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Hadron masses are subject to few MeV corrections arising from QED interactions, almost entirely
arising from the electric charge of the valence quarks. The QED effects include both self-energy
contributions and interactions between the valence quarks/antiquarks. By combining results from different
signs of the valence quark electric charge we are able to isolate the interaction term which is dominated by
the Coulomb piece, hαQEDeq1eq̄2=ri, in the nonrelativistic limit. We study this for Ds, ηc and J=ψ mesons,
working in lattice QCD plus quenched QED. We use gluon field configurations that include up, down,
strange and charm quarks in the sea at multiple values of the lattice spacing. Our results, including also
values for mesons with quarks heavier than charm, can be used to improve phenomenological models for
the QED contributions. The QED interaction term carries information about meson structure; we derive
effective sizes h1=reffi−1 for ηc, J=ψ and Ds of 0.206(8) fm, 0.321(14) fm and 0.307(31) fm respectively.
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I. INTRODUCTION

Lattice QCD calculations can now achieve a very high
level of accuracy for ground-state meson masses. For
example, a recent calculation of the mass splitting between
the J=ψ and ηc achieved an accuracy of 1 MeV [1]. This
precision requires that QED effects arising from the electric
charge of the quarks be included in the calculation and this
is now being widely done, with a variety of approaches
[1–6].
The QED effects arise almost entirely from the electric

charge of the valence quarks. To OðαQEDÞ we then expect
the impact of QED on a meson made of quark q1 and
antiquark q̄2 to take the form

ΔMq1q̄2 ¼ Aeq1eq̄2 þ Be2q2 þ Ce2q1 ; ð1Þ

ignoring the much smaller effects from the electric charge
of the sea quarks (suppressed by powers of αs and sea quark
mass effects). Here eq1 and eq2 are the electric charges of

quarks q1 and q2 in units of e, the magnitude of the charge
on the electron. The last two terms are dominated by “self-
energy” shifts in the valence quark masses. These are
unphysical because they amount purely to a renormaliza-
tion of the quark mass by QED. The first term, with
coefficient A, is physical, however. It is dominated, for
nonrelativistic quarks, by the Coulomb interaction between
the valence quark and antiquark in the meson. This effect
depends on the average separation of the quarks and so
provides a measure for the size of the meson. Its accurate
determination requires a calculation that fully controls the
QCD effects that bind the quark and antiquark into the
meson, i.e., the use of lattice QCD.
We will use lattice QCD calculations to which we also

add the effect of QED on the valence quarks in an approach
known as “quenched QED” [7]. This is simply achieved by
generating a random photon field in momentum space and
then packaging the field in position space into a compact U
(1) variable that can be multiplied into the gluon field as the
Dirac equation is solved for each quark propagator. Since
QCD is responsible for binding the quark and antiquark
into the meson and the effect of QED is simply a
perturbation to the meson mass, then the QED interaction
term Aeq1eq̄2 in Eq. (1) can be isolated by comparing results
from lattice calculations in which we flip the sign of the
electric charge for one of the quarks. We have

Mðeq1 ; eq̄2Þ −Mð−eq1 ; eq̄2Þ ¼ 2Aeq1eq̄2 : ð2Þ
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We focus here on studying this QED effect for relatively
heavy mesons (ηc, J=ψ andDs) to test our understanding of
the impact of QED. The reason for this is that the internal
structure of these mesons is reasonably well understood
and in the past we have made use of estimates of the
Coulomb interaction effects to assess the impact of QED on
these meson masses [8,9]. In Sec. II we describe our lattice
calculation and the results and in Sec. III we compare to
these earlier estimates from phenomenological models.
Section IV gives our conclusions.

II. LATTICE QCD CALCULATION

We work on nf ¼ 2þ 1þ 1 gluon field configurations
generated by the MILC Collaboration [10,11]. These
configurations include the effect of u=d, s and c quarks
in the sea using the highly improved staggered quark action
[12]. Details of the parameters for the configurations are
given in Table I.
In [1] we analyzed charmonium correlators calculated in

pure QCD and in QCDþ quenched QED using these (and
further) sets of gluon field configurations. This enabled us
to determine accurately how the ηc and J=ψ meson masses
shift (for a fixed valence c quark mass) when the 2e=3
electric charge of the valence c quarks is included. The
shifts are very small, upwards by∼0.1%, but clearly visible.
From this we could work out how the c quark mass should
be retuned when QED is switched on. We chose the natural
tuning procedure in which the c quark mass is adjusted in
both QCD and QCDþ QED until the J=ψ meson mass
determined on the lattice agrees with experiment. This led
us to a determination of the c quark mass in the MS scheme
of m̄cð3 GeVÞQCDþQED ¼ 0.9841ð51Þ GeV. This value is
then 0.2% lower than in pure QCD [1].
The reason that the inclusion of QED lowers the c quark

