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Quantum computers have the potential to explore the vast Hilbert space of entangled states that play an
important role in the behavior of strongly interacting matter. This opportunity has motivated reconsidering
the Hamiltonian formulation of gauge theories, with a suitable truncation scheme to render the Hilbert
space finite-dimensional. Conventional formulations lead to a Hilbert space largely spanned by unphysical
states; given the current inability to perform large scale quantum computations, we examine here how one
might restrict wave function evolution entirely or mostly to the physical subspace. We consider such
constructions for the simplest of these theories containing dynamical gauge bosons—U(1) lattice gauge
theory without matter in d ¼ 2, 3 spatial dimensions—and find that electric-magnetic duality naturally
plays an important role. We conclude that this approach is likely to significantly reduce computational
overhead in d ¼ 2 by a reduction of variables and by allowing one to regulate magnetic fluctuations instead
of electric. The former advantage does not exist in d ¼ 3, but the latter might be important for
asymptotically-free gauge theories.

DOI: 10.1103/PhysRevD.102.094515

Wilson’s path integral construction provides a non-
perturbative definition of lattice gauge theory and an
efficient computational tool for some types of calculations.
However, even for quantum chromodynamics (QCD) many
properties elude a first-principles understanding, such as
the phase diagram at finite chemical potential, real-time
dynamics, topological properties, and the structure of all
but the lightest nuclei. Such investigations entail sign
problems that are exponentially hard to solve on a classical
computer. Quantum computers offer hope for surmounting
these obstacles and a number of papers have proposed
using the Kogut-Susskind [1] lattice Hamiltonian ĤKS as a
starting point for the study of gauge theories, introducing a
cutoff on the electric field (in addition to the finite lattice
spacing) in order to render the Hilbert space H finite-
dimensional [2–4] (for discussions of Hamiltonian lattice
gauge theory, see [5,6]). The vast majority of states inH are
unphysical; the physical space is limited to those obeying
Gauss’s law, which we will call Hphys ⊂ H.

There are a couple of drawbacks to this approach which
we address here: (i) It appears preferable to work entirely in
Hphys if possible, in order to require fewer qubits and to
avoid computational errors causing states initially in Hphys

to evolve into the much larger space of unphysical states;
(ii) A cutoff on electric fields is appropriate for strong
coupling, for which electric fluctuations are suppressed, but
is not ideal for weak coupling, such as one would encounter
in the continuum limit for any gauge theory in d < 3, or
asymptotically-free theories in d ¼ 3, where d is the spatial
dimension. Instead, a cutoff on magnetic fluctuations would
likely be amore efficient regulator, allowing one to approach
the continuum limit with a smaller Hilbert space. In this
paper we examine these issues in two of the simplest gauge
theories—U(1) theories without matter in d ¼ 2 and
d ¼ 3—and find that both concerns lead directly to a
formulation of the electromagnetic dual theory. Dualities
in lattice gauge theories are as old as lattice gauge theory
itself [7–19] and experienced a surge of interest during the
early days of Hamiltonian lattice gauge theory. While the
dual theories encountered below are not of direct physical
interest, they are simple enough to clearly illustrate a subset
of the issues that must be faced when simulating U(1) gauge
theories with matter, or non-Abelian gauge theories.

I. U(1) HAMILTONIAN AND HILBERT SPACE

TheHamiltonian for aU(1) gauge theory in the continuum
is Ĥ ¼ ð1=2Þ R ddxðÊ2 þ B̂2Þ, where the electric field
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operator Êi is the conjugate momentum for the vector
potential Âi. Here we consider compact U(1) gauge theory
formulated on a spatial lattice L with lattice spacing as,
periodic boundary conditions, and coordinates fn;l; p; cg
for sites, links, plaquettes, and cubes, respectively. Compact
U(1) theory is interacting at finite as; because time and space
are treated asymmetrically, there are two coupling constants
gt;s which must be independently renormalized, with dimen-
sionless couplings defined as g̃2t;s ¼ a3−ds g2t;s. The continuum
limit is equivalent to g̃2t;s → 0 for d < 3 (as well as for
asymptotically-free non-Abelian gauge theories in d ¼ 3).
We fix A0 ¼ 0 gauge, and replace the vector potential AðxÞ
by a unitary operator Ûl ¼ expð−igsasÂlÞ on every link;
Ûl can be thought of as the coordinate operator for a
particle moving on the group manifold. The space H can
be represented in the coordinate basis of product states
⊗l jUli, where jUli at each link l is an eigenstate of Ûl
with eigenvalueUl, which is a phase. Alternatively, one can
work in themomentumbasis, which diagonalizes the electric
fieldEl also residing on the links. The rescaled electric field

