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We construct bbū d̄ states on lattice using non relativistic QCD (NRQCD) action for bottom and highly
improved staggered quark (HISQ) action for the light up/down quarks. The NRQCD-HISQ tetraquark
operators are constructed for “bound” ½bb�½ū d̄� and “molecular” ½bū�½bd̄� states. Corresponding to these
different operators, two different appropriately tuned light quark masses are needed to obtain the desired
spectra. We explain this requirement of different mu=d in the light of relativized quark model involving
Hartree-Fock calculation. The mass spectra of double bottom tetraquark states are obtained on MILC
Nf ¼ 2þ 1 Asqtad lattices at three different lattice spacings. Variational analysis has been carried out to
obtain the relative contribution of bound and molecular states to the energy eigenstates.
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I. INTRODUCTION

The multiquark hadronic states other than the mesons
and baryons are relatively new entrants particularly in the
heavy quark sector. The signature of some of such states
containing four or more quarks and/or antiquarks has been
observed in experiments [1–6]. The QCD states composed
of four valence quarks are popularly referred to as tetra-
quark, which is used to denote either bound or often both
bound and two 2-quark mesonic particles bound in a
molecularlike structure. In this paper, we use the term
tetraquark in the latter sense. Such states are characterized
by JPC quantum numbers that cannot be arrived at from the
quark model. However, heavy hadronic tetraquark states
QQl̄ l̄ and their stability in the infinite quark mass limit
had been studied in [7,8] which raised the possibility of
existence of heavy four quark bound states below the Ql̄ −
Ql̄ threshold. Of late, the observations of Z−ð4430; 1þÞ of
minimal quark content being cc̄dū [3] have been reported
along with the 1þ states like Zbð10610Þ and Z0

bð10650Þ,
having minimal quark content of four quarks (containing a
bb̄ pair) that are a few MeV above the thresholds of
B⋆B̄ð10604.6Þ and B⋆B̄⋆ð10650.2Þ [1,2]. The proximity of
Zb, Z0

b to the B⋆B̄⋆ threshold values perhaps suggest
molecular, instead of bound, nature of the states.

Around the same time, lattice QCD has been employed
to investigate the bound and/or molecular nature of the
heavy tetraquark states, not only to understand the above
experimentally observed states but also to identify other
possible bound tetraquark states in both 0þ and 1þ channels.
In the context of lattice study of heavy tetraquarks, some
early lattice calculations in charm sector involveTcc and Tcs
tetraquark states [9], ccc̄ c̄ [10], Xð3872Þ and Yð4140Þ [11],
and more recently D⋆

s0ð2317Þ [12]. The bottom sector too
received intense attention in the past few years. However, on
the lattice, the Zb, Z0

b of quark content ½bb̄ud̄� has been
replaced with relatively simpler ½bbū d̄� or equivalently
½b̄ b̄ ud� system; that is to say instead of B�B̄ or B�B̄�, the
study is basically on BB�=B�B� systems. One exploratory
lattice study of the ½bb̄ud̄� system has been reported in [13].
The lattice investigations this far involve four bottom bbb̄ b̄
[14] and two bottom tetraquark states b̄ b̄ l1l2, where l1,
l2 ∈ c, s, u, d, [15–18]. An important observation of these
lattice studies is that the possibility of the existence of bbl̄1l̄2
tetraquark bound states increases with decreasing light
quark masses, while they become less bound with decreas-
ing heavy (anti)quark mass.
Besides the usual lattice simulations, the heavy tetra-

quark systems have also been studied using QCD potential
[19] and Born-Oppenheimer approximation [20–23]. The
main idea in these references is to investigate tetraquark
states with two heavy (anti)quarks, which was b̄ b̄ in the
study, and two lighter quarks using quantum mechanical
Hamiltonian containing screened Coulomb potential. This
approach has been used to explain our two different choices
of light u=d quark masses for different classes of tetraquark
operators.
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In this work, our goal is to construct tetraquark
states, having quark content bbl̄1 l̄2 in 1þ both below
and above B − B� threshold, by a combination of lattice
operators and tuning quark masses based on quantum
mechanical potential calculation. For the b quark, we
employed nonrelativistic QCD formulation [24,25], as is
the usual practice, and HISQ action [26] for l1, l2 ¼ u=d.
Here we also explore through variational/generalized
eigenvalue problem (GEVP) analysis how the trial
states created by our operators contribute to the energy
eigenstates.
First, we briefly review the salient features and parameters

of both non relativistic QCD (NRQCD) and highly
improved staggered quark (HISQ) actions along with the
steps involve in combining the relativistic u=d HISQ
propagators with the NRQCD b quark propagators in
Sec. II. We have considered two different kind of oper-
ators—the local heavy diquark and light antidiquark (often
referred as “good diquark” configuration) and molecular
meson-meson, we described these constructions in Sec. III.
We collect our spectrum results in Sec. IV that contains
subsections on quark mass tuning (IVA), Hartree-Fock
calculation of two light quarks in the presence of a heavy
quark (IV B), tetraquark spectra (IV C), and GEVP analysis
(IV D). Finally, we summarized our results in Sec. V.

II. QUARK ACTIONS

Lattice QCD simulations with quarks require quark mass
to be aml ≪ 1, where a is the lattice spacing. In the units of
the lattice spacings presently available, the b quark mass is
not small, i.e., amb≮1. As is generally believed, the typical
velocity of a b quark inside a hadron is nonrelativistic
v2 ∼ 0.1 and is much smaller than the bottom mass. This
makes NRQCD our action of choice for b quarks on lattice.
We have used Oðv6Þ NRQCD action [25], where the
Hamiltonian is H ¼ H0 þ δH, where H0 is the leading
Oðv2Þ term, the Oðv4Þ and Oðv6Þ terms are in δH with
coefficients c1 through c7,