mass (tuning to a fixed meson mass) is because the positive
self-energy terms in Eq. (1) raise the meson mass. The
Coulomb interaction is attractive inside a charmonium

meson, however, and so must lower the meson mass.
Here we set out to isolate the Coulomb-dominated piece
of the QED effect.
As described in Sec. I we can do this by comparing two

calculations in QCDþ QED (which will be shorthand for
QCDþ quenched QED in what follows). One calculation
is the normal QCDþ QED charmonium calculation with c
and c̄ quarks with opposite electric charge. The second
calculation is one in which the c quark electric charge is
flipped but not that of the c̄. The difference between the two
results then gives twice the QED interaction contribution to
the meson mass [Eq. (2)].
Note that the second calculation is for an unphysical

scenario as far as QED is concerned. The underlying QCD
physics is the same in both cases. We use the same valence
quark mass in the two calculations, i.e., a mass close to
the tuned c quark mass in QCDþ QED for the physical
scenario. Our valence c quark masses are given in Table I.
These are the same masses as those used in [1], where we
showed that they are well-tuned so that the charm quark on
each ensemble gives a mass for the J=ψ meson very close
to its experimental value.
For the two calculations we combine c and c̄ propagators

to generate two-point correlation functions that we average
over the gluon field configurations.We fit these as a function
of time separation between source and sink to determine the
ground-state masses in lattice units. The procedure for
includingquenchedQEDand for fitting correlation functions
is exactly the same as that described in [1] and we do not
repeat the discussion of either procedure here.
In Table II we give our results for the ηc and J=ψ mesons.

We calculate the ground-state masses in the pure QCD case.
These results then show how well tuned our valence
c quark masses are, i.e., the J=ψ meson masses are at
most 0.2% from the experimental value. We also calculate
the masses in the physical and unphysical QCDþ
quenched QED scenarios. It is convenient to give the
QCDþ QED results for the masses as a ratio to the value in
pure QCD. In Table II we therefore give values for the

TABLE I. The parameters of the ensembles used in our calculation, numbered in column 1. Column 2 gives the QCD gauge coupling and
column3 the lattice spacing in units of theWilson flow parameter,w0 [13]. The lattice spacing in fm is then given in the next column by using
w0 ¼ 0.1715ð9Þ fm, fixed from fπ [14]. The lattice spacing uncertainty is not shownhere; it has two sources, one isw0=a and the other isw0.
Ls andLt are the lattice spatial and temporal extents in lattice units. Columns 7 and 9 give the sea light quark masses in lattice units, with the
sea u and d quarkmasses taken to be the same and denoted l. Column 8 gives the pionmass inMeV corresponding tomsea

l using results from
[14,15]. Column 10 gives the valence s quark mass used in theDs mesons. Columns 11 and 12 give the sea and valence c quark masses in
lattice units, respectively. Not all sets are used for all calculations; * indicates that the set was used for charmonium, † that the set was used for
Ds and ‡ that the set was used for valence masses of 2mc. Column 13 gives the corresponding number of configurations used from the set.

Set β w0=a a (fm) Ls Lt amsea
l Mπ (MeV) amsea

s amval
s amsea

c amval
c Ncfgs

1� 5.80 1.1272(7) 0.1521 24 48 0.0064 215 0.064 � � � 0.828 0.873 340
2† 5.80 1.1367(5) 0.1509 32 48 0.00235 133 0.0647 0.0677 0.831 0.863 100
3� † 6.00 1.4029(9) 0.1222 32 64 0.00507 217 0.0507 0.0533 0.628 0.650 220� =140†
4� 6.30 1.9330(20) 0.0887 48 96 0.00363 219 0.0363 � � � 0.430 0.439 371
5†‡ 6.30 1.9518(7) 0.0879 64 96 0.00120 128 0.0363 0.036 0.432 0.433 87†=184‡
6� †‡ 6.72 2.8960(60) 0.0592 48 144 0.0048 314 0.024 0.0234 0.286 0.274 133 � =87†=199‡
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difference of the ratios in the physical and unphysical
QCDþ QED cases:

