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We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF)
of the pion, with a mass of 300 MeV, using two very fine lattice spacings of a ¼ 0.06 fm and 0.04 fm. We
reconstruct the x-dependent PDF, as well as infer the first few even moments of the PDF using leading-twist
1-loop perturbative matching framework. Our analyses use both RI-MOM and ratio-based schemes to
renormalize the equal-time bilocal quark-bilinear matrix elements of pions boosted up to 2.4 GeV
momenta. We use various model-independent and model-dependent analyses to infer the large-x behavior
of the valence PDF. We also present technical studies on lattice spacing and higher-twist corrections present
in the boosted pion matrix elements.
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I. INTRODUCTION

QCD factorization implies that the cross-sections of hard
inclusive hadronic processes can be written in terms of
convolution of partonic cross section and parton distribu-
tion functions (PDF) [1]. Field theoretically [1,2], the quark
PDF fðx; μÞ of a hadron H is defined in terms of quark
fields ψ as

fðx;μÞ ¼
Z

dν
2π

e−iνxMðν;μÞ; where ν¼ Pþz− and;

2PþMðPþz−;μÞ ¼ hHðPÞjψ̄ðz−ÞγþWþðz−;0Þψð0ÞjHðPÞi:
ð1Þ

The above definition involves quark and antiquark displaced
by z− along the light cone (and made gauge-invariant by the
Wilson-line Wþðz−; 0Þ ¼ P exp ði R z−

0 dz0−AþÞ that runs
along the light cone. The dimensionless light cone distance
ν is referred to as the Ioffe-time and the matrix element
Mðν; μÞ, renormalized in the MS scheme by convention,

is referred to as the Ioffe-time distribution (ITD). Not-
withstanding such a straight-forward definition of PDF,
the unequal Minkowski time separation in z− posed a
challenge to the Euclidean lattice computation until recently.
Previously, lattice computations have been able to access

the moments of PDFs using local twist-two hadron matrix
elements (cf. [3] for an early work). A recently proposed
method to obtain the x-dependent PDF is the quasi-PDF
(qPDF), which is defined from matrix elements of equal-
time bilocal quark bilinear operators and can be related to
the PDF for large hadron momenta [4]. This method was
then developed into LaMET which provides the frame-
work to calculate all parton physics [5]. Later, there was
suggestion to use the so-called pseudo-PDF approach [6,7],
which relates the same matrix elements to the light cone
correlations for PDFs at small distances. The hadron matrix
element that is central to both LaMET and the pseudo-PDF
approaches is

hE;Pzjψ̄ðzÞWzðz;0Þγtψð0ÞjE;Pzi≡2EðPzÞMðzPz;z2;μRÞ:
ð2Þ

It is very similar to Eq. (1), except that quark and antiquark
are at equal-time and separated by spatial distance z
and evaluated in an on-shell hadron state at large spatial
momentum Pz. Such a matrix element can be easily
computed on the lattice [4,5]. In the literature, the matrix
element M is also referred to as the Ioffe-time pseudo
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distribution (pITD) [6], wherein by considering the argu-
ments of M as the Lorentz invariants p:z and z2, the
difference between ITD and pITD become a choice of the
4-vectors p and z. A similar idea was also considered in an
earlier work [8] related to distribution amplitudes. In the
literature, the Lorentz invariant p:z is sometimes termed as
the Ioffe time regardless of the frame used for the sake of
simplicity [9]. In this work, we will refer to this invariant
simply as zPz, thereby, bring attention to actual values of z
and Pz used to reach the value of the invariant. The bilocal
bilinear matrix element was also considered earlier in [10],
albeit in a different context of studying transverse momen-
tum distributions. As a crucial step in the UV regulated
field theory, the multiplicative renormalizability of the
bilocal operator was recently demonstrated to all orders
of perturbation theory [11–13]. The renormalized matrix
element (and its Fourier transforms with respect to z or zPz)
can be systematically related to the PDF within the per-
turbative twist-2 framework (i.e., large-momentum effec-
tive theory (LaMET) [5,14] or short distance factorization
(SDF) [6,7] depending on the limits being taken). The
matching factors from various intermediate renormalization
schemes for the equal-time bilocal bilinear matrix element
at some renormalization scale μR to the MS PDF at a
factorization scale μ are known to 1-loop accuracy [15–21],
and recently, papers related to 2-loop matching have
also appeared [22–24]. A related good lattice cross sec-
tions [25,26] approach has also been recently proposed
to calculate PDF on the lattice. In practice, the lattice
calculations and the perturbative factors are at fixed order,
the different methods may have different advantages and
drawbacks. The status of these calculations is summarized
in recent review papers [14,27–29]. We also note that other
methods to extract PDFs and their moments have also been
proposed [30,31].
In this paper, we study the valence pion PDF. The study

of pion PDF is interesting for several reasons, both
technical as well as with interesting physics issues. The
most interesting reason being that the pions are the pseudo-
Nambu-Goldstone bosons of QCD and it is important to
study its structure in order to understand the relation
between hadron mass and hadron structure. Closely related
to this, is the question of how fast the PDF vanishes as x
approaches 1. This issue of whether the vanishing behavior
is ð1 − xÞ2 or slower is being vigorously debated with
various nonperturbative approaches [32–39], now includ-
ing lattice QCD [40–42]. There have been LO and NLO
analyses of the experimental data [35,43–50], but the
results are less constrained than the nucleon PDF due to
availability of experimental data and therefore, the lattice
calculations can have large impact here. The other inter-
esting reasons for studying pion in particular are technical.
First, the smallness of the pion mass means that it is easier
to have highly boosted hadronic states required in the qPDF
approach. Second, the excited state contamination for pions

is less problematic due to larger gaps at typical momenta of
1–2 GeV. There has been lattice calculations of pion PDF
using the quasi/pseudo-PDF frameworks [42,51–53], and
also using the good lattice cross section approach [40,41].
In our previous work [42], we studied the valence pion

PDF in 2þ 1 flavor QCD using the mixed action with
lattice spacing a ¼ 0.06 fm and LaMET approach. In the
sea, we used highly improved staggered quark (HISQ)
action, while in the valence quark sector we used clover
improved action with hypercubic (HYP) smearing [42]. We
extend this study in three ways in this paper. First, we
perform calculations at another smaller lattice spacing,
namely a ¼ 0.04 fm. Second, we increase the statistics in
the a ¼ 0.06 fm ensemble by more than two-fold. Third,
we combine the analysis of the bilocal bilinear matrix
element renormalized in RI-MOM scheme [54] with the
ratio scheme (also referred to as reduced ITD [7]), and
also propose and use generalizations of the ratio scheme
with the promise of lesser higher-twist contamination. At a
practical level, it has been conventional in the lattice
calculation that used quasi-PDF formalism to use an inter-
mediate RI-MOM scheme, while those using pseudo-PDF
formalism to use an intermediate ratio scheme. We do not
make such distinctions, and simply refer to matrix elements
of operator in Eq. (2) that is made gauge-invariant with a
straight Wilson-line as bilocal bilinear matrix elements, or
simply as the matrix elements for the sake of brevity, in
various renormalization schemes; RI-MOMmatrix element
or ratio matrix element, for example. Also, in this work, we
simply label the methodology to be that of twist-2 pertur-
bative matching, so as to encompass LaMET and SDF
approaches. This is because in the absence of any actual
large momentum or short-distance limits being taken, the
combined analysis of a sample of data that spans a range
of distances and momenta in either real or Fourier space
are equivalent [18], up to choices of approaching the
inverse problem to relate the PDF to the matrix elements.
Therefore, the readers of this paper can approach the
contents presented in one way or another equivalently,
depending on their preference.
The plan of the paper is as follows. In Sec. II, we discuss

the details of the lattice ensembles, statistics and other
computational specifics. In Sec. III, we elaborately describe
the extraction of ground- and excited-states of pion from
the boosted two-point functions. In Sec. IV, we describe the
extraction of the boosted pion matrix element from three-
point function via excited-state extrapolations. In Sec. V,
we discuss the various renormalization schemes used.
Readers not interested in the details of the lattice calcu-
lation can skip Secs. II–V. In Sec. VI, we describe the
twist-2 perturbative matching formulation which forms the
basis of the results presented in the following sections.
We also present a study of higher-twist contamination in
this section. The Sec. VII contains the direct extraction of
the valence moments of pion from the Pzz and z2 depend-
ences of bilocal bilinear matrix element. In Sec. VIII, we
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reconstruct the x-dependent valence PDF at μ ¼ 3.2 GeV
based on fits to the pion matrix elements using phenom-
enology motivated ansatz for the PDFs. In Sec. IX, we
address the issue of large-x exponent of the valence pion
PDF based on model dependent fits as well as from a novel
model-independent method we introduce here. In Sec. X,
we speculate the continuum results based on our observa-
tion at two fine lattice spacings. The con-
clusion and comparisons with other analyses are given
in Sec. XI. More technical details are present in the
Appendices.

II. LATTICE SETUP

In this work, we use two different Lt × L3 lattice
gauge ensembles both of them with relatively small lattice
spacings—(1) ensemble with lattice spacing a ¼ 0.06 fm
with lattice extents 48 × 643, and (2) a finer ensemble with
a ¼ 0.04 fm with extent 64 × 643. These gauge ensembles
were generated by the HotQCD collaboration [55] using
2þ 1 flavor Highly Improved Staggered Quark (HISQ)
action [56] in the sea. In both these ensembles, the sea
quark mass was tuned such that the pion mass was
160 MeV. On these gauge field ensembles, we used
1-HYP tadpole improved Wilson-Clover valence quarks.
That is, we used the Wilson-Clover quark propagator in the
Wick contractions required in the computations of the
three-point and two-point functions, and the gauge links
that went into the construction of the propagator were
smoothened using 1 step of HYP smearing [57]. We set the
clover coefficient csw ¼ u−3=40 , where u0 is the average
plaquette with 1-HYP smearing; we used csw ¼ 1.02868
and 1.0336 for a ¼ 0.06 fm and 0.04 fm respectively. We
tuned the Wilson-Clover quark mass mqa in both the
ensembles so that the valence pion mass, mπ , is 300 MeV.
Through an initial set of tuning runs we determined mqa ¼
−0.0388 for a ¼ 0.06 fm and mqa ¼ −0.033 for a ¼
0.04 fm lattices. For this pion mass, the values of mπLt
on the a ¼ 0.06 fm and 0.04 fm lattices are 5.85 and 3.89
respectively. Thus it would be more important to take care of
wrap around effects in the finer lattice and we do so in the
analysis.With theusage of 1-HYP smeared gauge links in the
Wilson-Clover operator, we did not find any exceptional
configurations at both the lattice spacings, as noted by
absence of any anomaly in the convergence of the Dirac
operator inversions. We used the a ¼ 0.06 fm ensemble in
our previous analysis of the valence PDF of pion [42]. With
this work, we have increased the statistics used in this
ensemble by more than two times.
The most basic element of this computation is the

Wilson-Dirac quark propagator inverted over boost
smeared sources and sinks [58] as we discuss more in
the next section on two-point functions. We used the
multigrid algorithm [59] for the Wilson-Dirac operator
inversions to get the quark propagators. These calculations
were performed on GPU using the QUDA suite [60–62].

We used boosted quark source [58] and sink with
Gaussian profile, as we discussed in detail in [42].
Instead of using the gauge-covariant Wuppertal smearing
[63] to implement the Gaussian profiled quark sources, we
gauge-fixed the configurations in the Coulomb gauge to
construct the sources as we found it to be computationally
less expensive. We fixed the radius of the Gaussian profile
on a ¼ 0.06 fm and a ¼ 0.04 fm ensembles to be 0.312 fm
and 0.208 fm respectively. We discussed the details of
tuning the Gaussian smearing parameters in the Appendix
of [42]. Using these quark propagators, we are able to
compute hadron two-point and three-point functions in
hadrons boosted to momentum Pz ¼ 2πnz=ðLaÞ.
We tabulate the details of the statistics used in the two

ensembles in Table I. We increased the statistics in two
ways (a) using statistically uncorrelated gauge field con-
figurations, which are labeled as #cfg in Table I, and (b) by
using All Mode Averaging (AMA) [64] on each gauge
configuration. In order to mitigate the reduction in the
signal-to-noise ratio in both the three-point and two-point
functions as one increases Pz ∝ nz, we used more gauge
field configurations for larger nz than at smaller ones. In
a ¼ 0.06 fm ensemble, we effectively increased the sta-
tistics 32 times by using 1 exact Dirac operator inversion
and 32 sloppy inversions in the AMA per configuration.
In the a ¼ 0.04 fm ensemble, we increased the number
of exact and sloppy solves for nz ¼ 2, 3 and more for
nz ¼ 4, 5. We used a stopping criterion of 10−10 and 10−4

for the exact and sloppy inversions respectively.

III. ANALYSIS OF EXCITED STATES IN THE
TWO-POINT FUNCTION OF BOOSTED PION

In this section, we discuss the computation of boosted
pion correlators and the extraction of the excited state
contributions. Using a smeared (s) pion source πsðP; tÞ

TABLE I. Details of the measurements on two lattice ensem-
bles used in this paper. For each ensemble, we have specified
the bare Wilson fermion quark mass mqa corresponding to a
300 MeV pion mass mπ , the temporal extent Lt of the lattice in
mπ units. We specify the number of gauge configurations used
(#cfgs) and the number of exact and sloppy inversions per
configurations (#ex,#sl) for different Wilson-line lengths z used
in three-point functions and the pionmomentumPz ¼ 2πnz=ðLaÞ.
ensemble
a; Lt × L3 mqa mπLt nz z range #cfgs (#ex,#sl)

a ¼ 0.06 fm, −0.0388 5.85 0,1 [0,15] 100 (1,32)
64 × 483 2,3,4,5 [0,8] 525 (1,32)

[9,15] 416 (1,32)
[16,24] 364 (1,32)

a ¼ 0.04 fm, −0.033 3.90 0,1 [0,32] 314 (3,96)
64 × 643 2,3 [0,32] 314 (4,128)

4,5 [0,32] 564 (4,128)
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πsðP; tÞ ¼
X
x

d̄sðx; tÞγ5usðx; tÞe−iP:x; ð3Þ

for pion πþ that is moving with spatial momentum P ¼
ð0; 0; PzÞ along the z-direction, we computed the two-point
function of pions

Css0
2ptðts;PzÞ ¼ hπs0 ðP; tsÞπ†sðP; 0Þi: ð4Þ

In this computation, we used momenta on a periodic lattice

Pz ¼
2πnz
La

; ð5Þ

for nz ¼ 0, 1, 2, 3, 4 and 5 at both lattice spacings. These
values of nz correspond to Pz up to 2.15 GeVand 2.42 GeV
on the a ¼ 0.06 fm and 0.04 fm lattices respectively. For
ease of reference, we have tabulated the physical values of
Pz for the two lattices in Table II. Such large momenta are
central to the applicability of the leading-twist perturbative
matching framework. It is important that we are able to
suppress the excited state contributions to the two-point
function within smaller source-sink separations ts to deal
with the signal-to-noise ratio at larger ts. This is the reason
for the smeared pion source and sink, πs, that are con-
structed out of smeared quark fields, us and ds. We
constructed two-kinds of two-point functions: smeared-
source (s ¼ S) point-sink (s0 ¼ P) correlators referred to as
SP, and smeared-source (s ¼ S) smeared-sink (s0 ¼ S)
correlators referred to as SS henceforth. For smeared
sources, we used boost smeared Gaussian profiled sources,
as is now standard in the lattice PDF computations. We
have tabulated the values of the tunable parameter ζ for the
boost smearing [58] at different Pz in Table II.
The two-point functions enter the PDF determination in

two ways; for determining the excited state spectrum of the
boosted pion on the two lattices, which in turn will enable
us to extract the boosted pion matrix elements. Below, we
will discuss the excited state analysis of the two-point
function. In our previous publication [42], we discussed
the extraction of the pion spectrum in detail for the
a ¼ 0.06 fm lattice. Since the only difference in this paper

is the increased statistics for this ensemble, we focus on the
pion spectrum in the finer a ¼ 0.04 fm lattice in this
section. In Fig. 1, we show the effective mass EeffðtsÞ of
pion at different Pz as a function of source-sink separation
ts for the SP (open symbols) and SS correlators (filled
symbols) respectively. For comparison, the values of EðPzÞ
for the ground state pion based on its dispersion relation are
shown by the horizontal lines. One can notice that the
signal-to-noise ratio gets poorer at shorter ts as Pz is
increased. Therefore, we are forced to work with ts=a ¼ 9,
12, 15 and 18 corresponding to physical distances of
0.36 fm to 0.72 fm for the case of three-point functions.
The largest operator insertion times τ, which we will
discuss in the next section, are ts=2. In this range of ts,
the effective mass is not plateaued and careful consider-
ation of excited states becomes important. Up to nz ¼ 3, it
is clear that the effective masses plateau at the dispersion
values for the pion. One can also note that SS correlator
approaches the plateau faster than SP as expected. The
difference between SS and SP correlators is due to the
differences in the amplitudes of the states in the two, and
wewill use this advantageously in the extraction of first and
second excited states of the pion.
In order to determine the energy levels E0; E1;…, we fit

the spectral decomposition of C2ptðtsÞ,

C2ptðtsÞ ¼
XNstate−1

n¼0

Anðe−Ents þ e−EnðaLt−tsÞÞ; ð6Þ

with Enþ1 > En. The above expression is truncated at Nstate
to both the SS and SP two-point function data over a range
of values of ts between ½tmin; aLt=2�. We performed this

TABLE II. Table of momenta Pz in GeV at the two lattice
spacings. The values of the ζ used in the boosted Gaussian
sources used for each Pz is also shown.

Pz (GeV)

nz a ¼ 0.06 fm a ¼ 0.04 fm ζ

0 0 0 0
1 0.43 0.48 0
2 0.86 0.97 1
3 1.29 1.45 2=3
4 1.72 1.93 3=4
5 2.15 2.42 3=5

FIG. 1. The effective mass Eeff is shown as a function of source-
sink separation ts for the a ¼ 0.04 fm lattice. The filled and open
symbols are obtained from SS and SP correlators respectively.
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fitting with one-state (Nstate ¼ 1), two-state (Nstate ¼ 2),
and three-state (Nstate ¼ 3) ansatz. As evident from the
behavior of effective mass in Fig. 1, in order for the 1-state
fits to work, we had to use tmin > 0.56 fm and the results
were consistent with the one from dispersion relation
E0ðPzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p
with mπ ¼ 300 MeV. When we

performed an unconstrained 4-parameter 2-state fit to both
the SS and SP correlators, we found the approach to the
expected E0ðPzÞ to be at even shorter tmin ∼ 0.2 fm. Since
we were able to obtain the ground state energy E0ðPzÞ
reliably from one and two exponential fits to both the SS
and SP correlators and they agree with the expectation from
the dispersion relation well, we then fixed the value of E0 to
its dispersion value to perform a more stable two and three
exponential constrained fits with one less free parameter.
The results for the first excited state E1ðPzÞ using dif-

ferent tmin in such a constrained two-state fits for nz ¼ 3
and nz ¼ 4 are shown in the top and middle panels of
Fig. 2; the top panel is for SP and the middle one for SS.
One can notice that for tmin=a > 10, it is possible to reliably
estimate the first excited state in both SP and SS correlators,
and the two estimates are also consistent with each other
giving more confidence in the results. The horizontal lines
in the figures correspond to the expected result for
E1ðPzÞ based on a single particle type dispersion relation

E1ðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þ E2

1ðPz ¼ 0Þ
p

. As tmin is increased, the
fitted values of E1ðPzÞ are actually the dispersion values.
We observed this behavior at different Pz as well. We will
address this more in the end of this section. Having
understood the actual spectral decomposition of the pion
correlator, it has been found to be better practically to use
the effective value of E1 and the corresponding amplitude
A1 in the range of τ ≈ ts=2 used in the two-state fits to three-
point function [65]. By doing this, we effectively take care
of excited states higher than E1 that could be present at
τ ≤ ts=2 in the two-state fits to the three-point function. We
follow this procedure here and take the value of E1 and A1

in the pseudoplateau region for E1 seen in middle panels of
Fig. 2 for tmin ∈ ½5a; 10a�.
We also performed constrained 3-state fits on the SS two-

point function. Besides fixing E0, we also imposed a prior
on E1 using its best estimate from the SP correlators with
the corresponding errors [66]. The results for E1 and E2

from this analysis are shown in the bottom panel of Fig. 2
for nz ¼ 3 and 4. As a consistency check, the 3-state prior
fit is able to reproduce the input prior for E1 starting from
tmin=a ¼ 2. It also results in an estimate for E2 which is
large and noisy, and it is likely that it is an effective third
state capturing several higher excited states. For our excited
state extrapolations, such an effective estimate is sufficient.
We repeated the above set of analysis for the a ¼ 0.06 fm
lattice and we were able to obtain the ground and first
excited state reliably.

