves evaluated at the b
quark mass in the continuum limit are plotted along with
the raw lattice results in Fig. 3.
In Fig. 5 we show the lattice results and the fit function in

z-space in a way that makes clearer how the fit is operating.
The figure shows that the form factor multiplied by the pole
function takes a very simple, linear, form in z-space. The
constant term in the z-space polynomial varies with heavy
quark mass but the slope changes very little.

The extrapolated continuum values of an ¼ b000n are
given in Table XVI. In the continuum limit at the physical b
mass Eq. (27) becomes, for each form factor,

Fðq2Þ ¼ 1

Pðq2Þ
X3
n¼0

anzn: ð38Þ

Pðq2Þ is the appropriate pole factor for that case [Eq. (26)]
using pole masses from Table XV. To reconstruct the form
factors in q2 space both the values of the z-expansion
coefficients from Table XVI, and their correlations are
needed; the correlation matrices are given in Appendix A.
Table XVI shows that our fit is able to pin down the
constant and linear pieces of the z-expansion but is not able
to pin down higher order terms in z. This is consistent with
what we see in Fig. 5. Notice that the values obtained for a0
and a1 in each case are well within the prior width of 1.0
allowed for them in the fit.
We choose the parametrization of Eq. (27) and hence

Eq. (38) for its simplicity. The alternative BGL scheme [37]
includes additional outer functions along with the pole
factor and allows unitarity constraints, which we do not
make use of in our fit, to be applied. In Appendix B we
convert our physical continuum results to the BGL scheme
and check these unitarity constraints. We see that the
bounds are far from saturation and so implementing them
would have no effect on our results.

B. Heavy mass dependence

Our fits allow us to reconstruct the physical dependence
of the form factors on the heavy quark mass. This allows us
to check that the dependence is relatively benign and that
we have adequate coverage of the heavy quark mass range.
It could also be used to test theoretical understanding from
model calculations.
This test of the physical heavy mass dependence is

complicated slightly by the fact that our continuum fit
results depend on mh both through the Mηh dependence

appearing in ΔðiÞ
h , and through MHc

appearing in z, Pðq2Þ
and our expression for the resonance masses. To evaluate
our continuum form factors away from the physical b mass
we must first determine theMηh dependence ofMHc

. To do
this we fit our lattice data for the γ5 ⊗ γ5 Hc and ηh masses,

TABLE XVI. Physical z-expansion coefficients for the pseu-
doscalar, axial-vector and vector form factors for Bc → J=ψ
decay. The correlation matrices between the parameters are given
in Appendix A.

a0 a1 a2 a3

A0 0.1006(37) −0.731ð72Þ 0.30(90) −0.02ð1.00Þ
A1 0.0553(19) −0.266ð40Þ 0.31(70) 0.11(99)
A2 0.0511(91) −0.22ð19Þ −0.36ð82Þ −0.05ð1.00Þ
V 0.1057(55) −0.746ð92Þ 0.10(98) 0.006(1.000)
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together with the physical values of Mηb and MBc
[52],

using the simple form,

MHc
¼ ðMphys

ηc þMηhÞ=2þ
X4
i¼1

Xi

�
amh

π

�
2i

þ
X4
i¼1

Yi

�
amc

π

�
2i
þ
X4
i¼1

ZiΔ
ðiÞ
hc þN 0; ð39Þ

where

ΔðiÞ
hc ¼

�
2ΛQCD

Mphys
ηc

�
i
−
�
2ΛQCD

Mηh

�
i
; ð40Þ

and

N0 ¼ A0δvalmc
þ B0δseamc

þ C0δseams
þD0δseaml

: ð41Þ

FIG. 6. The points show our lattice QCD results for each form factor as given in Tables VIII–XI as a function of the ηh massMηh , with
data points corresponding to the same J=ψ spatial momentum (given in Tables VIII–XI) connected. We also use Eq. (42) to plot our
continuum result (solid colored curves) at multiple, evenly spaced, fixed values of J=ψ momentum within the semileptonic region
0 ≤ q2 ≤ q2max. The legend gives the mapping between symbol color and shape and the set of gluon field configurations used, as given
by the lattice spacing, and the heavy quark in lattice units. Note that for the form factor A2 we exclude from the plot the inaccurate lattice
data for amh ¼ 0.5 on set 4.
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This form ensures the correct value of MHc
as mh → mc.