R ¼ Mðeq1 ; eq̄2Þ −Mð−eq1 ; eq̄2Þ
Mð0; 0Þ : ð3Þ

eq1 and eq̄2 are the electric charges of the quark and
antiquark in units of e; for the charmonium case these are
2=3 and −2=3. Multiplying R by the mass in the pure QCD
case, Mð0; 0Þ (column 2 of Table II), then gives the mass
difference needed for Eq. (2).
One difference between the physical and unphysical

QED scenarios that we must take into account, however, is
that of finite-volume effects from QED. In the physical
scenario the charmonium meson is electrically neutral and
finite-volume effects are negligible, as demonstrated in [1].
In the unphysical scenario the meson has an electric charge
of 4e=3 and QED finite-volume effects are much larger.
The finite-volume effects have been calculated analytically
as an inverse power series in the spatial extent of the lattice
[2,17,18]. The result up to and including 1=L2

s is universal
and takes the form

ΔFVðLsÞ¼MðLsÞ−Mð∞Þ¼−
Q2αQEDκ

2Ls

�
1þ 2

MLs

�
ð4Þ

with κ ¼ 2.8373 andQ the meson electric charge in units of
e. The leading term, which is independent of meson mass,
takes a value of Q2 × 0.5 MeV on a 4 fm lattice. We see
then that the finite-volume effects are small here, but not
negligible compared to our QED shifts. We handle them by
correcting our finite-volume masses using the formula
above for the cases where we have an (unphysical) electri-
cally charged charmonium meson. We discuss below how
accurate this formula is. The finite-volume shifts that we
use in each case are given in Table II.
Figure 1 plots ΔFV for Q ¼ 4=3 as a function of spatial

lattice size for the range of lattice sizes that we use here.
The plot compares the leading 1=Ls term of Eq. (4) to the
result including both the 1=Ls and 1=L2

s terms. We also
show the impact of next-to-next-to-leading-order (NNLO)
terms at 1=L3

s from [18]. We take the value of hr2i that
appears in the 1=L3

s terms from vector meson dominance as
6=M2

J=ψ (since we have shown in [19] that vector domi-
nance works well for the electromagnetic form factor of
mesons at small momentum transfer, including for the ηc).
We estimate the systematic uncertainty from missing the
1=L3

s terms at 0.005 MeV, which is negligible compared to
other sources of uncertainty.
We then combine the mass differences and finite-volume

shifts to isolate the QED interaction effect for the ηc and
J=ψ [Eq. (2)]. The coefficient, A, is determined as

A ¼ 1

2eq1eq̄2
ðR ×Mð0; 0Þ þ ΔFVÞ: ð5Þ

These values are given for each ensemble in Table II.
We plot Aηc and AJ=ψ in Fig. 2 as a function of lattice

spacing. We see that, as expected, the attractive Coulomb
interaction yields a negative contribution to the meson
masses because A is positive and eq1eq̄2 is negative. The A
values are not the same for the ηc and J=ψ mesons because
of the QED hyperfine interaction, which acts in the same

TABLE II. Results for the charmonium case. Column 2 gives
the ground-state ηc (upper rows) and J=ψ (lower rows) meson
masses in lattice units in the pure QCD case for the gluon field
configuration sets given in column 1. The mass of the valence c
quark mass is tuned to give the experimental value of the J=ψ
mass on each ensemble. How accurately we have done this can be
assessed from the physical values of the J=ψ masses, which are
(in GeV) set 1, 3.104; set 3, 3.019; set 4 3.095; set 6, 3.099. The
experimental value of the J=ψ mass is 3.097 GeV [16]. Column 3
gives the ratio of the mass difference for the physical and
unphysical QED scenarios [see Eq. (3)] to the pure QCD mass.
Column 4 gives the finite-volume correction needed on that gluon
configuration set for the unphysical QED scenario [Eq. (4) for
meson charge 4e=3]. The uncertainty in ΔFV comes mainly from
the uncertainty in the lattice spacing and does not include the
systematic error from missing higher orders in 1=Ls (see text).
Finally column 5 gives the extracted coefficient, Aηc or AJ=ψ

(Eq. (5)).