FIG. 2. The dependence of the fitted values of energy levels on
the fit range ½tmin; 32a� is shown. The top-left and top-right panels
show this dependence for the first excited level E1 as obtained
from two-state fits to SP correlator at Pz ¼ 1.45 GeV and Pz ¼
1.94 GeV respectively. Similar results using SS correlator are
shown in the two middle panels. The results for E1 and E2

obtained using three-state fits to the SS correlator (with prior on
E0 and E1) are shown in the two bottom panels.

FIG. 3. The energy of the ground state (E0) and the first excited
state (E1) are shown as a function of Pz. The results from a ¼
0.04 fm are shown as filled symbols and those from a ¼ 0.06 fm
as the open symbols. The results shown in the plot for E0 were
obtained from an unconstrained two-state fit, while E1 were
obtained by fixing E0 to its dispersion values.
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In Fig. 3, we show the first two energy levels for both
a ¼ 0.04 fm and 0.06 fm lattices, as a function of Pz. It is
not very surprising that the ground state, which is the pion,
follows the particle dispersion well even up to Pz ¼
2.4 GeV on the fine lattices we use. But, it is remarkable
that the first excited state E1 also follows a single particle
dispersion relation. We noted this also in our discussion
of Fig. 2. To solidify the claim, we observed the same
behavior in both SS and SP channel. Also, the difference
between E1 on the two physical volumes 24.9 fm3 and
16.78 fm3 for the a ¼ 0.06 fm and a ¼ 0.04 fm lattices is
not seen. Thus, it is likely not a multiparticle state with a
gapped finite volume spectrum that mimics a single particle
state. In order to account for the 300 MeV pion mass, we
added 0.16 GeV to the PDG value [67] of the first pion
radial excitation, π1ð1300Þ to estimate a value of 1.46 GeV.
This value agrees well with our estimates of E1ðPz ¼ 0Þ at
both the lattice spacings. Therefore, we find it reasonable to
conclude that the ground state is the pion and the first
excited state is the radial excitation of pion, π1, with
E1ðPz ¼ 0Þ being identified with its mass.

IV. EXTRACTION OF BARE MATRIX ELEMENTS
FROM EXCITED STATE EXTRAPOLATIONS

The next ingredient in the extraction of the pion matrix
element is the three-point function

C3ptðz; τ; tsÞ ¼ hπSðP; tsÞOΓðz; τÞπ†SðP; 0Þi; ð7Þ

involving the insertions of smeared pion source π†SðP; 0Þ
and smeared sink πSðP; tsÞ separated by an Euclidean time
ts and projected to spatial momentum P ¼ ð0; 0; PzÞ. The
operator OΓðz; τÞ is the isospin-triplet operator that
involves a quark and antiquark that are spatially separated
by distance z

OΓðz; τÞ ¼
X
x

½ūðxþ LÞΓWzðxþ L; xÞuðxÞ

− d̄ðxþ LÞΓWzðxþ L; xÞdðxÞ�; ð8Þ

where x ¼ ðx; τÞ with τ being the time slice where the
operator is inserted, and the quark-antiquark being dis-
placed along the z-direction by L ¼ ð0; 0; 0; zÞ. The oper-
ator is made gauge-invariant through the presence of the
straight Wilson-line of length z, Wzðxþ L; xÞ, that con-
nects the lattice sites at xþ L to x. The Wilson-line is
constructed out of 1-level HYP smeared gauge links to get
better signal to noise ratio. The matrix Γ is either the Dirac
γ-matrix γz or γt for the unpolarized PDFs that we will
study in this paper. For the case of lattice Dirac operators
that break the chiral symmetry explicitly at finite lattice
spacings, it was shown perturbatively in that Oγz mixes
with the scalar operator O1 due to renormalization [15,54].
Such mixing is absent in the case of Oγt . In addition to this

mixing, we also found in our previous work [42] for the
case of pion that Oγz is comparatively noisier compared to
Oγt with same statistics, and also suffered from larger
excited state contamination. Another pertinent advantage of
Oγt over Oγz is the absence of additional higher-twist
effects proportional to separation vector zμ. Therefore, we
resort to only the usage of Γ ¼ γt in this paper. The pure
multiplicative renormalization of Oγt also allows us to
explore the renormalization group invariant ratios in
addition to RI-MOM scheme as an advantage, and we
will explain this in detail in the next section. The above
u − d three-point function is purely real in the case of pion,
and the real part is symmetric about z ¼ 0. Therefore, we
symmetrized the data by averaging over �z. Further, the
matrix element depends only on the Lorentz invariant
ν ¼ Pzz. Therefore, one can average over the matrix
elements determined with �Pz; to reduce computational
cost, we only used positive Pz. In the plots that follow, we
will display the three-point function in the positive z
direction only. In addition, only the quark-line connected
piece contributes to the isotriplet three-point function. We
refer the reader to the Appendix of [42] for detailed proofs
of the above characteristics.
From the three-point function and the two-point func-

tion, the central quantity from which the bare matrix
element can be obtained from, is the ratio

Rðts; τ; z; PzÞ≡ C3ptðts; τ; z; PzÞ
C2ptðts;PzÞ

: ð9Þ

In order to take care of the wrap-around effect due to the
finite temporal lattice extent Lt, we replace C2ptðts;PzÞ
with C2ptðts;PzÞ − A0 exp ð−E0ðaLt − tsÞÞ where A0 and
E0 are the amplitude and energy of the ground state
obtained via fits to the two-point function in the last
section. This is especially important to take care of at
Pz ¼ 0 on our lattices. In the above equation, the variables
are ts and τ at fixed z and Pz, and hence we will keep z and
Pz implicit in the discussion of R below. Through the
spectral decomposition of R, it is easy to see that1

Rðts;τÞ¼
P

N
n;n0 AnA�

n0 hEn;PjOγtðzÞjEn0 ;PÞie−ðEn0−EnÞτ−EntsP
N
m jAmj2e−Emts

:

ð10Þ

with Enþ1 ≥ En, E0 ¼ Eπ and An ¼ hΩjπjπi. In the infinite
ts limit, Rðts; τ; z; PzÞ is equal to the bare matrix element
hBðz; PzÞ ¼ hπjOγtðzÞjπi. In practice, we obtain hBðz; PzÞ
by fitting the right-hand side of Eq. (10) to the ts and τ
dependence of the lattice data for the ratio R. The fit
parameters are the matrix elements hEn; PjOγtðzÞjEn0 ; PÞi.

1Wrap-around effects in three-point function are ignored in the
expression. We discuss this in Appendix A.
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We take fixed values of En and An from our analysis of C2pt

that we discussed in the last section; namely, in two state
fits, values of E1, A1 were taken from the pseudoplateau
seen in Fig. 2 that covers the typical range of τ used here,
while in the three state fits, the values of E1, A1 were fixed
to the actual dispersion values of π1 and E2, A2 effectively
captured the tower of higher excited states. We truncated
the number of states N entering the fit ansatz in Eq. (10) at
N ¼ 2 and 3. To reduce the excited state contamination,
we excluded cases where operator insertion is too close to
either the source or sink by using only values of τ ∈ ½nska;
ts − nska�. We used nsk ¼ 1, 2 for N ¼ 3 and nsk ¼ 2, 3 for
N ¼ 2. We denote such N-state fits as FitðN; nskÞ.
In Figs. 4 and 5, we show some sample results of the

extrapolations using Fit(2,3) for the a ¼ 0.06 fm and a ¼
0.04 fm lattices respectively. Each panel in the plot has two
sub-panels. Let us first focus on the larger left subpanels
which show the dependence of Rðτ; tsÞ on τ − ts=2. The
lattice data for R are shown as the symbols with the colors
distinguishing the different ts. For the a ¼ 0.06 fm lattice,
we used ts=a ¼ 8, 10 and 12 (i.e., ts ¼ 0.48 fm, 0.6 fm and
0.72 fm) in the fits. Similarly, we used ts=a ¼ 9, 12, 15 and

18 for a ¼ 0.04 fm ensemble, which corresponds to similar
physical values of ts ¼ 0.36 fm, 0.48 fm, 0.6 fm and
0.72 fm respectively. Along with the data for Rðts; τÞ,
we have also shown the results from Fit(2,3) as the
similarly colored bands. The result for the matrix element
hB, i.e., ts → ∞ limit of the fit, is shown by the grey
horizontal band in the figures. The degree to which
extrapolation differs from the actual data in the range of
ts < 1 fm can be seen from the smaller right subpanels,
where we have shown the 1=ts dependence of the data
(points) as well as the fit (grey band) with τ ¼ ts=2, the
maximal distance of operator from source and sink. In
general, one can see that the extrapolations get steeper as
the value of z increases. However, given the small errors at
smaller z, the extrapolation again plays a significant role at
smaller z. From the agreement of the two-state fits with the
actual data, one can gain confidence in the extrapolations.
In addition to the N-state fits, which are sensitive to the

values of En, An, we also used the summation technique
[68] which does not require inputs of the spectral details of
the two-point function. For this, we use the standard
definition

FIG. 4. The source-sink ts and operator insertion τ dependence of the ratio Rðts; τ; z; PzÞ, at fixed z and Pz ¼ 2πnz=L are shown for
the lattice spacing a ¼ 0.06 fm. The top-rows are for nz ¼ 0, middles ones for nz ¼ 3 and bottom ones for nz ¼ 5. The left panels are for
z ¼ 0, middle panels for z ¼ 6a and right ones for z ¼ 12a respectively. Each plot has left and right sub-panels. In the left sub-panels,
the ts − τ=2 dependence is shown at ts ¼ 8a (red squares), 10a (green circles), and 12a (blue triangles). The corresponding colored
bands are the 1 − σ error bands from Fit(2,3) (see text). On the right subpanels, the extrapolation (grey band) to ts → ∞ is shown as a
function of a=ts at fixed τ ¼ ts=2.
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RsumðtsÞ ¼
Xts−nska
τ¼nska

Rðts; τÞ: ð11Þ

For large ts, we would find a linear behavior in ts of Rsum as

RsumðtsÞ ¼ ðts − 2nskaÞhBðz; PzÞ þ B0 þOðe−ðE1−E0ÞtsÞ:
ð12Þ

We refer to this method where we ignore Oðe−ðE1−E0ÞtsÞ
corrections and fit only hBðz; PzÞ and B0 as SumðnskÞ.
Since our source-sink separations are less than 1 fm, we
also included the additional e−ðE1−E0Þts correction in the
fitting ansatz as

RsumðtsÞ ¼ ðts − 2nskaÞhBðz; PzÞ þ B0 þ B1e−ðE1−E0Þts :

ð13Þ

We refer to this method as SumExpðnskÞ. In Fig. 6, we
show a sample result for the summation fits. In the left and
right panels of the figure correspond to a ¼ 0.04 fm
and 0.06 fm lattice ensembles. We have used momenta

Pz ¼ 2πnz=ðLaÞ with nz ¼ 2 in both the cases at an
intermediate separation z ¼ 0.72 fm in both ensembles.
The lattice data for Rsum are shown as the red circles. The
result from a linear fit to the data is shown as the red band.
The slope of the fit is the estimator of the matrix element
hB. One can see in both the cases that the straight line fit is
able to describe the data. However, one can certainly see
deviations from the straight line fit at ts ¼ 18a for the a ¼
0.04 fm case. For comparison, the expectation for RsumðtsÞ
from the 2-state fit described above is shown as the green
band. Here, the curve is able to describe the data at all ts
well and can be seen be seen to approach a straight line with
larger slope only for ts > 0.72 fm. In order to account for
these discrepancies, we also show the result from SumExp
as the blue dashed line. This result does deviate from the
simple Sum and agrees better with the expected result from
Fit. This shows that there are residual Oðe−ðE1−EπÞtsÞ
effects which cannot be ignored in the summation fits in the
ranges of ts we are working with. While we have picked an
example case where we observe this discrepancy to be
larger, similar discrepancy could be seen in other values of
Pz and z as well in the case of a ¼ 0.04 fm data. The Sum
data agreed better with expectation from SumExp and Fit

FIG. 5. The source-sink ts and operator insertion τ dependence of the ratio Rðts; τ; z; PzÞ, at fixed z and Pz ¼ 2πnz=L are shown for
the lattice spacing a ¼ 0.04 fm. The top-rows are for nz ¼ 0, middles ones for nz ¼ 3 and bottom ones for nz ¼ 5. The left panels are for
z ¼ 0, middle panels for z ¼ 9a and right ones for z ¼ 18a respectively. Each plot has left and right sub-panels. In the left sub-panels,
the ts − τ=2 dependence is shown at ts ¼ 9a (red squares), 12a (green circles), 15a (blue triangles) and 18a (pink inverted-triangles).
The corresponding colored bands are the 1 − σ error bands from Fit(2,3) (see text). On the right sub-panels, the extrapolation (grey band)
to ts → ∞ is shown as a function of a=ts at fixed τ ¼ ts=2.
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for the a ¼ 0.06 fm data. Therefore, we use the results
from Fit, and only use Sum and SumExp to serve as
cross-checks on the results.

As we demonstrated above, the ts → ∞ extrapolations
lead to values of hB which are not simply obtained from
plateau values of Rðts; τÞ even for the largest ts ¼ 0.72 fm
weuse. Therefore, away to reasonably justify the correctness
of our extrapolations is by adapting the multiple fitting
schemes, namely Fit, Sum and SumExp, and show con-
sistency among them. This is what we show in Figs. 7 and 8,
for the a ¼ 0.06 fm and 0.04 fm lattices respectively. The
different panels show the results for four different values of
Pz ¼ 2πnz=ðLaÞ. In the top part of the different panels, we
have shown the bare matrix element hBðz; PzÞ, obtained by
Fit(2,3) as the black open squares, as a function of the
length of Wilson-line z. Since we are working with isotriplet
matrix element for the pion, only the real part of hB is
nonzero. One should remember that the bare matrix element
at any finite lattice spacing has the Wilson-line self-energy
divergence, expð−cz=aÞ, which causes the rapid decay of
hBðz; PzÞ as a function of z in the figures. With the increased
statistics used in our computation, one can note that we are
able to obtain matrix elements with good signal to noise ratio
even up to momenta corresponding to nz ¼ 5 in both the
lattice spacings. Below the top part of each panel in Figs. 7
and 8, we show the deviations, ΔðzÞ, of different extrapo-
lation methods from values obtained with Fit(2,3) as a
function of z. That is,

ΔðzÞ≡ hBmethodðz; PzÞ − hBFitð2;3Þðz; PzÞ; ð14Þ

FIG. 6. An example for summation method, Sumðτ0Þ, that uses
only insertion points τ > τ0 ¼ 2a are shown as a function of ts=a
at fixed z and Pz. The left panel is at a ¼ 0.04 fm with z ¼ 16a
and nz ¼ 2. The right panel is at a ¼ 0.06 fm with z ¼ 12a and
nz ¼ 2. In each panel, the red circles are the lattice data. In
addition, there are three different curves—the red one is the straight
line summation fit to the data, the blue one is the corrected
summation fit SumExp that includes exp ½−ðE1 − E0Þts� correc-
tion, and the green one is the expected summation curve from the
two-state fit Fit(2,3).

FIG. 7. The bare matrix elements hBðz; PzÞ from excited state extrapolations are shown as a function of z=a for the a ¼ 0.06 fm
ensemble. The results from nz ¼ 0, 2, 4 and 5 are shown in the top-left, top-right, bottom-left, and bottom-right are shown. The top part
of each panel shows the z=a dependence using two-state extrapolation Fit(2,3) using ts=a ¼ 8, 10 and 12. The bottom part of each panel
shows the deviation, Δ, of the different extrapolation methods Fit(2,2), Fit(3,1), Sum(2), SumExp(3) from the method Fit(2,3). The
scatter of these differences from 0 (shown by dashed line) characterizes the robustness of the extrapolation.
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where hBmethod is the bare matrix element obtained using an
extrapolation technique method, which could be Fit(2,2),
Fit(3,2), Sum(2), or SumExp(2), in Figs. 7 and 8. If the
extrapolations are perfect, then we would find ΔðzÞ to be
consistent with zero at all z and Pz. For comparison, we also
show the statistical error in hBFitð2;3Þðz; PzÞ as the grey error

band along with the values of ΔðzÞ. For a ¼ 0.06 fm case
shown in Fig. 7, we find ΔðzÞ is consistent with zero within
error for largerPz while there is little tension at smallerPz in
the top two panels. The small but visible deviations of Fit
(3,2) is less than 2σ. The deviation of Sum(2) is compara-
tively larger, but when we supplement Sum(2) with the
exponential corrections, i.e., SumExp(2), the ΔðzÞ moves
toward zero and becomes consistent with zero. This again
points to the importance of excited state effects that cannot be
neglected in summation fits on our lattices. This effect is
more apparent in the case of a ¼ 0.04 fm lattice shown in
Fig. 8. Thuswe understand the deviation ofSum from the rest
as an excited state effect, and we find that the Fit(2,3), Fit
(2,2), Fit(3,2), and SumExp(2) are all consistent among
themselves. Thus,we are able to demonstrate thegoodness of
our extrapolations. Henceforth, we will use Fit(2,3) for
both a ¼ 0.04 fm and 0.06 fm ensembles in discussing our
further analysis.
A well-determined matrix element that can be used to

cross-check our results is the value of bare matrix element

at z ¼ 0, which in the continuum limit will be the total
isospin of pion, which is 1. At any finite a, the bare matrix
element suffers from Oðαsðμ ¼ a−1ÞÞ correction to 1,
which under finite renormalization will be canceled by
ZV . If the excited-state extrapolations were perfect and the
finite volume effects were negligible, the estimates of
hBðz ¼ 0; PzÞ cannot change with Pz up to possible finite
a corrections at non-zero Pz. In order to check for this, we
show the behavior of hBðz ¼ 0; PzÞ as a function of Pz in
Fig. 9. For a ¼ 0.06 fm lattice, the value of hBð0; 0Þ is
1.0404(4) and the values of hBð0; PzÞ get smaller than this
value gradually at larger Pz, albeit only by less than 2% by
Pz ¼ 2.15 GeV. This Pz dependence is likely to arise due
to increasing lattice spacing effect at higher momenta, and
empirically, it was possible to fit the Pz dependence to an
ansatz hBðz ¼ 0; PzÞ ¼ hBðz ¼ 0; Pz ¼ 0Þ þ bðPzaÞ2.
For a ¼ 0.04 fm lattice, the value of hBð0; 0Þ is 1.045(1)

which is higher than value of hBð0; 0Þ at a ¼ 0.06 fm.
However, one expects hBð0; 0Þ to decrease and approach 1
as a → 0 [69]. One observes a sharp decrease in the value
of matrix elements at nonzero Pz to values around 1.025
and changes little with Pz > 0. We were able to understand
this anomalous behavior at Pz ¼ 0 to arise from larger
periodicity effects (∼e−MπðLt−tsÞ) in the Pz ¼ 0 three-point
function for the finer a ¼ 0.04 fm lattice [which is in
addition to such wrap-around effects in two-point function

FIG. 8. The bare matrix elements hBðz; PzÞ from excited state extrapolations are shown as a function of z=a for the a ¼ 0.04 fm
ensemble. The results from nz ¼ 0, 2, 4 and 5 are shown in the top-left, top-right, bottom-left, and bottom-right are shown. The top part
of each panel shows the z=a dependence using two-state extrapolation Fit(2,3) using ts=a ¼ 9, 12, 15 and 18. The bottom part of each
panel shows the deviation, Δ, of the different extrapolation methods as explained in Fig. 7. Deviations of results from Sum(2) from 2-
and 3-state fit results are seen. But we find that corrected sum SumExp(2) is consistent with the fit results. This is a result of the
observation in Fig. 6.
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that we corrected for in Eq. (9)]. We discuss this further in
Appendix A, and we estimate the value of hBð0; 0Þ after
correcting for the wrap-around effect to be 1.024(1). For the
a ¼ 0.06 fm case, this effect is negligible. The (approxi-
mate) corrected estimate for hBð0; 0Þ is shown as the filled
blue square in Fig. 9, which shows surprisingly good
agreement with the estimates at other nonzero Pz. We used
the same fitted ðPzaÞ2 ansatz that we discussed above, with
only the value of a changed from 0.06 fm to 0.04 fm, and
the result is shown as the blue dashed curve in Fig. 9. This
nice agreement gives credence to our explanation of lattice
spacing effect being the cause of the mild Pz dependence in
a ¼ 0.06 fm hBð0; PzÞ estimates and the even milder Pz
dependence in a ¼ 0.04 fm estimates. We discuss the
estimation of ZV within the RI-MOM framework in
Appendix B which give results consistent with the values
from the bare pion matrix element in Fig. 9.