H0 ¼ −
Δ̃2

2mb
−

a
4n

ðΔ2Þ2
4m2

b

; ð1Þ

δH ¼ −c1
ðΔ2Þ2
8m3

b

þ c2
ig
8m2

b

ðΔ⃗� · E⃗ − E⃗ · Δ⃗�Þ

− c3
g

8m2
b

σ⃗ · ð ˜Δ⃗�
× ˜E⃗ − ˜E⃗ × ˜Δ⃗

�Þ

− c4
g

2mb
σ⃗ · ˜B⃗ − c5

g
8m3

b

fΔ2; σ⃗ · B⃗g

− c6
3g

64m4
b

fΔ2; σ⃗ · ðΔ⃗� × E⃗ − E⃗ × Δ⃗�Þg

− c7
ig2

8m3
b

σ⃗ · E⃗ × E⃗; ð2Þ

where Δ� and Δ2 are discretized symmetric covariant
derivative and lattice Laplacian, respectively. Both the
derivatives are Oða4Þ improved as are the chromoelectric
E⃗ and chromomagnetic B⃗ fields. The b quark propagator is
generated by time evolution of the Hamiltonian H,

Gðx⃗; tþ1;0;0Þ¼
�
1−

aH0

2n

�
n
�
1−

aδH
2

�
U4ðx⃗; tÞ†

×

�
1−

aδH
2

��
1−

aH0

2n

�
n
Gðx⃗; t;0;0Þ;

with Gðx⃗; t;0;0Þ¼
�
0 for t < 0

δx⃗;0 for t¼ 0.
ð3Þ

The tree level value of all the coefficients c1, c2, c3, c4, c5,
c6, and c7 is 1. Here n is the factor introduced to ensure
numerical stability at small amb, where n > 3=2mb [24].
In NRQCD, the rest mass term does not appear either in

Eq. (1) or in (2), and therefore, hadron masses cannot be
determined from their energies at zero momentum directly
from the exponential falloff of their correlation functions.
Instead, we calculate the kinetic mass Mk of heavy-heavy
mesons from its energy-momentum relation, which to
Oðp2Þ is [27]

EðpÞ ¼ Eð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

k

q
−Mk

⇒ EðpÞ2 ¼ Eð0Þ2 þ Eð0Þ
Mk

p2; ð4Þ

where Mk is the kinetic mass of the meson which is
calculated considering EðpÞ at different values of lattice
momenta p⃗ ¼ 2n⃗π=L. The b quark mass is tuned from the
spin average of kinetic masses of ϒ and ηb, and matching
them with the experimental spin average value,

Mbb̄ ¼
3Mϒ þMηb

4
: ð5Þ

The experimental value to whichMbb̄ is tuned to, however,
is not 9443 MeV that is obtained from spin averaging ϒ
(9460 MeV) and ηb (9391 MeV) experimental masses,
but to an appropriately adjusted value of 9450 MeV [28],
which we denote as Mmod

phys in Eq. (6) below. The hadron
mass is then obtained from

Mlatt ¼ Elatt þ
nb
2
ðMmod

phys − Eηb
lattÞ; ð6Þ

where Elatt is the lattice zero momentum energy in MeV, nb
is the number of b quarks in the bottom hadron.
The u=d light quarks comfortably satisfy the criteria

aml ≪ 1 and, therefore, we can use a relativistic lattice
action. We use HISQ action for the u=d quarks, which is
given in [26]
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S ¼
X
x

q̄ðxÞðγμDHISQ
μ þmÞqðxÞ where;

DHISQ
μ ¼ ΔμðWÞ − a2

6
ð1þ ϵÞΔ3

μðxÞ: ð7Þ

Because HISQ action reduces Oðαsa2Þ discretization error
found in Asqtad action, it is well suited for u=d (and s)
quarks. The parameter ϵ in the coefficient of Naik term can
be appropriately tuned to use the action for c quarks, which
we do not have here. For u=d (and s) quarks, ϵ ¼ 0.
HISQ action is diagonal in spin space, and therefore, the

corresponding quark propagators do not have any spin
structure. The full 4 × 4 spin structure is regained by
multiplying the propagators by Kawamoto-Smit multipli-
cative phase factor [29],

ΩðxÞ ¼
Y4
μ¼1

ðγμÞxμ ¼ γx11 γ
x2
2 γ

x3
3 γ

x4
4 : ð8Þ

III. TETRAQUARK OPERATORS

In the present paper, we have considered two kinds of
tetraquark operators—the local heavy diquark and light
antidiquark and molecular meson-meson. The b quark,
being nonrelativistic, is expressed in terms of two compo-
nent field ψh. We convert it into a four component spinorQ
having vanishing two lower components,

Q≡
�
ψh

0

�
; ð9Þ

which help us to combine b field and relativistic four
component light quark fields in the usual way. The heavy-
light meson operator, that we will make use of in the
operator construction, is written as

OhlðxÞ ¼ Q̄ðxÞΓlðxÞ; ð10Þ

where lðxÞ stands for the light quark fields, Q̄ ¼ Q†γ4 and
depending on pseudoscalar and vector mesons Γ ¼ γ5 and
γi, respectively.
Because of the vanishing lower components, the states

with Q can only be projected to the positive parity states.
The local double bottom tetraquark operators that we can
construct for bbl̄1l̄2 system are

OM1
≡OB�B ¼ ½l̄1ðxÞγiQðxÞ�½l̄2ðxÞγ5QðxÞ�; ð11Þ

OM2
≡OB�B� ¼ ϵijk½l̄1ðxÞγjQðxÞ�½l̄2ðxÞγkQðxÞ�; ð12Þ

OD ≡OQ�π̃ ¼ ½QaTðxÞCγiQbðxÞ�½l̄a1ðxÞCγ5l̄bT2 ðxÞ�; ð13Þ

where l1 ≠ l2 and l1, l2 ∈ u, d. The a, b are the color
indices. The naming convention above is borrowed from