We take Mphys
ηc ¼ 2.9839=GeV from [52] and neglect its

very small uncertainty. We take prior widths of 0(1) for A0,
B0, C0, D0, Xi, Yi and Zi giving a good fit with χ2=d:o:f: ¼
0.99 and Q ¼ 0.46. Our fitted parameters Zi may then
be used to generate the continuum value of MHc

at a given
Mηh by

MHc
¼ ðMphys

ηc þMηhÞ=2þ
X4
i¼1

ZiΔ
ðiÞ
hc: ð42Þ

Note that this parametrization of the Hc mass is only used
here to demonstrate the heavy mass dependence of the form
factors and will not have any impact on subsequent results.
In Fig. 6 the form factors at fixed values of the J=ψ

momentum are plotted againstMηh . Here we choose values
of the J=ψ momentum which evenly span the semileptonic
range at the physical b quark mass and only plot the mass
region for which the resulting value of q2 is between 0 and
q2max. We also plot our lattice data where we have connected
points corresponding to a fixed J=ψ spatial momentum.
Figure 6 illustrates that the continuum form factors have

only mild heavy mass dependence across the range of
masses used in this study. This demonstrates that we have
good coverage of the heavy quark mass range and that our
extrapolation to the b mass using these points is reliable.
This is consistent with what is seen for other b → c form
factors, e.g., [11,12].

C. Tests of the stability of the analysis

Our results for the form factors are dependent to some
extent upon choices made in the correlator fits as well as
choices made in the continuum/heavy-quark mass fit. Here
we test the impact of those choices on both the continuum
fit coefficients and the final outcome of our calculation to
make sure that it is robust. It is convenient in that test to
have a single quantity which we can compare, and we take
that to be the total rate of B−

c → J=ψl−ν̄l decay, i.e.,
ΓðB−

c → J=ψμ−ν̄μÞ=jηEWVcbj2. This is obtained by deter-
mining the helicity amplitudes from our form factors and
then integrating in q2 over the differential rate they give
[see Eqs. (5) and (1)]. The results for the differential rates
and total rate will be discussed in more detail in Sec. VI;
here we focus on the stability of the final result under
variations of fit choice.
We first look at the choices of the correlator fit

parameters: ΔT3pt, ΔT
J=ψ
2pt , ΔT

Hc
2pt, the value of SVD cut

and the number of exponentials used in the fit. In order to
verify that our results are independent of such choices we
repeat the full analysis using all combinations of the
variations listed in Table VII. The total rate computed
using each of these fit variations is plotted in Fig. 7, where
we see that our final result is insensitive to such variations.

Figure 8 shows a similar stability plot for a subset of the
z-expansion coefficients for separate form factors (Eq. (38).
We again see that the z-expansion coefficients are stable,
within their uncertainty band, under changes in the corre-
lator fits. Plots for other form factors not shown here are
very similar.
We now turn to the effect of choices in the extrapolation

to the physical point. The pole form of Eq. (26) removes q2

dependence from poles in the q2 plane above the physical
region for the decay. For b → c decays these poles are
substantially above the physical region. For example,
here q2max is ð3.18 GeVÞ2 whereas the lowest pole, for
the pseudoscalar form factor is at the Bc mass of
6.275 GeV. Hence we do not expect the exact positions
or number of poles to have a big effect on the fits. The
magnitude of Pðq2Þ does depend on how many poles are
included [4], however, and this affects the normalization
of the quantity form factor times Pðq2Þ that is expanded
in z [Eq. (27)]. This in turn affects the prior width that must
be allowed on the z-expansion coefficients to achieve a
good fit.
We have investigated the effect of including fewer poles

in Eq. (26) by repeating our analysis including only the first
Npoles resonances listed in Table XV. We then take a prior
width on the z-expansion coefficients of 5.0 − Npoles. We
are able to obtain a good fit, with χ2=d:o:f: ≈ 0.2 in all
cases. Since there are only three poles for A0 expected
below tþ, we include only three poles for that form factor
even in the Npoles case.
Figure 9 shows these results, plotting against the left-

hand y-axis the magnitude of the coefficient corresponding
to the order z term, a1, coming from the fits as a function of
the number of poles included. Results are given for each
form factor. We see that as we include fewer poles,
increasingly large z-expansion coefficients are needed