V. RENORMALIZATION

The bare matrix element hBðz; PzÞ obtained in the last
section needs nonperturbative renormalization in order
for it to have a well defined continuum limit. The non-
perturbative renormalization removes the UV self-energy
divergence of the Wilson-line which is inherently non-
perturbative and can only be captured by methods such as
the ab initio lattice QCD heavy-quark potential computa-
tions (cf. Ref [70] for the ensembles used here). With the
removal of this nonperturbative piece, one would expect the
remaining renormalized matrix element to be describable
within the perturbative large momentum effective theory

framework. Therefore, a judicious choice of the nonper-
turbative renormalization scheme for the bilocal quark
bilinear operator that is implementable on an Euclidean
lattice and at the same time reduces the higher-twist
corrections to the matrix element in any given small values
of z is important.
RI-MOM is one such renormalization scheme that uses

renormalization conditions at off-shell spacelike external
quark four-momentum PR. A more careful description of
the calculation of RI-MOM factor as applied to our work
can be found in [42]. The RI-MOM renormalized matrix
element is defined as

hR0 ðz; Pz; PRÞ ¼ ZqZγtγtðz; PRÞhBðz; PzÞ; ð15Þ

where Zq is the quark wave function renormalization factor
(cf. Ref [71]) and Zγtγt is the renormalization factor for
OγtðzÞ defined via the condition imposed using the ampu-
tated matrix element evaluated with quark external states at
momentum p, ΛðpÞ, as

Zγtγtðz; PRÞTrð=pΛðpÞÞp¼PR ≡ 12PR
t eiP

R
z z: ð16Þ

The above condition is referred to as the p-projection
scheme within the RI-MOM scheme [17,54]. The operator
Oγt does not mix with any other operator, unlike Oγz

[15,72]. We used the Landau gauge fixed configurations to
determine ZγtγtðzÞ nonperturbatively in both a ¼ 0.06 fm
and a ¼ 0.04 fm ensembles. We will refer to the compo-
nent of PR along the direction of Wilson-line as PR

z and the
norm of the component perpendicular to z-direction as PR⊥.
Since the value of hR0 ðz ¼ 0; Pz; PRÞ ¼ 1 for the pion, we
impose this condition through a redefinition

hRðz; Pz; PRÞ≡ hR0 ðz; Pz; PRÞ
hR0 ð0; Pz; PRÞ : ð17Þ

This implicitly takes care of the effect of Zq and at the same
time reduces the statistical errors in hR at the other nonzero
values of z through their correlation with hRðz ¼ 0Þ.
Instead of using quark external states, it is possible to

cancel the UV divergence in hBðz; PzÞ using the pion
matrix element at a different fixed reference momentum P0

z ,
that is, hBðz; P0

zÞ. Such a procedure to remove the UV
divergences via renormalization group invariant ratios is
referred to as the ratio scheme [14,18]. With this, we can
define a renormalized matrix element,

M0ðz; Pz; P0
zÞ ¼

hBðz; PzÞ
hBðz; P0

zÞ
: ð18Þ

The choice P0
z ¼ 0 has been used in literature and the

resulting matrix element Mðz; Pz; 0Þ is also referred to as
the reduced ITD [7,18]. Nonzero P0

z was applied to proton

FIG. 9. The result for the local bare matrix element hBðz ¼
0; PzÞ is shown as a function of Pz. The red and blue open
symbols are the estimates of the bare matrix elements on
a ¼ 0.06 fm and a ¼ 0.04 fm lattices. The estimated value of
hBðz ¼ 0; Pz ¼ 0Þ for a ¼ 0.04 fm after correcting for wrap-
around effect (see text) is shown as the filled blue square. The red
and the blue dashed curves are the modeled lattice spacing effects
using an ansatz, hBðz ¼ 0; PzÞ ¼ hBðz ¼ 0; Pz ¼ 0Þ þ bðPzaÞ2
for a ¼ 0.06 fm and 0.04 fm respectively, with fixed b ¼
−0.0813 in both cases.
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in [65]. Similar to the RI-MOM matrix element, we can
reduce the statistical errors by redefining the matrix
element as

M0ðz; Pz; P0
zÞ → Mðz; Pz; P0

zÞ ¼
M0ðz; Pz; P0

zÞ
M0ð0; Pz; P0

zÞ
; ð19Þ

so that the condition Mðz; Pz; P0
zÞ ¼ 1 is automatically

fulfilled. We use values of Pz > P0
z in this work. The

preference for using Pz; P0
z > ΛQCD will become clearer

with the discussion on perturbative matching in the next
section. In Fig. 10, we compare the result of Mðz; Pz; P0

zÞ
for three different P0

z ¼ 2πn0z=ðLaÞ for n0z ¼ 0, 1 and 2 on
a ¼ 0.06 fm lattice. These values of n0z correspond to 0,
0.48 and 0.97 GeV respectively, and thus using even the
lowest n0z available makes sure P0

z > ΛQCD. The effect of
using P0

z as a new scale leads to significant changes to the
Pzz and z2 dependence, which will be taken care of the
corresponding twist-2 expressions. But one should note
that we do not significantly compromise on the quality of
signal by choosing nonzero values of P0

z < 1 GeV, and
hence, they are as good choices of the reference momentum
scale in the ratio scheme as P0

z ¼ 0 GeV.
Our choice of the normalization conditions in Eq. (17)

and Eq. (19) such that the value of pion matrix element at
z ¼ 0 is 1, assumes implicitly that our estimates of the
matrix elements at z ¼ 0 do not suffer from any systematic
corrections. In the discussion around Fig. 9, we found about
1% systematic errors at z ¼ 0 due to deviations of the
matrix element as a function of Pz. Below, we justify that

the imposition of the normalization conditions Eq. (17) and
Eq. (19) also reduces some of these systematic errors.
Instead of imposing the normalization multiplicatively as in
Eq. (19), an equally good choice is additively through

Maddðz; Pz; P0
zÞ≡M0ðz; Pz; P0

zÞ −M0ð0; Pz; P0
zÞ þ 1:

ð20Þ

The multiplicative and additive normalization are equiv-
alent, only provided M0ð0; Pz; P0

zÞ is itself exactly 1. In
Fig. 11, we compare the result of Maddðz; Pz; P0

zÞ and
Mðz; Pz; P0

zÞ at Pz ¼ 1.29 GeV on a ¼ 0.04 fm lattice.
The left and right panels are for P0

z ¼ 0 and 0.48 GeV
respectively. For comparison, we have also shown the
matrix element M0 before imposing the normalization.
First, one can note the error reduction due to the normali-
zation at smaller values of z. As we discussed in the last
section, the z ¼ 0 matrix element at Pz ¼ 0 for a ¼
0.04 fm suffers from larger systematic effects than the
rest. From the left panel which shows the result for P0

z ¼ 0,
we surprisingly find that the difference between Madd and
M is absent within the errors at all z. On the right panel,
which uses P0

z ¼ 0.48 GeV, the agreement is perfect
between all the estimates of M. Through this, we dem-
onstrated that the systematic effects in our matrix element
determination are further reduced due to the ratios using the
prior knowledge that the local matrix element at z ¼ 0 is 1
for pion.
Finally, we address the lattice corrections to the renor-

malized matrix elements. In Fig. 12, we have shown the
comparison of renormalized matrix elements at two lattice
spacings a ¼ 0.06 fm (red circles) and 0.04 fm (blue
squares) plotted as a function of ν ¼ zPz. The top and
bottom panels show the comparison using RI-MOM and
n0z ¼ 1 ratio scheme respectively. Due to lattice periodicity

FIG. 10. Comparison of renormalized matrix elements at
fixed Pz ¼ 1.45 GeV in the ratio scheme with generalized
nonzero values of the reference momentum P0

z . The different
colored symbols correspond to different P0

z ¼ 0, 0.48 and
0.97 GeV. The effect of changing P0

z is significant, but it
does not cause a big difference in signal-to-noise ratio at smaller
z that we are interested in. It is the expectation that matrix
elements with Pz; P0

z > fΛQCD; mπg suffer from lesser higher-
twist contamination.

FIG. 11. Quantifying the residual systematic effects after
significant statistical error reduction by the process of normal-
izing z ¼ 0 matrix element to 1 [see Eq. (17) and Eq. (19)]. The
plot compares the different normalization types, M and Madd,
and the matrix element without any imposed normalization M0.
In the above plot, we show results for the a ¼ 0.04 fm ensemble.
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constraints, we could only choose pion momentum Pz that
are approximately the same at the two lattice spacings;
namely, Pz ¼ 1.29 GeV for a ¼ 0.06 fm and Pz ¼
1.45 GeV for a ¼ 0.04 lattices. By looking at the pion
matrix elements at the two lattice spacing as a function of
Pzz, such small mismatch between Pz should affect results
only logarithmically in this discussion. For the RI-MOM
scheme, we have chosen a comparable set of renormaliza-
tion momenta ðPR

z ; PR⊥Þ ¼ ð1.93; 2.23Þ GeV for a ¼
0.06 fm lattice and (1.93,2.51) GeV for a ¼ 0.04 fm
lattice. In the bottom panel, we have used matrix element
in ratio scheme with n0z ¼ 1. We find only a little difference
between the matrix elements at the two fine lattice spacings.
To aid the eye, we have also shown bands that cover �2%
variation on the a ¼ 0.06 fm and a ¼ 0.04 fm data. Within
this band, the real parts of the data are consistent with
perhaps little more correction to the imaginary part of RI-
MOM at intermediate ν. Thus, we can bound the lattice
corrections in our data to be at the level of 1 to 2%. In the
RI-MOM data, perhaps there are residual lattice spacing
effects of about 1% at different z. Even though the this
lattice spacing effect is only about a percent, we will see
that a2P2

z corrections become important in the analysis at

smaller z due to their very small errors ensured by the
normalization process.

VI. PERTURBATIVE MATCHING FROM THE
RENORMALIZED BOOSTED HADRON MATRIX

ELEMENT TO MS PDF

A. Leading twist expressions to match equal time
hadron matrix elements to PDF

The computation of renormalized pion matrix element is
the final step as far as the nonperturbative lattice input is
concerned. The perturbative matching lets us make the
connection between the renormalized boosted hadronmatrix
element with the light-cone MS PDF, fðx; μÞ. Since the
renormalization factors for the RIMOM hRðz; Pz; PRÞ and
the ratio Mðz; Pz; P0

z ¼ 0Þ do not depend on the PDF of
the hadron itself, they lead to simpler factorized expressions
and hence let us consider them first. Using such expressions,
we will consider Mðz; Pz; P0

zÞ for nonzero P0
z . Taking

Ji’s proposal [4,5] of quasi-PDF in the RI-MOM scheme,
q̃ðx; Pz; PRÞ, which is the Fourier transform of the
z-dependent matrix element

q̃ðx; Pz; PRÞ ¼
Z

∞

−∞
dz e−ixPzzhRðz; Pz; PRÞ; ð21Þ

the perturbative matching is expressed as a convolution

q̃ðx; Pz; PRÞ ¼
Z

∞

−∞

dy
jyjCRI

�
x
y
; yPz; μ; PR

�
fðy; μÞ

þOðΛ2
QCD=ð1 − xÞx2P2

z ; m2
π=P2

zÞ: ð22Þ

The kernel of the convolutionCRIðx;…Þ is of the form (with
dependence other than x being implicit),

CRIðxÞ ¼ δðx − 1Þ þ ½Cð1Þ
RI ðxÞ�þ þOðα2sÞ; ð23Þ

where Cð1ÞðxÞ is the 1-loop contribution [15–18], and the
notation ½…�þ represents the standard plus-function.2

Though we have used RI-MOM scheme in the above
equations, one can use the matrix element in ratio
scheme, Mðz; Pz; P0

z ¼ 0Þ, as well with a corresponding
Cratioðx; Pz; μÞ.
An equivalent approach, that is suitable for our analysis

in the real space z, instead of performing a Fourier
transform in Eq. (21) to the conjugate x, is through the
formulation of operator product expansion of the renor-
malized boosted hadron matrix element [18] using only the
twist-2 operators. That is, for the case ofMðz; Pz; P0

z ¼ 0Þ
computed at large Pz and with z in the perturbative regime,
its OPE that is dominated by twist-2 terms is

FIG. 12. Comparison of renormalized matrix elements at two
lattice spacings a ¼ 0.06 fm (red circles) and 0.04 fm (blue
squares) plotted as a function of ν ¼ zPz. The top panel uses RI-
MOM renormalization scheme. The real and imaginary parts of
the renormalized RI-MOM matrix element are shown as closed
and open symbols. The bottom panel uses ratio scheme with
n0z ¼ 1. The variation of data by �2% is shown as the red and
blue bands.

2R∞
−∞½fðxÞ�þgðxÞdx≡

R∞
−∞ fðxÞðgðxÞ − gð1ÞÞdx.
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Mðz; Pz; P0
z ¼ 0Þ ¼

X
n

cnðz2μ2ÞhxniðμÞ
ð−iPzzÞn

n!
; ð24Þ

up to Oðz2Λ2
QCDÞ corrections. Here, hxniðμÞ are the nth

moments of the PDF3 at a factorization scale μ,

hxniðμÞ ¼
Z

1

−1
xnfðx; μÞdx; with hx0i ¼ 1: ð25Þ

The coefficients cnðz2μ2Þ are the perturbatively computable
Wilson-coefficients defined as the ratio of MS Wilson-

coefficients, cnðz2μ2Þ ¼ cMS
n ðz2μ2Þ=cMS

0 ðz2μ2Þ. The 1-loop
expressions for cnðz2μ2Þ can be found in Refs. [18]. These
Wilson-coefficients are related to the matching kernel Cratio
through the relation [18],

X
n

cnðμ2z2Þ
ð−izPzÞn

n!
¼

Z
∞

−∞
dxCratioðxÞe−ixzPz : ð26Þ

The corrections denoted as Oðz2Λ2
QCDÞ arise from the

operators in the OPE that are of twist higher than two.
For the RI-MOM scheme, a similar OPE that is valid up

to Oðz2Λ2
QCDÞ corrections is

hRðz; Pz; PRÞ ¼
X
n

cRIn ðz2; μ2; PRÞhxniðμÞ ð−iPzzÞn
n!

;

ð27Þ

where the RI-MOM Wilson-coefficients are cRIn . Using the
multiplicative renormalizability of the bilocal operator Oγt,
we can deduce that

cRIn ðz2; μ2; PRÞ ¼ Zratio→RIðz; PR; μÞcnðz2μ2Þ; ð28Þ

where Zratio→RI is the perturbatively computable Pz-inde-
pendent conversion factor from RI-MOM to ratio scheme
[15,27]. By taking the ratio of Eq. (26) for the ratio scheme
and a corresponding similar expression for the RI-MOM
scheme involving cRIn and CRI, we can work out the
conversion factor Zratio→RI to be

Zratio→RIðz; PR; μÞ

¼ 1þ
Z

∞

−∞
dx½Cð1Þ

ratioðx; Pz; μÞ − Cð1Þ
RI ðx; Pz; PRÞ�

× ðe−iðx−1ÞzPz − 1Þ; ð29Þ

up to 1-loop order. Though there is an explicit Pz present in
the above expression, its dependence gets canceled in the
final expression, as expected.

We can now consider the ratio scheme for general
values of P0

z . Noting that Mðz; Pz; P0
zÞ ¼ Mðz; Pz; 0Þ=

Mðz; P0
z ; 0Þ, we can write the twist-2 expression as

Mðz; Pz; P0
zÞ ¼

P
ncnðz2μ2ÞhxniðμÞ ð−iPzzÞn

n!P
ncnðz2μ2ÞhxniðμÞ ð−iP

0
zzÞn

n!