Ref. [16], but the exact construction of the operators is
different. In literature, the operators in (11) and (12) are
often referred to as “molecular.” In this work, we have not
included the nonlocal operators in our GEVP analysis like
those in [18], although they will admittedly affect the first
few excited states.
The diquark-antidiquark 1þ four quark state bbl̄1l̄2 with

l1 ≠ l2 in (13) can actually be defined in two ways [30],

OQ�π̃ ¼ ½QaTCγiQb�½l̄a1Cγ5l̄bT2 − l̄b1Cγ5l̄
aT
2 �

OQπ̃� ¼ ½QaTCγ5Qb�½l̄a1Cγil̄bT2 þ l̄b1Cγil̄
aT
2 �: ð14Þ

The subscripts Q� and π̃ in the operator OQ�π̃ are in 3̄c and
3c, respectively, whileQ and π̃� in the operatorOQπ̃� are in
6c and 6̄c. But both OQ�π̃ and OQπ̃� correspond to the 1þ

state. Of these, OQ�π̃ is our desired “bound” tetraquark
operator because one-gluon-exchange interaction is attrac-
tive for a heavy quark pair in 3̄c diquark configuration [8]
and spin-dependent attraction exists for light quark pairs
in good diquark configuration characterized by color 3̄c,
spin J ¼ 0, and isospin I ¼ 0 or 1=2 [31]. The two terms
in OQ�π̃ contribute identically in the final correlator;
hence, we consider only the first term in the calculation.
The generic form of the temporal correlation among the
operators at zero momentum is

CXYðtÞ ¼
X
x

h½OXðx; tÞ�½OYð0; 0Þ�†i; ð15Þ

where X, Y can be any of D;M1;M2 in Eqs. (11)–(13).
For example, the explicit forms of the zero momentum
correlators, including cross-correlator, when X and Y are
M1 ¼ B�B and D ¼ Q�π̃, are

CM1M1
ðtÞ ¼

X
x⃗

Tr½γ5M†
1ðx; 0Þγ5γiGðx; 0Þγi�

× Tr½M†
2ðx; 0ÞGðx; 0Þ�

−
X
x⃗

Tr½Gðx; 0ÞM†
2ðx; 0Þ

×Gðx; 0Þγiγ5M†
1ðx; 0Þγ5γi�; ð16Þ

CDDðtÞ¼
X
x⃗

Tr½ðGadðx;0ÞÞTγiγ4γ2Gbcðx;0Þγ4γ2γi�

×Tr½γ4γ2M†
1
daðx;0Þγ4γ2ðγ5M†

2
cbðx;0Þγ5ÞT �; ð17Þ

CDM1
ðtÞ¼

X
x⃗

Tr½Gadðx;0Þγiγ5M†
1
daðx;0Þγ5γ2γ4γ5�μν

×Tr½γ2γiγ4Gbcðx;0Þγ5γ5M†
2
cbðx;0Þγ5�μν: ð18Þ

Above in Eqs. (17) and (18), traces and transposes are taken
over the spinor indices, while in Eq. (16) the traces are
taken over both the spinor and color indices. Here Gðx; 0Þ
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denotes the heavy quark propagators, whileMðx; 0Þ are the
light quark propagators. The term Tr½GM†

2GM
†
1� appears

only in CM1M1
, CM2M2

, CM1M2
, and CM2M1

correlators. The
diquark and the antidiquark part of OD in (13) do not have
free spinor index and, therefore, we do not have similar
Tr½GM†

2GM
†
1� term in CDD. The remaining correlators

CDM1
, CDM2

, CM1D, and CM2D cannot be expressed in

compact Tr½GM†
1� × Tr½G;M†

2� form. In terms of coding,
we have to keep in mind that NRQCD and MILC library
suit use different representation of gamma matrices.
Therefore, the heavy quark propagator Gðx; 0Þ has to be
rotated to the MILC basis before implementing Eqs. (16)–
(18). The unitary matrix needed to do this transformation is
given by [32]

SγMILC
μ S† ¼ γNRμ where; S¼ 1ffiffiffi

2
p

�
σy σy

−σy σy

�
: ð19Þ

IV. NUMERICAL STUDIES

We calculated the double bottom tetraquark spectra
using the publicly available Nf ¼ 2þ 1 Asqtad gauge
configurations generated by MILC Collaboration. Details
about these lattices can be found in [33]. It uses Symanzik-
improved Lüscher-Weisz action for the gluons and Asqtad
action [34,35] for the sea quarks. The lattices we choose
have a fixed ratio of aml=ams ¼ 1=5 with lattice spacings
0.15, 0.12, and 0.09 fm and they correspond to the same
physical volume. We have not determined the lattice
spacings independently but use those given in [33]. In
Table I, we listed the ensembles used in this work.

A. Quark mass tuning

For bbū d̄ mass calculation, we need nonperturbative
tuning of both mb and mu=d. With the help of Eq. (5), the
tuning of mb has been carried out by calculating the spin
average ofϒ and ηb kinetic masses and comparing the same
with the spin average and suitably adjusted experimental ϒ
and ηb masses as discussed in Sec. II. The tuned bare amb
quark masses for lattices used in this work are given in
Table II.

But the tuning of amu=d is rather tricky. It was found in
[32] that the B-meson tuned amu=d reproduces the mass of
Σb baryon but not that of Λb. Therefore, we tuned amu=d to
two different values depending on the construction of the
pairs ½ud� and ½bu� or ½bd�. The motivation to do so
followed from the observation that substantial mass differ-
ence exists among singly heavy baryons having same quark
content and same JP. For instance, the mass differences
between the JP ¼ 1

2
þ pairs ðΛb;Σb½bdu�Þ, ðΛc;Σc½cdu�Þ,

ðΞb;Ξ0
b½bsu�Þ, and ðΞc;Ξ0

c½csu�Þ are in the range 110–
190MeV. TheΛb,Λc, Ξb, and Ξc baryons are characterized
by the spin of the ½l1l2� (where l1;2 ∈ u, d, s) light-light
diquark sl ¼ 0, while Σb, Σc, Ξ0

b, and Ξ0
c by sl ¼ 1. This

differences in their wave functions alone cannot generate
such mass differences [36] but can at most account for a
difference of about 30 MeV. The heavy hadron chiral
perturbation theory calculations [37,38] for ΛQ and ΣQ,
where Q ∈ b, c, demonstrated that the mass differences get
large correction of the order ≈150 MeV. A correction of
similar magnitude is anticipated in our NRQCD-HISQ
heavy baryon/tetraquark systems, but the relevant χPT for
which is yet to be available. To include such a correction in
our calculations, we propose this unique method of tuning
the ½ū d̄� diquark system to Λb-baryon and ½bū� to Bmeson.
In the present paper, we try to understand this tuning

scheme in more details with the help of relativized quark
model [39,40] and Hartree-Fock calculation. The basic idea
is that amu=d has to be tuned to two different values
corresponding to two different constructions of the pairs
½ū d̄� and ½bū�. In the operator OD ≡ ½bb�½ū d̄�, the anti-
diquark part formed with two light u=d quarks is the same
that appear in the baryonic operator Λb ≡ ðuTCγ5dÞb, and
hence, we use experimental Λb mass 5620 MeV to tune the
bare amu=d. For the operators OM1=M2