Set aMQCD
ηc

Rηc ΔFV [MeV] Aηc [MeV]

1 2.305364(39) −0.002080ð39Þ −1.0308ð54Þ 8.16(14)
3 1.848041(35) −0.001806ð25Þ −0.9600ð51Þ 7.139(91)
4 1.342455(21) −0.0017726ð58Þ −0.8795ð47Þ 6.944(42)
6 0.896675(24) −0.001641ð21Þ −1.3373ð75Þ 7.020(80)

Set aMQCD
J=ψ

RJ=ψ ΔFV [MeV] AJ=ψ [MeV]

1 2.39308(14) −0.001342ð23Þ −1.0295ð54Þ 5.844(85)
3 1.914749(67) −0.001144ð12Þ −0.9589ð51Þ 5.057(77)
4 1.391390(43) −0.001063ð17Þ −0.8785ð47Þ 4.688(63)
6 0.929860(54) −0.000883ð25Þ −1.3352ð75Þ 4.580(90)

FIG. 1. A plot to show the size of finite-volume shifts needed in
the ηc case (for the unphysical QED scenario with meson charge
Q ¼ 4=3) as a function of lattice spatial size. The plot compares
the leading-order 1=Ls calculation, which is independent of
meson mass, to the result of adding in higher order terms in 1=Ls.
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direction as the QCD hyperfine interaction raising the J=ψ
mass relative to the ηc [1].
In order to obtain a value for the coefficient A in the

continuum limit we use a fit that allows for discretization
errors as well as possible effects from the mistuning of the
charm quark valence mass and the mistunings of the sea
quark masses from their physical values. The fit form we
use is similar to that in [1]:

Aða2; δmÞ ¼ A

�
1þ

X3
i¼1

cðiÞa ðamcÞ2i þ cm;seaδ
sea;uds
m

þ cc;seaδ
sea;c
m þ cc;valδ

val;c
m

�
: ð6Þ

The mass mistuning terms here are defined as in [1]:

δsea;udsm ¼ 2msea
l þmsea

s − 2mphys
l −mphys

s

10mphys
s

;

δsea;cm ¼ msea
c −mphys

c

mphys
c

;

δval;cm ¼ MJ=ψ −Mexpt
J=ψ

Mexpt
J=ψ

: ð7Þ

MJ=ψ is the lattice value in the QCDþ QED case with the
physical QED scenario. For the experimental J=ψ mass we

use 3.0969 GeV [20]. We use priors of 0(1) for the cðiÞa ,
cm;sea and cc;val coefficients and a prior of 0� 0.1 for cc;sea.
The mistuning terms in the fit have very little effect but
including them allows us to incorporate uncertainties from
them in the final result.
We find

Aηc ¼ 6.99ð28Þ MeV

AJ=ψ ¼ 4.49ð20Þ MeV: ð8Þ

The uncertainty is dominated by that from the extrapolation
to zero lattice spacing and is much larger than that from
possible systematic errors in the finite-volume correction
discussed above. The fits have χ2=d:o:f. of 0.06 and 0.1
respectively; such low values are a consequence of
conservative (i.e., broad) priors on the coefficients of the
fit function.1 The fit is able to pin down the coefficient of

the ðamcÞ2 term (cð1Þa ) to be within 0.3 of zero. This is
consistent with the expectation that this coefficient should
be of size OðαsÞ [12].
The Coulomb interaction effect probes the internal

structure of the meson at short distances between the
quark-antiquark pair. It is therefore interesting to ask how
the coefficient A changes for heavier quarks than the c
quark. In Table III we give our results for a heavyonium
meson made from a quark-antiquark pair with quark mass
twice that of the c quark (but the same electric charge).
Again we use these results to determine the coefficient A
(which is independent of electric charge) in this case.
These results are also plotted in Fig. 2. The coefficient A is
substantially larger for the heavier mass case.
We perform fits to the heavier mass points also using

the fit form of Eq. (6), but with amc now replaced with
2amc and dropping the a6 terms because we have results
on fewer ensembles for this case. The functional form of
the lattice spacing dependence should be the same in the
mc and 2mc cases up to possible dependence on the
squared velocity of the heavy quark inside the bound-state
in higher order coefficients in a2 [12]. We therefore use
the results of the mc fit as prior information to constrain

the coefficients of the lattice spacing dependence (cð1Þa and

cð2Þa ) in the fit for the 2mc case. This amounts to choosing a

prior width of 0.3 for the cð1Þa coefficient and 0.7 for cð2Þa .
We find

FIG. 2. The coefficient,A, of the QED interaction effect [Eq. (1)]
in the ηc (upper plot, blue symbols) and J=ψ (lower plot, purple
symbols) meson masses, shown as a function of squared lattice
spacing (given in units of the quark mass, denotedmh but heremc).
The fit is described in the text and shown by the curves in each plot.
The pink symbols show the same results, but for mesonsmade from
a quark-antiquark pair with quarkmassmh twice that of the c quark.
The symbol shape denotes the gluon field configurations used and is
the same as that for the matching charmonium calculation.