; ð30Þ

up toOðz2Λ2
QCDÞ corrections. Such an expression cannot be

written in a factorized form involving a convolution of a
perturbative kernel and PDF. As we noted in the beginning
of this section, we anticipated this since the “renormaliza-
tion factor” is ðMðz; P0

z ; 0ÞÞ−1 for the ratio scheme at
nonzero P0

z and hence by itself dependent on the hadron
PDF, unlike the RI-MOM or the P0

z ¼ 0 ratio schemes.
However, as far as the practical implementation of the
analysis is concerned, the nonfactorizability of Eq. (30) is
not a hindrance, and the analysis proceeds in exactly the
same way for all the schemes considered, i.e., by extracting
the moments hxni from the boosted hadron matrix elements
either in a model independent way or by modeling the
PDFs to phenomenology inspired ansatz. The reader can
refer to Ref [65] for this method implemented for the
nucleon.
Finally, the above discussion ignored any presence of

lattice spacing corrections present at smaller z at the order
of few lattice spacings that could spoil the applicability of
the twist-2 expression as it is. As discussed in Sec. IV, we
found indications of ðPzaÞ2 corrections to matrix element at
z ¼ 0. Such lattice corrections were removed at z ¼ 0 by
taking the ratio and making z ¼ 0 renormalized matrix
elements to be one by construction. However, such a
procedure will not ensure cancellation of ðPzaÞ2 correc-
tions at any nonzero z. We will take care of such correction
by including fit terms, ra2P2

z , by hand in the twist-2
expressions above, with r being an extra free parameter.
As a concrete example, we will modify Eq. (30) to

Mðz; Pz; P0
zÞ ¼

P
ncnðz2μ2ÞhxniðμÞ ð−iPzzÞn

n! þ rðaPzÞ2P
ncnðz2μ2ÞhxniðμÞ ð−iP

0
zzÞn

n! þ rðaP0
zÞ2

;

ð31Þ
to accommodate for any short-distance lattice artifacts. It is
easy to see that the effect of such a ðPzaÞ2 correction is to
shift the second moment in ðz=aÞ−2 manner,

hx2i → hx2i − 2r
c2ðμ2z2Þ

1

ðz=aÞ2 ; ð32Þ

in all the twist-2 expressions above. Indeed, we will present
evidence for the presence of such ðPzaÞ2 corrections, and
we defer that discussion to Sec. VII. One should note that
the above ansatz for correcting ðaPzÞ2 effects is strictly true
only for z > 0, since the ratio has to be exactly 1 at z ¼ 0.
The actual form of lattice correction would automatically

3Our notation is trivially different from a convention of naming
hxn−1i as nth moments.
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ensure this, but we found this simpler form to be practically
enough to describe the z > 0 data, starting from z ¼ a.
Before ending this subsection, we should remark that the

LaMET approach tries to suppress the higher-twist by
taking the Pz → ∞ limit, whereas the short-distance
factorization approach aims to remove the higher-twist
effects by taking z2 → 0 limit. However, in a practical
implementation where one analyses the data at set of finite
momenta and finite z2 as presented in this paper, one can
think of the analyses being presented in either way, simply
related by Eq. (26). For example, without loss of generality,
one can think of the analysis to be presented in the next part
of the paper in the following way—one starts from a model
PDF ansatz, to which one applies the LaMET kernel in
Eq. (23) to obtain a model quasi-PDF, which is Fourier
transformed to real space to be fitted to the real-space
matrix element determined on the lattice. Keeping this in
mind, we will simply use the OPE expressions, such as
Eq. (30) for our twist-2 perturbative matching analysis.

B. Numerical investigation of higher-twist effect in pion
matrix element at low momenta

In the remaining part of this section on perturbative
matching, we discuss a way to use the hadron matrix
elements at smaller momenta to understand the importance
of higher twist effects at intermediate values of z ∼ 0.3 fm
to 1 fm, and thereby, understand the rationale for the ratio
scheme which hitherto had been discussed using a con-
jectured separation of higher twist effects and leading-twist
terms into two separate factors [7]. The Eq. (24), Eq. (27)
and Eq. (30) are valid only up to Oðz2Λ2

QCDÞ higher twist
effects. At any large value of Pz, the twist-2 terms become
larger compared to the Oðz2Λ2

QCDÞ higher twist terms. This
is the basis of the large momentum effective theory. As a
corollary, the matrix element where the higher twist
effects show up significantly is the Pz ¼ 0 matrix element.
This is not a useful observation when applied to the ratio
Mðz; Pz; P0

z ¼ 0Þ, for which c0 has the value 1 at all z
when Pz ¼ 0. This agrees with the twist-2 expectation by
construction, but the corrections could show up at other
nonzero Pz. Therefore, we use hRðz; Pz ¼ 0; PRÞ in the RI-
MOM scheme for this study where we compare the lattice
result with the nontrivial z dependence from twist-2 term.
Also, since the wrap-around effects in Pz ¼ 0 matrix
elements are negligible only for the a ¼ 0.06 fm lattice,
we use this case for this study.
For Pz ¼ 0, the only nonzero twist-2 contribution is from

the local current operator because all other terms have
explicit factors of Pz and they become zero. Its z depend-
ence comes from the Wilson-coefficient cRI0 ðzÞ, which is
the conversion factor Zratio→RIðz; PR; μÞ. We use 1-loop
expressions to calculate Zratio→RI. We vary the scale
of αSðμÞ that enters Zratio→RI from μ=2 to 2μ with
μ ¼ 3.2 GeV, and gives an estimate of the expected

error on perturbative result. It is convenient to separate
Zratio→RI and the lattice result hRðz; Pz ¼ 0; PRÞ into their
magnitudes and phases. The phase Arg½hRðz; Pz ¼ 0; PRÞ�
is the same as Arg½Zγtγtðz; PRÞ�, which is a property of the
RI-MOM scheme itself. On the other hand, the magnitude
jhRj depends on the pion matrix element.
In the top panel of Fig. 13, we compare the z2 depen-

dence of the phase Arg½hRðz; Pz ¼ 0; PRÞ� with the per-
turbative twist-2 phase Arg½Zratio→RIðz; PRÞ�. We have
chosen a renormalization scale ðPR

z ;PR⊥Þ¼ð1.29;2.98ÞGeV
on the a ¼ 0.06 fm ensemble as a sample case, but the
observations hold for other cases as well. We find a good
agreement within the perturbative uncertainties up to 0.7 fm,
and the lattice data slightly overshoots the 1-loop result for
larger z. Nevertheless, the overall qualitative agreement
validates the 1-loop perturbation theory as applied to
quark external states used in RI-MOM Z-factor. This should
serve as a companion observation to the studies on RI-MOM
Z-factor presented in our previous work [42].

FIG. 13. The phase (top) and the magnitude (bottom) of the
Pz ¼ 0 matrix element in RI-MOM scheme with ðPR

z ; PR⊥Þ ¼
ð1.29; 2.98Þ GeV are shown. The expectations from the 1-loop
leading twist results are shown as the red bands. In the bottom
panel, the actual lattice data is shown using filled black circles.
The absolute part clearly suffers from a leading z2 correction
shown as the blue straight line. The twist-2 target mass correction
is shown as the green curve for comparison. The lattice data after
subtracting the z2 correction term is shown using open circles.
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In the bottom panel of Fig. 13, we compare the z2

dependence of the magnitude jhRðz; Pz ¼ 0; PRÞj with
jZratio→RIðz; PRÞj. The actual lattice data is shown as the
filled circles. It is clear that the nonperturbative result
disagrees with the near constant behavior of the twist-2
term at larger z, and that this disagreement comes from a
striking z2 dependence at larger z. The coefficient, k, of the
z2 dependence is −ð63 MeVÞ2 (with little variations around
this value with PR), and thus it is reasonable to identify
such a term to arise from a higher twist operator or an
effective contribution of a number of higher twist operators.
There could also be corrections to the leading twist result
coming from the twist-2 target mass correction (TMC)
[73,74] (and discussed in Appendix C). The 1-loop
result with TMC is shown as the green dashed line in
the bottom panel of Fig. 13, which is visibly small
compared to the observed discrepancy. Numerically, the
coefficient of z2 from twist-2 target mass correction term is
−m2

πhx2iv=8 ¼ −ð35.2 MeVÞ2, which about one-third of
the observed value (assuming hx2iv ≈ 0.11 as we will see
later). In addition, when we correct for the z2 effect by
subtracting it from the lattice data, shown by the open black
circles in the figure, we find a nice agreement with the
1-loop, twist-2 expectation. It is quite remarkable that such
a simple OðΛ2

QCDz
2Þ effect is enough to describe the

nonperturbative data even up to 1 fm.
Now, we take the hypothesis that the observed z2 effect

in hRðz; Pz ¼ 0; PRÞ is the dominant higher twist effect,
and try to understand its effect on the matrix element in the
ratio scheme. Perturbatively, the ratio scheme is defined via
the subtraction of the UV divergence by a division with

n ¼ 0 MS Wilson coefficient, cMS
0 . On the lattice, we

identify this procedure as the division by Pz ¼ 0 matrix
element, and hence the equality in Eq. (24). The underlying
assumption is that the higher twist effect in Pz ¼ 0 matrix
element is negligible or somehow cancels with the higher
twist effect present also in the nonzero Pz matrix elements.
In order to understand this, we can redefine the ratio
scheme that better agrees with the assumptions that go into
twist-2 matching framework; namely form the ratio after
subtracting off the higher-twist effects

M0ðz; Pz; P0
z ¼ 0Þ≡ jhRðz; Pz; PRÞj − kz2

jhRðz; Pz ¼ 0; PRÞj − kz2
; ð33Þ

where k is the coefficient we determined using the analysis
of hRðz; Pz ¼ 0; PRÞ and assume the same kz2 correction is
present at nonzero Pz as well. For k ¼ 0, M0 ¼ M. The
result of this improved ratio M0ðz; Pz; 0Þ is compared with
the usual ratio Mðz; Pz; 0Þ in the left panel of Fig. 14 for
the first nonzero momentum Pz ¼ 0.43 GeV on a ¼
0.06 fm lattice. The difference between the two ways of
defining the ratio are consistent within errors, with perhaps
very little difference at larger z. This provides a better

understanding of how the OðΛ2
QCDz

2Þ corrections in the
numerator and denominator of Eq. (33) almost cancel each
other without resorting to any factorwise separation of
higher-twist corrections, and instead, results simply from
the smallness of k. Having demonstrated the inconsequen-
tial role of higher twist effects in M for z < 1 fm given
the errors in the data, we now look closely at the
RI-MOM hRðz; Pz; PRÞ at the same small momentum
Pz ¼ 0.43 GeV. Within the twist-2 framework, we can
obtain hR from M via

hR
0 ðz; Pz; PRÞ≡ Zratio→RIðz; PRÞMðz; Pz; 0Þ: ð34Þ

In the right panel of Fig. 14, we compare hR
0
, shown as

the red band, with hR which are the black filled symbols.
We find a deviation from the twist-2 expectation hR

0
for

z > 0.3 fm. When we correct for the z2 effect using
jhRðz; Pz; PRÞj − kz2, shown as the open symbols, we find
a very good agreement with hR

0
. Putting together the above

results, we self-consistently justified that the observed kz2

effect in Pz ¼ 0.43 GeV is almost the same as in Pz ¼ 0
as we assumed, and that M is least affected by such
corrections. At higher momenta Pz, such higher-twist effect
will play even lesser role for z < 1 fm.

VII. A MODEL-INDEPENDENT COMPUTATION
OF THE EVEN MOMENTS OF

VALENCE PION PDF

In this section, we apply the twist-2 perturbative match-
ing formalism, that we discussed in Sec. VI, to our lattice
data for the isovector u − d PDF of pion. For this, we will
use the boosted pion matrix element in the ratio scheme
with nonzero reference momentum P0

z ¼ 2πn0z=ðLaÞ with

FIG. 14. The effect of higher-twist term kz2 on the pion matrix
element at fixed small Pz ¼ 0.43 GeV is discussed. The left
panel compares the usual ratio, Mðz; Pz; P0

z ¼ 0Þ, and the ratio
M0 derived from RI-MOM matrix element after the subtraction
of kz2 [see Eq. (33)]. The right panel compares the actual RI-
MOM matrix element and the RI-MOM matrix element with kz2

subtraction with the result expected by applying the conversion
factor Zratio→RI to the ratio M [see Eq. (34)].
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n0z ¼ 1 and 2. This way, we expect to suffer from smaller
nonperturbative corrections and also avoid the larger
periodicity effect in zero momentum matrix elements
(we also discuss results using n0z ¼ 0 for a ¼ 0.06 fm
lattice, where wrap-around effect was small, in
Appendix H). Through Eq. (30), we can find the values
of the moments hxni by fitting them as free parameters such
as to best describe the zPz and z2 dependence of the
Mðz; Pz; P0

zÞ data. Such a method, usually referred to as
OPE without OPE [75], has been previously applied to the
case of reduced ITD (n0z ¼ 0) for pion [52] and nucleon
[76–78].

A. Connection between isovector PDF
and valence PDF of pion

First, it is important to recall as to how the u − d
isovector pion matrix element that we compute on the
lattice relates to the valence PDF of pion. Let fuðxÞ and
fdðxÞ are the u and d quark PDF with support in x ∈ ½−1; 1�
and a convention that includes the quark distribution for
x > 0 and antiquark distribution for x < 0 via the relation
fuð−xÞ ¼ −fūðxÞ and fdð−xÞ ¼ −fd̄ðxÞ. The u − d iso-
vector matrix element relates to the fu−dðxÞ,

fu−dðxÞ ¼ fuðxÞ − fdðxÞ; x ∈ ½−1; 1�: ð35Þ

Due to isospin symmetry in πþ, fu−dðxÞ ¼ fu−dð−xÞ. The
moments that occur in the OPE expressions Eq. (24),
Eq. (27) and Eq. (30) when applied to the isovector matrix
element are the u − d PDF moments, hxni ¼ hxniu−d. Due
to the symmetry of fu−dðxÞ about x ¼ 0, only the moments
hxniu−d for even n are nonvanishing for pion. For the pion
πþ with the valence structure ud̄, the valence PDF is

fπvðxÞ≡ fuðxÞ − fūðxÞ; x ∈ ½0; 1�: ð36Þ

This could be understood from the fact that ū parton
could only be produced radiatively in πþ, and hence fū
only has a sea quark distribution, which thereby cancels the
sea quark distribution of fu in the above definition. Due to
the isospin symmetry present in our QCD computation that
does not include QED corrections, fūðxÞ ¼ fdðxÞ. Thus,
fπvðxÞ ¼ fuðxÞ − fdðxÞ; x ∈ ½0; 1�. Unlike the u − d PDF of
pion, both even and odd valence moments hxniv of the pion
are nonvanishing. By comparing the above equivalent
definition of the valence PDF in terms of u and d quark
PDFs in pion with the u − d PDF in Eq. (35), one can
deduce that

fu−dðxÞ ¼
�
fvðxÞ; x ∈ ½0; 1�
fvðjxjÞ; x ∈ ½−1; 0�; ð37Þ

and that for the moments

hxniu−d ¼
� hxniv; n is even;

0; n is odd:
ð38Þ

Thus, the OPE expression in Eq. (30) for u − d pion matrix
element has only even powers n, from which we could
obtain the values of hxniu−d for even values of n, which as
we discussed is the valence moment hxniv. Unfortunately,
the u − d matrix element does not directly let us access the
odd valence moments, but we will later try to determine
them based on models of valence PDF fπv itself.

B. Method for model independent fits

We performed model independent determinations of
hxniv by fitting the rational functional form in Eq. (30),
which we denote as MOPEðz; Pz; P0

zÞ here, with the even
moments hxniv as the fit parameters, over a range of z1 ≤
z ≤ z2 and P0

z ≤ Pz ≤ Pmax
z . The possibility of larger lattice

corrections at very short separation, z1, has to be accounted
for. Therefore, we tried fits including or excluding ðPzaÞ2
correction term inMOPEðz; Pz; P0

zÞ as discussed in Sec. VI.
For a larger range ½z1; z2�, there is a larger curvature in the
data for M, which makes the fits sensitive to the higher
order terms of ν in Eq. (30). On the other hand, by using
a larger z2, there is the undesired possibility of working
in a nonperturbative regime of QCD. We strike a balance
between the two by choosing the maximum, z2, over range
of values from 0.36 fm to 0.72 fm. We choose the
factorization scale μ to be 3.2 GeV in the following
determinations. Since the Wilson coefficients cn are known
only to 1-loop order, the scale of strong coupling constant
αs is still unspecified. We take care of this perturbative
uncertainty by using the variation in Eq. (30) when the
scale of αs is changed from μ=2 to 2μ as part of error, where
μ is the factorization scale at which hxniv are determined.
Concretely, we minimize the following χ2 to determine the
moments:

χ2 ≡Xz2
z¼z1

XPmax
z

Pz¼P0
z

ðMðz; Pz; P0
zÞ −MOPEðz; Pz; P0

zÞÞ2
σ2statðz; Pz; P0

zÞ þ σ2sysðz; Pz; P0
zÞ

;

σsysðz; Pz; P0
zÞ ¼

1

2
ðMOPE

αsðμ=2Þ −MOPEjαsð2μÞÞðz; Pz; P0
zÞ:
ð39Þ

While the above expression is a convenient way to include
the perturbative error in the analysis, it comes at the cost of
missing the covariance matrix. We take care of it by using
the same set of bootstrap samples for all z and Pz. We use
the factorization scale μ ¼ 3.2 GeV to determine αs used
in the twist-2 expressions; for this, we used the values
αs ¼ 0.33, 0.24 and 0.19 at scales μ=2; μ and 2μ respec-
tively, by interpolating the running coupling data compiled
by the PDG [67]. Since we take the variation of αs with
scale into account in the error budget of our analysis,
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a precise input of αs is not necessary. We can also improve
the estimate of higher moments by imposing priors on
Nprior lower moments by using

χ2 ¼ χ2 þ
XNprior

i¼1

ðhxiiv − hxiipriorÞ2
ðσpriori Þ2 ; ð40Þ

where hxiiprior and σpriori are the prior on ith moment and
error on the prior respectively. We used this method only to
determine hx6iv with prior imposed on only hx2i, or both
hx2i and hx4iv. For the prior, we used the result of fits with
z2 ¼ 0.5 fm and the error on that estimate as σprior. In the
future, it would be interesting to use estimates of lower
moments from the other twist-2 local-operator techniques on
the same gauge ensemble as priors in the twist-2 matching
methodologies in order to determine higher moments.
We point out an improved way to implement the fit for

valence pion PDF. Naively, one might expect that including
more terms in Eq. (30) will lead to unstable results and
larger errors due to the increase in the number of fit
parameters, hxniv. For the case of valence PDF pion, we
can use an additional fact to constrain the moments—that
of the positivity of fπvðxÞ, and hence of fu−dðxÞ for all
x ∈ ½−1; 1�. The positivity of fπvðxÞ is usually implicit in
simple ansatz such as fπvðxÞ ∼ xαð1 − xÞβ. This stems from
the fact that the u-quark is present at the orderOðα0sÞ due to
its valence nature while the d-quark is only in the sea and
hence its distribution can start only at OðαsÞ. Thus, it is a
well justified expectation that fuðxÞ > fdðxÞ. The positiv-
ity of fπvðxÞ leads to the conditions that the even derivatives
of hxniv with respect to n are positive (i.e., dmhxtiv

dtm jt¼n ¼
hxn logmðxÞiv > 0 for even m) and that the odd derivatives
(i.e., m is odd) are negative. The interesting consequences
are the inequalities

hxnþ2iu−d < hxniu−d and;

hxnþ2iu−d þ hxn−2iu−d − 2hxniu−d > 0: ð41Þ

These inequalities lead to strong constraints on the fitted
moments and lead to the stabilization of the estimates (and
their errors) of the lower moments as one increases the num-
ber of terms in Eq. (30) to larger values, thereby eliminating
the order of Eq. (30) as a tunable parameter and prevents
over-fitting the data. The two inequalities in Eq. (41) can be
easily implemented through a change of variables

hxniv ≡
XN
i¼n

XN
j¼i

e−λj ; ð42Þ

where the sum runs over even i and j for the pion. The
parameters λj > 0, and N being the largest even moment
used in the fit. In the discussions below, we used even
moments up to hx8iv in the fits over multiple z. In cases
where certain higher moments were irrelevant to the fits, they

promptly converged to values very close to zero without
affecting the relevant smaller moments. In this way, we do
not have to choose the order of the polynomial to be used in
the fits.