FIG. 7. Plot showing the stability of the total rate for B−
c →

J=ψμ−ν̄μ under variations of the correlator fits. The x axis value
corresponds to N ¼ δ3 þ 4δ2 þ 16δ1 þ 64δ4 where δn is the
value of δ corresponding to the fit given in Table VII for set
n. The black horizontal line and red error band correspond to our
final result, and the blue points and blue error band correspond to
the combination of fit variations associated to N. Our result for
the total rate is very stable to these variations.
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partly in order to account for the removal of physical q2

dependence from missing poles but also because of the
normalization change.
Figure 9 also gives, marked as black crosses and using

the right-hand y axis, the total width for Bc → J=ψ
obtained from that fit. We see that the total width is very
stable as a function of Npoles as the change in Pðq2Þ is
compensated by the different coefficients obtained for the
z-expansion.
We have also investigated the effects of including fewer

z terms in Eq. (27) as well as fewer amc, amh and
2ΛQCD=Mηh terms in Eq. (28). Figure 10 gives the total
width obtained using these variations, where we see that
our result is insensitive to the removal of the highest order
terms. We also investigate the effect of increasing or

decreasing the prior widths of the parameters bijkn in
Eq. (28) by a factor of 2. These results are also shown
in Fig. 10 where we see only a very small effect on the
central value of the total width.FIG. 8. As for Fig. 7 showing the stability of the coefficients of

the z-expansion for the form factors under variations of the
correlator fits. We include a subset of coefficients here; other
plots look very similar.

FIG. 9. Magnitude of the OðzÞ coefficient, a1, for each form
factor plotted against the number of poles included in Eq. (26).
The prior widths on the bijkn are scaled according to the number of
poles; see text. Note that the maximum number of poles included
for A0 is 3. The black crosses and error bars give the total width
for the l ¼ μ case, Γ=jηEWVcbj2, determined from that fit, using
the right-hand y axis. The grey band corresponds to our final
result for the total width usingNpoles ¼ 4, and prior values for bijkn
of 0(1). This shows how the different coefficients as a function of
Npoles give a very stable result for the total width.

FIG. 10. Plot showing the stability of the total rate for B−
c →

J=ψμ−ν̄μ considering lower order truncations of z-expansion,
discretization and heavy mass dependent terms in Eq. (27) and
Eq. (28). Oðn1; n2; n3; n4Þ corresponds to the result including
terms of highest order Oðð2Λ=MηhÞn1 ; ðamcÞ2n2 ; ðamhÞ2n3 ; zn4Þ.
The vertical black line is our final result, corresponding to
Oð3; 3; 3; 3Þ, and the grey band is its uncertainty. We also include
variations in which we multiply our prior widths either by a factor
of 2 or 0.5, labelled as 0ðσÞ → 0ðσ × 2Þ and 0ðσÞ → 0ðσ=2Þ
respectively. Our result for the total rate is very stable to these
variations.
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VI. DISCUSSION