1To make sense of the χ2 values in such situations one must
add noise to the priors, as discussed in Appendix D.4 of [21].
Adding prior noise leaves our fit values unchanged (within
errors) and gives values for χ2=d:o:f. of order 1, as expected for
good fits. That our fits are good is also confirmed by inspection
of Fig. 2.
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Aη2c ¼ 8.64ð61Þ MeV

Aψ2c
¼ 6.24ð27Þ MeV: ð9Þ

The fits give χ2=d:o:f. of 0.39 and 0.09 respectively.
We will discuss a comparison of the values for A for

charmonium and heavyonium with those determined from
static QCD potentials in Sec. III.
We can contrast the heavyonium case with that of a

heavy-light meson. The simplest meson to use for this case
is the heavy-strange meson since this has no valence light
quark. We carry out the same analysis for the Ds as for
charmonium, but now the QED finite-volume effects
[Eq. (4)] apply to both the physical scenario (since the
Ds meson is electrically charged with Q ¼ 1) and the
unphysical scenario (where the “Ds” has the smaller charge
Q ¼ 1=3). In Eq. (5) we therefore substitute for ΔFV the
difference δΔFV of the finite-volume effects for the Q ¼ 1
and Q ¼ 1=3 cases. The valence s quark masses that
we use are given in Table I and are those obtained from
the ms tuning exercise in [22].2 Our results for the Ds
meson mass in pure QCD, along with the ratio R of Eq. (3)
and the finite-volume shifts discussed above, are given in
Table IV.
The results for the QED interaction coefficient A for this

case are shown in Fig. 3. ADs
is positive, and combined

with a positive product of electric charges gives, as
expected, a positive shift to the meson mass because the
Coulomb interaction inside an electrically charged meson is
repulsive. We perform the same continuum extrapolation fit

as for the charmonium case, with the same priors, see
Eq. (6). Our fit returns a value

ADs
¼ 4.69ð48Þ MeV ð10Þ

with a χ2=d:o:f. of 0.015. The low value is again a
consequence of the broad priors on the fit coefficients.
We can also, as in the heavyonium case, work with heavy

quarks with mass 2mc. The results for this mass are given in
Table V and also plotted in Fig. 3. In contrast to the
heavyonium case, we find that the coefficient A hardly
changes as we change the heavy quark mass in the heavy-
strange meson to be 2mc. From a fit to this case we obtain

ADs;2c
¼ 4.68ð66Þ MeV ð11Þ

TABLE IV. Results that we use to obtain the QED interaction
effect for the Ds meson. Column 2 gives the ground-state Ds
meson mass in lattice units in the pure QCD case for the gluon
field configuration sets given in column 1. Column 3 gives the
ratio of the mass difference for the physical and unphysical QED
scenarios [Eq. (3)] to the pure QCD mass. Column 4 gives the
finite-volume correction needed on that gluon configuration set
for the difference between the physical QED scenario (with
meson charge 1) and the unphysical QED scenario (with meson
charge 1=3). Finally column 5 gives the extracted coefficient of
the effect on the mass from the quark electric charge interaction
term, ADs

.

Set aMQCD
Ds

RDs
δΔFV [MeV] ADs

[MeV]

2 1.52428(16) 0.000921(39) 0.3917(24) 5.01(18)
3 1.22386(17) 0.000820(29) 0.4880(30) 4.74(13)
5 0.87740(10) 0.000891(47) 0.3345(20) 4.70(21)
6 0.59203(22) 0.00075(12) 0.6839(46) 4.86(52)

FIG. 3. The coefficient, A, of the QED interaction effect
[Eq. (1)] in the Ds meson mass, shown with purple symbols
as a function of squared lattice spacing (in units of the heavy
quark mass, here mc). The fit is described in the text. The pink
symbols show the same results, but for mesons made from a
heavy quark and strange antiquark with heavy quark mass twice
that of the c quark. Symbol shapes match those of the Ds results
on the same gluon field configurations.

TABLE III. Results, as in Table II, but now for heavyonium
mesons using quarks with mass 2mc. Column 2 gives the ground-
state “η2c” (upper rows) and “ψ2c” (lower rows) meson masses in
lattice units in the pure QCD case for the gluon field configu-
ration sets given in column 1. Column 3 gives the ratio of the
mass difference for the physical and unphysical QED scenarios to
the pure QCD mass. Column 4 gives the finite-volume correction
needed on that gluon configuration set for the unphysical QED
(Q ¼ 4e=3) scenario. Finally column 5 gives the extracted
coefficient, Aη2c or Aψ2c

.