, the diquark part is
formed between heavy quark and light antiquark ½bū�
which is the same as in the B meson ðb̄γð5;kÞuÞ or
Σb ≡ ðQTCγ5uÞu. In such case, we tend to use B-meson
mass 5279 MeV to tune the amu=d.
For OD, we have exclusively used amu=d tuned from Λb

where as for determining the lattice tetraquark thresholds
B − B� it is B tuned. But OD, OM1

, OM2
all have the

same quantum numbers and, therefore, expected to mix
and contribute to the finite volume lattice bound states.

TABLE I. MILC Nf ¼ 2þ 1 Asqtad configurations used in
this work. The gauge coupling is β and the lattice spacing is a.
The u=d and s sea quark masses are ml and ms, respectively, and
the lattice size is L3 × T. The Ncfg is number of configurations
used in this work.

β ¼ 10=g2 aðfmÞ aml ams L3 × T Ncfg

6.572 0.15 0.0097 0.0484 163 × 48 600
6.76 0.12 0.0100 0.0500 203 × 64 600
7.09 0.09 0.0062 0.0310 283 × 96 300

TABLE II. Tuned b and u=d quark bare masses for lattices used
in this work. For u=d quark mass, we mention the particle states
used to tune.

Tuning 163 × 48 203 × 64 283 × 96
Quark Hadron (0.15 fm) (0.12 fm) (0.09 fm)

amb ϒ − ηb 2.76 2.08 1.20
amu=d Λb (5620) 0.105 0.083 0.064
amu=d B (5280) 0.155 0.118 0.087
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When looking for such bound states, we will be using
Λb-tuned amu=d for all the operators. However, while
searching for purely molecular states, in light of Hartree-
Fock calculation in Sec. IV B below, we entirely omit OD
and worked only with theOM1=M2

operators using just the B
tuning.
This differently tuned amu=d gave consistent result in

[32] and expect to repeat the same in this work. The results
of u=d quark mass tuning that are made use of in this work
is given in Table II.
Before we calculate the spectra of the jDi, jM1i, jM2i

tetraquark states defined in Sec. IV C, in the following
subsection IV B we try to understand the diquark-
dependent different tuning of the light u=d quark masses.
For this, we consider Schrödinger Hamiltonian for (a)
hydrogenlike system, namely, Bmeson with an ū antiquark
in the potential of a static b quark and (b) heliumlike
system, which is Λb baryon with u, d quarks in the same b
quark field.

B. Hartree-Fock calculation of tetraquark states

In order to gain a qualitative understanding of two
different tunings of mu=d, we consider the light antiquark
and light-light diquark in the potential of heavy, nearly
static color source, the b quark(s). This picture is akin to
hydrogen and heliumlike quantummechanical systems. For
the molecular tetraquark states, the basic assumption is that
the light antiquark wave functions do not have significant
overlap with each other and they are effectively in the
potential of their respective heavy b quarks [21], i.e., a two
B-meson-like system. But for the diquark-antidiquark
tetraquark state ½bb�½ū d̄� where antidiquark component is
similar to the Λb light-light diquark, we tune the u=d quark
mass using the Λb baryon. The situation is depicted
schematically in Figs. 1 and 2. The relevant interpolating
operators for Λb and B meson are fairly standard, but for
HISQ light quarks a whole array of bottom baryon
operators, including Λb can be found in [32].
The relativized quark model [39,40] helps us to numeri-

cally calculate the masses of B meson and Λb baryon using
the light (anti)quark mass as parameter. The molecular
tetraquark state can be visualized as two B-meson molecule
as shown in Fig. 1. Then, for each B meson, the light u=d

antiquark is taken to be in the field of “static” b quark and
we solve the problem by considering the radial part of the
Schrödinger equation numerically using suitably modified
Herman-Skillman code [41],

−
1

2mu=d

d2UðrÞ
dr2

þ VðrÞUðrÞ ¼ EUðrÞ: ð20Þ

Here UðrÞ ¼ rψðrÞ and the potential VðrÞ is given by

VðrÞ ¼ −
4α

3r
þ βr: ð21Þ

The B-meson mass MB is, therefore, determined from the
energy eigenvalue E,

MB ¼ mb þmu=d þ E; ð22Þ

where mb¼4.18GeV (MS) is the mass of the bottom
quark, α¼π=16 [22], and β¼0.18GeV2 [39]. For MB ¼
5.279 GeV, the light quark mass obtained is mu=d ≈
0.227 GeV.
For Λb baryon, we used Hartree-Fock method [42,43] to

solve heliumlike Hamiltonian,

H ¼ −
1

2mu=d
∇2

1 −
2α

3r1
þ βr1

2
−

1

2mu=d
∇2

2 −
2α

3r2
þ βr2

2

−
2α0

3r12
þ β0r12

2
; ð23Þ

where r12 is the relative distance between two light quarks
“orbiting” the heavy quark and their interaction potential is
the last two terms in Eq. (23) with coefficient α0 and β0.
For the Hartree-Fock calculation of the energy E, we take
β0 ¼ β and α0 ¼ 0.6 [39].
To solve the Hamiltonian (23), we consider the trial wave

function, which is space symmetric and spin antisymmet-
ric, in terms of Slater determinant,

ΨHF ¼ 1ffiffiffi
2

p
���� χ1ðx1Þ χ1ðx2Þ
χ2ðx1Þ χ2ðx2Þ

����; ð24Þ

where xi ≡ ðr⃗; sÞ collectively denotes the space and spin
indices, χiðr⃗; sÞ ¼ ϕisðr⃗ÞSðsÞ with ϕðr⃗Þ being the 1S state.