C. Determining an estimate, its statistical
and systematic error

Since the various estimates in this section and the rest
depend on the range ½z1; z2� and the value of n0z used, we
define the central estimate of a quantity A and its systematic
error as MeanðAÞ and SDðAÞ respectively; here, MeanðAÞ
is the mean over different estimates (variations in fit range
etc.,) in a given bootstrap sample, and SDðAÞ is the
standard deviation of various estimates of A within the
same bootstrap sample. The notation MeanðAÞ and SDðAÞ
stand for average of those mean and standard deviation over
the bootstrap sample. In this way, we obtain the statistical
error on MeanðAÞ also in the standard bootstrap procedure.
We will use this procedure in the later sections too, and the
extra dependences on model ansatz, and renormalization
schemes (ratio, RI-MOM scheme and their various scales)
will also enter in evaluating the systematic error.

D. Model independent analysis of moments at fixed z2

The ν ¼ zPz dependence can come from either the z
variation at fixed Pz or from Pz variation at fixed z. We first
look at the latter case. In Fig. 15, we show the result of
fitting the rational polynomial in ν given by Eq. (30) to the

FIG. 15. Plot of the ratio,Mðz; Pz; P0
zÞ, shown as a function of

zPz using a ¼ 0.06 fm data with P0
z ¼ 0.43 GeV. The points of

same colored symbols have the same value of z, and hence the
zPz dependence comes from the variation in Pz. The correspond-
ing colored bands are the fits of Eq. (30) to data at each fixed z.
Inset: The data points are at fixed z ¼ a. The blue curve is the
expectation for the zPz dependence at z ¼ a based on the
moments obtained at z ¼ 5a without correcting for ðPzaÞ2 lattice
terms. The red curve is obtained after accounting for such lattice
corrections.
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a ¼ 0.06 fm data at different fixed z. For the case shown,
P0
z ¼ 0.43 GeV. In this analysis at fixed z, we did not take

any ðPzaÞ2 correction into account. The results of the fits at
various fixed z are shown as the bands having the same
color as the corresponding data points. Since we only have
five different values of Pz, the smaller z data cover shorter
ranges in ν compared to the larger fixed z data. It is clear
from the data that in order to be sensitive to deviations from
simple ν2 term, we need to resort to data at larger z >
8a ¼ 0.48 fm as well. We repeated this analysis with
n0z ¼ 2 also. In Fig. 16, we show the value of hx2iv that
is extracted from the fits as a function of the fixed values of
z used in the fits. The results as obtained from both n0z ¼ 1
and 2 are shown in the left and right panels. In order to look
for lattice spacing effects, we have shown results from the
two lattice spacings (but keeping in mind that the two n0z at
two lattice spacings lead to slightly different P0

z in physical
units). The inferred moments are more precise for n0z ¼ 1

than for n0z ¼ 2, as one would expect from deteriorating
signal as momentum is increased. One can see a plateau in
hx2iv starting from 3a even up to z ¼ 0.7 fm. This shows
that the z2 dependence in the pion matrix element is
canceled to a good accuracy by the perturbative Wilson
coefficients cnðμ2z2Þ.
There is a clear tendency for the fitted hx2iv to increase at

very short lattice distance z=a ∼ 1 which is most likely a
result of increased lattice corrections at smaller z. One can
see this by comparing the results from the two lattice
spacings and noting that at fixed short physical distance z,
there is tendency for the a ¼ 0.04 fm data to lie closer to
the plateau than the a ¼ 0.06 fm data. If the lattice spacing
effect is coming from ðPzaÞ2 corrections, then we should

find the ðz=aÞ−2 behavior of hx2i as we outlined in Sec. VI
(where we ignore the logarithmic dependence in z present
in c2 for this first analysis in this subsection.) The fits to
such hx2i þ 2rðz=aÞ−2 are shown as the corresponding
colored curves in Fig. 16. Indeed, we find a very nice
description of the observed data, thereby, show the impor-
tance of ðPzaÞ2 corrections at first few lattice separations
z=a. Also, as a consistency check, the values of r from the
fits on the two lattice spacings were about the same,
namely, 0.021 and 0.022 on the 0.04 fm and 0.06 fm
lattice spacings respectively. It could be counterintuitive to
find a rather large lattice spacing effect affecting the
moments when we do not find anything unusual about
the small z=a in Fig. 15, or in Fig. 12 where we compared
the data at two different lattice spacings. In order to
understand this, we take the values of moments as obtained
from z ¼ 5a (which lies in the plateau of hx2iv) and
reconstruct the expected ν dependence at fixed z ¼ a using
Eq. (30), without including any ðPzaÞ2 corrections in the
expression. In the inset of Fig. 15, we compare this
expected curve (blue) with the actual z ¼ a data points.
The clear disagreement between the two is the cause of the
anomalously large hx2iv ≈ 0.15 at z ¼ a in Fig. 16. One
should note the rather enlarged scale on the y-axis of the
inset, and the disagreement is actually sub-percent. But, the
data at small z=a is so precise that such small lattice spacing
effects show rather clearly in the extracted moments. This is
the crux of the problem. After accounting for the ra2P2

z
correction, the expected curve is shown in red, which
agrees perfectly with the data and gives hx2iv that is
consistent with the one extracted from larger z=a. In the
analyses henceforth, we will use the correction term
rðPzaÞ2 term in the fits as outlined in Sec. VI with r
being an extra fit parameter, and this way, we were able to
use z1 ¼ a; 2a; 3a in the fits and obtain no contradictory
strongly z1-dependent results.

E. Model independent combined analysis of moments

In order to estimate hxniv, it is better to fit both zPz and
z2 dependence using all the data within z ∈ ½z1; z2� and
Pz > P0

z . In Fig. 17, we show the best fit values of hx2iv as
a function of the maximum of the range of z, i.e., z2. The
left and the right panels are for the a ¼ 0.06 fm and a ¼
0.04 fm data. Along with z2 dependence, we have also
shown hx2iv from the three different values of z-range
minimum, z1 ¼ 1a; 2a and 3a (as we noted, we include a
rðPzaÞ2 term in the fits in order to be able to use z1 ¼ a and
2a). The two different colored symbols differentiate the
reference momenta n0z ¼ 1 and 2. These combined fits with
moments being the fit parameters lead to typical χ2=dof ≈
0.7 in all the cases. For both the lattice spacings, we find
the various estimates to be consistent with each other.
The scatter of values at a ¼ 0.04 fm seems to be centered
around a slightly lower value than at a ¼ 0.06 fm, pointing

FIG. 16. The z dependence of hx2i obtained by fitting rational
polynomial functions in zPz to matrix elements Mðz; Pz; P0

zÞ at
different fixed values of z, with P0

z ¼ 2πn0z=L. The left panel
shows results as obtained with n0z ¼ 1 and the right panel for
n0z ¼ 2. In each case, the red and blue points correspond to a ¼
0.06 fm and 0.04 fm lattice spacings. The curves are fits to a
functional form hx2i þ 2rðz=aÞ−2 to capture possible ðaPzÞ2
corrections (refer text).
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to a small lattice spacing dependence. Using the convention
for summarizing the various estimates, we find

hx2iv ¼
8<
:

0.1088þð48Þð58Þ
−ð48Þð58Þ ; a ¼ 0.06 fm

0.1050þð43Þð39Þ
−ð43Þð39Þ ; a ¼ 0.04 fm;

ð43Þ

at μ ¼ 3.2 GeV, with the first error being statistical and the
second one being systematic. We input the fit results from
z1 ¼ 1a; 2a; 3a, z2 ∈ ½0.24; 0.6� fm, and n0z ¼ 1, 2 to
obtain the above single estimate. These estimates with
statistical error band, and with both statistical and system-
atic error band are shown in Fig. 17. For comparison, the
estimate of hx2iv from JAM collaboration [79] at μ ¼
3.2 GeV is at a slightly lower value, 0.095. The soft-gluon
resummed Aicher-Shafer-Vogelsang result (ASV) [35] is
even lower at about 0.086 at the same scale μ.
In Fig. 18, we show a similar plot for hx4iv at

μ ¼ 3.2 GeV. At each z2, we show determinations with
z1 ¼ 1a; 2a and 3a. We find consistent determinations
with various fit ranges and renormalization procedures. We
estimate

hx4iv ¼
8<
:

0.0346þð50Þð73Þ
−ð57Þð73Þ ; a ¼ 0.06 fm

0.0382þð43Þð54Þ
−ð44Þð54Þ ; a ¼ 0.04 fm;

ð44Þ

These estimates are the bands in Fig. 18. The JAM estimate,
hx4iv ¼ 0.032, is slightly lower than for the 300 MeV pion
studied here [79]. Whereas the ASV result for the fourth
moment can be inferred to be about 0.023. For both hx2iv
and hx4iv, we did not use priors. On the other hand, it was
not possible to obtain a good estimate of hx6iv without

inputting the knowledge of the lower moments using the
procedure we outlined previously. We obtained results for
hx6iv at the two lattice spacings by inputting prior for only
hx2iv, and by using priors for both hx2iv and hx4iv. We
display the results for the latter case in Fig. 19. In addition,
we have to use z2 > 0.5 fm in order for hx6iv to be a
relevant parameter in the fit. As we noted in the previous
section, the Λ2

QCDz
2 corrections seem to be canceled

effectively even in the ratio scheme with P0
z ¼ 0, and

the error we commit by using values of z2 up to 1 fm might
not be large and also further reduced by nonzero P0

z we use
in the modified ratio scheme. Perhaps this is the reason, we
find the estimates to be independent of z2 and P0

z to a good
degree. We estimate

hx6iv ¼
8<
:

0.0117þð26Þð33Þ
−ð26Þð33Þ ; a ¼ 0.06 fm

0.0126þð20Þð41Þ
−ð15Þð41Þ ; a ¼ 0.04 fm:

ð45Þ

FIG. 17. hx2i from combined fits of the rational polynomial
function in zPz toMðz; zPz; P0

zÞ for the data z ∈ ½zmin; zmax�. The
dependence of hx2i on zmax is shown. For each zmax, values from
three different zmin are shown. The results for a ¼ 0.06 fm and
0.04 fm are shown in the left and right panels. The grey bands are
the estimates—the inner band includes only statistical error, and
outer one includes both statistical and systematic error (see text).

FIG. 18. hx4i from combined fits of the rational polynomial
function in zPz toMðz; zPz; P0

zÞ for the data z ∈ ½zmin; zmax�. The
description of the points are the same in Fig. 17.

FIG. 19. hx6i from combined fits of the rational polynomial
function in zPz to Mðz; zPz; P0

zÞ for the data z ∈ ½zmin; zmax�
using priors hx2iv and hx4iv. The dependence of hx6i on zmax is
shown. At each zmax, values from zmin ¼ a; 2a and 3a are shown.
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To compare, the JAM and ASV estimates as inferred from
their fits are 0.015 and 0.009 respectively. In the above fits,
we obtained the coefficient r of the ðPzaÞ2 correction to be
−0.026ð7Þð10Þ and −0.018ð8Þð8Þ for 0.06 fm and 0.04 fm
lattice spacings, which are quite consistent with each other
as expected, and with our rough estimate in the last
subsection. We should also point out that in the above
discussion, we did not include any target mass correction
(trace) terms in the OPE used in fits since we did not find
any significant change by including such additional terms
due to the smallness of pion mass.

VIII. VALENCE PDF OF PION BY FITS TO
BOOSTED PION MATRIX ELEMENTS

IN REAL SPACE

In the last section, we estimated the even moments
directly from the equal-time boosted pion matrix elements.
However, it is not possible to reconstruct an x-dependent
PDF using only the knowledge of the first few even
moments. One way of PDF reconstruction from the
boosted pion matrix element is through data interpolation
over the range of z where lattice data is available and then
extrapolate it to zero smoothly at larger z [19,80]. Instead,
as in our previous work, we adopt the method of using
phenomenology motivated ansatz for fπvðxÞ and fit the
ansatz to our lattice matrix element over ranges of z smaller
than 1 fm. In this way, we avoid the usage of data with
z ⪆ 1 fm which could be deep in the nonperturbative
regime, and might not be consistent with the perturbative
framework that we rely on. There are also other methods of
PDF reconstruction that have been investigated in the
literature [81,82].

A. PDF ansatz and analysis method

As is typical in the global analysis of valence PDFs, we
use two different valence pion PDF ansatz

fπvðx; α; βÞ ¼ N xαð1 − xÞβ;
fπvðx; α; β; s; tÞ ¼ N 0xαð1 − xÞβð1þ s

ffiffiffi
x

p þ txÞ; ð46Þ

with the first one being a special case of the second and
hence more restrictive. The normalization factors N ;N 0

are chosen such that
R
1
0 f

π
vðxÞdx ¼ 1. The parameters α, β,

s, t are the tunable fit parameters. These model PDFs
enter the analysis via their corresponding moments, for
example hxniðα; βÞ ¼ R

1
0 xnfπvðx;α; βÞdx, which appear in

the OPE expressions; Eq. (30) for the ratio scheme and
Eq. (27) for RI-MOM scheme. In both the schemes, we
corrected for ðPzaÞ2 lattice artifacts that affect smaller z by
using a term rðPzaÞ2 in the OPE expressions with r being a
fit parameter, as we did in our model independent fits.
Through this, we can construct the model matrix elements
Mmodelðz; Pz; P0

z ; α; β;…Þ and hRmodelðz; Pz; PR;α; β;…Þ.

Let us first consider the ratio scheme. In addition to the
statistical error σstatðz; Pz; P0

zÞ for the lattice data point
Mðz; Pz; P0

zÞ, there is also the perturbative uncertainty
resulting from the 1-loop truncation of the twist-2 Wilson
coefficients. We quantify this error through the arbitrary
nature of the scale μ of the strong coupling αsðμÞ, as we did
in Sec. VII. We use μ in the αs to be the same as the
factorization scale of the PDF, and quantify the error we
commit through the systematic error σsysðz; Pz; P0

zÞ which
we define as the change inMmodelðz; Pz; P0

z ; α; β;…Þwhen
αs is changed from αsðμ=2Þ to αsð2μÞ. That is,

σsysðz;…Þ ¼ 1

2
ðMmodelðz;…Þjαsðμ=2Þ

−Mmodelðz;…Þjαsð2μÞÞ: ð47Þ

Let us take the JAM data and the ASV analysis data at
μ ¼ 3.2 GeV as a specific case. The JAM data can be
described to a very good accuracy by the form Eq. (46)
with α ¼ −0.37 and β ¼ 1.20. In Fig. 20, we show the
result for Mmodelðz; Pz; P0

zÞ at Pz ¼ 1.29 GeV, P0
z ¼

0.43 GeV using the JAM valence PDF [79] with solid
curves, and using ASV result [35] using dashed curves.
For each case, we plot three different curves for Mmodel
as obtained using αsðμ=2Þ, αsðμÞ and αsð2μÞ. For
comparison, the actual lattice data and the error for
Mmodelðz; Pz; P0

zÞ is also shown. We can see that the
spread in Mmodel for both JAM and ASV get especially
important for z > 0.4 fm, and become comparable to
the statistical error in the data. Therefore, given the

FIG. 20. The plot shows the model boosted pion matrix element
Mðz; Pz; P0

zÞ at Pz ¼ 1.29 GeV, P0
z ¼ 0.43 GeV as a function of

z, constructed based on the JAM valence PDF [79] (solid curves)
and ASV result [35] (dashed curves) at μ ¼ 3.2 GeV. The red,
green and blue curves are the matrix elements constructed using
Eq. (30) using values of αsðμÞ, αsð2μÞ and αsðμ=2Þ respectively.
The lattice data for Mðz; Pz; P0

zÞ from a ¼ 0.06 fm lattice are
also shown.
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significant perturbative uncertainty that is unavoidable at
present, it would be misleading to favor or rule out
models of PDF (such as JAM and ASV results in the
example here) simply based on the statistical precision of
the lattice data. Therefore, we select the model PDFs that
best describes the shape of the lattice matrix element that
takes σsys into account, by minimizing,

χ2 ≡ XPmax
z

Pz>P0
z

Xz2
z¼z1

ðMðz; Pz; P0
zÞ −Mmodelðz; Pz; P0

z ; α;…ÞÞ2
σ2statðz; Pz; P0

zÞ þ σ2sysðz; Pz; P0
zÞ

:

ð48Þ

The correlations between the lattice data at different z and
Pz are partly taken into account by picking Mðz; Pz; P0

zÞ
from the same bootstrap samples. Similarly, in the case of
RI-MOM matrix element, we fit only the real part,
Re½hRðz; Pz; PRÞ�, and the imaginary part is obtained as
an outcome. In the case of RI-MOM matrix element, we
found taking care of σsys to be even more important as the
αs dependence starts from cRI0 , unlike in the ratio scheme.

B. Results for f πv ðxÞ
In Fig. 21, we show the resulting best fit model matrix

elements along with the actual lattice data. We have used
the 4-parameter ansatz fπvðx; α; β; s; tÞ for the fits shown.
For the fits, we used μ ¼ 3.2 GeV in the perturbative
Wilson coefficients, and hence the model PDF corresponds
to this factorization scale. In the results shown in Fig. 21,
we used only the boosted matrix elements with the quark-
antiquark separations z ∈ ½2a; 0.5 fm�, but we performed
the analysis also with z1¼a;2a;3a and z2∈ ½0.36;0.72� fm.
The matrix elements at different fixed Pz are differentiated
(by their color and symbols). In the top and bottom panels
we have shown the results for a ¼ 0.06 and 0.04 fm
respectively. We have shown the results for the ratio scheme
with P0

z ¼ 2πn0z=ðLaÞ for n0z ¼ 1 and 2 in the left and
middle panels of Fig. 21. For n0z ¼ 1 ratio scheme, we used
the momenta with nz ¼ 2, 3, 4, 5, and for n0z ¼ 2, we used
nz ¼ 3, 4, 5. For the RI-MOM scheme, we used only the
larger set of momenta corresponding nz ¼ 3, 4, 5. This is to
avoid the larger OðΛ2

QCDz
2Þ corrections in the RI-MOM

scheme observed in Sec. V. The results of the fit to the
RI-MOM matrix elements at renormalization scales

FIG. 21. Renormalized pion matrix elements in various schemes are shown as a function of zPz along with the best fits using PDFs
fπvðxÞ of the form xαð1 − xÞβð1þ s

ffiffiffi
x

p þ txÞ. The top and bottom rows show the results for a ¼ 0.06 fm and a ¼ 0.04 fm respectively.
The leftmost panels are using the ratio renormalization scheme with the reference momentum P0

z ¼ 2π=ðLaÞ, which is P0
z ¼ 0.43 GeV

for a ¼ 0.06 fm and P0
z ¼ 0.48 GeV for a ¼ 0.04 fm. The middle panels use P0

z ¼ 4π=ðLaÞ, which is P0
z ¼ 0.86 GeV for a ¼ 0.06 fm

and P0
z ¼ 0.97 GeV for a ¼ 0.04 fm. The rightmost panels are in the RI-MOM scheme with the renormalization momentum

ðPR
z ; PR⊥Þ ¼ ð1.29; 2.98Þ GeV for a ¼ 0.06 fm case and (1.93,3.34) GeV for a ¼ 0.04 fm case. Here, the real and imaginary parts are

shown. In each panel, the different colored symbols are the actual lattice data at different pion momentum Pz. The corresponding
similarly colored bands are the results of the combined fit over the fixed range z ∈ ½2a; 0.5� fm from different Pz > P0

z in the ratio
scheme, and nz ¼ 3, 4, 5 in the case of RI-MOM scheme.
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ðPR
z ; PR⊥Þ ¼ ð1.29; 2.98Þ GeV and (1.93,3.34) GeV for the

a ¼ 0.06 fm and a ¼ 0.04 fm lattices respectively are
shown in the rightmost panels. The fit is performed only
on the real part of hR. But, the nonzero imaginary part of hR

also compares well with the resultant imaginary part of the
fit. The fits in all the cases gave good χ2=dof between 0.5
and 1, and we discuss this in Appendix D. We refer the
reader to Appendix H for a similar discussion on fits to
P0
z ¼ 0 ratio matrix elements (i.e., reduced ITD).
Each of the best fit model matrix elements in

Fig. 21 correspond to valence PDFs, fπvðx; α; β; s; tÞ at
μ ¼ 3.2 GeV. In Fig. 22, we have shown the results of the
valence PDFs, fπvðx; α; β; s; tÞ, that are reconstructed from
Mðz; Pz; P0

zÞ. The left and the right panels of Fig. 22
show fπvðxÞ and xfπvðxÞ as functions of x. The red and blue
bands are for the two values of n0z ¼ 1, 2 respectively.