Êl ≡ a
dþ1
2
s

g̃s
Êl ð1Þ

satisfies the commutation relation

½Êl; Ûl0 � ¼ δl;l0Ûl; ð2Þ

and has integer eigenvalues εl, analogous to the angular
momentum of a particle on a circle. H can then be
represented in the electric field basis of product states ⊗l
jεli and regulated in a gauge-invariant way by restrict-
ing fluctuations of the electric field, jεlj ≤ N for some
cutoff N [2].
Our starting point for the lattice Hamiltonian is Ĥ ¼

ĤE þ ĤB, with

ĤB ¼ 1

2as

�
1

g̃2s

X
p

ð2 − P̂p − P̂†
pÞ
�
;

ĤE ¼ 1

2as

�
g̃2t
ξ2

X
l

ð2 − Q̂l − Q̂†
lÞ
�
; ð3Þ

where we define

Q̂l ≡ eiξÊl ; P̂n;ij ≡ Ûn;iÛnþei;jÛ
†
nþej;i

Û†
n;j: ð4Þ

Here ĤB is conventional with P̂p being the usual plaquette
operator, but in ĤE we have introduced the dimensionless
parameter ξ for convenience, where Eq. (3) yields the
Kogut-Susskind Hamiltonian ĤKS in the limit ξ → 0. This
is similar to the Hamiltonian for ZðNÞ gauge theory in [15].
The parameter at ≡ ξas can be thought of as a “temporal

lattice spacing,” and additional irrelevant terms subleading
in at could be added, but the above symmetric form suits
our purposes best. Equation (2) implies that Û acts as a
raising operator for the electric quantum number, and
can be expressed in the electric field basis as Û ¼P

ε jεþ 1ihεj. The action of P̂, therefore, is to create an
oriented loop of unit electric flux around the edge of the
plaquette, while P̂† creates a unit loop in the opposite
direction. At the same time, P̂ measures magnetic field, the
phase of its eigenvalue being the magnetic flux through the
plaquette to leading order in as. The above form for Ĥ is
bounded and written as a sum of unitary operators, which
may be convenient for simulation by quantum walks [20].
Note that fluctuations in the magnetic field are large at

strong coupling, while electric fluctuations are large at
weak coupling. This is similar to the case of a harmonic
oscillator with mass m and spring constant k, where
hx̂2i ∝ 1=

ffiffiffiffiffiffiffi
km

p
, while hp̂2i ∝ ffiffiffiffiffiffiffi

km
p

, the operators x̂, p̂
being analogues of B̂; Ê respectively, while m ∼ 1=g̃2t
and k ∼ 1=g̃2s . In other words, this analogy suggests
hE2i ∼ ðg̃tg̃sÞ−1. Thus, regulating the theory with a cutoff
on electric field values may be a costly choice for gauge
theories in d < 3, and asymptotically free gauge theories in
d ¼ 3, as approaching the continuum limit would require
an ever-increasing truncation level.
The physical subspaceHphys ⊂ H consists of those states

obeying the Gauss law constraint ∇⃗ · E⃗ ¼ 0, i.e., those
states invariant under spatial gauge transformations. On the
lattice, the analogue constraint is that at each lattice site the
product of the Q̂ on each outgoing link and Q̂† on each
incoming link must equal the unit operator:

� Y
l inton

Q̂l

Y
l out of n

Q̂†
l − 1̂

�
jphysi ¼ 0: ð5Þ

Most states in H violate Eq. (5) and are unphysical, and
therefore simulating Hamiltonian evolution in H will use
more qubits on a quantum computer than physically
necessary. To better understand this constraint, consider
the lattice L with periodic boundary conditions in d ¼ 2, 3
dimensions with n sites, and therefore l ¼ nd links,
p¼ndðd−1Þ=2 plaquettes, and c ¼ ndðd − 1Þðd − 2Þ=6
cubes. The Hilbert space H is characterized by the
eigenvalues of the l electric field variables, Q̂l. States
fall into topological sectors labeled by an integer-valued
d-tuple, ν ¼ ðν1;…; νdÞ designating νi units of electric flux
wrapping around the ei direction of the lattice. For a given
topological sector we have ðnþ d − 1Þ constraints on the
l ¼ nd electric field variables: (n − 1) constraints from
Gauss’s law and d from fixing the topology. Therefore
there are ½nd − ðnþ d − 1Þ� ¼ ðn − 1Þðd − 1Þ variables to
describe physical states in a particular topological sector. If
we place a cutoff on electric field values to regulate the
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theory, and assume n ≫ 1, then the minimum number of
qubits required to describe Hphys will scale as ðd − 1Þ=d
times the minimum number required for H; this ratio is
expected to be significantly smaller for non-Abelian
theories.
The benefit of restricting a computation to Hphys is not

only in reduction of qubits, but also in ensuring that
computational errors do not propagate states into the
unphysical part of H, a process that would look like
violation of charge conservation. A brute-force approach
for restricting H → Hphys is to eliminate the constrained
variables in the quantum theory by the procedure illustrated
in Fig. 1: (i) Define a maximal tree on the lattice, with
(n − 1) links; (ii) eliminate the jεli states from H for each
link in the tree; (iii) set Ûl ≡ 1 in Ĥ for each eliminated
link; (iv) recursively solve for the Q̂l in Ĥ at each
eliminated link, in terms of the Q̂’s on the free links;
(v) remove the final d links by enforcing a fixed topology ν.
The fourth step involves defining Q̂ operators on each of
the tree links as the appropriate product of the other Q̂; Q̂†

operators meeting at the same vertex, beginning at the
ends of the tree branches; fixing the topology (step five) can
be easily done at the border of the maximal tree, as
indicated in Fig. 1. The resulting Hphys on a given sector
ν is written using products of the jεli states over each of the
ðn − 1Þðd − 1Þ free links; a heavy price is paid, however, in
the loss of locality and discrete translational invariance of
the resulting Hamiltonian. We next describe an alternative
procedure, which leads directly to a duality transformation.

II. U(1) DUAL FORMULATION

States in the gauge-invariant Hilbert space can be
constructed by repeatedly applying the gauge invariant
plaquette operators to the strong coupling vacuum j0i [1],
as well as Wilson loop operators with nontrivial winding
number around the lattice, where j0i is the state annihilated

by the electric field. First we define the Polyakov loop
operators ŴðCiÞ to be the product of oriented Û link
operators along a closed loop Ci that wraps around the
lattice in the ei compact direction. We then define the state

jνi≡Yd
i¼1

ðŴðCiÞÞνi j0i; νi ∈ Z: ð6Þ

All the physical states within a topological class are then
created by acting on jνi with powers of plaquette operators:

jAiν ¼
Y
p

ðP̂pÞAp jνi; Ap ∈ Z; ð7Þ

where p runs over all p plaquette coordinates. It is evident
that jAiν ∈ Hphys for all A and ν since both the Ŵ and P̂
operators are gauge-invariant, each producing only closed
loops of electric flux. It is also easy to see that any of the
⊗l jεli basis states obeying Gauss’s law can be written in
this form. The particular choice of the Ci paths is unim-
portant, since two such paths can be deformed into each
other by the application of plaquette operators.
The fact that the dynamics of this theory is expressible in

terms of an integer-valued field could also be expected from
early studies of field theoretic partition functions with U(1)
symmetries [8,19]. Above, the dual variables arise as a
consequence of directly analyzing the form of states that are
connected to the strong-coupling vacuum by powers of ĤB.
A problem remains, and that is that the jAiν states are an