FIG. 1. Molecular tetraquark state viewed as bound state of two
B mesons, which is similar to two hydrogen atoms forming a
hydrogen molecule. FIG. 2. Schematic diagram of heliumlike Λb and ½bb�½ū d̄�

tetraquark state used for Hartree-Fock treatment.
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Therefore, the expectation value of the Hamiltonian can be
written as

hΨHFjHjΨHFi

¼ hTiþ
Z

ρðr⃗ÞVextðr⃗Þdr⃗−
Z0

2

ZZ
ρðr⃗Þρðr⃗1Þ
jr⃗− r⃗1j

dr⃗dr⃗1

þB0

2

ZZ
ρðr⃗Þρðr⃗1Þjr⃗− r⃗1jdr⃗dr⃗1

þZ0

2

X
i;j;s

ZZ
ϕ⋆
isðr⃗Þϕ⋆

jsðr⃗1Þϕisðr⃗1Þϕjsðr⃗Þ
jr⃗− r⃗1j

dr⃗dr⃗1

−
B0

2

X
i;j;s

ZZ
ϕ⋆
isðr⃗Þϕ⋆

jsðr⃗1Þϕisðr⃗1Þϕjsðr⃗Þjr⃗− r⃗1jdr⃗dr⃗1;

ð25Þ
where we have used

hTi ¼
X
i;s

hϕisðr⃗Þj −
1

2mu=d
∇2jϕisðr⃗Þi

ρðr⃗Þ ¼
X
i;s

jϕisðr⃗Þj2; Vextðr⃗Þ ¼ −
2α

3r
þ βr

2

Z0 ¼ 2α0

3
and B0 ¼ β0

2
:

In contrast to the helium atom, the presence of linear
r-terms in the Hamiltonian leads to additional exchange-
energy terms in the calculation. With these linear r-terms
in, the Hartree-Fock equation becomes

Eϕisðr⃗Þ ¼
�
−

1

2mu=d
∇2 þ Vextðr⃗Þ − Z0

Z
ρðr⃗1Þ
jr⃗ − r⃗1j

dr⃗1

þ B0
Z

ρðr⃗1Þjr⃗ − r⃗1jdr⃗1
�
ϕisðr⃗Þ

− B0X
j;s

Z
ϕ⋆
jsðr⃗1Þϕisðr⃗1Þϕjsðr⃗Þjr⃗ − r⃗1jdr⃗1

þ Z0X
j;s

Z
ϕ⋆
jsðr⃗1Þϕisðr⃗1Þϕjsðr⃗Þ

jr⃗ − r⃗1j
dr⃗1: ð26Þ

We solve for E in Eq. (26) iteratively and, eventually, the
Λb mass is calculated from

MΛb
¼ mb þ 2mu=d þ E: ð27Þ

The PDG value of Λbð5620Þ is obtained by setting the
mu=d to 0.157 GeV. In Table III, we compare the non-
perturbatively tuned mu=d on our lattices with those
obtained by solving the Eqs. (20) and (26). The bare lattice
light quark masses cannot be directly compared to the
parameter mu=d in these equations mainly because of the
use of renormalized b quark mass (in MS scheme) in
the Hartree-Fock calculation. Therefore, the mu=d’s in the

above calculation return a sort of “renormalized constitu-
ent” quark mass. Nonetheless, it is obvious that we need
two differentmu=d for two different systems, namely, B and
Λb. So, by comparing the two sets, we simply wish to point
out that the lattice tuned mu=d’s are in same order of
magnitude as Schrödinger equation-based quark model but
have a difference of 10%–15%. This helps us to understand
the possible physics behind two different tunings of light
quark mass in determining the masses of single bottom
hadron(s) and double bottom tetraquark.

C. bbū d̄ spectrum

A plot of variation of bbū d̄ mass with various amu=d,
including the Λb- and B-tuned values is shown in Fig. 3.
Here we make a naive comparison of our data with the
earlier quark model, lattice calculations, and the PDG
values, and it shows an interesting trend.
Firstly, PDG Zb, Z0

b and the lattice states, consisting of
½bb�=½b̄ b̄� heavy tetraquark systems, are clustered around
two different masses. Our data at B-meson tuning point
coincides with the PDG Zbð10610Þ and Z0

b (10650) states
aligning with the idea that they decay mostly into B̄B� and

TABLE III. Comparison of mu=d obtained from various lattices
with quark mass parameters in Eqs. (20) and (26).

B meson:
mu=d ¼ 227 MeV

Λb baryon:
mu=d ¼ 157 MeV

Lattice amu=d mu=d (MeV) amu=d mu=d (MeV)

163 × 48 0.155 204 0.105 138
203 × 64 0.118 194 0.083 137
283 × 96 0.087 191 0.064 143

FIG. 3. Variation of bbū d̄ mass at various amu=d in 163 × 48
lattice. Λb-tuned tetraquark states almost overlap with many of
the quark model and lattice calculations, namely, Eichten and
Quigg [8], Leskovec at al. [18], Junnarkar et al. [17], Francis
et al. [15,16], and Karliner and Rosner [44]. The B-tuned states
instead coincide with Zb, Z0

b PDG results [45].
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B̄�B�, respectively, possibly indicating molecular nature of
the state. However, our tetraquark state with Λb tuning
overlaps mostly with other lattice results indicating the
possibility of capturing a bound tetraquark state ½bb�½l̄1l̄2�
much like the b½ll� state of Λb. The effective masses of the
states, obtained from OD and OM1

, when compared with
the B − B� threshold, we find jDi to exhibit a shallow
bound state while jM1i is just marginally above. The
majority of the lattice results [15–18] are found to be
below this threshold as is obvious from Fig. 3.
To this end, in Fig. 4, we plot the effective masses

of these two states obtained at different lattice spacings.
The colored bands represent fitted ameff values. The super-
scripts Λb and B denote the light quark tuning. The dotted
lines represent the lattice thresholds. The lattice threshold is
defined as MB þMB� of the noninteracting B − B� system
and consequently constructed entirely from B-meson tuned
amu=d and ϒ − ηb tuned mb. We want to mention here in
passing that on two occasions we used Λb tuning for
operators OM1=M2