Set aMQCD
η2c

Rη2c ΔFV [MeV] Aη2c [MeV]

5‡ 2.185464(53) −0.001527ð22Þ −0.6552ð34Þ 9.17(13)
6‡ 1.487111(36) −0.0012878ð80Þ −1.3137ð74Þ 8.657(66)

Set aMQCD
ψ2c

Rψ2c
ΔFV [MeV] Aψ2c

[MeV]

5‡ 2.221922(47) −0.001078ð12Þ −0.6550ð34Þ 6.789(76)
6‡ 1.509707(53) −0.000886ð11Þ −1.3132ð74Þ 6.491(72)

2These masses were obtained in pure QCD, rather than in
QCDþ QED but we expect any slight mistuning of the s quark
mass to have negligible impact on the size of the QED interaction
term between c and s quark in the Ds. This is discussed in
Sec. III.
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with χ2=d:o:f. of 0.002. This agrees very well with that for
the Ds above, consistent with the fact that the points are on
top of each other in Fig. 3.

III. DISCUSSION

The coefficient A is a physical quantity, encoding
information about meson structure. The quantitative infor-
mation that lattice QCD results for A provide can be used to
calibrate more qualitative model approaches for compa-
rable quantities. We discuss this below first for heavyonium
and then heavy-light mesons.
The language of potential models provides a reasonably

good approximation for heavyonium. A simple Cornell
potential [23] of the form

VðrÞ ¼ −
κ

r
þ r
b2

ð12Þ

can readily be tuned to give the radial excitation energy of
charmonium with an accuracy of ∼10%. Here κ is 4αs=3
and b2 is the inverse string tension. The parameters used are
κ ¼ 0.52 and b ¼ 2.34 GeV−1, along with a c quark mass
in the kinetic energy term of Schrödinger’s equation of
1.84 GeV [23]. It is then straightforward to perturb the
coefficient of 1=r in Eq. (12) by αQED to include the
Coulomb interaction effect and determine a value for
the ground-state energy shift which is the potential model
value for A for charmonium, Apotl

c . Alternatively this can be
obtained by integrating over αQED=r weighted by the
square of the ground-state wave function.
Doing this gives a value for Apotl

c of 5.9 MeV (this is a
shift of 2.6 MeV downwards in the meson mass when
multiplied by eq1eq̄2 for charmonium [8]). This result is for
the leading spin-independent central potential of Eq. (12)
and does not include any spin-dependent effects. Our lattice
QCD results, on the other hand, are for the ηc and J=ψ
mesons separately. To compare our lattice results to those
from a spin-independent potential we need to take the spin
average:

Ac ¼
Aηc þ 3AJ=ψ

4
: ð13Þ

Our results from Sec. II [Eq. (8)] yield

Ac ¼ 5.12ð17Þ MeV: ð14Þ

The potential model result, Apotl
c , given above is 15(3)%

larger than our lattice QCD value. The uncertainty here
comes from the lattice QCD calculation where it can be
quantified. Clearly more sophisticated potential models,
including potentials derived from lattice QCD [24], could
be used to improve on the potential model result. Our value
for Ac in Eq. (14) can also be used to tune the parameters
of potential models. Frequently the tuning is done using
quantities such as the wave function at the origin, along
with the spectrum (see, for example, [25,26]). The wave
function at the origin is not a physical quantity, however,
and there are sizeable uncertainties associated with renorm-
alizing this to relate it to experimental decay rates. In
contrast the quantity A is a physical, renormalization-group
invariant quantity that can be compared much more
precisely. A systematic uncertainty of order 10% on Apotl

c

might be expected on the potential model result from
missing Oðv4Þ relativistic corrections. However this could
be ameliorated by tuning the potential.
We can also compare the lattice and Cornell potential

results for the heavier quark mass of 2mc. Then our lattice
spin-averaged result, using the values from Eq. (9) is

A2c ¼ 6.71ð49Þ MeV: ð15Þ

The result for Apotl
2c from the same Cornell potential as for

the mc case is 9.1 MeV, now 30% too large.
Our results show a variation of A with quark mass that

behaves approximately as
ffiffiffiffi
m

p
. We can compare this to

what might be expected from scaling arguments for a
potential of the form CrN . Then, as we change the quark’s
reduced mass, μ≡m=2, we obtain the same solution for a
rescaled distance λr where [27,28]