For comparison, the JAM valence PDF [79] at the same μ is
shown as the black band. At a qualitative level, it is
reassuring that the PDFs we determined compares well
with the phenomenological result. At both lattice spacings,
the results from different P0

z differ only by a little, and such
variations belong in the systematic error budget. However,
when we look closely, one can find that the best fit PDFs
always have a tendency to be above the JAM result for
x > 0.6. This ties back to the PDF moment determination in
the last section where we found hx2iv and other higher
moments also to be consistently higher than the phenom-
enological result. In Fig. 23, we show similar results for PDF
as obtained using the RI-MOM hR. The results using two
different renormalization scales PR are consistent with each
other as one would expect. One can also note that the RI-
MOM results also agree overall with the one from ratio

FIG. 22. The valence PDF of pion fπvðxÞ at μ ¼ 3.2 GeV. The top and bottom panels are for a ¼ 0.06 fm and a ¼ 0.04 fm
respectively. The left panels show fπvðxÞ and the right panel re-plot the same data as xfπvðxÞ. The ansatz fπvðxÞ ¼ N xαð1 − xÞβð1þ
s

ffiffiffi
x

p þ txÞ was used for this reconstruction of valence PDF via their ability to describe pion matrix elements in real space in different
ratio schemes involving ranges of quark-antiquark separation z ∈ ½2a; 0.5� fm. In each panel, such results for fπvðxÞ based on ratio
schemes with reference momenta P0

z ¼ 2πn0z=L with n0z ¼ 1, 2 are shown as different colored bands. For comparison, the JAM result at
the same μ is shown as the black band.
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scheme. When we focus on specific details of the PDF, as we
would do next, the difference across renormalization
schemes and renormalization scales will become easier to
notice.
For the results we discussed above, we limited ourselves

to a specific fit range in z from 2a up to 0.5 fm using an
ansatz fπvðx; α; βÞ. The obvious addendum to this discus-
sion is to also specify what happens when we change the
various choices we used in the fits. First, we check that
the constructed PDF is not sensitive to the PDF ansatz.
We used both the ansatz in Eq. (46) in our analysis, and in

fact, the simpler ansatz fπvðx; α; βÞ by itself is sufficient to
describe our pion matrix elements in real space; in all the
cases χ2=dof varied between 0.5 to 0.9. The ansatz
fπvðx; α; β; s; tÞ includes terms that affect only the small-x
behavior and therefore more flexible. In Fig. 24, we
compare the best fit PDFs using the two ansatz for a
sample case that used ratio scheme with n0z ¼ 1. It is clear
that the ansatz dependence is very little, and the effect of
including more free parameters in fπvðx; α; β; s; tÞ is to
increase the uncertainties in the fitted PDFs without
changing the overall shape.
It would be cumbersome to describe one dependence

after another in terms of the resulting PDFs. Therefore,
we summarize the results of fitted PDFs using various
choices for z-range ½z1; z2� and the renormalization
schemes via their first four moments hxiv, hx2iv, hx3iv
and hx4iv in Fig. 25. It is noteworthy that even though
we cannot access the odd moments directly, we can
obtain them indirectly from model PDFs. Let us focus on
one of the panels in Fig. 25 to unpack the details. Each
point is an estimate of the moment labeled in the x-axis
of the panel. The red and blue points result from using
fπvðx; α; βÞ and fπvðx; α; β; s; tÞ respectively, and demon-
strates the variation due to fitted ansatz. For each of the
ansatz (i.e., red or blue), the variation due to the range
of z used, ½z1; z2�, is shown as one moves up along the
y-axis. The results with the same ½z1; z2� are enclosed
within the dashed lines. For each ½z1; z2�, the variation
coming from the renormalization scheme used for the
equal time matrix elements is shown. We have shown
four such renormalized results with each set of ½z1; z2�—
ratio scheme with n0z ¼ 1, 2 (denoted as ratio-1 and ratio-
2 in the figure), and RI-MOM scheme at two different
ðPR

z ; PR⊥Þ (denoted as RI-1 and RI-2). For a ¼ 0.06 fm,

FIG. 23. Valence PDF of pion at μ ¼ 3.2 GeV extracted from RI-MOM renormalized matrix elements. The left and the right panels
show data for a ¼ 0.06 fm and a ¼ 0.04 fm. The red and blue bands are the PDFs that best describes the RI-MOM data at two different
RI-MOM scales ðPR

z ; PR⊥Þ. For comparison, the PDF as extracted using ratio scheme with P0
z ¼ 2πn0z=ðLaÞ with n0z ¼ 1 is shown as the

green band. The JAM estimate [79] of fπvðxÞ is shown as the black band.

FIG. 24. Comparison of PDF as extracted using a simple two-
parameter xαð1 − xÞβ ansatz and from a four-parameter xαð1 −
xÞβð1þ s

ffiffiffi
x

p þ txÞ ansatz.
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the two RI-MOM scales are (1.29,2.98) GeV and
(1.93,2.98) GeV, and for a ¼ 0.04 fm, the two scales
are (1.93,3.34) GeV and (2.9,3.34) GeV. It is satisfactory
that the results for hx2iv and hx4iv obtained here
indirectly agrees well with the direct determination in
the last section, and serves as a cross-check. One sees
comparatively larger renormalization dependence in the
more stringent two-parameter ansatz, but it seems to be
reduced and accounted for by using a more flexible four-
parameter ansatz. As we change z2 from 0.42 fm to
0.72 fm, the results remain almost intact. From these fits,
we estimate the moments and their statistical and sys-
tematic errors (coming from ½z1; z2�, RI-MOM and ratio
renormalization schemes, and the two PDF ansatz) as

hxiv ¼
(
0.2491þð77Þð61Þ

−ð81Þð61Þ ; a ¼ 0.06 fm

0.2296þð79Þð57Þ
−ð87Þð57Þ ; a ¼ 0.04 fm:

hx2iv ¼
(
0.1174þð50Þð71Þ

−ð44Þð71Þ ; a ¼ 0.06 fm

0.1122þð45Þð57Þ
−ð52Þð57Þ ; a ¼ 0.04 fm:

hx3iv ¼
(
0.0698þð52Þð80Þ

−ð48Þð80Þ ; a ¼ 0.06 fm

0.0690þð52Þð60Þ
−ð52Þð60Þ ; a ¼ 0.04 fm:

hx4iv ¼
(
0.0470þð52Þð76Þ

−ð47Þð76Þ ; a ¼ 0.06 fm

0.0478þð44Þð58Þ
−ð51Þð58Þ ; a ¼ 0.04 fm:

ð49Þ

FIG. 25. The first four valence PDF moments hxni as inferred from the best estimates of PDFs fπvðxÞ that best describes the equal-time
pion matrix elements in ratio and RI-MOM renormalization schemes. The top panels are for a ¼ 0.06 fm and bottom ones for
a ¼ 0.04 fm. The dependence of hxni on all the variables in the lattice analysis is summarized in the above plot. The foremost variable is
the range of quark-antiquark separations used in the fits z ∈ ½z1; z2�. Such variations are bunched together as blocks separated by the
dashed lines along the y-axis. The second variable factor is the renormalization scheme of the matrix elements: it could be RI-MOM
scheme or ratio scheme at reference scale P0

z . At fixed z ∈ ½z1; z2�, four different renormalization points are shown: ratio scheme at
n0z ¼ 1 (ratio-1), n0z ¼ 2 (ratio-2), RI-MOM scheme at two different scales PR, denoted as RI-1 and RI-2. This scheme and scale
variations are bunched together within the dotted lines. The tertiary variable is the fit ansatz: the results obtained using the ansatz
fπvðxÞ ¼ N xαð1 − xÞβ are shown in red and those using fπvðxÞ ¼ N xαð1 − xÞβð1þ s

ffiffiffi
x

p þ txÞ are shown in blue.
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The indirect determination of the first moment hxiv shows
that each of the two valence quarks carry about a quarter of
the pion energy as has been seen before. Especially here,
one certainly sees a lattice spacing effect that tends to make
hxiv closer to the JAM value of 0.223 at μ ¼ 3.2 GeV.
Such a lattice spacing effect is seen to a lesser extent in
hx2iv, and difficult to see in the higher moments.

IX. DISCUSSION ON LARGE-x BEHAVIOR

The large-x behavior of PDFs are of the form

fðxÞ ∼ ð1 − xÞβ; ð50Þ

characterizing how fðxÞ vanishes in the x → 1 limit. The
exponent β is hadron dependent, and one uses the Brodsky-
Farrar quark counting rule [83] to find the typical value of β
for a hadron; β ¼ 2 for the pion and 3 for the unpolarized
nucleon valence PDFs respectively from this counting rule.
In fact, for the proton, one does find the value of β to be
close to 3 for the u-quark valence PDF, and motivates the
usage of quark counting rule to predict the value of β for
other hadrons. But, the value of β from the analysis [45] of
E-0615 Fermilab data was found to be about 1 as a
contradiction to the quark counting rule. The importance
of soft gluon resummation in the analysis of DIS data close
to x → 1 limit was pointed in [35], and consequent
reanalysis of Fermilab result suggested a value of β ≈ 2.
The recent global Monte Carlo analysis of experimental
data from JAM collaboration [79] suggests β ¼ 1.2, and
concurred by another analysis using xFitter [84].
Nevertheless, quark counting rules are not direct predic-
tions of nonperturbative QCD and there have been lot of
recent works on computing β for the pion that relies on
alternative nonperturbative arguments, such as Dyson-
Schwinger equation, Bethe-Salpeter equation and light-

front quantization methods; many such recent attempts
[32,33] suggest a value β ≈ 2, but some [36–38,
85] of them suggest values close to 1, or a cross-over
from β ¼ 1 to 2 behavior very close to x ¼ 1 [34]. Thus,
the issue of the value of β for fπv is still not settled and the
lattice computations, as the present one, can play an
important role.

A. Model dependent estimate of β

The recent lattice computations [40–42] of pion PDF,
including our previous work, have attempted to address the
issue of β based on the assumption of ansatz of the type in
Eq. (46) for fπvðxÞ. In a similar way, we summarize our
results on the large-x exponent β and the small-x exponent
α in Fig. 26 based on the model dependent analysis that we
presented in the last section. The notation and the arrange-
ment of data points in Fig. 26 is the same as outlined in
Fig. 25 for the moments. From the plots for β in both the
lattice spacings, we find that the fits prefer a value of
around 1, and sometimes even smaller than 1. As suggested
in [41], the usage of the 4-parameter ansatz does lead to
somewhat larger values of β than obtained using the 2-
parameter ansatz, but these values are still closer to 1. Even
though the moments that correspond to these fits showed
little renormalization scheme dependence, the exponents
themselves show a larger sensitivity to the lattice renorm-
alization scheme used, with a tendency for the RI-MOM
scheme to consistently give lesser values of β compared to
those from ratio schemes. One can also notice a somewhat
increasing tendency of β when larger fit range ½z1; z2� is
used. It is possible that the favored value of β could be
slightly larger than our estimates if we were to include data
at larger values of zPz, but we have restricted z2 to be less
than 0.72 fm to remain close to the perturbative regime.
A naive argument would suggest the LaMET formalism

FIG. 26. The exponents α and β inferred from the estimates of PDFs fπvðxÞ ¼ xαð1 − xÞβð1þ…Þ that best describes the ratio and RI-
MOM real space data. The first two panels are for a ¼ 0.06 fm and last two for a ¼ 0.04 fm. The dependence of the exponents on all the
variables in the lattice analysis is summarized in the above plot. The notation is similar to Fig. 25.
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does not permit one to access smaller values of
x < ΛQCD=Pz, we find that the model dependent analysis
clearly gives robust values of α ∼ −0.5. This is because the
pion matrix elements constrain the few low moments,
which in turn are functions of both α and β due to the
model used. To summarize, the overall shape of the PDF
and its first few moments are well determined by the usage
of phenomenology motivated ansatz, but the exponents α
and β themselves show sensitivity to the renormalization
schemes as well as the range of z used. Nevertheless, the
estimates of large-x exponents from this analysis have a
tendency to lie closer to 1 rather than 2. Quantitatively, we
estimate

α ¼
8<
:

−0.43þð12Þð13Þ
−ð10Þð13Þ ; a ¼ 0.06 fm

−0.58þð08Þð08Þ
−ð08Þð08Þ ; a ¼ 0.04 fm ðall schemesÞ

β ¼
8<
:

0.82þð30Þð38Þ
−ð24Þð38Þ ; a ¼ 0.06 fm

0.58þð18Þð27Þ
−ð15Þð27Þ ; a ¼ 0.04 fm ðall schemesÞ

ð51Þ

taking into account the different fit ranges and ansatz
dependences in the ratio schemes as well as RI-MOM
scheme. These are the bands shown in Fig. 26. Since RI-
MOM scheme has a tendency to obtain smaller β system-
atically, and since we found the ratio scheme performs
better at suppressing the higher-twist effects, we also give
the estimates below using only the n0z ¼ 1 and n0z ¼ 2 ratio
schemes

α ¼
8<
:

−0.37þð16Þð13Þ
−ð11Þð13Þ ; a ¼ 0.06 fm

−0.55þð11Þð09Þ
−ð08Þð09Þ ; a ¼ 0.04 fm ðonly ratioÞ

β ¼
8<
:

1.05þð42Þð30Þ
−ð42Þð33Þ ; a ¼ 0.06 fm

0.76þð22Þð24Þ
−ð20Þð24Þ ; a ¼ 0.04 fm ðonly ratioÞ:

ð52Þ

Indeed, leaving out RI-MOM scheme results leads to
slightly larger β, but still around 1. For comparison, the
JAM global fits at the same μ give α ¼ −0.37 and β ¼ 1.20.
The downside of the above model dependent analysis is

the question of whether by using a sufficiently general
functional form fπvðxÞ, it is possible to find β ≈ 2. For
example, if we performed the analysis with β ¼ 2 fixed, the
χ2=dof was between 1.5 and 2 as opposed to the global
minimum between 0.5 and 1 when β was allowed as a free
parameter. We discuss such an analysis at fixed β ¼ 2 in
Appendix I. A recent lattice study [41] using the good
lattice cross-section approach found β ¼ 2 is not ruled
out when an ansatz, which we refer to as the 4-parameter
ansatz here, is used while β ≈ 1 was preferred when the
2-parameter ansatz was used. Another recent study [86]
found that with the limited sensitivity of the lattice

calculations to higher moments, it is difficult to make
definite conclusions about the large-x behavior. Therefore,
we discuss a novel model independent way to find β.

B. Model independent estimate of β

We note that the higher moments get more contribution
from larger x, and hence, are more sensitive to the exponent
β. Consequently, one finds that the moments hxni approach
zero in the large-n limit in a manner dependent only on β as

hxni ∝ n−β−1ð1þOð1=nÞÞ: ð53Þ

The exponent is universal, and independent of the small-x
(i.e., xα) or intermediate-x (i.e., GðxÞ) behaviors, but the
constant of proportionality in Eq. (53) does depend on the
details of the PDF. We outline a proof of this behavior in
Appendix F. The asymptotic behavior of large-n moments
was also considered in the context of evolution of β with
scale in Refs. [87,88]. Thus, one can determine β in a model
independent way by taking the log-derivative of the above
behavior,

β þ 1 ¼ −
d log ðhxniÞ
d logðnÞ þOð1=nÞ: ð54Þ

A discretized form of the above expression that is suitable
for a practical implementation is by defining an effective
value of β at finite n as

βeffðnÞ≡ −1þ hxn−2i − hxnþ2i
hxni

n
4
: ð55Þ

As one uses moments at larger values of n in the above
equation, one will find βeffðnÞ to plateau at the value of
large-x exponent β. While this method is straightforward,
it also points to the challenge of addressing the large-x
exponent—one needs to compute larger moments for a
reliable estimate, and puts a limit on what lattice studies can
actually address about β without a modeling bias.
In Sec. VII, we determined the first few even moments in

a model independent manner. We used these estimates of
hx2iv; hx4iv; hx6iv and hx8iv from the model independent
analysis using Eq. (55). Since, the larger moments are
required we used the values from the fits where prior was
imposed on hx2iv. Even though the larger moments are
relatively noisier, the ratios of moments that enter Eq. (55)
are better determined owing to their correlations. We
estimated the central values of βeff and its statistical and
systematic error by the outlined procedure to take care of
the variations in ½z1; z2� and P0

z . We show the result of
βeffðnÞ as a function of n in Fig. 27 from the two lattice
spacings (red and blue data points). We notice that it is
possible at the most to use data up to βeffðn ¼ 6Þ. As one
would expect, the higher order 1=n corrections to the n−β−1

behavior to be the largest for n ¼ 2, and hence, we find
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βeffðn ¼ 2Þ to have larger value around 3.5. For n ¼ 4 and
n ¼ 6, the value of βeff decreases and stays around 1.5; the
errors are large enough to see any n dependence beyond
n ¼ 2. Thus taking the well determined estimate at n ¼ 4
as a proxy for the β, we find

βeffðn ¼ 4Þ ¼
8<
:

1.73þð39Þð37Þ
−ð35Þð37Þ ; a ¼ 0.06 fm

1.53þð21Þð25Þ
−ð21Þð25Þ ; a ¼ 0.04 fm:

ð56Þ

Thus, we find some evidence for β to be between 1 and 2,
consistent with both our model dependent findings of β ≈ 1
and with quark-counting rule expectation of 2. Thus, we are
unable to rule out β ¼ 1 or 2 simply from this model
independent analysis. Also, a priori, it is not clear what
large-n means; whether one will observe an approximate
plateau for βeffðnÞ at n ∼Oð1Þ orOð100Þ. Using our model
dependent fits as well as JAM result, we will show some
evidence below that the plateau is likely to develop for
n ∼Oð1Þ for pion.
In order to see the expected behavior of βeff for n > 6, we

simply use hxniðα; β; s; tÞ from our PDF fits in the last
section to compute the corresponding βeffðnÞ. In this case,
we know that βeffðα; β; s; tÞ → β in the large-n limit, and
we already found such model dependent analysis predict
β ≈ 1. We show this resulting βeffðn; α; β; s; tÞ as the red
and blue bands in Fig. 27. We used the parameters as
obtained from combined fits toMðz; Pz; n0z ¼ 1Þ using a fit
range ½z1; z2� ¼ ½a; 0.72 fm� for the case shown. We also

show the expected result for βeff using the JAM result as the
green curve. The important observation here is that the
models of the type in Eq. (46) predict that βeffðnÞ is almost
plateaued by n ¼ 4, and makes βeffðn ≥ 4Þ to be mean-
ingful estimators of β. To contrast with the JAM expect-
ation for βeff, we also plot βeff as expected using ASV soft-
gluon resummed analysis as the purple dashed curve (in
order to infer the higher moments for the ASV result, we
interpolated their result evolved to μ ¼ 3.2 GeV with
fðxÞ ¼ 1.091x−0.443ð1 − xÞ2.484ð1 − 1.842

ffiffiffi
x

p þ 4.959xÞ.)
The βeff for ASV never goes below 2, and approaches its
plateau value at 2.48 from below.