—(i) to choose t0 for GEVP analysis

and (ii) to determine relative contribution to the bound
tetraquark ground state.
In Table IV, we present our results of the tetraquark states

corresponding to the operators given in the expressions
(11), (12), (13). We call these states O†

XjΩi≡ jXi as trial
states, which will later be subjected to variational analysis.
The jΩi is the vacuum state. We use two-exponential
uncorrelated fit to the correlation functions, the fitting
range being chosen by looking at the positions of what we
consider plateau in the effective mass plots. In the columns
showing various lattices, we present the masses both in
lattice unit aElatt and physical unit Mlatt in MeV, the
notations being introduced in Eq. (6). The errors quoted
are statistical, calculated assuming the lattice configura-
tions of different lattice spacings are statistically uncorre-
lated. The second column shows the tuning used for the
corresponding states. In the last column, we provide the
masses averaged over all the lattice ensembles.
From Fig. 4 and Table IV, it is clear that the trial state

generated by our OD operator is below B − B� threshold
which possibly indicates a bound state. On the other hand,
the states forOM1

andOM2
are just above it. We tabulate the

difference of the masses from their respective thresholds
ΔMD=M1=M2

¼ MD=M1=M2
−MB −MB� in Table V. In this

table, we calculated the following correlator ratio to
determine the mass differences which give us an estimate
of the binding energy [46],

CX−B−B� ðtÞ ¼ CXðtÞ
CBðtÞ × CB�ðtÞ ∼ e−ðMX−MB−MB� Þt: ð28Þ

It has been observed [47] that the expression (28) used to
determine ΔMX can possibly lead to false plateaus because
of B − B⋆ scattering states contributing differently in jDi,
jM1i, jM2i excited states which might persist at large t. In
the present analysis, we have assumed these contributions
are of same order of magnitude and cancel each other at
moderately large t.
In the last column of Table V, we calculate our lattice

average of ΔMX in MeV and compare with some of the
previous lattice results. To our knowledge, the binding
energies of the jM1i and jM2i states have been calculated

FIG. 4. Effective mass plot of the states of the operatorsOD and
OM1

calculated on 163 × 48, 203 × 64, and 283 × 96 lattices.
Dashed lines are B − B� thresholds for different lattices; see
Table IV. For easy viewing, the effective masses and thresholds
on 203 × 64 (purple colored) are multiplied by a common factor
of 0.85, while that of 283 × 96 (green colored) by 0.70.

TABLE IV. Masses of tetraquark states for different amu=d tuning in lattice unit aElatt andMlatt in MeV. We also include the B and B�
states that are used for threshold calculation.

163 × 48 203 × 64 283 × 96 Average

Operators Tuning aElatt Mlatt aElatt Mlatt aElatt Mlatt (MeV)

OD ¼ ½bb�½ū d̄� Λb 1.944(5) 10418(7) 1.852(3) 10422(5) 1.803(5) 10407(11) 10417(9)
OM1

¼ ½bū�½bd̄� B 2.133(7) 10667(10) 1.977(4) 10628(5) 1.892(6) 10602(13) 10638(27)

OM2
¼ ϵijk½bū�j½bd̄�k B 2.124(7) 10655(8) 1.974(4) 10623(5) 1.890(5) 10560(10) 10623(35)

OB ¼ bγ5ū B 1.022(3) 5274(4) 0.974(3) 5290(3) 0.931(3) 5268(3) 5279(10)
OB� ¼ bγkū B� 1.032(3) 5288(4) 0.980(3) 5300(4) 0.938(2) 5284(3) 5292(8)

MB þMB� 2.054(3) 10562(4) 1.954(3) 10590(5) 1.869(3) 10552(4)
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in the framework of chiral quark model [48] for B − B̄� and
B� − B̄� states but there are no lattice results. The binding
energies for the first excited states, along with the ground
states, obtained on different lattice ensembles are given in
[18]. Though their tuning of light quarkmass is very different
compared to ours, still we can use their result as a reference.
Our binding energy for the bound tetraquark state

jDið½bb�½ū d̄�Þ lies somewhere in the middle of the pre-
viously quoted lattice results. The statistical errors of the
molecular states jM1i and jM2i are rather large, but still
they tentatively indicate nonbound molecular nature of
the states. We will revisit the binding energy calculation
for the molecular state(s) after variational analysis of the
OM1

×OM2
correlation matrix.

As we know, on lattice the states having the same
quantum numbers can mix and, therefore, a GEVP analysis
can help resolve the issue of mutual overlap of various
states on the energy eigenstates. In this work, rather than
the energies of the eigenstates, we are more interested to
learn the overlap of our trial states, namely, jDi, jM1i, and
jM2i on the first few energy eigenstates, where j0i is the
ground and j1i, j2i, etc. are the excited states.

D. Variational analysis

For the two-bottom tetraquark system with quantum
number 1þ, we consider the three local operators—good
diquarkOD, molecularOM1

, and vector meson kindOM2
as

defined above in the expressions (11)–(13)—to capture the
ground state ðj0i; E0Þ and possibly the first excited state
ðj1i; E1Þ.
As is generally understood, these operators are expected

to have overlap with the desired ground and excited states

of the tetraquark system of our interest. The variational
analysis can be performed to determine the eigenvalues and
the eigenvectors from the states formed by lattice operators.
This is typically achieved by constructing a correlation
matrix involving the lattice operators OX and OY ,

CXYðtÞ¼ hOXðtÞO†
Yð0Þi¼

X∞
n¼0

hΩjOXjnihnjO†
Y jΩie−Ent;

ð29Þ

where X, Y can be any two combinations of D, M1, M2 in
the expressions (11)–(13). The terms hnjO†