λ ∝ μ−1=ð2þNÞ: ð16Þ

A
ffiffiffi
μ

p
behavior for Apotl ≡ hαQED=ri would then corre-

spond to N ≈ 0. Such a form for the heavy quark potential
is in fact a standard one that has been successful in
obtaining spectra, either taking N to be a small value or
taking VðrÞ to be logarithmic [29,30]. These forms for the
potential give a wave function that does not grow so rapidly
with mass at small distance as the Cornell potential and
might give results for Apotl

c and Apotl
2c in better agreement

with our lattice QCD value. See [25,31] for a comparison of
spectrum and wave function results for different poten-
tial forms.
The difference of our results for Aηc and AJ=ψ gives the

“direct” QED effect on the charmonium hyperfine splitting,
when multiplied by −4=9. Note that in [1] we also included
a quark-line disconnected contribution from QED to the
hyperfine splitting that is not included here. We have a
difference of AJ=ψ and Aηc of −2.5ð3Þ MeV from Eq. (8) for
the mc case and −2.4ð8Þ MeV from Eq. (9). The QED

TABLE V. Results as for Table IV but now for a heavy quark
mass with value 2mc, for which we denote the meson Ds;2c.

Set aMQCD
Ds;2c

RDs;2c
δΔFV [MeV] ADs;2c

[MeV]

5‡ 1.34202(14) 0.000637(43) 0.3305(20) 5.06(30)
6‡ 0.91076(19) 0.000489(75) 0.6682(44) 4.84(51)
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effect is then to raise the vector mass with respect to the
pseudoscalar by about 1 MeV in both cases (using electric
charge 2=3).
The hyperfine splitting itself falls with increasing quark

mass, so the relative QED effect (for the same electric
charge) is growing. In [1] we did a complete analysis of the
charmonium hyperfine splitting, including QED effects,
as a function of lattice spacing and sea quark mass. To
compare the mc and 2mc cases here it is sufficient to take
results from a single ensemble, set 6, as a guide to variation
with heavy quark mass. The results in Tables II and III then
yield a pure QCD hyperfine splitting of 111 MeV for the
mc case and 75 MeV for the 2mc case, i.e., a fall of 30% on
doubling the quark mass. This is to be compared to a QED
contribution that does not change (at the level of our
uncertainties). A key difference between the QCD and
QED hyperfine splittings is the effective inclusion (implicit
in our lattice QCD calculation) of a running coupling
constant in the QCD case which reduces the splitting as the
mass increases.
The QED hyperfine effect can also be compared to the

expectation from a potential model calculation, by determin-
ing the impact of the perturbation from the Coulomb term on
the wave function at the origin. The leading term in the
hyperfine splitting from a potential model is proportional to
the square of the wave function at the origin and so the
percentage change in the hyperfine splitting is simply twice
the percentage shift in ψð0Þ. For the Cornell potential
discussed above we find the percentage change in the
hyperfine splitting (for eq ¼ 1) to be 1.92% for the mc case
and 2.74% for the 2mc case. This shows an increase in the
percentageQED effect that growswith the quarkmass, as we
find from our lattice calculation. To compare more quanti-
tatively to our results we multiply these percentages by the
pureQCDhyperfine splitting on set 6 given above. This gives
a QED hyperfine effect (for eq ¼ 1) of 2.1 MeV for both
cases, in good agreement with our results from the difference
of Aηc and AJ=ψ . Note, however, that sizeable [Oð30%Þ for
charmonium] systematic errors are to be expected in analyses
of fine structure from a potentialmodel, so a semiquantitative
comparison is the best we can do here.
We now turn to the heavy-light meson case. In [9] we

analyzed a model of QED and light-quark mass effects in
heavy-light pseudoscalar meson masses to isolate the QED
interaction term phenomenologically. We used [32]

Mðeqh ; eq̄l ; mqÞ ¼ M0 þ Aeqheq̄l þ Be2ql þ Cðmql −mlÞ
ð17Þ

where eqh and eq̄l are the electric charges of the heavy quark
and light antiquark respectively and mql is the light quark
mass,ml being the average u=d quark mass. The coefficient
A gives the QED interaction term that we are interested in
here. The coefficient B is that of the light-quark QED self-
energy, assumed to be independent of light quark mass.