C. A semi-model-independent analysis of pion
matrix element and exponent β

Based on the asymptotic behavior of large-n moments,
we propose a new way to fit the moments to zPz and z2

dependence of pion matrix elements and, at the same time,
obtain the value of β in a manner that is not dependent on
PDF ansatz. We fit low moments up to an orderNasym in the
usual manner and use the asymptotic expression for the
moments beyond the order Nasym using Eq. (53) with some
1=n corrections, as

hxniv ≡
8<
:

an; n < Nasym

n−β
�
A0

n þ A1

n2 þ A2

n3

�
; n ≥ Nasym;

ð57Þ

The fit parameters are the lower moments a2; a4;…;
aNasym−2, and the parameters β; A0; A1; A2 that model the
large-n moments. We input the constraint that a2 > a4 >
… > aNasym−2 > hxNasymiðβ; A0; A1; A2Þ. Using this model
for the moments in Eq. (30), we fit the parameters to best
describe Mðz; Pz; P0

zÞ in the same way as we described in
Sec. VII, but we use z up to 0.72 fm in this analysis. Some
analysis bias comes from the choices of Nasym and the order
of 1=n corrections to use. We used Nasym ¼ 2, 4, and 6 in
our fits, and any usage of more than A2 in the fits made
the fits unstable and did not converge properly (it is an
asymptotic series after all). It was quite surprising that we
were able to even use Nasym ¼ 2 in the analysis to get good
fits, i.e., using the hypothesis that moments starting from
hx2iv can be described by the asymptotic expression in
Eq. (57). The resulting values of hxniv using this method
compares well within errors with the moments obtained in
Sec. VII and Sec. VIII. For example, using the ratio scheme
with n0z ¼ 1 in the a ¼ 0.06 fm lattice and with Nasym ¼ 4,
we get hx2iv¼0.110ð3Þ, hx4iv¼0.038ð5Þ, hx6iv¼0.016ð4Þ
which compares well with the other determinations
(and for this case, the other parameters were β¼
1.20ð21Þ;A0 ¼ 0.87ð21Þ;A1 ¼ −0.51ð47Þ;A2 ¼ −0.28ð28Þ
and χ2=dof ¼ 46.5=48). The novel outcome of this analysis
is the estimate of β in addition to moments, and for the

FIG. 27. The plot shows the effective large-x exponent βeffðnÞ
as a function of n. The data points are obtained by using values of
moments hxniv obtained from the model independent combined
fits. The smaller error bar is only the statistical error and larger
error bar is statistical plus systematic error. The red and blue
points are the results using our a ¼ 0.06 fm and 0.04 fm
respectively. The red and blue bands are the expectation for
the behavior of βeffðnÞ as obtained from the model-dependent fits
to the pion matrix elements. The green curve is the expectation
using the JAM data [79] and the purple dashed curve is obtained
using the ASV analysis [35].
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n0z ¼ 1 ratiomatrix element using fits from z ¼ a to 0.72 fm,
we get

β ¼

8>><
>>:

0.93þ11
−10 ; Nasym ¼ 2

1.20þ20
−26 ; Nasym ¼ 4; for a ¼ 0.06 fm;

1.79þ59
−36 ; Nasym ¼ 6

β ¼

8>><
>>:

0.85þ11
−15 ; Nasym ¼ 2

1.02þ16
−12 ; Nasym ¼ 4; for a ¼ 0.04 fm:

1.82þ51
−40 ; Nasym ¼ 6

ð58Þ

As one relaxes the order Nasym where large-n asymptotic
behavior sets in from Nasym ¼ 4 to 6, the best fit values of β
changes from a smaller value≈1.0ð2Þ to≈1.8ð5Þ. Thus, this
analysis suggests that the values of β around 1 seem
preferred when one is aggressive on the order Nasym, but
β is consistent within 1 − σ error (albeit a noisier estimate) if
one uses conservatively largerNasym ≥ 6.We reach the same
conclusion again; in order to obtain a conclusive result on β,
we need even more precise data at larger Pzz to be sensitive
to higher moments.

X. CONTINUUM ESTIMATES

In the last part of the paper, we discuss the continuum
estimates of the PDF and its moments. The estimates are
speculative because we only have two lattice spacings,
nevertheless both very fine. We should note that we already
demonstrated the presence of lattice spacing effects of the
type ðPzaÞ2 at distances of the order of few lattice spacings
and took care of them in our analysis. Once the ðPzaÞ2
artifacts were removed, it was possible to describe the
boosted pion matrix elements at any finite lattice spacing
using the twist-2 OPE expressions. Therefore, we assume
that any additional lattice spacing effects will simply affect
the values of the extracted moments themselves. That is, we
model the moments hxniðaÞ at any fixed lattice spacing a to
behave as

hxnivðaÞ ¼ hxniv þ dna2; ð59Þ

where hxniv is the continuum value and dn are numerical
coefficients that can be fit to the data. One should note that
there could be residual OðαsaÞ corrections as well, which
we are implicitly assuming to be small compared to tree-
level Oða2Þ artifacts in the fine lattices we are using. Such
dependences on fit forms need to checked in a precise
analysis of continuum extrapolations that can be performed
with data from multiple lattice spacings, but the extrapo-
lations presented here are meant to be only rough estimates.
We repeated all the analysis (model-independent estimates
of even moments, fits to model PDFs, the semi-model
dependent analyses) presented in the previous sections
using combined fits to both a ¼ 0.06 fm and 0.04 fm data

(for fixed physical values of z2, and keeping n0z to be the
same between the two lattice spacings) using the above
ansatz for hxnivðaÞ in the twist-2 OPE expressions;
concretely, we used fits of the type

Mðz; Pz; P0
z ; aÞ

¼
P

ncnðz2μ2Þðhxni þ a2dnÞ ð−iPzzÞn
n! þ rðaPzÞ2P

ncnðz2μ2Þðhxni þ a2dnÞ ð−iP
0
zzÞn

n! þ rðaP0
zÞ2

�
; ð60Þ

for the ratio schemes with P0
z ≠ 0 for this analysis. We

found using d2 and d4 as additional fit parameters was
sufficient to describe the data at both the lattice spacings
with χ2=dof between 0.5 and 1 depending on the range of
fits and analysis type. Since we found that the ratio scheme
succeeded in reducing higher-twist effect well, we focus on
this scheme in order to discuss our best estimates and their
continuum estimates. As a sample result from this analysis,
in Fig. 28, we show the a2 extrapolation of hx2iv and hx4iv
as obtained from the above analysis at fixed z2 ¼ 0.5 fm
and z1 ¼ a using n0z ¼ 1 for both lattice spacings. For the
case shown, we used the 4-parameter PDF ansatz for the
combined fit. The two data points in the plot are the values
for the same case at fixed a ¼ 0.04 fm and 0.06 fm. We
remind the reader that this is not a straight-line fit to the
two data point, but rather an outcome of the combined
analysis as described above (with d2 ¼ 3.1ð1.8Þ fm−2,
d4 ¼ 0.79ð62Þ fm−2, and χ2=dof ¼ 60.5=92.)
In Table III, we tabulate all our estimates from different

kinds of analysis from the previous sections using only
the ratio schemes with n0z ¼ 1, 2, where we expect the
higher-twist corrections to be even milder. Along with the
estimates at two fixed a, we also tabulate our continuum
estimates based on the above analysis for each quantity.

FIG. 28. Estimate of continuum extrapolation of hx2iv and
hx4iv from combined fits to a ¼ 0.04 fm and a ¼ 0.06 fm
data using the ansatz in Eq. (60). For the case shown, n0z ¼ 1,
½z1; z2� ¼ ½a; 0.5 fm�, and analyzed using 4-parameter PDF
ansatz. The black circles are the data from the analysis at the
two fixed a. The bands are the a2 extrapolations using the
combined fits.
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There is only little effect from including a2 corrections. We
find that removing the lattice spacing effect have a slight
tendency to bring the moments closer to the JAM values of
0.223, 0.095, 0.052, 0.032 for the first four moments. The
best fit values of the large-x exponent β from the fits,
however, continue to remain closer to 1, and thus, the lattice
spacing effects might not be an issue in our results.
As a check, we also used an ansatz similar to Eq. (59)

to include only OðaÞ correction (that could result from
operators being used) to moments instead of Oða2Þ cor-
rection as done above. Such results were consistent with
the Oða2Þ results presented above, albeit with larger error
bars. For example, for the case of 4-parameter PDF fit,
we obtained ðα; β; s; tÞ ¼ ½−0.70ð17Þð09Þ; 0.65ð30Þð32Þ;
−0.20ð20Þð14Þ; 0.9ð1.4Þð1.3Þ� which corresponds to first
four moments being 0.194(31)(15), 0.093(11)(07), 0.057
(5)(6),0.039(3)(5) respectively. A careful study using both
OðaÞ andOða2Þ terms in the extrapolation can be made in a
future study with more that two lattice spacings.

XI. CONCLUSIONS

In this paper, we presented a lattice computation of
the MS isovector u − d parton distribution function of
300 MeV pion and its moments using the recently pro-
posed twist-2 perturbative matching framework (large
momentum effective theory (LaMET) framework / short-
distance factorization framework). Using isospin sym-
metry, we related the properties of isovector pion PDF
to the valence u − ū PDF of pion, πþ.
In order to access the short distance physics required for

the perturbative twist-2 framework, we used two lattices
ensembles with very fine lattice spacings of a ¼ 0.06 fm
and 0.04 fm for the first time in such pion PDF compu-
tations. Using high statistics, we were able to compute the
required equal-time bilocal quark bilinear matrix elements
evaluated with pions boosted up to 2.42 GeV. Thus, a major
advancement resulting from this work is the demonstration
that current lattice calculations can satisfy both the theo-
retical requirement of sub-Fermi separations (in order to
be consistent with the OPE-based framework reliant on
naive power counting for operator hierarchy), and the
requirement of large hadron momentum (in order for a
controlled truncation of the OPE at leading-twist). As a
handle on quantifying perturbative uncertainties and other
higher-twist systematics, we used multiple renormalization
schemes for the equal-time matrix element, namely RI-
MOM, ratio scheme and new variants thereof with the
advantage of reducing higher-twist effects. As a technical
elaboration, we proposed and used the pion matrix element
at zero pion momentum as a suitable quantity to study
higher-twist effects and demonstrated practically as to why
the ratio renormalization scheme effectively eliminates
higher-twist effects to a good accuracy (with respect to
typical errors in lattice data at larger z) even up to 1 fm
distances.

From the renormalized boosted pion matrix elements,
we performed two kinds of analysis. In the first kind, we
obtained the first few even valence moments hxniv by
fitting both z2 and Pzz dependence of the matrix elements
making use of perturbative matching coefficients at 1-loop
order. Though the twist-2 perturbative matching method-
ologies help us access higher moments without the problem
of mixing, especially with the usage of priors on lower
moments, it comes at a cost of introducing dependencies on
the range of z and Pzz used in the fits, and we discussed
them in this work. Folding in such dependencies in the
systematic error, we estimated the MS moments hx2iv;
hx4iv and hx6iv at μ ¼ 3.2 GeV. In the second kind of
analysis, we reconstructed the x-dependent valence pion
PDF by modeling the PDF via xαð1 − xÞβGðxÞ type ansatz,
and fitting the parameters of the model so as to best des-
cribe both z and zPz dependence of pion matrix elements in
various renormalization schemes with z restricted to sub-
Fermi values. We summarize our reconstructed valence
PDFs at μ ¼ 3.2 GeV from the two lattice spacing in the
top panel of Fig. 29—the estimate using only statistical
error is shown as darker band, and statistical and systematic
error (coming from fit ranges, renormalization scheme
used, and the PDF ansatz used) is shown as the lighter
band. This model dependent method lets us access the odd
moments of valence PDF as well. We also provided
estimates of the values of moments as well as the PDF
in the continuum limit based on the results at the two lattice
spacings; the numerical results from various analysis
approaches are summarized in Table III. In the bottom
panel of Fig. 29, we have shown our estimate for the PDF in
the continuum limit for the 300 MeV pion.
We discussed the large-x behavior using our model-

dependent PDF that we reconstructed from fits. We found
that even though the overall x dependence of the recon-
structed PDFs remained the same with variations coming
from the fit range, renormalization scheme and PDF model
used, the specific details such as the value of the large-x
exponent β showed a larger dependence on such analysis
choices, but largely showed a tendency to be close to 1. To
avoid such issues, we proposed a new model independent
observable, constructed out of moments, that converges to
the large-x exponent β as one uses larger moments. At
present, our computed matrix elements are sensitive only to
moments up to order 4 or 6, and given this limitation, we
find the effective value of the exponent to be between 1 and
2, but ruling out neither. However, it is at present hard to
conclude if such an estimate would remain unchanged as
one includes larger moments, which would be possible with
increased statistics in the future. But, with this work, the
computation that one should perform to reach a model
independent robust conclusion about β is clear.
Finally, we compare our PDF determinations with other

global fit analysis in the summary plot in Fig. 29. Along
with our determinations of valence PDFs at the two lattice
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spacing (top panel) and our estimate of valence PDF in the
continuum limit (bottom panel), we have also shown the
Fermilab E-0615 estimate [45] (green symbols), the ASV
reanalysis of the Fermilab result after taking soft-gluon
resummation into account [35] (dashed green line), the
recent JAM Monte-Carlo global analysis [79] (black band)
and the result from analysis using xFitter [84] (purple line),
all evolved to the same scale μ ¼ 3.2 GeV. One can find
an overall agreement of our determinations with the

phenomenological results; with better agreement with
JAM, xFitter and the initial E-0615 estimates, than with
the ASV result. Some caveats are clear—first, our compu-
tation is for 300 MeV pion, and hence a future computation
with physical pion mass is crucial. Second, we used 1-loop
matching coefficients to match the lattice results to MS
PDF, and it is at present unclear what the effect of adding
higher-loop perturbative terms in the matching kernel (and
also ASV-type resummation of soft-gluon contribution in
the matching kernel, if at all possible) on the extracted
PDFs and moments will be (very recently, works [22–24]
related to 2-loop matching appeared as the present manu-
script was being completed). We leave these questions for
the future.
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APPENDIX A: EFFECT OF LATTICE
PERIODICITY ON Pz = 0 THREE-POINT

FUNCTION

The value of mπLt measures quantitatively the magni-
tude of wrap-around effects due to lattice periodicity in the
temporal direction. Its value on the 483 × 64 lattice is 5.85
and on 644 lattice is 3.9. Thus, we expect the wrap-around
effect in correlation functions to be more in our finer lattice

FIG. 29. Our determinations of valence PDF of pion, fπvðx; μÞ,
at factorization scale μ ¼ 3.2 GeV. Top panel: the PDF deter-
mination from a ¼ 0.04 fm data (red) and a ¼ 0.04 fm data
(blue). Bottom panel: our estimate of PDF in the continuum limit
(blue). In both top and bottom panels, the darker inner band
includes only the statistical error. The lighter outer band includes
both statistical error as well as the systematic errors. Our
estimates are compared with the FNAL E-0615 estimate [45]
(green symbols), ASV estimate [35] (green dashed line), JAM
estimate [79] (black band) and xFitter analysis [84] (purple line).
Insets: the same data are replotted as the traditional xfπvðxÞ
versus x.
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than in the coarser lattice. We take care of this wrap-around
effect in two-point function by replacing A0 exp ð−mπtÞ
with A0½expð−mπtÞ þ expð−mπðLt − tÞÞ�. But there are
additional effects in the three-point function itself. To
quantify the effects of finite Lt on the three point function
we recall that finite Lt can be interpreted as inverse
temperature, and therefore, we can write

C3ptðts; τÞ ¼ Trðe−ðLt−tsÞHπe−ðts−τÞHOγt e
−τHπ†Þ; ðA1Þ

withH being the QCD Hamiltonian. Inserting the complete
set of energy eigenstates we can also write the above
expression as

C3ptðts; τÞ ¼
X
m;n;k

hmjπjnihnjOγt jkihkjπ†jmie−τEn

× e−ðts−τÞEke−ðLt−tsÞEm: ðA2Þ

We can split the above sum into two parts; namely, a part
without any wrap-around effect in which the state jmi is the
vacuum j0i, and the states jni and jki run over excited
states with quantum number of pion. The second part
captures the wrap-around effect, and in which case, the
state jmi is the pion state, while the states jni and jki run
over states with vacuum quantum numbers. In the dis-
cussion below, we restrict these states to include j0i and the
first lightest isosinglet, G-parity positive state, jSi, with
energy ES. That is, we write the spectral decomposition of
the three-point function as

C3ptðts; τÞ ¼
� X

n;k∈isotriplet
h0jπjnihnjOγt jkihkjπ†j0i

× e−τEne−ðts−τÞEk

�
þ hπjπj0ih0jOγt jSihSjπ†jπie−ðts−τÞESe−ðLt−tsÞEπ

þ hπjπjSihSjOγt jSihSjπ†jπie−tsESe−ðLt−tsÞEπ :

ðA3Þ

The terms in the sum within the brackets is the part without
wrap-around effect, and we used this part in the main text to
extract the matrix element. The two terms below that are
due to finite Lt.
We focus on Oγtðz ¼ 0Þ now, where we can make well-

motivated estimates of the wrap-around effect. In this case,
the term in the second line in Eq. (A3) involving the
vacuum vanishes. Further, we make the following assump-
tions in order to estimate the wrap-around effect:
(1) The state jSi is a two-pion state jπ; πi with both the

pions with zero relative momentum, and projected to
be isosinglet, G-parity positive.

(2) The energy of the state Eπ;π ≈ 2Eπ .

(3) The amplitude hπjπjπ; πi ≈ h0jπjπi.
(4) The matrix element hπ; πjOγtðz ¼ 0Þjπ; πi≈

2hπjOðz ¼ 0Þjπi.
With these assumptions and using Eq. (A3), the ratio R ¼
C3pt=C2pt becomes

Rðz ¼ 0; ts; τÞ ≈ hπjOγtðz ¼ 0Þjπi
�
1þ 2e−EπLt

1þ e−EπLt

�
þ ðts; τÞ dependent excited state terms:

ðA4Þ

Thus, we have to correct our estimated value for hπjOγtðz ¼
0Þjπi from excited state fits by the factor above. For
nonzero Pz, the values of Eπ are large and the correction
factor is almost 1. For zero Pz, this wrap around effect is the
highest. For a ¼ 0.06 fm lattice, this factor is 1.0028,
which almost unity. However, for the finer a ¼ 0.04 fm
lattice, the correction factor at zero Pz is 1.020, which is
comparable to the estimated value of matrix element at
z ¼ 0 itself, and hence, it cannot be neglected. In Sec. IV,
we estimated hπjOγtðz ¼ 0Þjπi ¼ 1.045ð1Þ without taking
wrap-around effect in the three-point function into account.
We estimate the corrected value to be

hπðPz ¼ 0ÞjOγtðz ¼ 0ÞjπðPz ¼ 0Þi ¼ 1.024ð1Þ; ðA5Þ

for a ¼ 0.04 fm lattice. This is comparable to other values
of z ¼ 0 bare matrix elements at nonzero Pz for a ¼
0.04 fm lattice (refer Fig. 9). Thus, we understand quanti-
tatively the underlying issue in Pz ¼ 0 matrix element for
the finer lattice, and hence we avoided the usage of it in the
analyses discussed in the main text.