XjΩi are the
coefficients of expansion of the trial states O†

XjΩi, written
in terms of the energy eigenstates jni as

O†
XjΩi ¼

X
n

jnihnjO†
XjΩi≡

X
n

Zn
Xjni: ð30Þ

Presently, we are interested in expressing the energy
eigenstates in terms of the trial states to understand the
contribution of each to the former. If we confine ourselves
to the first few energy eigenstates, we can write

jmi ¼
X
X

vXmO
†
XjΩi ⇒ hljmi ¼ δlm ≈

X
X

vXmZl
X: ð31Þ

The vXm are equivalent to the eigenvector components
obtained by solving GEVP with respect to a suitably
chosen reference time t0 [12],

CðtÞvmðt; t0Þ ¼ λmðtÞCðt0Þvmðt; t0Þ: ð32Þ

The eigenvalues λmðtÞ are directly related to the energy of
themth state, i.e., ground and the first few excited states, of
our system through the relation

λmðtÞ ¼ Ame−Emðt−t0Þ: ð33Þ

The component of eigenvectors vmðt; t0Þ gives information
about the relative overlap of the three local operators to the
mth eigenstate. The eigenvectors vm’s are normalized to 1.
To determine the parameter t0, we solve the GEVP and

found that the ground and excited state energies are almost
independent for t0 ¼ 3, 5, 7, 9 as demonstrated in Fig. 5. In
this plot, we showed our results for Λb-tuned amu=d for all
the operatorsOX. As discussed before, we have used theΛb
tuning whenever all three OD, OM1

, OM2
operators are

made use of. We chose t0 ¼ 5 for our calculations. To
cross-check our choice of t0, we also haveB-tuned runs and
found it to be consistent.
The GEVP analysis has been carried out in two steps

because of differences in the tuning of amu=d for the
molecular states jM1i, jM2i and good diquark state jDi.
In the first step, we will do a GEVP with the B-tuned

TABLE V. Mass differences of bound jDi and molecular jM1i,
jM2i trial states from B − B� threshold. The subscript X denotes
any of the D, M1, M2. The ΔMX are calculated from the masses
and threshold given in Table IV.

Operators Lattices aΔMX ΔMX (MeV) ΔMX (MeV)

OD 163 × 48 −0.125ð12Þ −164ð16Þ −167ð19Þ
this work

203 × 64 −0.108ð10Þ −177ð16Þ −215ð12Þ [44]
283 × 96 −0.070ð10Þ −155ð22Þ −189ð10Þ [15]

−143ð34Þ [17]
−128ð34Þ [18]

OM1
163 × 48 0.070(12) 92(16) 65(29)

this work
203 × 64 0.026(11) 43(18) See Table VI

[18]
283 × 96 0.024(9) 53(20)

OM2
163 × 48 0.070(16) 92(21) 63(30)

this work
203 × 64 0.022(9) 36(20)
283 × 96 0.020(10) 44(21)
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molecular operators and determine the difference of its
lowest energy state from the threshold, as these states are
found to coincide with experimentally observed states. In
the next step, we have done the GEVP analysis with all
three operators using Λb tuning to understand the state(s)
below the threshold.
In Table VI, we have shown our GEVP results of

B-tuned OM1
×OM2

and the Λb-tuned OD ×OM1
×OM2

correlation matrices. The energy eigenstates E0;1;2 corre-
spond to the Em of the expression (33). In Table VII, we
calculated the energy difference of the eigenstates j0i; j1i,
etc., from their corresponding thresholds. We often find
the energies of the highest states are very noisy and

consequently the separation from the thresholds ΔE have
large errors, hence their entries are kept vacant. We can
only reliably quote the lowest for 2 × 2 and first two lowest
energies for 3 × 3 correlator matrices.
Next, we look at the contribution of OM1

and OM2
in

constructing the lowest molecular energy eigenstate j0i.
In Fig. 6, we plot the histogram of the components of
normalized eigenvectors v0 ¼ ðvM1

0 ; vM2

0 Þ corresponding to
the lowest energy E0 for all three lattices. Assuming that the
coefficients vM1;M2

0 approximately remain the same on all
time slices and for all the individual gauge configurations
of an ensemble, the histogram figures are obtained by
plotting theM1,M2 components of normalized eigenvector
v0 for all time points and individual gauge configurations.
As is expected, all three lattices return identical histogram
of the coefficients and hence, in the subsequent histogram
plots we will show only the results from 283 × 96. The
eigenvector component vM1

0 shows a peak around 0.9
indicating the lowest energy state j0i receives dominant
contribution from jM1i trial state. We recall here that OM1

corresponds to the B − B� molecular state as defined
in Eq. (11).
However, the first excitation j1i, for which our data are

rather noisy to reliably estimate ΔE, the jM1i and jM2i
states appear to have comparable contribution and are
broadly distributed over different time slices and vary
significantly over configurations. This is evident from
the histogram plot in Fig. 7. This may have a bearing
with the fact that above the threshold, the Zb tetraquark can
couple to multiple decay channels resulting in a broad
spectrum.

FIG. 5. Variation of ground and excited state energies Em of
Eq. (33) with t0, obtained by solving 2 × 2 GEVP of the
correlation matrices OM1

×OM2
, OD ×OM1

, and OD ×OM2
.

In this plot, we used Λb-tuned amu=d for all the operators.

TABLE VI. Energy eigenvalues in lattice unit from GEVP analysis of the B-tuned OM1
×OM2

and Λb-tuned OD ×OM1
×OM2

.

Correlation matrix Tuning Energy 163 × 48 203 × 64 283 × 96

OM1
×OM2

B meson E0 2.063(10) 1.959(12) 1.888(7)
E1 2.071(10) 1.969(20) 1.906(18)

OD ×OM1
×OM2

Λb baryon E0 1.898(7) 1.846(5) 1.784(12)
E1 1.905(10) 1.851(7) 1.816(8)
E2 1.917(18) 1.856(15) 1.820(22)

TABLE VII. Energy differences from the B − B� threshold of the GEVP values of Table VI for the OM1
×OM2

and Λb-tuned
OD ×OM1

×OM2
correlation matrices. Threshold values are taken from Table IV.