No term is included for the heavy quark self-energy
because that cancels in the differences of heavy-light
meson masses for the same heavy quark that we will use
to fix the coefficients. The coefficient C allows for linear
dependence on the light quark mass, independent of QED
effects. From heavy quark symmetry we can expect that A,
B and C will be constant up to Λ=mh corrections as the
heavy quark mass mh → ∞ and independent of mql up to
small chiral corrections. This model was also used in [11].
If we assume that the coefficient A≡ Aphen is indepen-

dent of heavy quark mass (i.e., we ignore Λ=mh terms) we
can easily determine it from experimental information. If
we add the experimental mass difference of Bþ and B0 to
the mass difference of Dþ and D0 [16] then the terms with
coefficients C and B (if independent of heavy quark mass)
cancel out. We have

2

3
Aphen þ 1

3
Aphen ¼ 4.822ð15Þ − 0.31ð5Þ MeV;

Aphen ¼ 4.51ð5Þ MeV: ð18Þ

This result agrees well with our lattice determination of A
for the Ds meson in Eq. (10).
From our calculation of results with a heavy quark mass

twice that of charm [Eq. (11)] we are able to show that
indeed A is independent of heavy quark mass at the level of
our uncertainties (∼10%). It would be straightforward to
extend our calculation to the D meson from the Ds to test
for any dependence of A on the light quark mass.

IV. CONCLUSIONS

We have shown here how to separate out the QED
interaction piece from the self-energy terms in the
determination of the effect of including QED for valence
quarks on heavyonium and heavy-light meson masses.
Lattice QCD calculations are now accurate enough that the
effect of QED, at least for the valence quarks, can have an
impact. The full effect of QED needs to be included in order
to tune parameters, such as quark masses, by tuning meson
masses until they take their experimental value in the
QCDþ QED calculation (this was done, for example, for
QCDþ quenched QED in [1]).
There are multiple reasons for wanting to separate out

the QED interaction piece from the self-energy terms of the
QED effect, however. One is to test our understanding of
the physical contribution of QED by comparing to phe-
nomenological model calculations. Another is to use the
effect as a probe of meson, and more generally, hadron
structure by using it to determine an effective average radial
separation of the valence quarks.
We have determined the coefficient A of the QED

interaction piece for the ηc, J=ψ and Ds mesons as well
as for the corresponding mesons constructed by doubling
the c quark mass [see Eqs (8), (9), (10) and (11)].
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The uncertainties we obtain at the physical point are 5% for
the heavyonium case and 10% for heavy-light.
A simple potential model gives results for the Coulomb

interaction effect in charmonium in reasonable agreement
with the lattice QCD numbers (spin averaged to remove
spin effects). We suggest that the lattice results could be
used to tune potential models more accurately. This in turn
could improve results for calculations, for example involv-
ing excited states and hadronic decay channels, that are
currently more readily done in a potential model than using
lattice QCD. We also find that a phenomenological model
based on heavy quark symmetry gives good agreement
with our Ds results. We are able to demonstrate in that case
that A is independent of heavy quark mass.
Since A is dominated by the Coulomb interaction effect

for heavy mesons we can define an effective size parameter
h1=reffi by dividing our results for A by αQED. This gives
values for ηc, J=ψ and Ds mesons of

1=h1=reffi ¼ 0.206ð8Þ fm; ηc

¼ 0.321ð14Þ fm; J=ψ

¼ 0.307ð31Þ fm; Ds: ð19Þ

The ηc result can be compared to the value for
ffiffiffiffiffiffiffiffi
hr2i

p
using

hr2i ¼ 6=M2
J=ψ which is in reasonable agreement with our

results for the electromagnetic form factor of the ηc at small
squared momentum transfer, q2 [19]. This would giveffiffiffiffiffiffiffiffi
hr2i

p
¼ 0.156 fm. We also find that the size parameter

from Eq. (19) falls for heavier heavyonium masses approx-
imately as

ffiffiffiffi
m

p
but does not change at all for heavy-light

mesons as the mass is increased.

We believe that this could be a useful approach to
assessing the size of other hadrons because it requires only
the calculation and fitting of correlated 2-point functions.
The noncompact QED action is simply being used as a
convenient way to probe the r dependence so a larger value
of αQED than the physical one can be used to increase the
signal for the perturbation [7]. For these purposes it might
also be easier to use a purely Coulomb photon on each time
slice of the lattice as the direct Fourier transform of 1=r. By
giving electric charge to pairs of quarks in more compli-
cated hadrons such as baryons, tetraquarks or pentaquarks
it might be possible to distinguish diquarklike configura-
tions where they occur. We plan to test this out.
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