APPENDIX B: DISCUSSION ON ZV

In the main text, we normalized the z ¼ 0 renormalized
pion matrix elements to 1, thereby avoiding the issue of
vector current renormalization factor. Here, we provide
details of the renormalization constant ZV of the vector
current Oμ ¼ ψ̄γμψ in the RI-MOM scheme for our two
lattices. We can write ZV ¼ ZγtγtZq, where Zγtγt is the
renormalization of the vertex function for γμ ¼ γt and Zq

is the renormalization of the quark field. We use the
same notation as in Ref. [42], where the details of RI-
MOM renormalization can be found. In Fig. 30, we show
ZV for the two lattice spacings used in our study, a ¼
0.04 fm and a ¼ 0.06 fm as function of the renormaliza-
tion point pR. To minimize the discretization effects, the
lattice momenta
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apμ ¼
2π

Lμ

�
nμ þ

1

2
δμ;0

�
ðB1Þ

are substituted by p0
μ ¼ sinðapμÞ, so p2

R ¼ P
μ¼1;4ðp0

μÞ2.
The vector current renormalization constant should not
depend on pR, because in the a → 0 limit the local current
is conserved. Nevertheless, we see a significant dependence
on pR. This dependence can be caused by lattice artifacts as
well as by nonperturbative effects that for large values of
pR can be parametrized by local condensates. As we use
off-shell quark states in Landau gauge in the RI-MOM
renormalization procedure the lowest dimension local
condensate is the dimension two gluon condensate hA2i
[89,90]. Lattice artifacts show up as breaking of the
rotational symmetry on the lattice. We see from Fig. 30
the fish-bone structure in the lattice data at the level much
larger than the statistical errors on ZV . All these effects need
to be taken into account if one wants to extract ZV . These
effects are easier to understand by analyzing Zq and Zγtγt ,
separately as discussed below.
In Fig. 31 and 32, we show the numerical results Zq and

Zγtγt as function of pR. The numerical results on Zq have
much smaller statistical errors compared to Zγtγt . The
relative statistical errors on Zq are always smaller than

4.5 × 10−4 and for large pR are smaller than 5 × 10−5. We
parametrize the pR dependence of Zq and Zγtγt by the
following form

Zi ¼ Z0
i þ B=ðapRÞ2 þ C · ðapRÞkð1þ C4Δð4Þ þ C6Δð6ÞÞ;

i ¼ q; γt; ðB2Þ

where

Δð4Þ ¼
P

μðp0
μÞ4

p4
R

; Δð6Þ ¼
P

μðp0
μÞ6

p6
R

: ðB3Þ

This form is motivated by the 1-loop lattice perturbation
theory [91,92] and the perturbative analysis with dimension
two gluon condensate [93]. For the nonperturbative clover
action k ¼ 2, while for Wilson action k ¼ 1. For HISQ
smeared clover action with tapdole improved value of
csw we expect OðaÞ discretization errors to be proportional
to α2s with a very small coefficient, so it is reasonable
to assume that the dominant cutoff effects scale like a2.
Nevertheless, we also perform fits using k ¼ 1. In Ref. [92]
the condensate contribution was ignored but it was
included in the analysis of PNDME collaboration [69]
when fitting the pR dependence of the renormalization
constant. For Zγtγt and a ¼ 0.06 fm the fits with k ¼ 1 and
k ¼ 2 work well, while for a ¼ 0.04 fm the fits with k ¼ 2

work better. Fits of Zγtγt with k ¼ 1 give χ2=df that is
around 2 for a ¼ 0.04 fm. It is obvious from Figs. 31 and
32 that the condensate contribution to Zγtγt is quite small,
while it is large for Zq.
The fits of Zq have very large χ2=dof, most likely

because of the very small statistical errors. The value of
the condensate obtained from the fit is compatible with the
value g2hA2i ∼ 4 GeV2 found in Ref. [90] for a ¼ 0.06 fm.
For the smaller lattice spacing it is, however, is twice larger,
which could be due to instabilities in the fits. Therefore we
fix the condensate to the above value in order to stabilize
the fits. From the fits, we obtain the values of Z0

i which can
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FIG. 30. The vector current renormalization factor ZV as
function of pR in lattice units.
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FIG. 31. The quark field renormalization factor Zq as function
of pR in lattice units.
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serve as estimates for Zq and Zγtγt for the two lattice
spacings. Multiplying these two renormalization constants
we obtain ZV . The results of our analysis are summarized
in Table IV. The large uncertainties in Zq come from the
differences in the fits with the condensate contribution
being fixed and treated as the fit parameter. We can
compare our result for ZV at a ¼ 0.06 fm with the value
ZV ¼ 0.945ð15Þ from the PNDME collaboration. Our
result is slightly larger.

APPENDIX C: LEADING TWIST TARGET
MASS CORRECTION

Unlike the light-cone ITD, the terms in the twist-2 OPE
of the equal-time bilocal bilinear have trace terms, which
are proportional to powers of hadron mass. At the level of
twist-2 trace terms, such target mass effects have been
calculated explicitly [73,74]. For the case of pion matrix
element, such target mass corrected expressions are
obtained from Eq. (24), Eq. (27), and Eq. (30) given by
the replacement

ðPzzÞn → ðPzzÞn
Xn=2
k¼0

ðn − kÞ!
k!ðn − 2kÞ!

�
m2

π

4P2
z

�
k

; ðC1Þ

where n are even integer valued for the u − d pion PDF
case. Including such correction terms in our analysis did
not change the results (i.e., effectively the inferred values of
valence pion moments from twist-2 OPE) well within their
errors. However, there could be unaccounted target mass
effects that originate from higher-twist terms and it is an
expectation that their coefficients are Oð1Þ or smaller, and
hence suppressed as simple powers of m2

π=P2
z . We ignore

any such effect in this computation.

APPENDIX D: GOODNESS OF FITS

In Fig. 33, we plot the χ2=dof for our fits to the
2-parameter and 4-parameter PDF ansatz, Eq. (46) in the
main text. The description of the plot is similar to Fig. 25.
For each case (½z1; z2�, renormalization scheme and ansatz),
the χ2=dof as sampled during the bootstrap is shown. The
definition of χ2 includes both statistical error as well as
perturbative uncertainties via Eq. (48).

APPENDIX E: DEPENDENCE OF LARGE-x
EXPONENT ON FACTORIZATION SCALE

The parameters used in 2- and 4-parameter PDF ansatz
are dependent on the factorization scale μ used in the
Wilson coefficients cnðμ2z2Þ that enter the twist-2 OPE. In
Fig. 34, we address the dependence of the large-x exponent
βðμ2Þ on the factorization scale μ (cf. [94] for a similar
analysis on phenomenological PDFs). We repeated the
analysis of matrix elements in ratio scheme with n0z ¼ 1 at
fixed ½z1; z2� ¼ ½a; 0.5 fm� using different values of μ,
varying by few factors around the typical momentum
scales of ∼3 GeV as set by the momenta Pz we used,
and the lattice spacing used. This is so as to keep logarithms
of μ=Pz and μz small, and be consistent with the fixed order
calculation. From each such μ, we obtained the best fit
values of βðμ2Þ. In Fig. 34, we show βðμ2Þ as a function of
μ2 from the two lattice spacings. In the main text, we
presented results at μ2 ¼ 10.2 GeV2. The variation with μ
is mild, perhaps logarithmic in the range of μ used. Thus,
we do not expect the results to change drastically due to the
choice of μ used.

FIG. 33. χ2=dof for the 2-parameter (red) and 4-parameter
(blue) fits is shown from various fit ranges and renormalization
schemes. This plot accompanies Fig. 25 and Fig. 26. The
description of the plot is similar to Fig. 25. The left panel is
for a ¼ 0.06 fm and the right one for a ¼ 0.04 fm.

TABLE IV. The values of the renormalization constants ob-
tained from the different fits.

k ¼ 2 k ¼ 1

a [fm] Zq Zγtγt ZV Zq Zγtγt ZV

0.06 1.02(2) 0.944(1) 0.963(20) 1.04(1) 0.930(1) 0.967(10)
0.04 1.03(3) 0.950(3) 0.980(30) 1.05(3) 0.920(3) 0.966(30)

FIG. 34. The value of large-x exponent, βðμ2Þ, for the valence
PDF at the MS scale μ2.
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APPENDIX F: ASYMPTOTIC EXPANSION
OF hxni AT LARGE-n

We consider PDFs of the form,

fðxÞ ¼ N xαð1 − xÞβGðxÞ; ðF1Þ

with GðxÞ being a smooth well-behaved function that does
not vanish between 0 and 1. Then, the nth moment is

hxni ¼ N
Z

1

0

xαþnð1 − xÞβGðxÞdx≡N
Z

1

0

eFðxÞdx;

ðF2Þ

for FðxÞ ¼ ðnþ αÞ logðxÞ þ β logð1 − xÞ þ logGðxÞ.
Now, we proceed toward doing a saddle point approxi-
mation in order to evaluate the leading term in the above
integral in the limit of infinite n. The maximum of FðxÞ
occurs at x ¼ x0 ¼ 1 − β=nþOð1=n2Þ, which is less
than 1 and hence within the domain of integration,
and on the real axis. Thus, FðxÞ in the proximity of
x ¼ x0 is

FðxÞ≈ log

�
ββ

nβ

�
þn log

�
1−

β

n

�
þ logGð1Þ− n2

2β
ðx− x0Þ2:

ðF3Þ

Thus, the saddle point approximation gives the asymp-
totic dependence on n,

hxni ∝ 1

nβþ1
; ðF4Þ

from the first term in Eq. (F3) and an extra n from the
change of variables in the last term of Eq. (F3) to
perform the remaining Gaussian integral. The asymptotic
series for hxni in the limit of large-n is given by the
standard multiplication correction factor which is a series
in 1=n.

APPENDIX G: ATTRACTOR AT x= x�ðβÞ FOR
FAMILY OF PDFS AT FIXED hxi

In this Appendix, we explore a curious feature of the
extracted PDFs in Fig. 22, Fig. 23, Fig. 24, and Fig. 29; in
all these figures, one can observe that the error bands for the
best fit PDFs pinch at around x ≈ 0.6. We understand this to
arise due to a weak attractor in x − fðxÞ plane, once we
specify a value of the first moment hxi and the value of β. In
Fig. 35, we plot PDFs of the form fðx; α; βÞ ¼ N xαð1 −
xÞβ that have fixed hxi ¼ 0.23 (the typical value for pion)
and with β around 1. It is interesting to observe that all
these PDFs have a tendency to converge around x ¼ 0.6 as
in our PDFs in the main text. Thus, the pinch observed
around x ¼ 0.6 is actually a robust feature arising of hxi ≈
0.23 and β ≈ 1 in our calculations.

One way to understand this behavior is the following.
Once we specify hxi ¼ a0, for some a0, then it induces a
relation α ¼ αðβ; a0Þ; for the 2-parameter ansatz, it is
αðβ; a0Þ ¼ ð1 − 2a0 − a0βÞ=ða0 − 1Þ. Therefore, the PDF
is also of the form fðx; αða0; βÞ; βÞ. For there to be a basin
of attraction at x ¼ x�, it satisfies ∂fðx;αða0;βÞ;βÞ∂β jx¼x� ¼ 0.
One can demonstrate numerically that there exists such a
solution at x ¼ x� ≈ 0.57 when β ¼ 1 and hxi ¼ 0.23.
Therefore, this feature of PDF ties directly to our various
estimates, and forms yet another consistency check of our
observations. However, it is not clear if such an effect
would also persist when deviation from 2-parameter PDF
ansatz is significant. It is worth pointing out that there could
be other robust features of valence PDF, for example, a
study [95] found a near constant relationship of peak
position and height on the factorization scale μ. It would
be interesting to make use of such features in the future
analysis.

APPENDIX H: RESULTS USING THE PION
MATRIX ELEMENT IN RATIO SCHEME

WITH P0
z = 0 (REDUCED ITD)

FOR a = 0.06 FM LATTICE

In the main text, we utilized ratio scheme with nonzero
reference scale P0

z . We had two reasons to do this; first, by
using all the momenta Pz as well as the reference P0

z greater
than the ΛQCD scale, we adhered to the twist-2 perturbative
matching framework closely. This is to be contrasted with
the usage of P0

z ¼ 0 in the ratio scheme (reduced ITD)
which relies on the cancellation of higher twist effects,
which our data also supports, but nevertheless lacks a firm
theoretical basis. Second, we observed a large lattice
periodicity effect in the Pz ¼ 0 three-point function in
the fine lattice (see Appendix A). Therefore, we avoided the
traditional P0

z ¼ 0 reference scale. In this Appendix, for
completeness sake, we present results including the P0

z ¼ 0
ratio for the a ¼ 0.06 fm lattice, where at least there is no

FIG. 35. The plot shows different set of 2-parameter PDFs,
fðx; α; βÞ, that have fixed hxi ¼ 0.23. The different colored
curves correspond to different values of β centered around
β ¼ 1. The dashed line is the value x� ¼ 0.57 which is the fixed
point for the PDFs.
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issue with the lattice wrap-around effect. In addition, in
Sec. VI, we provided empirical evidence and rationale
behind the validity of using P0

z ¼ 0 in defining renormal-
ized ratios that is consistent with twist-2 matching frame-
work, given the statistical errors in the data. Therefore, we
include the results from P0

z ¼ 0 ratio with the other two
nonzero P0

z presented in the main text.
In Fig. 36, we include P0

z ¼ 0 ratio results (black
symbols) for lowest three even moments along with other
two nonzero P0

z results that we presented in Sec. VII. We
refer the reader to Sec. VII and the captions of the figures
therein for detailed explanations. There is a slight tendency
for the extracted moments using P0

z ¼ 0 to be smaller than
at higher nonzero P0

z . If we include the P0
z ¼ 0 results along

with the other results, we estimate the moments in a model-

independent way as hx2iv ¼ 0.1071þð33Þð54Þ
−ð37Þð54Þ , hx4iv ¼

0.0317þð50Þð75Þ
−ð50Þð75Þ and hx6iv ¼ 0.0102þð23Þð39Þ

−ð20Þð39Þ with the same

methodology as in Sec. VII.
In Fig. 37, we present results using fits to PDF ansatz.

We refer the reader to Sec. VIII for explanations and

methodology. In the top panel, the ratio matrix element
with P0

z ¼ 0 is shown along with the bands resulting
from fits to the 4-parameter ansatz. In the bottom panel,
the best fit PDF using 4-parameter ansatz is shown
(green) and compared to results using other nonzero P0

z .
The PDFs using different P0

z remain more or less the
same. The values of the exponent including results

from P0
z are α ¼ −0.40þð14Þð17Þ

−ð14Þð17Þ and β ¼ 1.30þð35Þð46Þ
ð35Þð46Þ .

These results are to be compared with the entries in
Table III. There is a tendency for P0

z ¼ 0 to pull the
result for β higher; an opposite behavior wherein β
increased when P0

z is increased would have been more
desirable. The inferred moments from model-dependent
ansatz including P0

z ¼ 0 ratio with other ratio schemes

give hxiv¼0.2470þð93Þð66Þ
−ð94Þð66Þ , hx2iv¼0.1100þð38Þð57Þ

−ð36Þð57Þ , hx3iv ¼
0.0617þð44Þð70Þ

−ð42Þð70Þ , and hx4iv ¼ 0.0393þð44Þð67Þ
−ð43Þð67Þ . Using the

analysis using asymptotic expansion for moments with

Nasym ¼ 4 as presented in Sec. IX, we get β ¼ 1.47þð27Þð30Þ
−ð23Þð30Þ .

The analysis of effective β that we discussed in Sec. IX

FIG. 36. Plot shows the first three even moments obtained on
a ¼ 0.06 fm lattice in a model independent manner as described
in Sec. VII. The description of the three plots is similar to that in
Fig. 17, Fig. 18, and Fig. 19. In addition to the two values of
P0
z ≠ 0, this plot includes P0

z ¼ 0 reference scale for the ratio.

FIG. 37. The plot is on the 4-parameter PDF ansatz fits to the
P0
z ¼ 0 ratio data on a ¼ 0.06 fm lattice. The top panel shows the

ratio data a function of Pzz along with the fits. The bottom panel
shows the PDF extracted from P0

z ¼ 0 ratio with other ratio data
at nonzero P0

z discussed in the main text. The description of the
plots are similar to the ones in Fig. 21 and Fig. 22.
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gives βeffðn ¼ 4Þ ¼ 2.04þð33Þð50Þ
ð35Þð50Þ that is again consistent

with both β ¼ 1 and β ¼ 2.

APPENDIX I: ANALYSIS IMPOSING β = 2
IN PDF ANSATZ

In Sec. VIII, we used 2- and 4-parameter PDF ansatz in
Eq. (46) to reconstruct the PDF that best describes the real-
space lattice data. In that analysis, we kept β as a free
parameter. Through that analysis, we found PDFs with
β ≈ 1 or less to best describe the data. Here, we do the
following; we take β ¼ 2 as if it is a well-established fact,
and impose the constraint β ¼ 2 in the 4-parameter ansatz
and fit only α, s, and t to minimize χ2. That is, even though
there is a set of PDF that better describe the lattice data in
the space of ðα; β; s; tÞ, we restrict now to a subspace
ðα; β ¼ 2; s; tÞ and ask what PDFs within this subspace best
describes the data.
Let us take a specific case of P0

z ¼ 0.43 GeV ratio matrix
element on a ¼ 0.06 fm lattice. We fit the lattice data
in the range z ∈ ½a; 0.5 fm�. The resultant χ2=dof for this
3-parameter ansatz was of course larger compared to the
4-parameter ansatz, but not very large either; for the
4-parameter ansatz for the same case, χ2=dof ≈ 25=36
while it was 56=37 for the 3-parameter one tried here.
The resulting PDF is shown as the blue band in Fig. 38. For
comparison, the unconstrained 4-parameter PDF result is
also shown. The β ¼ 2 result closely hugs the best-fit result
and tries to lie within the 1-σ vicinity of it. The error bar on
the constrained PDF is small because there only exists a
small set of PDF with β ¼ 2 that have a decent χ2. One
might wonder if imposing β ¼ 2 took our result closer to
the ASV result [35]. For this, the ASV result is shown as
the green dashed line Fig. 38. The β ¼ 2 result actually
misses the ASV result badly at intermediate x at the
expense of agreeing well very close to x ¼ 1. It is

fascinating that this is actually due to robust tendency of
the PDFs to pass through an approximate fixed-point at
x ¼ x� (≈0.6 specific to our data) that we discussed in
Appendix G and determined by the first moment. Not
surprisingly, the β ¼ 2 fits resulted in values of first four
moments as 0.254(5),0.108(3),0.057(2), and 0.034(2) for
the case discussed, which compares well with the first four
moments for the same case obtained using a full 4-
parameter fit; namely, 0.245(8),0.111(3),0.064(4) and
0.040(5). This analysis for fixed β ¼ 2 assumes a very
specific functional form for GðxÞ ¼ 1þ s

ffiffiffi
x

p þ tx. Thus, it
is very much a possibility that by choosing some other
flexible functional form for GðxÞ, one might still be able to
get β ≈ 2 and get better χ2. We do not explore this any
further in this paper since effective β analysis addresses this
in a better manner.
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