overcomplete basis for Hphys, seeing as a state in a
particular topological sector depends on p¼ndðd−1Þ=2
variables instead of the required ðn − 1Þðd − 1Þ. The
number of redundant A variables is therefore R ¼
ðd − 1Þ½1þ ðd − 2Þn=2�. For d ¼ 2, the redundancy is
R ¼ 1, independent of the number of sites n; for d ¼ 3,
R ¼ 2þ n, scaling with the volume of the lattice. These
redundancies arise because the product of plaquette oper-
ators around any closed surface is an identity operation,

expressing the discretized integral form of ∇⃗ · B⃗ ¼ 0; R
simply counts the number of independent closed surfaces.
We will deal with the redundancy by treating all of the jAiν
states as independent, then subsequently imposing the
magnetic Gauss law constraint.
The action of the Hamiltonian Eq. (3) on the jAiν states

is simple to characterize: ĤB applies plaquette operators to
the state, and therefore either raises or lowers Ap by one.
ĤE measures the electric field, which at each link is
determined by differences between the Ap for the pla-
quettes the link borders—with a possible additional con-
tribution from the Polyakov loop in Eq. (6) if the link lies
along one of the Ci curves. ĤE therefore looks like a finite
difference operator acting on Ap. The behavior of ĤB and
ĤE can be most naturally described in terms of operators

FIG. 1. An n ¼ 16 site lattice with periodic boundary con-
ditions in d ¼ 2 with nd ¼ 32 links. The ðn − 1Þ ¼ 15 links on a
maximal tree (dashed blue) are eliminated via Gauss’s law. The
d ¼ 2 links in dashed red are eliminated by constraining the net
electric flux through the dotted green lines to equal the topo-
logical quantum numbers νx;y. The remaining ðn−1Þðd−1Þ¼15

black links represent the physical variables of the theory. This
procedure generalizes to arbitrary d, n.
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on the dual lattice. We first discuss the simpler case of
d ¼ 2, where the duality transformation maps the fn;l; pg
coordinates of L to fp⋆;l⋆;n⋆g, respectively, on the dual
lattice L⋆. n sits at the center of plaquette p⋆ and n⋆ sits at
the center of p, while l⋆ and l intersect each other; we
adopt a convention where the x-links of the two lattices are
oriented anti-parallel to each other, while the y-links are
parallel. By ignoring the redundancy in our definition of
jAiν in Eq. (7), we can treatAn⋆ as an independent integer-
valued variable on each site and use product states ⊗n⋆
jAn⋆i as a basis for a Hilbert space H⋆. In terms of these
states, we can define the two local coordinate and shift
operators, Ûn⋆ and Q̂n⋆ , living on sites of the dual lattice as

Ûn⋆ ¼
X
An⋆

jAn⋆ieiξAn⋆ hAn⋆ j;

Q̂n⋆ ¼
X
An⋆

jAn⋆ þ 1ihAn⋆ j: ð8Þ

For a given topological sector ν, the matrix elements of the
Hamiltonian Ĥ of Eq. (3) between the jAiν states are
reproduced then by the dual Hamiltonian Ĥν on L⋆,

Ĥν ¼
1

2as

X
n⋆

�
1

g̃2s
ð2 − Q̂n⋆ − Q̂†

n⋆Þ

−
g̃2t
ξ2

a2sÛ
†
n⋆ΔÛn⋆

�
ðd ¼ 2Þ: ð9Þ

In this expression, Δ is a discrete covariant Laplacian
Δ ¼ Dþ

i D
−
i , where Dþ

i are the difference operators

Dþ
1 Fn⋆ ¼ ðWfn⋆;n⋆−e1gFn⋆−e1 − Fn⋆Þ=as;

Dþ
2 Fn⋆ ¼ ðWfn⋆;n⋆þe2gFn⋆þe2 − Fn⋆Þ=as; ð10Þ

D−
i ≡ −ðDþ

i Þ†, and the discrete vector gauge field W
accounts for the topological charges ν:

Wl⋆ ¼
�
eiξνi ; if l ∈ Ci;