Using the form factors from Sec. VA we construct the
helicity amplitudes using Eq. (5). The helicity amplitudes
are plotted in Fig. 11, where we see that H0 and Ht are
singular at q2 ¼ 0 as we would expect from the 1=

ffiffiffiffiffi
q2

p
factors appearing in their definitions. This singular behav-
ior is canceled by the ðq2 −m2

lÞ2 factor appearing in the
differential decay rate [Eq. (1)]. Together with the factor of

jp⃗0j this results in physical rates which vanish at the
extremes of the physical range, q2 ¼ m2

l and q2 ¼ q2max.
Using these helicity amplitudes we construct the differ-

ential decay rates using Eqs. (1), (2), (3) and (4). We take
mμ ¼ 105.66 MeV and me ¼ 0.51100 MeV [52] where
we do not include their negligible uncertainties. The
differential rates with respect to the angular variables
defined in Fig. 1 are plotted in Fig. 12 and the differential
rate dΓ=dq2 is plotted in Fig. 13. In each case we plot the
rate for l ¼ μ normalizing each differential rate by the total
integrated decay rate. This means that any constant factors,
such as jVcbj2 or BðJ=ψ → μþμ−Þ cancel out. Where an
integration over q2 is necessary we use a simple trapezoidal
interpolation in order to ensure covariances are carried
through correctly, taking sufficiently many points that the
results are insensitive to using additional points.
The angular differential rates show the expected quali-

tative picture for a pseudoscalar to vector meson decay
[25]. The dependence on θJ=ψ is that for the case where the
vector meson is seen in final states that carry spin (i.e., here
in J=ψ → μþμ−). This differs from, for example, the case
of B → D� if the D� is seen in Dπ. The θW dependence is

that of a b quark decay via the V − Aweak interaction. This
produces a virtual W− and charged lepton with, preferen-
tially, a ð1þ cos θWÞ2 distribution in the W− rest frame.
The picture switches for a c decay producing a virtual
Wþ [25].
We also compute the forward-backward asymmetry,

AFB, the lepton polarization asymmetry (for the lepton l
produced from the virtual W), Aλl , and the fraction of J=ψ

FIG. 11. Helicity amplitudes for B−
c → J=ψl−ν̄l plotted as a

function of q2.

FIG. 12. Angular differential decay rates for B−
c → J=ψl−ν̄l

for the l ¼ μ case. From the top down, dΓ=dq2d cosðθJ=ψ Þ,
dΓ=dq2d cosðθWÞ and dΓ=dq2dχ. Each rate is normalized by the
total decay rate ΓðB−

c → J=ψð→μþμ−Þμ−ν̄μ).
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produced with longitudinal polarization, FJ=ψ
L . These are

defined as

AFBðq2Þ ¼
1

dΓ=dq2
2

π

Z
π

0

dΓ
dq2d cosðθWÞ

cosðπ − θWÞdθW;

Aλlðq2Þ ¼
dΓλl¼−1=2=dq2 − dΓλl¼þ1=2=dq2

dΓ=dq2
;

FJ=ψ
L ðq2Þ ¼ dΓλJ=ψ¼0=dq2

dΓ=dq2
; ð43Þ

where we have chosen the forward direction for the purpose
of AFB as being in the direction of the J=ψ momentum in
the Bc rest frame. These quantities are plotted in Fig. 14 for
the cases l ¼ e and l ¼ μ. We see in the top plot that AFB

is negative except near q2 ¼ 0 for l ¼ μ. This may be be
understood from Fig. 11 where we see that H2þ −H2

−,
which is the dominant contribution to AFB for m2

l ≪ q2, is
less than or equal to zero across the full physical q2 range.
The behavior of AFB near q2 ¼ 0 in the l ¼ μ case
originates from the −2m2

l=q
2HtH0 cosðθWÞ term in

Eq. (2). When m2
l=q

2 ≈Oð1Þ it is apparent from Fig. 11
that this term will dominate over the H2þ −H2

− contribu-
tion. In the middle plot of Fig. 14 we see thatAλe is equal to
unity across the full q2 range, in line with the expectation
that in the massless limit the lepton is produced in a purely
left-handed helicity eigenstate. In the bottom plot of
Fig. 14 we see that the longitudinal polarization fraction,

FIG. 13. The differential rate dΓ=dq2 for B−
c → J=ψl−ν̄l for

the l ¼ μ case, normalized by the total decay rate Γ.

FIG. 14. Angular asymmetry variables defined in Eq. (43) for
the cases l ¼ e and l ¼ μ.