OM1
×OM2

OD ×OM1
×OM2

Lattice Unit Threshold ΔE0 ΔE1 ΔE0 ΔE1 ΔE2

163 × 48 Lattice 2.054(3) 0.010(7) 0.016(6) −0.154ð10Þ −0.149ð15Þ −0.137ð23Þ
(0.15 fm) MeV 10562 13(9) 21(8) −202ð13Þ −196ð20Þ � � �
203 × 64 Lattice 1.954(3) 0.010(9) � � � −0.110ð9Þ −0.104ð10Þ −0.099ð19Þ
(0.12 fm) MeV 10590 16(15) � � � −181ð15Þ −173ð17Þ � � �
283 × 96 lattice 1.869(3) 0.012(10) � � � −0.085ð10Þ −0.053ð10Þ � � �
(0.09 fm) MeV 10552 26(22) � � � −186ð22Þ −117ð22Þ � � �
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Including OD along with the OM1
and OM2

to form a
3 × 3 correlation matrix requires using Λb-tuned amu=d in
all three trial states. When we are exploring pure molecular
states, we have used just OM1

×OM2
correlation matrix

with B tuning. But for the bound state(s) the OM1
and OM2

operators are likely to have contributions to the bound
ground state along with theOD. Certainly, a B-tuned bound
jDi state above threshold is not well defined and we find it
has statistically small and varying overlap with the energy
eigenstates much like in Fig. 7. On the other hand,
Λb-tuned molecular states can possibly have finite overlap

to the states below the threshold. However, we always
expect dominance of jDi in j0i because of the difference in
construction of wave functions of jM1i and jM2i. The
histogram of the eigenvector components of 3 × 3 corre-
lation matrix is shown in Fig. 8 for 283 × 96 lattices. The
lowest energy eigenstate j0i is clearly dominated by jDi
showing peak around 0.8, although it receives sizable
overlap from both jM1i and jM2i peaking around 0.45.
But overlap of jDi on j1i is rather small and it is mostly
molecular jM1i despite the excited state energy E1 is below
the threshold. Our data for j2i are too noisy to extract
much information. Based on this Λb-tuned 3 × 3 GEVP
analysis, the binding energy for the ground state obtained
is −189ð18Þ MeV.

FIG. 7. The histogram plot of vM1

1 and vM2

1 that define the
energy eigenstate j1i ¼ vM1

1 jM1i þ vM2

1 jM2i.

FIG. 6. The histogram plots of the normalized components
ðvM1

0 ; vM2

0 Þ which define the energy eigenstate j0i¼vM1

0 jM1iþ
vM2

0 jM2i.

FIG. 8. Histogram plots of the normalized eigenvector compo-
nents vX0 , v

X
1 , and vX2 of 3 × 3 correlation matrix, where X ¼ D,

M1, M2, on 283 × 96 lattice.
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V. SUMMARY

In this work, we have attempted to study two possible
bbū d̄ tetraquark states—one which is bound and where
most other lattice results are centered and the other close to
where PDG reports of Zb and Z0

b are. The experimentally
observed states are believed to contain a bb̄ pair but ours is
bb pair which is considered as theoretically simpler.
However, the possible molecular nature of Zb and Z0

b
suggests that our molecular states can have similar masses.
For the bottom quarks, we have used NRQCD action while
HISQ action for the u=d quarks. This NRQCD-HISQ
combination has been employed earlier in [28] for bottom
meson and recently in [32] for bottom baryons. We have
constructed the three lattice 1þ trial states: a bound jDi
containing good diquark 3c configuration and two meson-
meson molecular jM1i, jM2i with the expectation that they
will contribute to the states above B − B� threshold. There
are not many lattice results on the states above threshold
possibly because of the complication that they can couple
to multiple decay channels besides B�B̄ and B�B̄�. Our
motivation here is to obtain a tentative estimate of the jM1i,
jM2i states above threshold and their relative overlap with
the bound state below the threshold.
An important component of the present investigation is

the tuning of the light u=d quark mass. Depending on the
wave function of the operators, we need two different
tuning of the u=d mass. For the operators made of heavy-
light ½bl̄� mesonic wave functions, we find it is necessary to
tune aml to match bl̄ meson observed mass. Similarly, for
light-light diquark ½l1l2�, where l1 and l2 may or may not be
equal, in the presence of one or more heavy b quarks the
amli is tuned with Λb. We applied this approach with fair
success in bottom baryon [32] and presently with double
bottom tetraquark we attempted the same. In order to
understand and explain these two different tuning, we solve
the quantum mechanical Hamiltonians of B-meson system,
where a single light antiquark is in the potential of a static
bottom quark, and the Λb-baryon system, where the two
light quarks are in the same field of the static b quark. In
this problem, b mass is the experimental mass and the light
quark mass is treated as a parameter which is tuned to

reproduce the experimental B and Λb masses. We find that
the meson and baryon systems are solved for two different
light quark masses which justify our need for two different
tunings. However, the actual numbers from these two sets
of light quark masses, one from solving the Schrödinger
equation and the other lattice tuned, cannot be compared
directly due to two different b masses used in these two
instances.
Once tuned, we find the spectra of the lattice states

jDi; jM1i, and jM2i. Naive calculation of hODO
†
Di spec-

trum yields a bound state −167ð19Þ MeV measured from
the B − B� threshold. On lattice, states having the same
quantum numbers can mix and, therefore, it is natural to
construct correlation matrices to solve the generalized
eigenvalue problem in order to obtain the first few lowest
lying energies. Besides, the components of the eigenvectors
provide the relative contribution of the trial states, corre-
sponding to the lattice operators, to the energy eigenstates.
They are the coefficient of expansion of the eigenstates
when expressed in terms of trial states as shown in Eq. (31).
The GEVP analysis reveals that tetraquark molecular state
just above the threshold by only 17(14) MeV is dominated
by jM1i lattice state, while the lowest lying bound state
receives dominant contribution from jDi along with sig-
nificantly large contribution from both jM1i and jM2i.
From 3 × 3 Λb-tuned correlation matrix, we get our final
binding energy number for bbū d̄ tetraquark system to be
−189ð18Þ MeV, where the error is statistical.
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