1; otherwise;
ð11Þ

l⋆ being the link dual to l. Note that Dþ
1 is a derivative in

the −e1 direction because on L⋆ we have oriented the
x-links anti-parallel to those on L, unlike the y-links, which
are parallel. The gauge symmetry associated with W
reflects the equivalence of constructions based on different
Ci paths for the Polyakov loops in Eq. (6).
The first term in Eq. (9) arises from ĤB, while the second

arises from ĤE, and we see that the roles of the two have
been reversed: ĤB becomes an operator that translates the
value of the dual field A, while ĤE measures gradients in
A. The discrete gauge field W corresponding to the
topological electric fields of the original theory seems to

have no analogue in the original theory, but that is simply
because we did not build in topological magnetic field
loops; to do so would require a field analogous toW added
to the original Hamiltonian Ĥ.
As mentioned above, in d ¼ 2 there is one redundant

variable arising from the fact that
Q

p P̂p ¼ 1̂. Thus the
restriction to Hphys ⊂ H⋆ requires applying the single
constraint on physical states

ðQ̂L⋆ − 1̂ÞjAiν ¼ 0; Q̂L⋆ ≡Y
n⋆

Q̂n⋆ : ð12Þ

This constraint can be solved by setting A ¼ 0 at a single
site n⋆ and equating Q̂ at that site to the product of Q̂† over
all the other sites—again at the cost of sacrificing locality
and discrete translational invariance. A more attractive
alternative is to work directly in H⋆ and simply use an
initial wave function that satisfies Eq. (12). Unlike in the
conventional formulation, where the number of constraints
scales with the number of lattice sites, here with only a
single unphysical variable, the problems of constructing the
initial state obeying the constraint—or of subsequently
becoming “lost in space” due to computational error—
should be vastly diminished compared to simulations in the
original space H subject to Eq. (5). Because there is one
Q̂n⋆ ; Ûn⋆ variable pair per site on L⋆, as compared with two
Q̂l; Ûl variable pairs per site on L, we see the expected
ðd − 1Þ=d ¼ 1=2 reduction in degrees of freedom, which
should correspond to a similar reduction in the number of
qubits required to characterize the system. However, for
this statement to be meaningful, we first have to discuss
regulating H⋆ to make it finite-dimensional.
To regulate the dual theory in d ¼ 2 one cannot simply

limit An⋆ to lie in the finite range −N ≤ Ân⋆ ≤ N, taking
N → ∞ in the continuum limit: the operator Q̂L⋆ shifts the
Ân⋆ field uniformly so that the constraint Eq. (12) cannot
hold in a space spanned by eigenstates of the Ân⋆ with
finite eigenvalues. Instead, one can regulate the eigenvalues
of the unitary Qn⋆ operators, equivalent to placing a cutoff
on magnetic field fluctuations in the original theory. The
regulated Hamiltonian will then commute with the con-
straint, and an initial wave function chosen to satisfy the
constraint Eq. (12) will continue to do so as it evolves.
Therefore, in d ¼ 2, there are several advantages to
simulating Ĥν on a quantum computer instead of Ĥ:
(i) the variables are scalars, rather than vectors, reducing
the number of degrees of freedom by half; (ii) there is a
single redundant variable, rather than the (n − 1) unphys-
ical variables in the conventional formulation; (iii) it is
natural to regulate magnetic fluctuations rather than elec-
tric, which is likely to converge more efficiently to the
continuum limit.
We now turn to the problem of constructing the d ¼ 3

Hamiltonian for the jAiν states of Eq. (7). As for d ¼ 2,
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this naturally leads to a duality transformation, interchang-
ing the coordinates for sites, links, plaquettes and cubes
from L to L⋆ as fn;l; p; cg ↔ fc⋆; p⋆;l⋆;n⋆g. In par-
ticular, the plaquettes p on L get mapped to the links l⋆ on
L⋆ piercing them in the direction opposite to their normal
vectors, so that L⋆ is parity inverted relative to L. Therefore
the plaquette variableAp on L gets mapped to a dual vector
fieldAl⋆ living on the links of L⋆, unlike in d ¼ 2 where a
scalarAn⋆ lives on sites. We can then define link operators
Ul⋆ and Ql⋆ operators exactly as in Eq. (8), and the dual
Hamiltonian is computed to be