HARRISON, DAVIES, and LYTLE PHYS. REV. D 102, 094518 (2020)

094518-18



FJ=ψ
L , approaches unity near q2 ¼ 0 where H0 and Ht

dominate the total rate, and goes to 1=3 at q2max whereH0 ¼
Hþ ¼ H− and Ht ¼ 0.
We also compute the total decay rate for the cases l ¼ e

and l ¼ μ. We find

ΓðB−
c → J=ψμ−ν̄μÞ
jηEWVcbj2

¼ 1.73ð12Þ × 1013 s−1

¼ 11.36ð81Þ × 10−12 GeV; ð44Þ

and

ΓðB−
c → J=ψe−ν̄eÞ
jηEWVcbj2

¼ 1.73ð12Þ × 1013 s−1

¼ 11.40ð82Þ × 10−12 GeV; ð45Þ

with the ratio Γe=Γμ ¼ 1.004018ð95Þ. We see that effects
from including mμ amount to 0.4% of the rate.
We can compare our results for the total rate to those

from earlier, nonlattice QCD approaches such as potential
models and QCD sum rules. In these other approaches it is
much harder to quantify sources of uncertainty and derive
an error budget. One way to obtain a picture of possible
systematic errors is simply to compare results from differ-
ent model calculations. Reference [53] uses a relativistic
quark model to obtain a value 10.5 × 10−12 GeV for
Γ=jVcbj2 and gives a table of comparison to other model
approaches. Results vary over a range up to double this
value, which implies a worrying lack of control of
systematic effects in at least some of these calculations.
In future it may be possible for such calculations to be
tuned against our lattice QCD result for Bc → J=ψ and then
yield useful information on Bc decay to excited charmo-
nium which is much harder to determine accurately in
lattice QCD.
From our value for Γ=jηEWVcbj2 in Eq. (44) we can

derive a result for the total width for B−
c → J=ψμ−ν̄μ using

a value for ηEW (from Sec. II) and for jVcbj. We take jVcbj ¼
41.0ð1.4Þ × 10−3 from an average of inclusive and exclu-
sive determinations and with the error scaled by 2.4 to
allow for their inconsistency [52]. This gives

ΓðB−
c → J=ψμ−ν̄μÞ ¼ 2.94ð21Þð20Þ × 1010 s−1: ð46Þ

Here the first uncertainty is from our lattice QCD calcu-
lation and the second from the uncertainty in jηEWVcbj.
These uncertainties are approximately equal.
Using the experimental average value for the Bc lifetime

of 0.510ð9Þ × 10−12 s [52,54,55] then gives the branching
fraction,

BrðB−
c → J=ψμ−ν̄μÞ ¼ 0.0150ð11Þð10Þð3Þ: ð47Þ

The uncertainties are from lattice QCD, jηEWVcbj and the
lifetime respectively.
The accuracy of our result means that it can be used to

normalize other Bc decay modes. In the Particle Data
Tables [52] Bc branching fractions are given in the modified
form Bðb̄ → Bþ

c ÞΓi=Γ. Here the first factor is the proba-
bility for a produced b quark to hadronise as a Bc or one of
its excitations. Using the value of the modified branching
fraction for B−

c → J=ψμ−ν̄μ obtained by CDF [56] of
8.7ð1.0Þ × 10−5 [52] we infer

Bðb̄ → Bþ
c Þ ¼ 0.00581ð58Þð67Þ: ð48Þ

The first uncertainty is the combined uncertainty from
Eq. (47), and the second uncertainty is from the exper-
imental value of the modified branching fraction. This
value can be compared to the valueBðb̄ → BþÞ ¼ 0.407ð8Þ
[52] to show how much less likely it is that a produced b
quark will form a Bc.
We have focused here on the rates for production of a μ

or e from the virtual W in the final state. We will discuss
results for B−

c → J=ψτ−ν̄τ in a follow-up paper [22].

A. Error budget

In order to estimate the contribution of the different
sources of systematic uncertainty we use the inbuilt error
budget routine in lsqfit [51], which computes the partial
variance of our result with respect to the priors and data
entering the fit (see e.g., [57] Appendix A). The error
budget for the total rate for the l ¼ μ case is given in
Table XVII. The size of the systematic uncertainties
reflect the extent to which the corresponding fit param-
eters are determined by the prior values together with
how much their values impact the value of Γμ. Not
surprisingly we see that large contributions come from
the discretization effects from the heavy quark mass and
the statistical uncertainties on the finest (ultrafine, set 3)
lattices. The relatively large uncertainty coming from sea
charm quark mass mistuining terms reflects the fact that
we do not have access to configurations with multiple sea
charm masses at a given lattice spacing, and hence this
term is not well constrained. Excluding the sea charm
mistuning term from our fits has only a small effect at of
order 0.1σ.
Note that several of the largest uncertainties, those

from statistics on set 3 and amh discretization effects
and Mηh dependence, may be straightforwardly and sys-
tematically reduced in the future by increasing statistics on
ultrafine lattices (set 3) and obtaining results on exafine
(a ¼ 0.03 fm) lattices respectively. Subleading errors may
also be improved, with more precise determinations of w0

or the inclusion of additional lattices with physical u=d
quarks.

Bc → J=ψ FORM FACTORS FOR THE … PHYS. REV. D 102, 094518 (2020)

094518-19



VII. CONCLUSIONS

We have carried out the first lattice QCD calculation of
the form factors within the Standard Model for B−

c →
J=ψl−ν̄l decay. This is a process under active study by
LHCb [1,58], and more accurate form factors are needed
(and crucially with quantified errors) to reduce uncertain-
ties in the experimental determination of the lepton-
universality violating ratio RðJ=ψÞ.
We give all four form factors across the full q2 range of

the decay. The calculation is done using the HISQ action
for all quarks, enabling us to normalise the lattice current
operators that couple to the W fully nonperturbatively. We
have used the heavy-HISQ approach, obtaining results at
multiple values of the heavy quark mass on a range of fine
lattice spacings, fitting the heavy-quark mass dependence
to obtain a physical result for Bc → J=ψ in the con-
tinuum limit.
We give each form factor in a parametrization that allows

it to be fully reconstructed, including correlations between
the form factors (see Appendix A). This yields a total rate
integrated over q2 for a light lepton in the final state, up to a
CKM factor, of [repeating Eq. (44)]

1

jηEWVcbj2
ΓðB−

c → J=ψμ−ν̄μÞ ¼ 1.73ð12Þ × 1013 s−1:

ð49Þ

The 7% uncertainty is broken down in an error budget in
Table XVII. Our result for the total rate gives a branching
fraction [repeating Eq. (47)],

BrðB−
c → J=ψμ−ν̄μÞ ¼ 0.0150ð11Þð10Þð3Þ: ð50Þ

The first two uncertainties, from our lattice QCD
calculation and from the current uncertainty in Vcb are
equal here.
We will discuss the implications of our results for the

case of a heavy (τ) lepton in the final-state elsewhere [22].
We have demonstrated that the heavy-HISQ methodol-

ogy is a viable procedure for these calculations and that the
statistical challenge of analyzing many lattice QCD corre-
lation functions, while preserving covariances important
for constructing and fitting q2 and heavy mass dependence,
can be handled. This work forms an important precursor for
the calculation of Bs → D�

s form factors across the full q2

range using the same machinery, which is underway. This
will allow the dominant uncertainty from external inputs to
be reduced in the determination of Vcb from experimental
results [59].
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APPENDIX A: RECONSTRUCTING THE FIT

Our parametrization of the form factors for Bc → J=ψ in
the continuum limit is given in Eq. (38). It consists of a pole
factor with no uncertainty and a polynomial in z for which
the coefficients with their uncertainties are given in
Table XVI. In this section we give the correlations between
the z-expansion coefficients which are necessary for
reconstructing our results explicitly, as well as instructions
for using the included in Supplemental Material [60] to
load the z-expansion parameters together with their corre-
lations automatically into PYTHON [61].
The correlation between two coefficients is defined in the

usual way as

TABLE XVII. Error budget for the total rate for Bc → J=ψμν̄μ.
Errors are given as a percentage of the final answer. The top half
gives sources of systematic errors: Extrapolation of data inMηh to
the physical value of Mηb , errors proportional to powers of amc,
amh, mass mistuning effects δm, and uncertainties in determi-
nation of the lattice spacing. The second section gives a break-
down of the statistical uncertainties corresponding to each of our
data sets. Finally “other priors” includes all of the remaining
sources of uncertainty such as Δkin and the current renormaliza-
tion factors Z.