Ĥν ¼
1

2as

�X
n⋆

1

g̃2s
ð2 − Q̂l⋆ − Q̂†

l⋆Þ

þ g̃2t
ξ2

X
p⋆

ð2 − ðWp⋆P̂p⋆ þ H:c:ÞÞ
�

ðd ¼ 3Þ: ð13Þ

In this expression, Pp⋆ is the plaquette operator on L⋆
constructed out ofUl⋆ ’s in the same way Pp is constructed
from Ul’s in Eq. (4), whileWp⋆ is a phase that is nontrivial
whenever the topological electric field loops Ci on L pierce
the p⋆ plaquette on L⋆,

Wp⋆ ¼
�
eiξνi ; if l ∈ Ci;

1; otherwise;
ð14Þ

l being the link dual to p⋆.
In d ¼ 3 the jAiν states in Eq. (7) are again over-

complete, but the problem is more severe than in d ¼ 2 as
the product of plaquette operators on the surface of any
cube c in L should be an identity transformation, the
number of cubes scaling with n. The constraint on the dual
lattice to remove this degeneracy is (unsurprisingly) the
dual of the electric Gauss law constraint Eq. (5): the same
equation with the substitution Q̂l → Q̂l⋆ . Thus, we see a
“conservation of difficulty” between the original and dual
theories for d ¼ 3, each form of the theory having a Gauss
law constraint of identical form. The one advantage of the
dual formulation common with the d ¼ 2 example is that
regulating the eigenvalues of the Q̂ operators controls
magnetic fluctuations, which we expect to be more efficient
at weak coupling than a cutoff on the electric field.

III. CONCLUSIONS

We have focused here entirely on U(1) gauge theories
without matter and have shown the consequences of
defining these theories on the space of gauge-invariant
states. In particular, we found that this leads to a dual
formulation subject to a magnetic Gauss law constraint.
This result can lead to a substantial reduction of variables in
d ¼ 2, but not in d ¼ 3; in both cases though it offers the

opportunity to regulate the theory by limiting magnetic
fluctuations rather than electric, which is expected to be
advantageous in approaching the continuum limit in d ¼ 2,
or studying the weak field limit in d ¼ 3. One can hope for
a similar approach to regulating asymptotically-free gauge
theories in d ¼ 3, for which the continuum limit is also at
weak coupling. Extending the analysis to include charged
matter fields and non-Abelian gauge symmetries is com-
plicated by the fact that not all gauge-invariant states in the
theory can be written in the form Eq. (7); new progress
has been made on the former since the initial preparation
of this manuscript [21], while much previous work on
related issues for non-Abelian gauge theories exists
[22–25] and could serve as a basis for quantum compu-
tations. Understanding such theories better, and developing
the tools to efficiently represent these theories on a
quantum computer and extrapolate to the continuum theory,
remain as fascinating theoretical challenges to be tackled
before one can contemplate solving outstanding computa-
tional problems in QCD.
Subsequent to the submission of this paper, the authors of

Ref. [26] presented results on the impact of different
truncation schemes in Abelian lattice gauge theories as a
function of the bare coupling. That work analyzes (2þ 1)-
dimensional U(1) theories in great detail, including fer-
mionicmatter, in both electric andmagnetic representations.
They find that recovering the weak-coupling ground state
wave function of a 2 × 2 periodic lattice with high overlap
requires a truncation level scaling like g̃8=5s in a magnetic
representation, as compared to g̃−2s in an electric represen-
tation. The former is clearly much more efficient on qubit
resources at weak coupling, quantitatively confirming our
qualitative arguments. Their magnetic basis results are
obtained by replacing the U(1) gauge group by its ZðNÞ
subgroups, however, a method that cannot be directly
applied to non-Abelian gauge groups. This work was
followed up by an experimental proposal for simulating
2D QED in near-term trapped ion quantum computers [27].
In addition, Refs. [21,28] appeared, addressing dual

variables for compact U(1) gauge theories that incorporate
charged matter and that preserve translational invariance.
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