Source % error

Mηh → Mηb 2.38
amc → 0 1.5
amh → 0 3.54
δvalmc

0.143
δseamc

3.2
δseams

1.53
δseaml

0.671
w0=a, w0 1.37

Statistics
Set 1 0.737
Set 2 1.8
Set 3 3.02
Set 4 0.435

Other priors 1.61

Total 7.15

HARRISON, DAVIES, and LYTLE PHYS. REV. D 102, 094518 (2020)

094518-20



CorrðX; YÞ ¼ hðX̄ − XÞðȲ − YÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðXÞσ2ðYÞ

p ; ðA1Þ

where σ2ðXÞ is the variance of X and X̄ is the mean of X.
The values are tabulated in Tables XVIII to XXVII.

In this calculation and in the Supplemental Material [60]
we use the GVAR PYTHON package to track and propagate
correlations. Included in the Supplemental Material [60] are
two text files; CORRELATIONS.txt contains a dictionary
including the means and variances of the z-expansion

TABLE XVIII. Correlation matrix for z-expansion coefficients
of A0.

σ2 aA00 aA01 aA02 aA03

aA00 1.0 −0.3226 0.03144 −0.005681
aA01 −0.3226 1.0 −0.4749 −0.001147
aA02 0.03144 −0.4749 1.0 −0.0141
aA03 −0.005681 −0.001147 −0.0141 1.0

TABLE XIX. Correlation matrix for z-expansion coefficients of
A0 and A1.

σ2 aA10 aA11 aA12 aA13

aA00 0.5303 −0.113 0.06274 0.01696
aA01 0.01653 0.1351 −0.2015 −0.03253
aA02 −0.04758 −0.0165 0.1561 0.01121
aA03 0.006368 −0.01748 0.03616 0.008669

TABLE XX. Correlation matrix for z-expansion coefficients of
A0 and A2.

σ2 aA20 aA21 aA22 aA23

aA00 −0.3364 0.2287 −0.08114 −0.008593
aA01 0.1069 −0.3612 0.1906 0.01508
aA02 0.1271 −0.1542 −0.08251 −0.003635
aA03 0.008374 0.00399 −0.04077 −0.0044

TABLE XXI. Correlation matrix for z-expansion coefficients of
A0 and V.

σ2 aV0 aV1 aV2 aV3

aA00 0.02917 −0.001606 0.0001568 6.563e-06
aA01 0.0007577 0.01086 0.0008211 4.483e-05
aA02 −0.00359 0.003377 0.0004732 2.63e-05
aA03 0.001619 4.373e-05 8.313e-05 4.366e-06

TABLE XXII. Correlation matrix for z-expansion coefficients
of A1.

σ2 aA10 aA11 aA12 aA13

aA10 1.0 −0.1026 −0.01626 −0.02278
aA11 −0.1026 1.0 −0.4741 0.0354
aA12 −0.01626 −0.4741 1.0 −0.09828
aA13 −0.02278 0.0354 −0.09828 1.0

TABLE XXIII. Correlation matrix for z-expansion coefficients
of A1 and A2.

σ2 aA20 aA21 aA22 aA23

aA10 0.3107 −0.09213 0.08347 0.01317
aA11 0.4329 −0.054 −0.2096 −0.02255
aA12 −0.3841 0.5468 0.408 0.03945
aA13 −0.01917 −0.005971 0.1006 0.0114

TABLE XXIV. Correlation matrix for z-expansion coefficients
of A1 and V.

σ2 aV0 aV1 aV2 aV3

aA10 0.0365 −0.00378 0.0003772 1.863e-05
aA11 0.005846 0.008809 0.0002924 1.149e-05
aA12 −0.007246 0.005488 4.225e-05 2.69e-06
aA13 −0.004914 0.0005791 −0.0001413 −7.189e-06

TABLE XXV. Correlation matrix for z-expansion coefficients
of A2.

σ2 aA20 aA21 aA22 aA23

aA20 1.0 −0.6478 0.1081 0.006069
aA21 −0.6478 1.0 −0.2028 0.005956
aA22 0.1081 −0.2028 1.0 −0.05132
aA23 0.006069 0.005956 −0.05132 1.0

TABLE XXVI. Correlation matrix for z-expansion coefficients
of A2 and V.

σ2 aV0 aV1 aV2 aV3

aA20 0.00774 −0.004908 0.00013 4.567e-06
aA21 −0.006189 0.005253 −0.0005569 −3.031e-05
aA22 0.01841 −0.0002758 0.0007437 3.818e-05
aA23 0.002944 −0.0002532 8.898e-05 4.545e-06

TABLE XXVII. Correlation matrix for z-expansion coefficients
of V.

σ2 aV0 aV1 aV2 aV3

aV0 1.0 −0.2565 0.01803 0.0005269
aV1 −0.2565 1.0 −0.3492 −0.0105
aV2 0.01803 −0.3492 1.0 −0.001756
aV3 0.0005269 −0.0105 −0.001756 1.0
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parameters on the first line and a dictionary detailing the
correlations between these parameters on the second line,
CHECKS.txt contains arrays of q2 values and form factor
mean and standard deviation values at the corresponding
values of q2. This file is used by the PYTHON script
load_fit.py as a simple check that the fit has been loaded
correctly. Running python load_fit.py will load the
parameters from CORRELATIONS.txt and compare val-
ues computed at hard coded intervals in q2 to those in
CHECKS.txt which were computed as part of this work.
Running python load_fit.py will also produce some
simple plots of the form factors across the full q2 range.
We have tested load_fit.py using PYTHON 3.7.5 [61], GVAR
9.2.1 [62], NumPy 1.18.2 [63] and Matplotlib 3.1.2 [64].

APPENDIX B: CONVERTING TO THE BGL
PARAMETRIZATION AND TESTS OF

UNITARITY BOUNDS

The now standard BGL parametrization [37] makes
use of the form factors in the helicity basis. These are
given, in terms of the form factors used in this work,
by [65],

g ¼ 2

MBc
þMJ=ψ

V ðB1Þ

f ¼ ðMBc
þMJ=ψ ÞA1 ðB2Þ

F1 ¼
MBc

þMJ=ψ

MJ=ψ

�
−

2M2
Bc
jp⃗0j2

ðMBc
þMJ=ψ Þ2

A2

−
1

2
ðt −M2

Bc
þM2

J=ψÞA1

�
ðB3Þ

F2 ¼ 2A0; ðB4Þ

where p⃗0 is the J=ψ spatial momentum in the Bc rest frame.
The BGL scheme then parametrizes these form factors
using the expansion in z space,

FiðtÞ ¼
1

PiðtÞϕðt; t0Þ
X∞
n¼0

aBGLin zðt; t0Þn; ðB5Þ

where the pole function Pi is the same as we have defined
in Eq. (26) and the outer functions, ϕ, are defined in [65].
Note that here we use the subthreshold resonance masses
given in Table 2 of [65] in the pole functions Pi. In order to
compute the outer functions we evaluate χLðTÞð�uÞ using
the expressions in [37], using the pole mass mb ¼
4.78 GeV from [52] and αs ¼ 0.22 as in [37]. Their
numerical values are given in Table XXVIII.
In order to convert our results into this parametrization

scheme we use our fitted continuum parametrization to
output form factor values at a large number of q2 values in
the semileptonic region q2 < t− and then fit these using
Eq. (B5) truncated at n ¼ 3. We tabulate these values,
together with

P
3
n¼0ðaBGLn Þ2, in Table XXIX where we see

that the unitarity bound
P

3
n¼0ðaBGLn Þ2 ≤ 1 is satisfied

comfortably for each form factor.
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